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Abstract—An unfortunate mistake in the proof of Theorem 8
of the above paper is corrected.

We correct an error in the published proof of Theorem
8 of [2]. The error arises from an incorrect application of
concentration inequalities. The correction follows the same
structure as that published in [3, Appendix G], which corrects
the proofs of performance bounds for UCL algorithms in
[4] and thus Theorems 7 and 8 of [2]. For simplicity of
presentation, we first state the correction and then provide the
associated proof.

The heuristic value Q! in [2, (27)] is

Qb =} + ol (1 — ay). (C1)
To correct Theorem 8 of [2], set oy = 1/(Kt*) with a >
4/(3(1—¢€%/16)), € € (0,4), and K = +/27e. The last part of
the statement of [2, Theorem 8] should be replaced by
“Then, the following statements hold for the
satisfaction-in-mean-reward UCL algorithm with un-
correlated uninformative prior and K = Vore:
1) the expected number of times a non-satisfying
arm ¢ is chosen until time 7" satisfies

E[n]] < (&) log T + o(log T);

2) the cumulative expected satisfaction-in-mean-
reward regret until time 7' satisfies

N
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Jsm < Z AM ((A/\if) log T+o(logT).”
i=1 ‘

?

For the §-sufficing and (M, ¢)-satisficing UCL algorithms
of [2], similar corrections also hold with Q§ defined by (C1)
and a modification to «;. For these algorithms, the modifica-
tion to oy and its consequences can be succinctly stated by
referring to the following Lemma which is a straightforward
application of Theorem 2 below.

Lemma 1. Ler € € (0,4) and define

B 2 log((1 + €)t)
at—1—<1><\/1€2/1610 ) (C2)

&5 log(1 +¢€)
Then, at time t

Pr[[2, (40)] holds| = Pr [“t;m > o (1 — at)} <.

The corrections to the four algorithms published in [2] and
the corresponding corrected expressions for the performance
bounds are summarized in Table I. For §-Sufficing and (M, ¢)-
Satisficing UCL, the bounds take the form

o 802 log((1+€)T')
16, 4) = dlog(1l+¢)

+1. (C3)

A2(1—e2/16) °

TABLE I
SUMMARY OF THE CORRECTIONS FOR THE SATISFICING UCL
ALGORITHMS. DEFINE Q§ BY (C1) WITH € € (0,4), K = /2me AND SET
«t AS FOLLOWS. THE CORRECTED PERFORMANCE BOUNDS WITH f IS
DEFINED BY (C3).

Bound

8ao?

E [nﬂ < At logT + o(log T)

Algorithm at

Deterministic UCL ar =1/Kt% a > mﬁjm

Satisfaction-in-

-mean-reward UCL at =1/Kt*, a > m E [n?‘] < (A?‘j).z log T+ o(log T')
§-Sufficing UCL a; from Equation (C2), & + §/2 n‘T < F(8/2,A:)

(M, §)-Satisficing UCL | oy from Equation (C2), § — 6/3 n? < f(5/3,AM)

Note that with the correction, which accounts for the depen-
dence of n} on rewards accrued, the upper bound functional
form (C3) is no longer independent of 7. However, the
dependence on 7' is of the form loglogT', which is a very
slowly increasing function of T'. Therefore, in any realistic
application the upper bound will effectively be constant and

the qualitative result of [2] does not change.

REVISED PROOF

We employ the following concentration inequality from
Garivier and Moulines [1] to fix the proof. Let (X;);>1 be
a sequence of independent sub-Gaussian random variables
with E[X,] = 4, i. e., Elexp(A(X; — 114))] < exp(A\20?/2)
for some variance parameter ¢ > 0. Consider a previsible
sequence (€;);>1 of Bernoulli variables, i.e., for all ¢ > 0, ¢,
is deterministically known given { X }o<,<¢. Let

t t t

t t t

s = § Xses,m" = E Ms€s, T = § €s-
s=1 s=1 s=1

Theorem 2 ([1, Theorem 22], [3, Theorem 11]). Let (X;)¢>1
be a sequence of sub-Gaussian' independent random variables
with common variance parameter o and let (et)t21 be a pre-
visible sequence of Bernoulli variables. Then, for all integers
t and all 6,¢ > 0,

Pr [St —m’

i >5}
< iairal = (5 (- %))

We will also use the following lower bound for ®~!(1—a),
the quantile function of the normal distribution.

(C4)

I'The result in [1, Theorem 22] is stated for bounded rewards, but it extends
immediately to sub-Gaussian rewards by noting that the upper bound on the
moment generating function for a bounded random variable obtained using
a Hoeffding inequality has the same functional form as the sub-Gaussian
random variable.



Proposition 3. For any t € N and a > 1, the following holds:

1
() 2 v

for any 0 < v < 1.59.

(C5)

Proof. We begin with the inequality ®~!'(1 — a) >
V/—log(2ma?(1 — log(2ma?))) established in [4]. It suffices
to show that

1 1
_ - — - _ >
log (etZ (1 log (et2>>> Vlogt 07

for v € (0,1.59]. The left hand side of the above inequality is

g(t) :=1—1log2+ (2 —v)logt —log(1 + logt).

It can be verified that g admits a unique minimum at ¢t =
e(=1/(2=¥) and the minimum value is v — log 2 +log(2 — v),
which is positive for 0 < v < 1.59. O

In the following, we choose v = 3/2.

Correction to the proof of [2, Theorem 8]. The structure of
the published proof carries through. Let ¢ be a non-satisfying
arm, i.e., m; < M, and recall that i* denotes the arm with
maximum mean reward. Let n be a positive integer and let
€€ (0,4) and a > 4/(3(1 — €2/16)).

We first analyze the probability that [2, Eq. (31)] holds
by applying Theorem 2. Let {X,}o<r<: be the sequence
of rewards associated with arm 4, and let (e);>1 equal 1
if the algorithm chooses arm ¢ at time ¢. Note that, for an
L= st/nt ol =

uncorrelated uninformative prior, p! = m!

1/y/nt,m; = m'/n', and n} = n'. [2, Eq. (31)] is thus
equivalent to

st mt st —m?

—_ - — 7(1) 1-— = > o1 (1 — .
v i S v S N Ul
Letting 6 = ®~1(1 — a;) and applying (C4) yields

st —m!
Pr|[2, Eq. (31)] holds] = Pr { > 5}
(2, Eq ] i
a 2
< logt exp 73logt 1_ &
log(1 +¢) 4 16
_ logt _ga=c)/16
| log(1+e)
where the second inequality follows from (C5). The same
bound holds for [2, Eq. (32)].
It can be verified that for the corrected Q! in equation (C1),

the constant “8” in [2, Eqns. (35, 38 and 39)] will be replaced
by 8a. Following the proof in [2] with the above corrections,

T 8a logt
E[nl] ’V(A ) logT-‘JrZ Log 1g+6

The sum can be bounded by the integral

)

T
log M

— 41|t dt + 1. Co6

/1 (10g(1+6) ) (o

3a(1—e2)/16
t 1 .

It can be verified that the integral (C6) is of class o(log T') as
long as the exponent 3a(1—¢2/16)/4 > 1. Putting everything
together, we have

8ac?
E[n]] < A2 log T + o(log T).
The second statement follows from the definition of the
cumulative expected regret. O

The corrections to the proofs of [2, Theorem 10] (-
Sufficing UCL) and [2, Theorem 11] ((M, J)-Satisficing UCL)
follow the same structure.

Correction to proof of [2, Theorem 10]. For the corrected ay
defined in equation (C2) with § +— g, [2, Eq. (42)] is
equivalent to

20,

T
n;

A, =mp —my <2Cit: <I>_1(1—at).
Squaring, rearranging, and applying Equation (C2), we see
that this never holds if
802 2log((1 + )t
e S0 2os(( 4
AZ(1 —€2/16) dlog(l+e)

Then, Lemma 1 implies that [2, Eqns. (40, 41)] each hold
with probability at most /2. Therefore, for nf > n+1 =
f(6/2,A;), a non-satisfying arm is selected with probability
at most 9. O

Correction to proof of [2, Theorem 11]. For the corrected o
defined in equation (C2) with § — %, an argument analogous
to that for [2, Eq. (42)] above shows that [2, Eq. (44)] never
holds for nt > n = f(§/3, AM) — 1.

Applying Lemma 1 implies that [2, Eq. (43)] holds with
probability at most d/3. Similarly to the corrected proof for [2,
Theorem 10] above, for nt > n+1 = £(5/3,AM), Qt > QL

with probability at most ?. Thus, a non-satisfying arm is

selected with probability at most 6. O
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