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Correction to “Satisficing in Multi-Armed Bandit Problems”
Paul Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard

Abstract—An unfortunate mistake in the proof of Theorem 8
of the above paper is corrected.

We correct an error in the published proof of Theorem
8 of [2]. The error arises from an incorrect application of
concentration inequalities. The correction follows the same
structure as that published in [3, Appendix G], which corrects
the proofs of performance bounds for UCL algorithms in
[4] and thus Theorems 7 and 8 of [2]. For simplicity of
presentation, we first state the correction and then provide the
associated proof.

The heuristic value Qti in [2, (27)] is

Qti = µti + σtiΦ
−1(1− αt). (C1)

To correct Theorem 8 of [2], set αt = 1/(Kta) with a >
4/(3(1− ε2/16)), ε ∈ (0, 4), and K =

√
2πe. The last part of

the statement of [2, Theorem 8] should be replaced by
“Then, the following statements hold for the
satisfaction-in-mean-reward UCL algorithm with un-
correlated uninformative prior and K =

√
2πe:

1) the expected number of times a non-satisfying
arm i is chosen until time T satisfies

E
[
nTi
]
≤

(
8a(

∆Mi
)2
)

log T + o(log T );

2) the cumulative expected satisfaction-in-mean-
reward regret until time T satisfies

JSM ≤
N∑
i=1

∆Mi

(
8a(

∆Mi
)2
)

log T+o(log T ).”

For the δ-sufficing and (M, δ)-satisficing UCL algorithms
of [2], similar corrections also hold with Qti defined by (C1)
and a modification to αt. For these algorithms, the modifica-
tion to αt and its consequences can be succinctly stated by
referring to the following Lemma which is a straightforward
application of Theorem 2 below.

Lemma 1. Let ε ∈ (0, 4) and define

αt = 1− Φ

(√
2

1− ε2/16
log

log((1 + ε)t)

δ log(1 + ε)

)
. (C2)

Then, at time t

Pr [[2, (40)] holds] = Pr

[
µti −mi

σti
≥ Φ−1(1− αt)

]
≤ δ.

The corrections to the four algorithms published in [2] and
the corresponding corrected expressions for the performance
bounds are summarized in Table I. For δ-Sufficing and (M, δ)-
Satisficing UCL, the bounds take the form

f(δ,∆) :=
8σ2

s

∆2(1− ε2/16)
log

log((1 + ε)T )

δ log(1 + ε)
+ 1. (C3)

TABLE I
SUMMARY OF THE CORRECTIONS FOR THE SATISFICING UCL

ALGORITHMS. DEFINE Qti BY (C1) WITH ε ∈ (0, 4),K =
√

2πe AND SET
αt AS FOLLOWS. THE CORRECTED PERFORMANCE BOUNDS WITH f IS

DEFINED BY (C3).

Algorithm αt Bound

Deterministic UCL αt = 1/Kta, a > 4
3(1−ε2/16)

E
[
nTi

]
≤ 8aσ2

s

∆2
i

log T + o(log T )

Satisfaction-in-
-mean-reward UCL αt = 1/Kta, a > 4

3(1−ε2/16)
E
[
nTi

]
≤ 8a

(∆Mi )2
log T + o(log T )

δ-Sufficing UCL αt from Equation (C2), δ 7→ δ/2 nTi ≤ f(δ/2,∆i)
(M, δ)-Satisficing UCL αt from Equation (C2), δ 7→ δ/3 nTi ≤ f(δ/3,∆Mi )

Note that with the correction, which accounts for the depen-
dence of nti on rewards accrued, the upper bound functional
form (C3) is no longer independent of T . However, the
dependence on T is of the form log log T , which is a very
slowly increasing function of T . Therefore, in any realistic
application the upper bound will effectively be constant and
the qualitative result of [2] does not change.

REVISED PROOF

We employ the following concentration inequality from
Garivier and Moulines [1] to fix the proof. Let (Xt)t≥1 be
a sequence of independent sub-Gaussian random variables
with E[Xt] = µt, i. e., E[exp(λ(Xt − µt))] ≤ exp(λ2σ2/2)
for some variance parameter σ > 0. Consider a previsible
sequence (εt)t≥1 of Bernoulli variables, i.e., for all t > 0, εt
is deterministically known given {Xτ}0<τ<t. Let

st =

t∑
s=1

Xsεs,m
t =

t∑
s=1

µsεs, n
t =

t∑
s=1

εs.

Theorem 2 ([1, Theorem 22], [3, Theorem 11]). Let (Xt)t≥1
be a sequence of sub-Gaussian1 independent random variables
with common variance parameter σ and let (εt)t≥1 be a pre-
visible sequence of Bernoulli variables. Then, for all integers
t and all δ, ε > 0,

Pr

[
st −mt

√
nt

> δ

]
(C4)

≤
⌈

log t

log(1 + ε)

⌉
exp

(
− δ2

2σ2

(
1− ε2

16

))
.

We will also use the following lower bound for Φ−1(1−α),
the quantile function of the normal distribution.

1The result in [1, Theorem 22] is stated for bounded rewards, but it extends
immediately to sub-Gaussian rewards by noting that the upper bound on the
moment generating function for a bounded random variable obtained using
a Hoeffding inequality has the same functional form as the sub-Gaussian
random variable.
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Proposition 3. For any t ∈ N and a > 1, the following holds:

Φ−1
(

1− 1√
2πeta

)
≥
√
ν log ta, (C5)

for any 0 < ν ≤ 1.59.

Proof. We begin with the inequality Φ−1(1 − α) >√
− log(2πα2(1− log(2πα2))) established in [4]. It suffices

to show that

− log

(
1

et2

(
1− log

(
1

et2

)))
− ν log t ≥ 0,

for ν ∈ (0, 1.59]. The left hand side of the above inequality is

g(t) := 1− log 2 + (2− ν) log t− log(1 + log t).

It can be verified that g admits a unique minimum at t =
e(ν−1)/(2−ν) and the minimum value is ν− log 2+log(2−ν),
which is positive for 0 < ν ≤ 1.59.

In the following, we choose ν = 3/2.

Correction to the proof of [2, Theorem 8]. The structure of
the published proof carries through. Let i be a non-satisfying
arm, i.e., mi < M, and recall that i∗ denotes the arm with
maximum mean reward. Let η be a positive integer and let
ε ∈ (0, 4) and a > 4/(3(1− ε2/16)).

We first analyze the probability that [2, Eq. (31)] holds
by applying Theorem 2. Let {Xτ}0<τ<t be the sequence
of rewards associated with arm i, and let (εt)t≥1 equal 1
if the algorithm chooses arm i at time t. Note that, for an
uncorrelated uninformative prior, µti = m̄t

i = st/nt, σti =
1/
√
nti,mi = mt/nt, and nti = nt. [2, Eq. (31)] is thus

equivalent to

st

nt
− mt

nt
≥ 1√

nt
Φ−1(1− αt)⇒

st −mt

√
nt

≥ Φ−1(1− αt).

Letting δ = Φ−1(1− αt) and applying (C4) yields

Pr [[2, Eq. (31)] holds] = Pr

[
st −mt

√
nt

≥ δ
]

≤
⌈

log t

log(1 + ε)

⌉
exp

(
−3 log ta

4

(
1− ε2

16

))
=

⌈
log t

log(1 + ε)

⌉
t−

3a(1−ε2)/16
4 ,

where the second inequality follows from (C5). The same
bound holds for [2, Eq. (32)].

It can be verified that for the corrected Qti in equation (C1),
the constant “8” in [2, Eqns. (35, 38 and 39)] will be replaced
by 8a. Following the proof in [2] with the above corrections,

E
[
nTi
]
≤

⌈
8a(

∆Mi
)2 log T

⌉
+

T∑
t=1

3

⌈
log t

log(1 + ε)

⌉
t−

3a(1−ε2)/16
4 .

The sum can be bounded by the integral∫ T

1

(
log t

log(1 + ε)
+ 1

)
t−

3a(1−ε2/16)
4 dt+ 1. (C6)

It can be verified that the integral (C6) is of class o(log T ) as
long as the exponent 3a(1− ε2/16)/4 > 1. Putting everything
together, we have

E
[
nTi
]
≤ 8aσ2

s

∆2
i

log T + o(log T ).

The second statement follows from the definition of the
cumulative expected regret.

The corrections to the proofs of [2, Theorem 10] (δ-
Sufficing UCL) and [2, Theorem 11] ((M, δ)-Satisficing UCL)
follow the same structure.

Correction to proof of [2, Theorem 10]. For the corrected αt
defined in equation (C2) with δ 7→ δ

2 , [2, Eq. (42)] is
equivalent to

∆i = mi∗ −mi < 2Cti =
2σs√
nti

Φ−1(1− αt).

Squaring, rearranging, and applying Equation (C2), we see
that this never holds if

nti >
8σ2

s

∆2
i (1− ε2/16)

log
2 log((1 + ε)t)

δ log(1 + ε)
= η.

Then, Lemma 1 implies that [2, Eqns. (40, 41)] each hold
with probability at most δ/2. Therefore, for nti > η + 1 =
f(δ/2,∆i), a non-satisfying arm is selected with probability
at most δ.

Correction to proof of [2, Theorem 11]. For the corrected αt
defined in equation (C2) with δ 7→ δ

2 , an argument analogous
to that for [2, Eq. (42)] above shows that [2, Eq. (44)] never
holds for nti > η = f(δ/3,∆Mi )− 1.

Applying Lemma 1 implies that [2, Eq. (43)] holds with
probability at most δ/3. Similarly to the corrected proof for [2,
Theorem 10] above, for nti > η+1 = f(δ/3,∆Mi ), Qti ≥ Qti∗
with probability at most 2δ

3 . Thus, a non-satisfying arm is
selected with probability at most δ.
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