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Abstract

Robots that work in conjunction with humans are becoming commonplace. Some are

autonomous, operating without human input, but many require supervision or direct

control. In this work we suggest using mixed teams for decision making when robots

are faced with complex tasks and human input is beneficial. Evidence that robots can

be effective as peers with humans is plentiful [45, 16, 35], but new tools are needed

for designing such systems.

A formal, model-based analysis of decision making in teams that share social feed-

back is provided. We focus on the Two-Alternative, Forced-Choice (TAFC) task [53]

which has been widely-studied in experiments with human subjects [56, 57]. Deci-

sion makers in the TAFC task choose between two options, sequentially in time, and

receive feedback on performance. This task is simple and relatively well-understood,

but the predictive tools we develop and the principles that we uncover likely extend

to different and more complex tasks.

Deterministic and stochastic decision-making strategies are considered. Our abil-

ity to predict behavior in teams with social feedback relies on our analysis of a stochas-

tic soft-max choice model [28] where we reveal dependence of performance on parame-

ters describing the task, the decision makers, and the social feedback. These tools can

assist in the design of mixed teams. For example, it is possible to identify scenarios

where robotic decision makers designed into a mixed team can significantly improve

performance. Experiments are underway to test our hypotheses.

Relevant applications and methods of interaction are also of interest. We describe

the development of a robotic testbed that supports real-time operation of multiple,

robotic vehicles in a three-dimensional field. We have plans for experiments that

study mixed teams working with physical robots in our testbed. By considering real-

world constraints in that setting, a comprehensive, and realistic approach to studying

joint decision making will continue.
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Chapter 1

Introduction

Robots are seeing increased use in a wide array of applications. Carrying out missions

in the ocean, space, atmosphere, urban environments, and even working in the home,

robots have proven useful in many domains and are impacting society with increasing

force. Robotic systems capable of carrying out specialized tasks are developing rapidly

but so must the tools with which we design the systems that go into operation. Our

tools should not only be applied for the purpose of increasing the autonomy of robots,

but also to assist integration so that robots are designed to make joint decisions with

the humans that use them.

Developing algorithms that allow robots to complete complex tasks and adapt to

changes in the environment or mission objective while recognizing patterns, weighing

different options, and responding in real time is intractable for most real-world sce-

narios. In some cases there is no substitute for the decision-making capability of a

human. In many applications there are factors that make it necessary for humans to

supervise or control the operation of robots.

The need for increased autonomy of robots is not to be overlooked. It is significant

and growing. Some missions have constraints that limit communication bandwidth,

or create significant time delays that make it difficult for a human to be in the loop

1



and guide the system in real time. Examples of robots that face such constraints

include planetary rovers [51, 89], subsea robots for ocean exploration including un-

derwater gliders [6, 90, 71, 29] and other autonomous underwater vehicles [2, 3]. Even

these platforms, however, are capable of sending data to a team of operators and re-

ceiving new commands at intermittent points in time during their operations. Some

platforms, the Mars Rovers for example, can be re-programmed remotely.

The ability to adjust the level of a robot’s autonomy is particularly useful. Un-

manned systems used by the United States Air Force have this feature [36]. Take,

for example, the Predator unmanned aircraft which is used overseas and operated

remotely by pilots that fly the aircraft from a control station on the ground [86].

Platforms like the Predator can carry out some tasks autonomously (like following a

specific course or maintaining an altitude), but when decisions must be made that

rely on analysis of video and other sensor data, or when the quick prioritization of

competing objectives is needed, human operators are critical.

When tasks are highly sensitive and a mistake can result in damage to property or

loss of human life, having a human in the loop is critical. In applications such as bomb

disposal, robots allow a human operator to diffuse bombs without being at the point

of contact [47]. Autonomous bomb-diffusing robots that operate independently are

not feasible though, particularly due to the complexity of the task. The same goes for

surgical robots which require specially-trained surgeons to perform operations using

a set of controls and a remote interface [25, 21]. The authors of [93] address this by

introducing the notion of task criticality and argue that when it is high, a human

should be in the loop.

In each of these examples the decision-making capability of robots limits the scope

of their behavior and poses a need to include humans in the loop. It should be

recognized though, that robots have specialized skills that benefit the decision-making

process, even when robots lack the ability to operate autonomously. For instance,
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robots can efficiently and reliably compute relevant quantities for a mission, store

large amounts of information in memory, or repeatedly perform simple operations

that a human would find tiresome or boring. It is also the case that robots lack some

limitations that are inherent to human decision makers.

A paradigm we propose in this work is to consider some robotic decision makers to

be on a peer level with their human counterparts. Building mixed teams of decision

makers in this way, we look for ways to design integration to advantage, considering

the respective strengths and weaknesses of each agent. Issues of stability, robustness

of the performance to environmental effects, and social feedback all become impor-

tant to consider, yet difficult to quantify. Can the system go unstable? Are there

ways to monitor the decision making and adapt feedback to mitigate deterioration

of performance, avoid mistakes, or take advantage of specific skills in the team? In

this thesis we lay the foundation for analysis that can be used to help address these

questions.

1.1 Motivation and Goals

Group decision making is at the core of the problem we consider. Robots can do many

things that humans cannot, but humans have decision-making skills that are distinct

and highly valuable in most applications. For example, humans are good at recogniz-

ing patterns, can adapt well to changing environments, and can prioritize competing

objectives. Humans and robots each have something to offer from the standpoint of

analyzing information, comparing alternatives, and maximizing an objective. Each

has a distinct expertise, which motivates building a proper understanding before join-

ing humans and robots at the supervisory level.

Proper design of systems that incorporate human input should take into consider-

ation the fallibility of human decision-making. Stress, boredom, and fatigue are some
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of the important factors [91]. There is need for a predictive capability to assist in

the design of mixed decision-making teams. We propose that decision-making teams

should be comprised of both human and robotic decision makers that work together.

It is necessary to integrate both parties in a way that allows each to excel in the task.

Doing so requires an in-depth understanding of the dynamics of decision making in

mixed teams. Partitioning tasks and understanding when social feedback or the use

of computer-aided (robotic) tools is beneficial are critical aspects to consider in the

design of these teams.

The design of the team’s network and the interconnection topology can have a

dramatic effect on performance. Other driving factors include properties that define

each decision maker and the reward structure that defines how rewards (metrics of

success) are determined in the task. Proper understanding of this dependence requires

new tools for design and analysis. In particular, there is need for a predictive model

that describes the decision-making dynamics. A key goal of work in this area is to

uncover principles that can be used to build design tools. A major hurdle is to develop

an understanding of how humans make decisions in relevant, complex tasks. Human

behavior is difficult to model and predict.

It is not the goal of this work to understand human decision making perfectly,

nor is it to replace humans with robots. The aim, rather, is to develop a predictive

model that approximates mechanisms in the human brain and can be used toward

the design of mixed teams. We perform a number of model-based analyses which are

used to make predictions and draw conclusions about decision-making performance.

It is our goal for these predictions to aid in the design of mixed teams so that decision-

making is efficient, accurate, safe and carried out in a way that takes advantage of

the underlying principles of the decision-making dynamics in mixed teams.

Integrating teams of human and robotic decision makers poses a number of in-

teresting and significant challenges. Many of them are engineering problems, but
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some are philosophical and even ethical [5, 70]. Not only does this push the edge of

technology, it pushes the edge of science as well.

1.2 Research Overview

We take a systematic approach to investigating human decision making through de-

termining underlying principles and building predictive models. This is possible by

focusing on the relatively well-understood Two-Alternative, Forced-Choice (TAFC)

task, in which humans make sequential decisions among two alternatives and receive

a reward after each decision [53]. We build a predictive model that describes human

behavior in a complex decision-making task. The modeling effort has benefitted from

collaborations with psychologists performing experiments with human subjects in the

TAFC task [56, 57].

In experimental studies of the task, subjects make choices and receive rewards

sequentially in time (see Chapter 3 for a detailed description of the TAFC task),

and each choice is recorded along with the rewards they receive. This data is then

used to analyze the behavior of human subjects, and to develop models that can

approximate that behavior. By testing decision-making models against recorded data

in the TAFC task, models are checked to see how well they represent the decision-

making of humans. Andrea Nedic has led much of the work in model selection for

the TAFC task. We use these tested models in our analyses to build a predictive

capability. In particular, we focus on stochastic soft-max choice model for decision

making. The soft-max choice model is a probabilistic decision-making strategy which

has seen much success in fitting experimental data in the TAFC task.

Making predictions for the soft-max choice model is challenging since analytic

expressions that predict how a model decision maker (in the TAFC task [53]) will

converge in choice sequences have not been available prior to our analyses. One
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approach is to study decision-making models using computer simulations, but this

does not allow one to draw provable conclusions. In this work we derive analytic

expressions that describe the steady-state behavior of the soft-max choice model in

the TAFC task (as described in [53]) and provide formal proofs that are used to make

predictions about performance and behavior.

By identifying a Markov Process that, under two reasonable assumptions, is equiv-

alent to the soft-max choice model, we can predict the type of choice sequences sub-

jects will converge to in the TAFC task. Our predictive tool is an analytic result that

describes human behavior in terms of the most relevant parameters. This analytic,

predictive tool allows us to show how performance depends on each parameter by

deriving sensitivity of the performance explicitly.

Modeling behavior in a group, where multiple humans make decisions in the TAFC

and share information, relies on understanding the dynamics of a single decision maker

in the task and how social feedback (information shared among the group) influences

each decision maker’s behavior. We systematically build complexity into our analysis

by first developing a tool for predicting the behavior of a single human subject.

We first consider two deterministic models of decision making. In our analysis

of deterministic models, we consider the Win-Stay, Lose, Switch and a deterministic

limit of the soft-max choice model. We show that these deterministic models are

capable of reproducing similar behavior, and even replicating convergent behavior as

seen in data. The desire to develop a more accurate predictive tool of a probabilistic

strategy led us to consider the soft-max choice model with all of its stochasticity.

We found success with the probabilistic soft-max model and show that our pre-

dictive tool agrees well with experimental data for human subjects. Then, using an

extended model proposed by Nedic et al [57], we apply our analysis to consider social

feedback and develop an understanding of the behavior of a team of decision makers.
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Our development provides a step towards designing automated decision makers

that work as peers with human counterparts in the case that we use common models

for the decision-making strategies. Using the soft-max choice model as a proxy for

designed decision makers allows us to draw from experimental studies of humans

working together and use the tools we develop to predict decision making in a mixed

human-robot team. We can include decision makers that complement the human(s)

for increasing robustness and maximizing performance. For example, we predict that

in some cases a model decision maker can make optimal choice sequences in a task,

but with parameter values that don’t fit human behavior. In such a scenario, it may

be possible to program automated, robotic decision makers to use the soft-max model

as a strategy to boost performance.

It has been observed that a team of decision makers may perform better than

a single human in one task, but worse in another. Predicting the dependence of

performance on properties that define the task, and also the team, is critical to

designing mixed teams. The predictive capability developed in this thesis can be

used to inform the design process. In particular, individual decision makers can be

designed to improve the team’s performance. In new experiments we are testing the

ability of our predictions to assist us in designing robotic decision makers integrated

into a mixed team. The robotic decision makers are designed to influence the behavior

of the humans so that overall performance is increased significantly. Predictions show

that this is possible in a number of scenarios.

The work of this thesis has been performed with an eye on improving the operation

of deployable robotic hardware. We consider robots in two categories in this thesis:

first as the hardware at the point of contact, deployed remotely to carry out tasks,

or explore environments, and second as decision-making agents with the ability to

make computations, analyze data, store information, and draw conclusions using pre-

programmed algorithms.
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A significant effort has gone into developing a robotic testbed with elements that

fall into both categories. Development of the testbed has involved constructing au-

tonomous underwater vehicles that move in three dimensions within a water tank

as well as supporting laboratory equipment. The result is a multi-vehicle, robotic

testbed that contains robots capable of moving in three dimensions, sensing their

environment, responding to human input, and also making decisions on their own.

This testbed allows us to run experiments with human subjects in mixed teams that

complete tasks using physical robots in relevant applications

Performing these experiments adds value to this study not just by verifying mod-

els or uncovering aspects in the decision making that cannot be observed without

physical robots. Of perhaps more significant value is the ability for the implementa-

tion of studies with physical robots to drive our work toward relevant applications.

In collaborations with psychologists and neuroscientists that run experiments with

human subjects, decision-making tasks are designed to elicit specific behaviors, look-

ing for fallibility in the decision making, all with an eye on uncovering processes that

occur in the human brain. By focusing the design of new experiments on applications

that involve physical robots, we are driving studies forward in a way that informs

both the psychology and neuroscience objectives as well as those we face as engineers

developing robotics technology.

1.3 Background and Related Work

The need for a multi-disciplinary approach is clear since developing tools applicable

to the design of systems relying on human behavior requires a formal understanding

of human behavior itself. This pushes the limits of our scientific understanding of the

human brain.
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An increasing effort is coming from the control theory community where some

researchers are applying their tools to design integrated systems with humans and

robots working together. The work of [66] and [23] looks into human supervisory

control of unmanned vehicles. In [24] Dandach and Bullo are concerned with a human

decision maker’s speed and accuracy in sequential tasks. An interesting task that tests

the ability of human subjects to make computations and estimates in a polynomial

root counting game is studied in [62].

We focus our studies of human decision making around a specific task and leverage

experiments carried out by our psychologist and neuroscientist collaborators who

research how the human brain functions. The task we study, the TAFC task, is

a sequential task in which a human subject must choose between two alternatives.

The subject receives a reward following each choice. The subject continues to make

choices, sequentially in time, until the experiment concludes and a payment that

is proportional to the sum of individual rewards is made. Similar tasks have been

studied by other behavioral scientists, psychologists, and neuroscientists and even

economists. Montague and Berns [53] designed the first experiments that used a

sequential decision-making task with two alternatives, and rewards administered in

the same way as the task we study. The TAFC task as we consider it is equivalent

to the task used by collaborators in [56] and [57].

Herrnstein, who also studied a similar sequential task with two alternatives, first

described what he called the matching law [40]. The matching law accounts for

a decision maker’s tendency to make choices that converge to an equilibrium for

which average rewards from competing alternatives are matched. In many settings,

such a strategy is suboptimal and can be argued to be irrational. This result is

strongly related to even earlier research that developed the notion of satisficing. In

[73] Simon argued that humans (and other organisms) adapt their decision making

to “satisfice,” or make choices which are suboptimal and perhaps “good enough”,
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rather than converge to optimal solutions. Other related work also suggests that

typical human decision makers use heuristic strategies [42, 85]. We are able to provide

formal, mathematical proofs that certain decision-making models exhibit behavior

that is consistent with Herrnstein’s matching law.

The soft-max choice model [28] that we use in this work can be mapped to the

Drift-Diffusion Model (DDM) [10] for the modeling of individual choices. The DDM

is a stochastic model which has been widely successful in modeling decision making

in a variety of contexts (in both humans and animals). The DDM has been studied

widely and is quite popular for fitting data in experimental decision-making tasks.

The DDM has been used in modeling perceptive tasks [64], as well as conceptual

decision-making tasks [64, 63, 65, 74]. We are interested in the latter, however. First

proposed by Egelman et al. [28], the DDM has seen continued use by Montague and

Berns [53], and has become a well-accepted decision-making model in the context

considered in this work.

Within the soft-max choice model, as it appears in [28], lies a simple reinforcement

learning algorithm to model a subject’s perception of reward. The structure of the

model respects the constraints and role of dopamine neurons in the brain [54]. The

process is therefore one that is likely to take place in the brain, considering the

principals of neuronal computation. Researchers have found that feedforward control

(a strategy that predicts future outcomes and makes decisions accordingly) is likely

to be employed by human decision makers in some relevant tasks [14]. The learning

algorithm within the soft-max model has a feedforward component and it can also

be shown that, under certain parameters, it is equivalent to a feedforward inhibition

model [10]. Studies of perception in human supervisory control of robotic systems

(both visual and auditory) are relevant for some of the applications we consider. For

examples of recent contributions see the work of Cummings [23, 26].
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In designing teams of decision makers that work together, to collaborate in com-

plex tasks, it is critical to take into consideration group effects. It is possible for

groups to exhibit increased abilities like accuracy and faster response times. In [27]

a perceptual task is studied in which multiple humans (a group of twenty) show a

performance increase which is argued to be due to the group’s increased ability to

gather information about the environment. Studies of tasks that require voting show

that performance depends on the rules for determining a group’s decision [75]. In the

social version of the TAFC task used in this work decisions are made in parallel so

there are multiple outcomes (one for each subject). Some studies consider scenarios

where a single decision is made according to a majority rule so that each decision

maker has one vote. In [75] different majority rules are studied to see how accuracy

of the decision changes.

Human-Robot Interaction (HRI) encompasses a wide range of research directions.

In an effort to standardize tools for task-oriented mobile robots interacting with

humans, Steinfeld indicates that important factors considered by the field include

navigation, perception, management, manipulation, and social factors [76]. Social

interaction for humanoid robots is a research area receiving increasing attention.

Issues associated with the ability of humans and robots to relate to one another are

addressed by researchers in social interaction [12, 13, 15]. Some early work in HRI

focuses on teleoperation of mechanical systems that are not necessarily automated,

but have robotic elements. As autonomy in systems increases, more attention must

be paid to the interaction between human operator and autonomous robot. Research

that pushes that boundary is closely related to the work in this thesis.

The authors of [69] point out that most methods of interaction are built under the

assumption that “robotics experts” will be primary operators, but that new methods

of interaction should be developed in parallel with new capabilities of robots. Methods

of interaction are studied in [84, 34, 22]. In [45, 16, 35] it is argued that robots should
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be treated as peers to their human counterparts. Such an approach will maximize

each decision maker’s ability to take advantage of the other’s strengths. The notion

of “sliding autonomy” is in particular quite prominent. A method for tuning the

autonomy in a system where the control can be transferred among different agents is

presented in [67]. The effectiveness of such systems is addressed in [44]. In much of

the literature there is a focus on having humans collaborate with robots rather than

supervise [46, 1].

Some of the first studies of decision-making dynamics of humans interacting with

engineered systems in an aerospace application were performed by Stengel [88], [77].

In [77] Broussard and Stengel consider the joint system of pilot and aircraft and study

stability while taking the human pilot’s dynamics into consideration. The concept

of principled negotiation is one that is still discussed in air traffic control research.

The work of Wangerman and Stengel [88] proposed methods for implementing a

distributed decision-making protocol to allow pilots to resolve conflicts in flight paths.

There are many applications of joint decision making that we find relevant. Stud-

ies of task-oriented robots that work together with human operators combine the

elements of a human decision maker with capabilities of a remote robot with spe-

cialized skills. The authors of [20] studied data from a real urban search and rescue

deployment at the World Trade Center. In [55] the critical aspects for the operation

of rescue robotics with humans and robots working together are defined and eval-

uated. Of particular interest are applications that involve deployment of multiple

robotic agents in a time-varying field [33, 8, 17]. Whether for gathering information

or carrying out specialized tasks, applications of robotics in this area are prevalent.

12



1.4 Outline

The development of the tools presented in this thesis relies on a series of analyses

that appear in Chapters 4 through 7. In these analyses we consider decision-making

models in the TAFC task. The analyses allow us to derive an analytic, predictive

too. The predictive capability is being tested in new experiments we have designed

for mixed teams. These new experiments are described in Chapter 7. In Chapter

8 we discuss applications for joining mixed teams of decision makers with physical

robots and outline planned experiments using our multi-vehicle robotic testbed.

Chapter 2 documents the design and development of the multi-vehicle robotic

testbed. The robots that we use in our laboratory facility are submersible vehicles

that can move around in three dimensions inside a large water tank. The development

of the robotic testbed has been an extensive effort involving design of mechanical

systems for the robotic hardware, supporting system architecture for the water tank

and laboratory that houses the testbed, onboard electronics, and software as well.

In Section 2.1 we motivate the need for developing physical hardware to perform

experiments. Special properties of the vehicle (robot) design are contained in Section

2.3.2 and the supporting system architecture for the lab is presented in 2.3.1. A

remote human interface that serves to incorporate human decision makers in the loop

with the robots is also described in Section 2.3.1.

Our studies of human decision making are motivated and discussed in Chapter 3

where the TAFC task is defined. A detailed description of the TAFC task which we

consider throughout this work appears in Section 3.2.1. A mathematical model of the

TAFC task is given in Section 3.2.2.

Predictions of social behavior pertain to the TAFC task with an extension to

include social feedback for a group of decision makers that make choices in parallel.

The concept of mixing human and robotic decision makers to work together in tasks

is discussed in Section 3.5 where we suggest that mixed teams can exhibit higher
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performance when robotic decision makers are designed appropriately. The extension

of the TAFC task to include social feedback is defined in Section 3.3. The models

that approximate human decision-making strategies and the mechanisms that govern

behavior appear in Section 3.4. The analyses of Chapters 4 through 6 refer back to

the models introduced in Chapter 3.

Our preliminary analyses in Chapter 4 are applied to the deterministic decision-

making models defined in Section 3.4. This served as a critical first step to developing

a predictive model. In Chapter 4 we study convergence of choice sequences in the

TAFC task and show that deterministic models can replicate some of the behavior

as seen in data. In particular, we show that two deterministic decision-making mod-

els will converge to matching points for some of the reward structures. Matching

behavior, a phenomenon discussed throughout this thesis, is defined in Section 4.1.

We successfully use the probabilistic soft-max model to continue our analysis in

Chapter 5. By identifying a Markov chain which, under two assumptions given in

Section 5.1, is identical to the soft-max model, we derive the steady state distribution

for a model decision maker in Section 5.3. We compare results to experimental data

in Section 5.5 and show that our tool is effective in predicting the behavior of a single

decision maker in the TAFC task. This analysis of the soft-max choice model serves

as a strong foundation for increasing the complexity of our study to include social

feedback in Chapter 6.

Predicting behavior in a group of humans receiving social feedback in the TAFC

is made possible by the analysis of Chapter 6. Similar to the method employed in

Chapter 5, we again make use of the two assumptions in Section 5.1 and identify a

Markov process for a focal decision maker. This allows us to derive an analytic ex-

pression that describes the steady-state behavior of the focal decision maker receiving

feedback on the choices of other decision makers in the TAFC task. The expression,

which appears in Section 6.2, serves as an important tool to describe the social influ-
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ence in terms of feedback strength and the properties of each decision maker. Results

from our analysis are shown to agree with experimental data through a comparison

in Section 6.3.3.

Chapters 6 and 7 pertain specifically to teams of decision makers in a network,

each receiving social feedback. Chapter 7 considers a mixed team with some designed

(robotic) decision makers. In Chapter 7 tools developed in Chapter 6 are used to

design decision makers within a network so that behavior of a focal decision maker

is influenced in a significant way that has not yet been observed within groups of

humans. This prediction has been used to design new experiments that are discussed

in Chapter 7. The predicted gain in performance that we expect from these mixed

teams is presented in Section 7.1.

In Chapter 8 we connect our studies with a real-world application of the TAFC

task and discuss planned experiments that use physical robots in a study with our

robotic testbed. An oil spill cleanup scenario is presented in Section 8.2.1 where the

TAFC task is used to model the task of a human supervisor who collects information

from robots that are mapping out an oil spill.

We aim to use decision-making teams to operate systems of robots that explore

remote environments, collecting information or carrying out tasks. It is of particular

interest to gain experience and understanding of how humans and physical robots

work together. We therefore put the multi-vehicle robotic testbed to use in a series

of planned experiments that are discussed in Chapter 8. The testbed experiments

consider a team that operates our submersible robots deployed in a virtual (imposed)

resource field inside the laboratory water tank. Details of the facility are in Chapter 2.

A number of planned experiments appear in Section 8.2.3. In each scenario, humans

are tasked with directing the robots to visit particular points of interest in the tank.

This is discussed in Section 8.2.2.

15



The future directions which lie ahead for this research are laid out in Chapter 8

along with a summary and discussion of the contributions of this thesis.
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Chapter 2

Multi-Vehicle Robotic Testbed

This chapter documents the development of a new multi-vehicle, robotic testbed

which takes the current research goals of the Dynamical Control Systems Laboratory

(DCSL) into consideration. First and foremost, we want to draw a connection between

our work in decision making and robotics. The testbed is designed for experimental

studies of collective motion, coordinated control, and decision making where humans

interact with the robots to carry out tasks involving exploration of a three-dimensional

environment. The testbed is comprised of mobile, submersible, robotic agents with

dynamics that are simple and efficient, being well-suited for experimental studies of

information collection in a three-dimensional (possibly time-varying) field.

Construction of a prototype for a new generation of robotic vehicles began in

the summer of 2009. The platform we have developed, named “Beluga”, is a small

propeller-driven autonomous underwater vehicle with only two actuators and one

sensor. It is designed to be easy to operate, and inexpensive to produce. An assembled

vehicle is pictured in Figure 2.1. Four such vehicles have been constructed to date. All

of the work has been performed in our facilities; from development of the embedded

systems that make up our onboard computers, to the precision machining of the

stream-lined fairing that houses those electronics.
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DCSL, under the guidance of Naomi Leonard, has significant experience working

with autonomous underwater vehicles (AUVs). Previous students have built hard-

ware, performed experiments, and developed theory to study the dynamics of under-

water gliders and propeller-driven platforms [92], [38], [9]. Contributions have not

been limited, however, to the dynamics of single vehicles. DCSL pioneered research

in cooperative control [31, 60] by developing control algorithms to design collective

motion in multi-agent systems. This work involved development of a tank lab testbed

and propeller-driven underwater vehicle named the “Grouper” [7]. In later years field

experiments were run with underwater gliders deployed in Buzzards Bay, MA [94]

and also Monterey Bay, CA [32, 49].

Experimental research in systems of multiple vehicles and automated coordinated

control algorithms continues in DCSL. Darren Pais and Dan Swain have both per-

formed experimental studies with MiaBot Pro ground vehicles [50] in the laboratory.

Until recently, however, the lab has lacked a fully functional, robust system for ex-

perimenting with robotic vehicles in a three-dimensional field. Recent software and

hardware developments have allowed us to push the limits of cost, size, and function-

ality of lab-scale robotic platforms. Such developments have prompted us to create a

new generation of underwater vehicle platforms for experimental use in our lab.

In 2006 we took delivery of a new Tank Lab Facility at the Forrestal Campus

of Princeton University. Modeled after a previous lab belonging to DCSL, the new

tank lab houses a large water tank, office, workspace, and ground-vehicle facilities.

This lab was designed with the intention of performing an array of experiments, some

remotely operated from other parts of campus, or even collaborating institutions.

Much was learned from previous experiences operating a lab with a water tank.

Heating, ventilation, and air conditioning, for example, were designed specifically to

support the facility. Most importantly, perhaps, is the placement of the tank in an
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area with very high ceilings - thereby allowing the use of overhead cameras to monitor

the tank.

Figure 2.1: Photograph of an assembled Beluga Autonomous Underwater Vehicle.

Many students have contributed to the development of Beluga and the supporting

systems which make up the testbed. In the summer of 2009 undergraduate students

from the Mechanical and Aerospace Engineering Department (MAE), Clayton Flan-

ders, Richard Harris, and John Preston supported construction of a prototype vehicle.

During the academic year of 2009-2010, Meghan Schoendorf of the Electrical Engi-

neering Department helped to design and produce our first fully-functional on-board

computer [68].

Continuing through the summer of 2010, MAE undergraduate students Brian

Fishbein and Peter Iskaros made modifications to the prototype design and produced

the machined pieces to build our first fully-functional vehicles. Valerie Karpov, an
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undergraduate of the Computer Science Department, also supported development of

software for video processing under the guidance of Dan Swain. During the academic

year of 2010-2011 MAE undergraduates Blake Parsons and John Preston redesigned

the onboard computer and brought our overhead camera system to life while also

performing the first experiments in which two vehicles cooperated to find a point of

maximum concentration in a virtual resource field [61].

Fellow graduate students of DCSL, Dan Swain and Paul Reverdy have also been

instrumental throughout the development of this testbed. Dan Swain, through his

work on a related project, RoboFish, has developed a valuable framework and library

of video-processing software used to track objects in real time [82]. That software

library, and Dan Swain’s expertise, are a key component to the success of this system.

Without Dan Swain’s involvement, it would not be possible to close the loop. Paul

Reverdy has been involved in nearly all aspects of the project since 2010. He has made

design decisions as well as supported development of the electronics. The ability to

operate experiments remotely, and to integrate decisions from a human supervisor

would not be possible without Paul Reverdy’s development of a human interface

system.

As the work of this thesis has concluded, Paul Reverdy has assumed leadership of

continued development and support of DCSL’s hardware systems. He supervised the

work of undergraduate students David Clifton and David Heinz during the summer

of 2011. They have worked to maintain the fleet of four vehicles while also developing

spare parts and incorporating new design modifications. They have also worked with

the software to incorporate new control algorithms for vehicle onboard control.

The purpose of this chapter is to present key components of the system design. In

Section 2.1 the need for such an experimental setup is discussed and motivated by the

advantages of our approach. A number of key challenges come up when developing

automated control for robots deployed underwater, and in a confined environment.
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Some of those challenges are covered in Section 2.2. Many features of the individual

vehicles as well as the system architecture are unique. Throughout the development

process important design choices were made and are discussed with supporting mo-

tivation in Section 2.3. Specific details of the vehicle design are covered in Section

2.3.2. In an effort to develop a model for estimation and control, dynamics of the

vehicle are discussed in Section 2.4. Section 2.5 lays out some future directions for

the lab.

2.1 Motivation for Testbed

Theory can be validated by numerical simulation, and sometimes analytic, mathe-

matical proofs, but conclusions drawn from such studies are limited by the models

that feed them. Real-word robotics missions involve constraints, which are often

overlooked or modeled in ways that improve tractability by making limiting assump-

tions about the system and environment. On the other hand, full-scale experiments

are typically expensive, time-consuming, and make implementation of novel control

paradigms risky. In most cases use of expensive hardware requires collaborations

among several research institutions, in which case coming to consensus on details of

an experiment requires a series of compromises and prohibits the study from employ-

ing a variety of approaches. Studies of coordinated control and human-in-the-loop

algorithms are often limited to simulations and abstract settings. A physical system

made up of multiple robotic agents creates a multitude of design challenges and con-

straints which motivate our studies and thinking about humans and robotic agents

collaborating in complex tasks.

Until recently, human decision-making experiments that we have drawn from in

this work have not involved robots. We are now capable of running experiments

that test our predictive model of human decision-making with humans and robots
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working together in the lab. The use of a laboratory facility to study decision making

tasks also prompts us to consider details of real-world robotic systems that are not

otherwise obvious when we limit ourselves to idealized, abstract scenarios.

Multi-vehicle systems can be studied by making approximations at various levels

within the system. For example, we may consider robotic agents to be particles in

the plane. Control can be designed to apply forces to each of the individual particles

according to algorithms that are applied at the individual level. Conclusions can

be drawn about those algorithms by directly integrating the equations of motion,

yielding properties about the group-level behavior. In some cases analytical results

are tractable, but typically realistic vehicle dynamics are not taken into account.

Our approach has been to construct a physical system which embodies critical real-

world features and constraints, but in a way that makes implementation of automated

control not only feasible, but inexpensive and accessible. This system allows us to

quickly implement strategies for overcoming realistic challenges without the need to

send autonomous underwater vehicles on multiple day deployments in the ocean,

or unmanned air vehicles for long flights in designated fly zones. Experiments are

conducted and give accurate results of performance in the presence of these real-

world features and constraints which would otherwise not likely be addressed by pure

simulation of a mathematical model.

Experiments take place in our laboratory facility and require less support in the

form of people, energy, preparation, etc., than other options currently available. At

the same time our facility provides key real-world features such as a three-dimensional

environment, vehicle-level dynamics that require estimation and control, communica-

tion among agents, and collection of data in real time.
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2.2 Challenges to Implementation

Our testbed consists of a group of four submersible robots which move independently

in three dimensions, but are programmed with automated control algorithms. These

algorithms can be designed for group-level motion that satisfies given constraints,

or carries out a given task-specific objective. Several challenges have led to unique

design approaches for this system. The most obvious challenge in creating a system

of submersible robots is to avoid flooding onboard electronics with water, which may

result in damage and even unsafe working conditions for operators. There are many

ways to avoid this particular challenge, possibly the simplest being to avoid working

with an underwater system altogether. The desire to deploy multiple agents which

move in three dimensions for extended periods of time, however, makes the use of

neutrally buoyant bodies particularly attractive. An alternative approach would be

to use air vehicles, quad-rotor helicopters being a popular option, but this requires

the use of lightweight bodies and also batteries - which limits the duration of use to

the lifespan of a small battery.

The use of non-conducting fluid is another option. De-ionized water, or even oil,

would allow the electronics to be submerged without any protective housing. Both

options, however, are expensive and have significant disadvantages. De-ionized water

becomes ionized after some time, and oil has a higher viscosity, is difficult to work

with, and poses challenges to keep clean.

A second major challenge concerns estimating the state of robotic agents, which

is typically done with a combination of sensors. The most popular sensors in use

are magnetic compasses and global position systems (GPS). Neither of these are an

option in this application, however, since we use a steel water tank housed in an

indoor laboratory facility. The steel walls of the tank change the magnetic field

and make the use of a compass ineffective. The walls of the lab also block GPS

signals from being measured anywhere in the facility, let alone at the bottom of the
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water tank. Further, GPS would not provide sufficient resolution to determine each

vehicle’s location and velocity within such a small region. Since GPS signals do not

penetrate water well, in applications that require knowing vehicle positions below

the surface, acoustic systems can be used in a similar fashion. However, this works

best in unconfined environments and would not likely be suitable within the confines

of a water tank of this size. This drives us to use a centralized estimation system

that relies on overhead cameras and onboard pressure sensors to estimate the state

of vehicles.

Once the state of each agent in our system is determined, control can be computed

and must be sent to each vehicle. Fully decentralized systems might not require

communication in this fashion, and although we have created a system that can

duplicate features of a group of decentralized vehicles, we do require that commands

are communicated to each of the vehicles, regardless of the situational paradigm

we study. Should the need for wireless communication with each agent arise, two

possible methods are available but each poses significant challenges. To do so with

radio waves requires very low wavelength signals. Typical off-the-shelf technology

provides low power levels that may not reliably penetrate the entire water tank.

Acoustic signals can also be used, but would suffer the same issue that acoustic

localization systems would within the confinement of the tank. The signal processing

challenge of differentiating multiple individual signals in the presence of interference

would be nontrivial. The use of tethers in the current system allows us to bypass

these challenges while still providing the critical elements for a multi-agent system

deployed in a three-dimensional environment.
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2.3 Design

Our facility houses a water tank which holds approximately 20,000 gallons of water.

It is 20 feet in diameter and 8 feet deep. A picture of the tank facility is shown in

Figure 2.2. To make the best use of a limited space for deployment, our goal has

been to construct small vehicles with a high level of mobility. The vehicles should be

capable of visiting any location in the tank.

Figure 2.2: Tank facility. Steel tank approximately 20ft. diameter, 8ft. depth, filled
with approximately 20,000 gallons of fresh water.

For the sake of simplicity in design, and in the interest of constructing a platform

that is small yet functional, we find it convenient to limit the degrees of freedom of

the vehicles while still allowing them to reach any point in the tank. The method

for doing so is to build vehicles that are passively stable in pitch and roll, thereby

requiring control of only four degrees of freedom. This is done by neutralizing the

buoyancy of each body with a ballast below the center of buoyancy.

2.3.1 System Architecture

Computing control inputs for the vehicles requires estimating the position, orienta-

tion, and velocity of each vehicle. Depth and the vertical component of the velocity

are determined by taking measurements from an on-board pressure sensor. Real-time

horizontal orientation and position of vehicles are determined using a system of four
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overhead cameras and video processing software. Figure 2.3 shows a single vehicle

inside our lab’s water tank with the flow of information depicted schematically. A

computer and power supply reside alongside the tank and provide power and com-

munication through a tether to each vehicle. The tank-side computer serves as an

estimator and high-level controller, as well as a communication center for the network

of vehicles.

Overhead Camera 
System

Estimator

Controller

Tether

Vehicle

Human 
Interface

Figure 2.3: Diagram depicting information flow for a vehicle submerged in the water
tank. Tether sends control input u and returns depth measurement zm. A tank side
computer performs estimation and provides control and communication. The human
interface is integrated with the control system over an internet connection.

All communication is implemented using a tether with six contact elements. Each

vehicle’s tether carries power, as well as commands, to an onboard computer which

controls the actuators. The onboard computer is capable of computing vehicle-specific

control directives; i.e. maintaining depth, heading, or speed. The use of an onboard

processor with significant functionality opens the door to further increase the level of

autonomy. If the vehicles were equipped with batteries and wireless communication

capability, the onboard computer would be ready to handle the necessary computation

to make that possible.
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The tank is broken into four individual quadrants, each monitored by one of the

four overhead cameras (shown in Figure 2.4). To avoid tangling, we have built the

tethers into the tank so that one tether connects to each quadrant. We do this by

hard-wiring individual tethers to separate locations around the perimeter. Figure 2.4

depicts this layout through an overhead diagram and shows tether connection points

at the perimeter of the tank for each quadrant. This setup increases separation of

the tethers while still allowing vehicles to be close to one another, and visit all areas

of the tank.

Quadrant IQuadrant II

Quadrant III Quadrant IV

Tether 1Tether 2

Tether 3 Tether 4

Figure 2.4: Tank layout depicting the four quadrants with tether attachment points.
An inertial frame of reference is shown with origin O at the center of the tank and
unit vectors ex and ey that span the horizontal plane. Cameras are mounted from the
ceiling approximately 9 ft. above the water surface over the center of each quandrant.

In some of the first studies that make use of this testbed we are running exper-

iments that integrate a decision maker with a role equivalent to that of subjects in

the two-alternative, forced-choice task. Going forward, we are taking what we have

learned from our predictive capability and designing more complex paradigms for in-

tegrating the human decision making in experiments. This new experimental work is

in collaboration with psychologists and behavioral scientists and is an important step
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in our systematic approach to study the joint decision-making dynamics of humans

and robots.

To perform experiments with humans interacting with robots in our testbed re-

quires formal integration of a human in the loop. Figure 2.5 shows a photograph of

the human interface system we have built to engage a human supervisor in decision-

making tasks with the robots. In doing so, the system must provide feedback to the

human and also capture the choices that the human makes.

The human is presented with four screens: three screens provide live video feeds

of vehicles in the tank, and one center screen provides performance information and

a control interface. All operation occurs over the internet allowing the system to be

mobile; this supports the running of experiments across multiple locations. For exam-

ple, human subjects can be brought into the Psychology Department to participate in

experiments, while the robotic vehicles are simultaneously deployed in the tank lab.

This remote operation not only allows flexibility in experimental operations, but is

also representative of realistic architecture used in actual deployments when robotic

platforms are deployed in remote or dangerous locations.

Figure 2.5: Human interface used to integrate a human decision maker with robotic
vehicles. Choices are communicated to the vehicle control system, feedback is pro-
vided to the interface, and live video feeds are available for the supervisor to monitor
vehicle conditions.
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2.3.2 Vehicle Design

The design of Beluga was completed in three phases: (1) brainstorming and testing of

individual component concepts, (2) construction of the first prototype, and (3) final

modifications to the prototype and implementation of Computer Numerical Control

(CNC) machining for rapid production of multiple parts. The use of CNC machining

has been key to the success of building four identical vehicles in a short amount of

time. Prior to building parts with the CNC, however, we tested multiple designs

and iterated on each component as much as possible. Testing competing component

concepts allowed us to improve the design considerably in several areas - the most

significant of which applied to the method of coupling a servo to the pivot shaft of the

aft, vectoring thruster. Whenever possible, we integrated components into a single

module, thereby allowing ease of assembly.

Mechanical Configuration

The overall size of the vehicle is primarily driven by the onboard computer and

propeller-driven actuators. While it would be possible to build a vehicle with similar

functionality in a smaller package, the current design allows for the addition of battery

packs, radio transmitters/receivers, and additional sensors to increase the level of

autonomy and remove the tethers. The body of the vehicle is in the shape of a

NACA 0012 symmetric airfoil [4]. It has an overall length of 20 in., width of 5 3
4

in.,

and height of 6 in. The keel hangs 8 in. below the body.

Figure 2.6 shows a drawing of the vehicle with the key components labeled. Each

vehicle is equipped with two actuators. One propeller-driven thruster protrudes ver-

tically through the body allowing vehicles to move up and down. A second vectored,

propeller-driven thruster extends from the tail. This pushes the vehicle forward or

backward in the horizontal plane and, when vectored, allows it to turn with a pre-

scribed rate.
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Aft Thruster
(vectoring)

Vertical Thruster

Shaft 

Ballast

Keel

Upper Fairing

Lower Fairing

Figure 2.6: Breakout of the key vehicle components.

As shown in Figure 2.6, the body is made from an upper and lower fairing assembly.

These pieces fit together in a clam shell configuration and are nearly identical, save

for the fact that the upper fairing is made from low density foam, and the lower from

higher density plastic, which is approximately neutrally buoyant.

In addition to the body, a ballast is made from machined brass and hangs at the

end of an aluminum extrusion keel. The ballast is designed to neutralize the buoyant

force of the body and is separated by a distance of approximately L = 12 in. from

the center of buoyancy. We attempt to maximize L by making the top of the vehicle

positively buoyant, and the bottom of the vehicle negatively buoyant. Figure 2.7

shows the forces due to buoyancy and gravity acting on a single vehicle, which has

been rotated a small angle δ from the vertical.

This separation of the center of mass from the center of buoyancy is key to remov-

ing two of the degrees of freedom from our model. By neutralizing the buoyancy force

of the body with the keel-hung ballast, we have developed vehicles that are passively

stable in pitch and roll. Note that for a neutral body, the force due to buoyancy is

equal in magnitude to the force due to gravity. For the forces on the vehicle shown
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Figure 2.7: Free body diagram illustrating stability for a single vehicle. Gravitational
and buoyancy forces are shown for a single vehicle which has been rolled an angle
δ from the vertical. Forces are shown acting at the center of buoyancy (labeled O′)
and the center of mass which are separated by a distance L. The buoyancy force,
FB, acts at the center of buoyancy, the gravity force, mg (where m is the mass of
the vehicle and g is the acceleration due to gravity) acts at the center of mass. The
forces are given in terms of the body-fixed reference frame A with axes directions a2

and a3. The same diagram applies when a2 is replaced by a1 (which corresponds to
a deflection in pitch).

in Figure 2.7 we can compute that given a displaced angle from the horizontal (ei-

ther in pitch or roll), a resulting restoring moment is applied along the a1 direction

(a1 = a2 × a3) with magnitude

M = −mgL sin δ. (2.1)

This tells us that the parameters driving stability with this design are L and m;

namely, if we increase the mass (and also buoyancy) or the length of the keel, we

should see smaller deflections δ in either pitch or roll.

Remark 1. Note that Equation (2.1) gives us the equation of motion for a pendulum.

While this analysis is accurate for determining the magnitude of the restoring moment

given a deflection δ, it does not take fluid effects into account and so therefore does
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not show how disturbances to the motion in either pitch or roll are quickly damped

out.

Within the vehicle body lies a chassis, which is composed of a pressure chamber to

house the electronics and sensors, and a frame that houses a shaft for the aft thruster.

Attention was paid toward creating a modular design. Modularity allows for ease of

assembly and disassembly, as well as the possibility of modifying aspects of the design

without need for altering the entire vehicle structure. The core of Beluga is made up

of three main modules. They are (1) the onboard computer and front end cap, (2)

the pressure chamber and main housing, and (3) the aft frame and aft end cap.

The chassis, together with the thrusters and waterproof cables, is pictured in

Figure 2.8. To keep the overall length of the vehicle within a desirable range, while

also allowing the vertical thruster to be located at the center of pressure of the fairing,

requires a unique feature in the pressure chamber. A section of tube is welded into

the chamber and the vertical thruster is secured within. This allows the onboard

computer to fit forward of the thruster and for cabling to pass around to the watertight

connections and pressure sensor in the rear.

Figure 2.8: Photograph of vehicle chassis comprised of pressure chamber, end caps,
aft frame assembly, and thrusters.

While typical pressure cylinders for submersible electronics are cylindrical, our

approach employs the use of a square tube made from aluminum extrusion measuring
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3 in. by 3 in. along the cross section. There are a number of reasons for using a

square cross section chamber in our application. The first is to maximize the use

of interior volume, given that we are using an onboard computer comprised of rect-

angular, printed circuit boards. The standard cylindrical approach requires turning

cylindrical end caps on a lathe, inserting o-rings in machined grooves at a fine toler-

ance, and press-fitting the end caps in place. When cylindrical end caps are inserted

as described, the interior volume of air is slightly compressed. This results in a force

that wants to eject the end caps from the cylinder. A standard remedy is to add

external braces to hold those caps in place. In our square tube, the caps butt against

the ends of the chamber and so avoid compressing the interior volume.

We also find that production of square end caps and corresponding gaskets re-

quires less time and labor given that a simple two-dimensional cut can be made using

the CNC mill. Further, the square design makes it easier to encase the internal com-

ponents in a machined fairing. Construction of the fairing is much simpler for our

design given that we can make linear cuts through a solid body of material, rather

than machining a cylindrical groove as would be necessary in the case of a traditional

pressure chamber.

The aft module of the internal structure contains many of Beluga’s key components

in one simple, removable part. Built around the aft end cap, the aft module is made

up of an aluminum frame that holds a shaft for the aft thruster. The aft thruster

is mounted on this shaft to allow it to turn, thereby creating a turning moment

on the entire vehicle. The angle of the aft thruster, as well as the voltage applied

to the motor, controls the rate of the turn. The aft thruster angle is controlled

by a submersible servo, which attaches to the aft module’s frame. All water-tight

connections to the pressure chamber pass through the aft end cap. This includes all

cabling as well as the pressure sensor. Water-proof connectors are produced in the

lab using plastic screws that have been bored out down their center. We pass each of
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the contacts through the screw and embed them in epoxy. The result is a threaded

unit which is mounted in the aft end cap with an o-ring to prevent leakage.

Assembly of the three main modules is achieved by a clamping mechanism.

Threaded rods pass down each side of the chamber, from the forward end cap to the

aft module. Two nylon insert lock nuts are tightened agains the aft end cap, evenly,

to secure them in place. Immediately following assembly of the chassis, a vacuum

pump fixture is used to pump air out of the chamber. That internal pressure is

monitored to determine whether there are any leaks prior to introducing the vehicle

to water.

Electronics

The onboard computer is a printed circuit board developed in our lab over the course

of several years. It is necessary to have some computational power onboard to manage

communications with a host computer to convert digital control signals into voltage

output to each of the propeller-driven thrusters and to control the aft thruster’s

vectoring servo with a pulse-width modulated (PWM) signal. In addition to sending

outputs to each of the actuators, the onboard computer converts an analog signal

from the pressure sensor used for depth estimation, and sends the measurement to

the host computer.

The first prototype on-board computer was developed on a breadboard using a

PIC microprocessor and a small amount of peripheral hardware to support serial

communications and motor control for the two thrusters. After initial functionality

was achieved, we incorporated additional features, including op-amp circuitry for

signal processing of the pressure sensor, and we published the design in the form

of a dual printed circuit board computer. The second revision of the computer is

documented in Meghan Schoendorf’s senior thesis [68]. Details of the latest onboard
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computer (third revision) design are described in the joint senior thesis produced by

Jonathan Preston and Blake Parsons [61].

2.4 Mathematical Model of Dynamics

As mentioned previously, to keep the size small and construction simple, Beluga

is equipped with only two actuators. Figure 2.9 is a free body diagram showing the

chosen coordinate system with the input forces, u = u1 +u2 applied by the actuators.

Attention was paid toward decoupling the modes of forcing; i.e. a forward thrust u1

applied at angle φ is used to drive and steer the vehicle in the horizontal plane, but

should not change a vehicle’s depth, z. Conversely, a vertical thrust u2 should not

change a vehicle’s heading θ or speed v. This latter constraint, however, is difficult

to achieve with a single thruster providing actuation in the vertical. There is, in

fact, inherent coupling between these input forces due to the limitations faced by a

propeller-driven thruster.

An appropriate dynamic model will describe the dominant forces due to the sur-

rounding fluid and also capture this coupling of the actuators applying control input.

The model derived here is one such model. It is possible to include more details, or

perhaps to make coarser approximations of the dynamics. Closed-loop control can

make up for some uncertainty in the model, but it is important to capture the most

significant driving forces. We follow a method of deriving a model for underwater

vehicle dynamics presented in [37]. The fluid forces are found using a method devel-

oped by Lamb [48], which allows the fluid kinetic energy to be expressed in terms

of velocity in the body frame and uses Kirchhoff’s equations to relate that energy

to external forces on the body. A framework for the vehicle dynamics is developed

through derivation of the kinematics in Section 2.4.1 and the dynamic equations of
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motion in Section 2.4.2. For more information on the notation used in deriving the

dynamics see [43].

mg

a1

a2

a3

FB

u1

u2

Figure 2.9: Free body diagram of underwater vehicle Beluga with coordinate system
and forces applied by the actuators. u = u1 + u2. The aft thruster, which vectors an
angle φ from the vehicle centerline, is the control input u1. The angle φ lies between
the axis of the aft thruster and the centerline of the vehicle spanned by a1. The force
applied by the vertical thruster is u2. The force due to gravity mgez is shown acting
at the center of mass. The buoyancy force −FBez is shown acting at the center of
buoyancy.

2.4.1 Kinematics

The free body diagram in Figure 2.9 shows a submerged vehicle with inertial reference

frame I = {ex, ey, ez} and body frame A = {a1, a2, a3}. Fluid forces and moments

acting on a moving vehicle depend upon the velocity and angular rotation making it

convenient to derive the kinematic equations in the body frame. We choose frame

A to be fixed at point O′ coincident with the center of buoyancy. The unit vector

a1 spans the centerline of the vehicle and points in the forward direction, a2 lies in
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the local horizontal orthogonal to a1, and a3 points in the local vertical as shown in

Figure 2.9.

A vehicle’s position in the tank is given by rO′/O. Choosing coordinates (x, y, z)

to measure distances along the ex, ey, ez axes we have rO′/O = xex + yey + zez. The

orientation of the body fixed frame A relative to frame I is given by a 3-2-1 Euler

angle set (θ3, θ2, θ1)IA. Note that in Figure 2.9 we have θ = θ3. Later in our analysis we

make an assumption which allows us to describe the orientation with just one angle

from the set. A corresponding transformation matrix ICA maps vectors in frame A
to vectors in frame I. We choose to denote the inertial velocity of the vehicle written

in terms of frame A by IvO′/O = v1a1 + v2a2 + v3a3. We also define the inertial

angular velocity in body coordinates as IωA = ω1a1 + ω2a2 + ω3a3.

The vehicles are designed to have constant distribution of mass. Although the

aft thruster does pivot in order to vector the direction of thrust, the mass of that

thruster relative to the overall mass is very small. It is also the case that the aft

thruster pivots around a point near its own center of mass. We capture this in the

following assumption.

Assumption 1. The mass distribution of the vehicle is fixed so that the center of

mass does not move within the body frame.

A d

dt
rP/O′ = 0 (2.2)

where rP/O′ is the location of the vehicle’s center of mass relative to point O′.

Given Assumption 1, all the information required to describe the vehicle’s con-

figuration is contained in the pair
(
rO′/O, (θ3, θ2, θ1)IA

)
. Using the transport equation

to compute derivatives, we can express the inertial acceleration of the vehicle in the

body frame via
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IaO′/O =
Id

dt
IvO′/O

=
Ad

dt
IvO′/O + IωA × IvO′/O (2.3)

where
Ad
dt
IvO′/O = v̇1a1 + v̇2a2 + v̇3a3. We will use Equation 2.3 to apply Newton’s

Second Law in the following section.

2.4.2 Dynamics

Vehicle dynamics depend on external forces due to control inputs and also the reaction

forces from the fluid that depend on the body’s velocity and acceleration. In the

previous section we derived the kinematic equations of motion in the body frame since

here we decompose forces along the principal axes of the body frame. For a submerged

body we use an added mass matrix to model inertial effects of the surrounding fluid.

The added mass matrix allows the model to account for momentum of the fluid which

accelerates as the body displaces it [37]. Viscous forces are also considered and enter

into the model through external forces that we model in the subsequent section.

The kinetic energy of the fluid which has been accelerated by the vehicle can be

written

TA =
1

2
(IvO′/O)TMA(IvO′/O) +

1

2
(IωA)TJA(IωA) (2.4)

for mass and inertia matrices MA and JA. The concept of fluid kinetic energy is

used with Kirchhoff’s equations to derive the terms in MA and JA. See [48] for this

derivation. It is common to neglect off-diagonal terms since it is argued that most of

the energy is accounted for by the diagonal terms, and closed-loop control can make

up for those unmodeled dynamics.

We also choose to approximate the body as an ellipsoid. Doing so makes the mass

and inertia matrix for the rigid body diagonal. This assumption is close to true for

the purposes of mass distribution.
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Assumption 2. We approximate the vehicle’s body to be ellipsoidal so that a point

Q on its surface has position relative to O′ given by rQ/O′ = x̂a1 + ŷa2 + ẑa3 which

satisfies the constraint that

x̂2

a2
+
ŷ2

b2
+
ẑ2

c2
= 1 (2.5)

where the semi axes along the directions spanned by a1, a2, a3 are a, b, and c, respec-

tively.

Let MB and JB be the diagonal mass and inertia matrices for the rigid body. The

total kinetic energy of the system is therefore

T =
1

2
(IvO′/O)T (MB +MA)(IvO′/O) +

1

2
(IωA)T (JB + JA)(IωA). (2.6)

For the remainder of this section we will denote M = MB +MA the total mass of the

system and J = JB + JA the total inertia.

Translational Equations of Motion

The two control forces, u1 and u2, are shown in the free body diagram of Figure 2.9.

In vector form our control input is the following

u = u1(cosφa1 + sinφa2) + u2a3 (2.7)

where φ is the angle by which the aft thruster is vectored away from centerline and

u1, u2 are magnitudes of the control forces which relate to the voltages applied to

each of the motors in the thrusters. The total external force acting on the body is,

however,

F = u + FE (2.8)

where FE denotes external forces other than control inputs acting on the body. In

principal, FE could be modeled to account for a number of external forces acting
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on the vehicle. First and foremost we consider viscous fluid forces. Other forces and

disturbances caused by tethers, for example, could also be included in FE. We assume

that the buoyancy is perfectly neutral, and the force from the tether is negligible. We

will limit our model of FE to include the dominant fluid forces in the principal body

frame directions and also make a reasonable assumption that limits the vehicle’s

motion to four degrees of freedom.

Assumption 3. Let each vehicle be neutrally buoyant so that FB = −mga3. Assume

the magnitude of the restoring moment MR = −mgL sin δ is sufficient so that stability

prevents any deflections in either pitch or roll thereby enforcing the constraint a3 = ez.

The validity of Assumption 3 is discussed in Section 2.3 where we show that

for a neutrally buoyant body with center of mass separated a distance L from the

center of buoyancy (as shown in Figure 2.7) a restoring moment with magnitude

MR = −mgL sin δ prevents the body from pitching or rolling.

Hydrodynamic forces are decomposed into the principle axes of the body frame.

In the a1 and a2 directions we have drag and lift terms to consider. The external

force is denoted

FE = −F1a1 + F2a2 − F3a3 (2.9)

where the terms F1, F2, and F3 represent the component of drag and lift in the body

1,2, and 3 directions. The force magnitudes are modeled by the following:

Fi = (CD,i + CL,iα
2
i )V

2, i = 1, 2, 3 (2.10)

where CD,i is the coefficient of drag, CL,i the coefficient of lift, and αi is the angle

of attack, each for the ith body frame direction, i = 1, 2, 3. V 2 is the magnitude of

the total velocity squared, given by (IvO′/O) · (IvO′/O). The form of equation (2.10)

comes from a standard approach used in airfoil theory described in [30] and [52].
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The constant coefficients are determined experimentally for each vehicle in the lab.

Assumption 3 allows us to approximate the force in the a3 direction as pure drag

since the angle of attack α3 along that direction is close to zero. We then have that

α = α1 = α2 = tan−1(v2

v1
).

The external forcing, modeled in this way, is then

FE = −(CD,1 + CL,1α
2)V 2a1 + (CD,2 + CL,2α

2)V 2a2 + CD,3V
2a3. (2.11)

The equations of motion relating acceleration in the body frame to the forces modeled

in this section are given by

Ad

dt
IvO′/O = M−1(F− IωA × IvO′/O) (2.12)

which is a system of three scalar equations. Invoking Assumptions 2 and 3, we can

write out the following three equations for the variables v1, v2, and v3 in the body

frame:

v̇1 =
1

m1

(
u1 cosφ− (CD,1 + CL,1α

2)(v2
1 + v2

2) + θ̇v2) (2.13)

v̇2 =
1

m2

(
−u1 sinφ+ (CD,2 + CL,2α

2)(v2
1 + v2

2)− θ̇v1) (2.14)

v̇3 =
1

m3

(
u2 + (CD,3α

2)v2
3) (2.15)

where m1,m2, and m3 are the diagonal elements of the total mass matrix M =

MB +MA.

Rotational Equations of Motion

We are now left to determine the external moments acting on the body. We compute

moments about the body frame origin O′. The sum of the moments, each about O′
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is written

T = TT + Tz + TE (2.16)

where TT is the turning moment from the vectoring thruster, Tz is a torque applied

by the vertical thruster, and TE is an external moment acting on the body by the

surrounding fluid. The vectoring thruster at angle φ from the vehicle centerline

contributes a turning moment which can be written

TT = u1 sinφa3. (2.17)

Since a propeller is a rotating airfoil, thrust is provided orthogonal to the plane

of rotation, but the airfoil’s lift to drag ratio, which we will call κ here, comes into

play as well. The result is that the drag on the blade imposes a torque which is

proportional to the thrust. So we have that the torque Tz applied by the vertical

thruster is given by

Tz = −κu2a3. (2.18)

Assumption 3 allows us to neglect moments about the a1 and a2 axes. The moment

due to the surrounding fluid is modeled as

TE = (CM0 + CMα)V 2a3 (2.19)

and acts purely about the a3 axis. Equation (2.19) is also a standard model derived in

airfoil theory that uses potential flow calculations [30, 52]. Equations (2.17) - (2.19)

allow us to write (2.16) as

T = (u1 sinφ− κu2 + (CM0 + CMα)V 2)a3. (2.20)
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The rotational equations of motion for this system, under Assumption 3, collapse

to the following scalar equation describing rotation about the a3 axis:

θ̈ =
1

J3

(
u1 sinφ− κu2 + (CM0 + CM)(v2

1 + v2
2)), (2.21)

where J3 is the third diagonal element of the total inertia matrix J = JB + JA.

2.5 Future Directions

In this thesis the vehicles and testbed are used as part of a human-in-the-loop study

described in Chapter 8. Development has been a collaboration among several mem-

bers of the DCSL for the purpose of studying multiple-vehicle and human-in-the-loop

control systems in a variety of applications. Significant effort has been made to facili-

tate the long-term use of this testbed in the Dynamical Control Systems Lab. Future

students will be able to work with this system and integrate their code by following

a simple communication protocol.

Next steps in developing and maintaining the testbed should be primarily in the

area of software, modelling, and implementation. Emphasis has been put on allowing

the vehicles to be controlled from any software platform. In our applications we

have implemented control via Matlab and C++. In fact, the current system requires

simultaneous use of Matlab and tracking software programmed in C++. Creation of a

graphical user interface should be considered. Such an interface could allow new users

to quickly implement control laws, change model parameters on the fly, and design

virtual fields for the testbed in one organized, central piece of software. Modelling

and system identification should also continue. As vehicles see continued use and

as more performance data is collected, the dynamic model used for estimation and

vehicle control should also improve. Higher levels of detail may also be considered
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valuable; for instance, one could envision modelling the forces from tethers in the

dynamics.

As with any piece of hardware, improvements in technology will prompt subse-

quent changes in design. One potential upgrade which should be considered is in the

onboard electronic hardware. While the printed circuit board design suits the vehi-

cles well and has proven to be stable, should additional sensors be added, or other

capability desired, a change in platform is recommended. Many competing micro-

processor boards are available today, some of which are less expensive and easier to

operate than the chosen PIC microprocessor. One such platform is the Arduino which

is open source and uses an object-oriented programming language much like C.

Should the desire to move to a fully autonomous vehicle platform arise, the current

vehicles can be equipped with batteries and wireless communication devices. Off-the-

shelf wireless technology may be feasible for implementation in the tank. Care should

be taken, however, to choose wavelengths which are effective in penetrating the water

and steel walls of the tank. Use of several antennas above the center of the tank may

be a possible solution.

The multi-vehicle testbed does require continued maintenance. Some components

are stronger than others and will last longer. Others, however, should be regularly

renewed. Gaskets, for example, decay with time and will allow leakage. Continued

use of the system will ensure that it is maintained properly. The lab should be viewed

as a valuable resource for all members of the lab - not just as a tool for verification but

as a system that allows students and researchers to overcome real-world constraints

and stimulate interesting new research paths by grounding theory with a physical

application.
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Chapter 3

Decision Making Tasks and Models

3.1 Studies of Human Decision Making

Collaborations with psychologists and neuroscientists that are making headway to-

ward understanding how the human brain functions have afforded us great success in

developing a framework and foundation for our studies of decision making. By apply-

ing engineering tools, we’ve assisted in the development of models, performed analyses

to make predictions, and have applied our results to design new experiments. This

chapter presents the decision-making task and relevant models used in our approach

to develop tools for the design of systems that incorporate human decision-makers in

mixed teams.

We use the Two-Alternative, Forced-Choice (TAFC) task. In the TAFC task, a

decision maker must choose one of two alternatives, sequentially in time, and receive

a reward following each choice. Details of the TAFC task appear in Section 3.2.1.

Our mathematical model of the TAFC task first appeared with preliminary results in

[18] and again in [19] where we analyzed some of the decision-making models defined

in Section 3.4.
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We aim to discover underlying principles of the decision-making strategies em-

ployed by human decision makers. The TAFC task is a relatively well-understood

decision-making task, which has allowed us to develop provable conclusions about

human behavior. In this work we ask questions about optimality, and determine rel-

evant parameters that influence performance. This allows us to design integration in

ways that take advantage of the respective strengths and weaknesses of human and

robotic decision makers.

First we consider a single human decision maker in the TAFC task and, through a

model-based analysis, examine sensitivity of behavior to specific factors. Those factors

can be parameters that define the task, the environment (the reward structure of the

task), or properties of the individual decision makers. The task we choose is simple in

that only two alternatives are considered in the action space, but the understanding

we develop in this work is rich.

With the goal of determining how best to take advantage of human input, and how

to design automated elements in the system, we focus on how to improve performance

when it is sometimes hindered by properties of the environment and or feedback

provided. A model-based approach allows us to develop a systematic understanding

of the role of driving parameters and to make valuable predictions.

Since a key goal is to design mixed teams of decision makers, it is important

that our approach extends successfully to draw conclusions about teams of decision

makers that share information with social feedback. A number of decision-making

models appear in this chapter. We analyze each of them in Chapters 4 through 6. In

Chapter 5 we develop the ability to make predictions about behavior in groups with

social feedback. This relies on the successful analysis of a stochastic soft-max choice

model for decision making. In Chapter 5 we develop an analytic tool for predicting the

behavior of a single model decision maker. The success we’ve had with the soft-max
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model provides a foundation for extending our analysis to include social feedback in

Chapter 6.

3.2 The Two-Alternative, Forced-Choice Task

In order to formally integrate human decision makers with a system of autonomous

robots, it is necessary to quantify the properties of the human and develop tools

for predicting behavior as well as for measuring and improving performance. The

desire for analytical tools and a systematic approach has prompted us to study a

well-understood task that has received much attention in psychology and behavioral

science studies. We have chosen to consider human decision makers in the Two-

Alternative, Forced-Choice (TAFC) task which was introduced by Montague and

co-authors [28, 53], and has seen extensive use in human decision-making studies.

In the TAFC task, participants are required to choose one of the two alternatives

presented to them. A reward is administered following each choice, and the task

continues as the subject is prompted to make continued sequential choices. When the

experiment concludes, a monetary award is payed to each subject with an amount

that is proportional to the sum of individual rewards from each choice. There is an

incentive, therefore, to maximize accumulated reward in the task.

Typically, experiments are performed in an abstract setting where the alternatives

have no concrete meaning. It is possible to consider applications of the task, or to

map the task to relevant real-world scenarios. In [19] we presented an application

in which a single human supervisor was tasked with allocating robotic agents toward

specific objectives. We have also argued that decision making in air traffic control is a

relevant application to consider. If we consider air traffic control agents to be choosing

whether planes land, or take off, and allow the reward for each choice to be related

to the number of planes on the ground, then we have a task with two alternatives
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that is history-dependent in a similar fashion to the TAFC task considered in this

work. In Chapter 8 we present the design of new experiments with joint decision-

making among humans and robots and detail an application where the TAFC task is

a relevant paradigm for the human decision maker. We discuss a real-world example

where decisions in the TAFC are given concrete meaning; the application considered in

Chapter 8 integrates humans with robotic sensor platforms in an oil cleanup scenario.

Properties of the TAFC task and its origins are provided in Section 3.2.1. Spe-

cific “task types” are presented in Section 3.2.3. These specific tasks have a reward

structure associated with them and each has at least one distinct property that can

significantly affect a decision maker’s behavior. That behavior is discussed briefly in

Section 3.2.4, and in more depth in subsequent chapters. A mathematical model of

the TAFC task is presented in Section 3.2.2

Each of the decision-making models that we use in our analyses throughout this

thesis appears in this chapter. We consider both deterministic and probabilistic

strategies for decision makers in the TAFC task. The simple, deterministic Win-Stay,

Lose Switch model is presented in Section 3.4.1 and discussed further in Chapter 4.

Another deterministic model, called the deterministic limit of the soft-max model is

presented in Section 3.4.3 and also further analyzed in Chapter 4. The model which

has seen the most success, however, in fitting experimental data is the stochastic

soft-max choice model which we first introduce in Section 3.4.2. An analysis of this

stochastic model and corresponding results for predicting performance of the behavior

for a single human decision maker appear in Chapter 5.

Leveraging our understanding of the TAFC task, and extending the models used

for describing a single human’s behavior, we are able to draw insights about the

behavior of decision makers in groups. Our motivation for considering a social task is

for the purpose of designing decision-making teams – a concept introduced in Section

3.5. Our colleagues have developed an extension of the TAFC to incorporate multiple
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participants. Details of the social extension, as well as an extension of the soft-max

model to include social feedback, appear in [57]. The extension of the task to include

social feedback is discussed in this work in Section 3.3. Our analysis develops a

predictive tool using this extended model with social feedback. The model for a focal

decision maker receiving social feedback about choices made by others in the task is

defined in Section 3.4.4. The analysis of the extended soft-max choice model appears

in Chapter 6.

3.2.1 Task Description

A decision maker in the TAFC task is required to choose between two alternatives

(which we denote by A and B). Decisions are made sequentially in time, and a

reward (performance measure) is received after each choice is made. The goal of a

participant in the task is to maximize total accumulated reward over the duration of

the task (optimize performance over the long run). In typical experiments a payment

is awarded following a finite number of trials in the task. The payment is proportional

to the sum of the individual rewards.

Participants do not know how the reward for a given choice is determined. The

reward changes with time, and is not typically perceived to be constant for each

choice. Though in this work we do not consider time-varying reward structures, the

reward is a function not only of the immediate choice but also of the subject’s recent

history of choices [53, 39, 28], so there is implicit time dependence in the task. This

dependence on past decisions is highly relevant for real-world, human-in-the-loop,

decision-making problems where the state of a system under the control of a human

supervisor will depend on the history of choices made.

When experiments are performed with human subjects in the TAFC task, the

participant is prompted by a computer to make a choice by pressing either button

A or button B on the screen. Once a choice is made and the button pushed, the
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computer reports the magnitude of the reward. This describes the mechanics of one

decision-making trial which occurs from each time step t up to t+1. The task repeats

sequentially in this fashion up until completion of the experiment – at which point

each participant receives payment that is proportional to the sum of rewards received

over the course of the task. The duration of experiments varies among studies, and

so does the length of time allotted for each of the individual choices. In [28] each

experiment consisted of 250 sequential decisions. In [56, 57] each experiment consisted

of 150 sequential decisions. Participants had 1.7 seconds to make a choice in each

trial.

Experiments can also vary between the forced-choice and the free-choice protocols.

The forced-choice protocol requires that a subject make a choice; i.e. the subject is

given a fixed period of time after the prompt during which they should push one of the

two buttons. If a choice is not made within that time the system uses the same choice

that was made in the previous time step. In the free-response protocol the subject is

allowed as much time as needed to make a choice. In [11] the authors studied both

the free-choice protocol and the forced-choice protocol with a response time period

of 2 seconds and .75 seconds. The authors of [56, 57] used the forced-choice protocol

with a response time period of 1.7 seconds. The forced-choice protocol guarantees

that a choice is made at regular intervals.

The decision maker must develop their own understanding of the reward structure

and how the reward depends on their choices. They are not told (and should therefore

have no knowledge) that reward depends on their recent history of choices. The

subjects do, of course, have incentive to maximize their reward.

Experiments are designed to investigate various aspects of decision making. One

such aspect is the effect of limited memory on performance. Memory is connected with

the experimental control that defines the number of immediate past choices N used to

determine the choice history that in turn determines the reward. That finite history
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length is set for each experiment and can be varied. In the experiments of [11] and

[57], N = 20 was used, whereas in the experiments of [28], N = 40 was used. In each

case, N is sufficiently large so that participants cannot remember all of the decisions

in the finite history used to determine the reward they receive. One can envision

various real-world tasks which would depend on choice history to varying degrees.

Some systems require many series of choices to be made before measurable changes

in the environment or performance are available. Such a system would correspond to

a task with very high N .

The reward structure itself, namely the way in which the reward depends upon

subject choice history, is an important experimental control and has a dramatic ef-

fect on a subject’s behavior. Determining how behavior depends on the properties

defining the reward structure is a primary goal of experimental studies. We focus

on four reward structures that are shown in Figure 3.1: Matching Shoulders (MS),

Rising Optimum (RO), Converging Gaussians (DG), and Diverging Gaussians (DG).

Versions of the MS and RO reward structures appear in [53, 11, 54]. The CG, DG,

and RO structures are also studied by the authors of [57]. Through our model-based

analysis, and in conjunction with experiments performed with human subjects, this

work draws conclusions pertaining to behavior in each of the tasks of Figure 3.1.

While each reward structure shown in Figure 3.1 elicits specific behavior in the

decision making, the level of difficulty is perhaps the first key factor to consider in

each task. For example, the CG reward structure in Figure 3.1(c) is relatively easy

for the human subject to make the optimal sequence of choices. The RO structure

in Figure 3.1(b), however, is very difficult for a decision maker to find the optimal

decision-making solution. This will be made more clear during an illustration of the

task for these reward structures in Section 3.2.4.

Results specific to each of the reward structures appear throughout this thesis.

Through a discussion of each reward structure in Section 3.2.3, and the corresponding
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properties of behavior and predictions made through our analysis in Chapter 4-6, an

in-depth and formal understanding of human decision making in terms of reward

structure is developed for the TAFC task.

3.2.2 Task Model

In the two-alternative, forced-choice task a decision maker chooses one of two options

labeled A and B. Decisions are made sequentially in time and a reward is adminis-

tered following each choice. The value of each reward is determined by the reward

structure, a set of curves which depend on the decision-making history. The four

reward structures that we examine have been given in Figure 3.1 where rA, the curve

defining a reward for A, and rB the curve defining a reward for choice B, are each

plotted as a function of y(t), the proportion of choice A in a decision maker’s recent

history (the last N choices).

We model the TAFC task by considering a focal decision maker, and we let the

state of that decision maker be in the finite choice history defined by the N most

recent decisions. Let x(t) = (x1(t), x2(t), . . . , xN(t)) denote the last N choices of the

decision maker ordered sequentially in time with x1(t) ∈ {A,B} denoting the decision

at time t, x2(t) ∈ {A,B} the decision at time t− 1, etc. We have that

xk(t+ 1) = xk−1(t), k = 2, . . . , N, t = 0, 1, 2, . . . . (3.1)

The proportion of choice A in the last N decisions at time t is

y(t) =
1

N

N∑
k=1

δkA(t) (3.2)
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where δkA(t) = 1 if xk(t) = A and δkA(t) = 0 if xk(t) = B. Note that y can only take

values from a finite set Y of N + 1 discrete values:

y ∈ Y =

{
i

N
, i = 0, 1, . . . , N

}
.

The reward at time t is given by

r(t) =

 rA(y(t)) if x1(t) = A

rB(y(t)) if x1(t) = B .
(3.3)

The average reward can be computed as

r̄(y) = yrA(y) + (1− y)rB(y). (3.4)

For each value of y, this is the reward that would be received on average if the decision

maker were to maintain that value of y. In our analysis we make use of the difference

in the reward, finding it convenient to define

∆r(y(t)) := rB(y(t))− rA(y(t)). (3.5)

The variables x(t) and y(t) evolve as a decision maker makes choices A or B in the

task. Through the rest of this chapter we define models of decision makers that are

used in our analysis to understand how x(t), and subsequently y(t) will evolve (and

or converge) in the TAFC task. We use both deterministic and probabilistic models

in our analysis.

Each of the deterministic models we study are defined in Sections 3.4.1, 3.4.3, and

3.4.2. We use a stochastic system to model the decision-making processes in Section

3.4.2 and 3.4.4. When a probabilistic strategy governs the decision making, x(t)

and y(t) take values according to a random process and may therefore be considered
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random variables. When the decision making is deterministic, however, the variables

x(t) and y(t) are not random.

3.2.3 TAFC Reward Structures

In each of the reward structures, the reward depends explicitly on both the current

choice of A or B and the proportion, denoted by y(t), of choices of A in the most

recent N choices at time t. Let i(t) denote, at time t, the number of A choices in

the last N decisions, then y(t) = i(t)/N . Each reward structure is defined by two

curves of reward as a function of y: in Figure 3.1 the dotted line plots rA(y), the

reward received in the case that button A is pushed, and the solid line plots rB(y),

the reward received in the case that button B is pushed. The average value of reward

rA(y)y + rB(y)(1− y) is the dashed curve.

The average value of reward is what the decision maker is incentivized to maximize

and reward structure requires different behavior to maximize the reward received.

An optimal strategy for a reward structure corresponds to quickly converge to y that

maximizes the average value of reward. Without knowing the explicit structure of the

reward, or knowing how much the structure depends on history (N), human decision

makers may or may not successfully find the optimal solution in a task. Suboptimal

behavior can happen as a result of many factors. It may be the case, for example, that

a human does not explore the task enough with their choice sequences and therefore is

unable to find the optimal sequence. Each task requires different levels of exploratory

behavior for a decision maker to find the highest rewards allowable by the structure.

Each reward structure has specific properties that can influence a decision maker’s

behavior. The structures have been designed to represent interesting challenges which

prompt specific behavior in a subject’s decision-making space. While a typical real-

word scenario is not likely to possess an idealized reward structure identical to one of

those in Figure 3.1, it is likely that it would be comprised of a combination of these,
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inheriting characteristics of several of the reward structures. In [87] the authors

introduce the notion that these canonical curves can be considered basis functions for

the space of reward curves that should be present in complex, real-world scenarios.

We consider each of the reward structures in Figure 3.1 in the abstract sense

for the sake of gaining an understanding of several idealized cases. Each of these

structures possess a different level of difficulty. In some of them subjects are likely to

converge to a particular type of choice sequence which can be optimal or suboptimal.

Interestingly, this behavior is largely predictable and we show this in Chapters 4, 5,

and 6.

3.2.4 Illustration of the TAFC task

To illustrate the dynamics of the TAFC task we first consider one reward structure

and walk through an example of a possible trajectory in the decision making. In this

section we present an illustration for the MS, RO, and CG / DG structures, which

each appear in Figure 3.1.

Matching Shoulders

Consider the matching shoulders (MS) reward structure of Figure 3.1(a) and suppose

that the decision maker has chosen A half of the time in the last N trials of the task,

i.e., y = 0.5. If the most recent choice made is A, then the reward is given by rA(0.5) =

0.35. If the most recent choice made is B, then the reward is given by rB(0.5) = 0.5.

If the decision maker continues with choice sequences such that the proportion of

choice A in the finite history remains at y = 0.5, then the average reward earned is

given by the dashed curve as 0.425. A sustained choice sequence corresponding to

y = 0.5, however, is not optimal; the maximum possible reward that one can receive

corresponds to a choice sequence that achieves y = 0.53 (where the dashed curve

in Figure 3.1(a) peaks). This can be seen by differentiating the average reward with
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Figure 3.1: Four reward structures: (a) matching shoulders (MS), (b) rising optimum
(RO), (c) converging gaussians (CG), (d) diverging gaussians (DG). In each plot the
dotted line depicts rA, the reward for choice A. The solid line depicts rB, the reward
for choice B. The dashed line is the average value of the reward. Each is plotted
against y where y = i

N
, i = 0, 1, 2, . . . , N , is the proportion of choice A made in the

last N decisions.
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respect to y. The average reward is computed as r̄(y) = yrA(y)+(1−y)rB(y). For the

MS reward structure the curves are given by rA(y) = kAy+ cA and rB(y) = kBy+ cB.

So we have d
dy
r̄(y) = 2(kA−kB)y+kB+cA−cB. Solving for y that satisfies d

dy
r̄(y) = 0

we get y = kB+cA−cB
2(kB−kA)

. For the example of Figure 3.1(a) kA = −0.5, cA = 0.6, kB = 1,

and cB = 0. In this example r̄(y) has a unique maximum at y = 0.5r3. Note that

y(t) is not continuous since it belongs to a finite set given by Y =
{
i
N
, i = 0, 1, ..., N

}
and it is not always true that the value of y which maximizes r̄(y) is an element in

that set. It is possible, however, to make choice sequences that ensure y(t) is within

1
N

from the optimal value.

For the MS reward structure of Figure 3.1(a), the decision maker receives a higher

reward for choosing B rather than A whenever y > 0.4. Thus, if y > 0.4, the decision

maker will likely make choices of B. However, continued choice of B reduces y and

when y < 0.4, the decision maker will find that choosing A yields a higher reward

than choosing B. Subsequent choices of A will increase y and the process repeats

once y > 0.4 again. The point where the two curves intersect, here corresponding

to y = 0.4, is called the matching point. Interestingly, although the matching point

does not necessarily coincide with optimal choice sequences (here y = 0.53), it is an

attractor for the models we study. This also appears to be the case for human decision

makers which is in accordance with Herrnstein’s matching law [41]. Evidence that

human decision makers converge to choice sequences y that correspond to matching

points is plentiful [28, 53, 56]. Convergence of human decision making to the matching

point has been analyzed using decision-making models in [53, 18, 19, 87]. In Chapter

4 we derive analytical predictions to prove conditions under which a decision maker

in the TAFC task will converge to a matching point in a reward structure.
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Rising Optimum

The rising optimum (RO) reward structure of Figure 3.1(b) also has a matching point,

but it is a more complex task since there is a local optimum at y = 0 and a global

optimum at y = 1. This RO reward structure is studied in [57] with subjects who

begin the task with the initial condition y(0) = 0. Subjects tend to spend time at the

local optimum or near the matching point, but rarely find the global optimum, since

to do so requires choice sequences that yield the lowest possible rewards in the task

(here in the range y = 0.4 to y = 0.5). Even if a subject reaches the optimum at y = 1,

a choice of B will yield an even higher reward than a choice of A – this will reduce

y, moving the decision maker away from the optimal solution. For these reasons, the

RO task is considered to be a difficult task. This difficulty level, combined with the

short-term disincentive to explore, makes this a rich and interesting task for studying

the effects of social feedback. For example, an important question is whether it is

possible, with the right kind of feedback, that teams of humans or mixed teams of

humans and robots can perform better in the RO task, e.g., find and sustain the

optimal behavior, as compared to individuals who do not share information with one

another. We make predictions about the implications of social feedback in the RO

task in Section 7.1.

Converging and Diverging Gaussians

Figures 3.1(c) and 3.1(d) are converging gaussians (CG) and diverging gaussians (DG)

reward structures, respectively. These two structures have the same form, but the

curve for rA in the CG structure is rB in the DG structure and what is rB in the CG

structure is rA in the DG structure. The difference between behavior in each task is

significant and is inherent in the name of each. In the CG task the matching point

is an attractor such that decision makers tend to converge to it, whereas in the DG
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task the matching point is divergent such that decision makers tend to move away

from it.

Both structures are symmetric about y = 0.5, which corresponds both to the

matching point and to the optimal decision-making solution. The CG task is con-

sidered an easy task since the matching point, and therefore the optimal solution,

is attracting. As expected, subjects on their own perform well in the CG task [57],

typically finding and sustaining optimal decision sequences. However, performance

was observed to degrade in the CG experiments with social feedback studied in [57].

In [80] and [79] we presented some results that agree with these experiments, those

are included in Chapter 6. The social feedback (which provided information on what

others were choosing or how others were performing) seemed to trigger increased ex-

ploration that led the decision maker away from the otherwise easy-to-find optimal

solution. In Chapter 6 we use the model to prove the frequency of the negative im-

pact of social feedback and show that our predicitions agree qualitatively with the

experimental results of [57].

3.3 The TAFC Task in a Social Context

The authors of [56, 57] have run extensive experiments with multiple human subjects

to investigate decision making in TAFC tasks with social feedback. In collaboration

with this effort, we’ve developed a framework for studying decision making among

humans in this same social context. In this section we describe the TAFC task in the

social context.

In our framework we consider an arbitrary number of M+1 decision makers in the

team. In each experiment, for the social decision-making task, five human subjects

were physically isolated from one another, but they made choices for the same task

at the same time. Each subject made his/her own decisions, and the corresponding
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reward each subject received after each decision was calculated based only on that

subject’s choices according to the reward structures of Figure 3.1. After every choice,

when the computer reported the reward, it also reported the current A or B choice

of each of the other four subjects (choice feedback), the current reward of each of

the other four subjects (reward feedback), or both the current choice and reward of

the other four subjects (choice and reward feedback). In any of these social feedback

conditions, each human subject could use the information reported about the four

others in their own decision making. For comparison, experiments included having

the five subjects perform TAFC tasks simultaneously, without feedback – this was

called the alone condition.

The authors of [56, 57] designed their experiments with undirected feedback, that

is, information passed from every individual to every other individual in the group.

We study the undirected case numerically in Chapter 6. However, for the majority

of our analysis, we examine the case of directed social feedback; in particular, we

study the decision-making dynamics of a focal individual who receives feedback on

the choices of M other decision makers, each of whom receives no social feedback.

The directed case allows us to focus on the influence of social feedback on an

individual decision maker. By considering a focal decision maker, we can also inves-

tigate the influence of designed decision makers who provide feedback but have fixed

strategies. We make a formal comparison between the influence of directed versus

undirected social feedback in Chapter 6. In these experiments each subject’s role

was equal and information was shared evenly. Experiments are currently underway

in which feedback is directed. We discuss those in Chapter 7. Plans are also being

made to consider hierarchical decision-making paradigms.

We model the social TAFC task much like the TAFC task of Section 3.2.2. Our

approach is to consider a focal decision maker in the TAFC task that receives feedback

on the choices of M other decision makers. Let x(t) denote the last N choices of the
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focal decision maker as described in Section 3.2.2. Then y(t), given by (3.2) is the

proportion of choice A made by the focal decision maker in the last N trials at time

t. The social feedback, dependent on the choices of the M others, appears in the

decision-making model described in Section 3.4.4.

3.4 Decision-Making Models

Whenever a decision maker faces a sequential task that does not vary drastically over

time, it is reasonable to believe that the behavior will converge in some way. We

expect that a certain amount of learning should also occur over the task duration.

Decision makers are incentivized to maximize individual rewards and must attempt to

learn the value of each alternative in order to do so. Since, in the TAFC task we study,

participants have no knowledge that the reward depends on their history, let alone

how it does so, we have considered models from the literature [58, 28, 65, 64] that do

not attempt to learn the entire structure, or the structure’s specific dependence on

choice history, but rather make choices in response to individual rewards received by

continually learning and comparing the value of the two alternatives denoted choice

A and choice B.

Each of the models in this section provides a rule for choosing A or B in the next

time step, t + 1, using information available at time t. We use both deterministic

and probabilistic models in our analysis. The stochastic soft-max choice model is

particularly successful for fitting experimental data in the TAFC task with no social

feedback [28, 65, 64]. The soft-max model is defined in Section 3.4.2. To model

decision making in a social context, the model is extended for the case of choice

feedback [57]. The extension to the soft-max model for the TAFC task with social

feedback is defined in Section 3.4.4. The Win-Stay, Lose-Switch (WSLS) [58] and

deterministic limit of the soft-max choice model [19] are both deterministic decision-
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making strategies. The WSLS model is defined in Section 3.4.1 and the deterministic

limit of the soft-max model is defined in Section 3.4.3, respectively.

3.4.1 Win-Stay, Lose-Switch Model

The Win-Stay, Lose-Switch (WSLS) model is a simple, deterministic model of a strat-

egy which may be employed in the TAFC task [58]. It assumes that decisions are

made with information from the rewards of the previous two choices only and that a

switch in choice is made when a decrease in reward is experienced.

The model chooses to repeat a choice from time t at time t + 1 if the reward at

time t is greater than or equal to that at time t− 1; otherwise, the opposite choice is

used at time t+ 1:

x1(t+ 1) =

 x1(t) if r(t) ≥ r(t− 1);

x̄1(t) otherwise,
t = 1, 2, 3, . . . (3.6)

where ·̄ denotes the “not” operator; i.e., if x1(t) = A (x1(t) = B), then x̄1(t) = B

(x̄1(t) = A).

Though the WSLS model can replicate common choice sequences made by human

subjects, since it is deterministic, it does note accurately represent the majority of

human behavior since typical choice sequences made by human participants are, at

times, random. This model does, however, qualitatively represent behavior observed

in experiments. In fact, it can be proved that the WSLS decision maker will con-

verge to matching points in reward structures, a concept we discuss in more detail in

Chapter 4 and also for stochastic models in Chapter 6.
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3.4.2 Stochastic Soft-Max Choice Model

The stochastic soft-max model has been widely successful in modeling decision making

in a variety of contexts (in both humans and animals) [64, 63, 65, 74]. The soft-max

model, as it appears in this work to describe human decision making in TAFC task,

was first proposed by Egelman et al. [28]. Having seen continued use by Montague

and Berns [53], the model has since become a well-accepted decision-making model

in this context.

The soft-max model prescribes the probability pA that a subject will choose A at

the next time step, using information learned about the two alternatives A and B

up to time t. The probabilistic choice function is a sigmoidal function of the current

state:

pA(t+ 1) =
1

1 + e−µ(wA(t)−wB(t))
(3.7)

where we have defined the probability that a subject chooses A as pA(t + 1) :=

Pr{x1(t+ 1) = A}. The variables wA and wB represent the learned value, or antici-

pated reward, for choices A and B, respectively. The probability pA depends explicitly

on the difference between the subject’s anticipated reward wA for pushing button A

next and the subject’s anticipated reward wB for pushing button B next.

Note that wA and wB are independent from

The true rewards, rA and rB, underly the human’s perception of the values wA

and wB, although they are likely related in a complex manner. How wA and wB relate

to rA and rB relies on the experience of the decision maker. This is described as a

learning process later in the section.

Figure 3.2 shows pA as a function of wA − wB in the case that µ = 1. The pa-

rameter µ is an important property of each decision maker. It determines the slope

of the sigmoidal function in Figure 3.2, where one can see that larger µ implies more

certainty in decision making. The parameter µ can be interpreted as the tendency
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for a decision maker to explore. Smaller µ implies a decision-making rule with more

random (exploratory) behavior. By inspection of (3.7) one can see that µ = 0 corre-

sponds to completely random behavior which doesn’t take into account the learned

reward values wA and wB. On the other hand, larger µ implies less randomness in

the choices. As µ tends to infinity (3.7) becomes deterministic: in this case whenever

wA > wB a choice of A is made and whenever wA < wB a choice of B is made. In [19]

we analyzed this deterministic limit of the model and presented convergence results.

In Section 3.4.3 the deterministic limit of this model is discussed in more detail.
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Figure 3.2: Sigmoidal function given by (3.7) representing probability of choosing A
as a function of wA − wB (plotted here with µ = 1).

Since decision makers behave differently depending upon the reward structure in

the task, the parameter µ can be adjusted to fit experimental data in each of the tasks.

For instance, in [57] it has been found that the model best predicts a subject’s choice

sequences in the RO task when µ = 11.0. In the CG task, however, the experimentally

fitted value is µ = 2.50 [57]. These values correspond to fitting parameters across all

of the subjects. It is also possible to fit µ to a particular subject since each decision

maker is unique. It is a goal of this work to develop a formal understanding of the
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effects on performance of parameters such as µ. In the social context, a heterogeneous

group of decision makers can be studied by distinguishing individuals by his or her

own characteristic value of µ.

In the soft-max decision-making model proposed by Egelman et al. [28], the role of

dopamine neurons was considered. In particular, the ability for dopamine neurons to

code for reward prediction error [54] motivated the use of temporal difference learning

theory [81] to describe the dynamic update of wA and wB. Let Z ∈ {A,B} be the

choice made at time t, then

wZ(t+ 1) = (1− λ)ωZ(t) + λr(t) (3.8)

wZ̄(t+ 1) = wZ̄(t) t = 0, 1, 2, . . . (3.9)

where ·̄ denotes the “not” operator. Here, λ ∈ [0, 1] acts as a learning rate, controlling

how the anticipated reward of choice Z at t + 1 is affected by its value at t. Larger

λ implies less “memory” since the influence of previous rewards decays. When λ is 1

there is no memory since the anticipated reward is equal to the most recent reward

received.

This soft-max function (3.7) used in this decision-making model predicts individ-

ual choices in the same ways as a stochastic differential equation that describes a

scalar drift-diffusion process [56, 59, 72]:

dz = αdt+ σdW, z(0) = 0. (3.10)

Here the variable z represents the accumulated evidence in favor of a candidate choice

of interest, α is a drift rate representing the signal intensity of a stimulus acting on z

and σdW is a Wiener process with standard deviation σ, which is the diffusion rate

representing the effect of white noise.
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In the context of the TAFC task with choices A and B, the drift-diffusion model

can be used to predict an individual choice by allowing the drift rate α to be de-

termined by a subject’s anticipated rewards wA and wB. Then z, the accumulated

evidence for choice A relative to choice B, evolves over time according to the stimulus

and the drift. When z(t) first crosses one of the predetermined thresholds ±ξ a choice

is made. If +ξ is crossed then choice A is made, and if −ξ is crossed then choice B

is made.

It can be computed using tools developed in [10] that for a drift-diffusion process

defined by (3.10), the probability that z crosses one of the predetermined thresholds

is given by

Pr{z = ξ} =
1

1 + e−(2αξ/σ2)
(3.11)

In [57] it is pointed out that by equating (3.7) with (3.11), we can associate µ(wA−wB)

with 2αξ/σ2. This implies that if we associate the drift rate α in (3.10) with the

difference in anticipated reward wA − wB then we have that µ = 2ξ/σ2.

In our analysis we rely upon (3.7). In some cases our work refers to this decision-

making model as the drift-diffusion model (for example [19, 78, 80]), though the DDM

itself lacks the temporal difference algorithm (Equations (3.8) - (3.9)) needed to model

the learning process which accounts for a decision maker’s changing perception of the

value of choices in the TAFC task.

3.4.3 A Deterministic Limit of the Soft-Max Choice Model

To gain insight into the mechanics of the stochastic choice model, we first chose to

adapt the model as described in Section 3.4.2 to a deterministic one. This made the

model tractable for drawing conclusions, which appear in Chapter 4.
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Specifically, we study the deterministic limit of the decision rule (3.7) deduced

from the soft-max choice model by letting µ in (3.7) go to infinity. Then at time

t > 0, the subject chooses A if ωA(t) > ωB(t) and B if ωA(t) < ωB(t). In the event

that ωA = ωB, we assume that humans are of an explorative nature, and thus the

subject uses the opposite of the last choice. To summarize,

x1(t) =


A if ωA(t) > ωB(t)

B if ωA(t) < ωB(t)

x̄1(t− 1) if ωA(t) = ωB(t)

t = 1, 2, 3, . . . (3.12)

where as in (3.6), ·̄ denotes the “not” operator.

Now consider the dynamic update of the anticipated rewards ωA and ωB as mod-

eled in (3.8)-(3.9). When a choice of Z is made the value of ωZ̄ remains unchanged

because without memory no reward information for Z̄ is available. A more sophisti-

cated update model, called the eligibility trace model, is constructed in [11]. It takes

into account an additional effect of memory by updating both ωA and ωB continually.

The eligibility trace can be interpreted as a description of how psychological percep-

tion of information refreshes or decays in response to whether or not an external

stimulus is reinforced. The eligibility traces (as presented in [11]) denoted by φA(t)

and φB(t) for choices A and B respectively, evolve according to

φZ(t)(t+ 1) = 1 + φZ(t)(t)e
− 1
τ (3.13)

φZ̄(t)(t+ 1) = φZ̄(t)(t)e
− 1
τ (3.14)

with initial values φA(0) = φB(0), where τ > 0 is a parameter that determines the

decaying effects of memories.
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With the eligibility traces included, ωA and ωB are updated according to

ωA(t+ 1) = ωA(t) + λ[r(t)− ωZ(t)(t)]φA(t) (3.15)

ωB(t+ 1) = ωB(t) + λ[r(t)− ωZ(t)(t)]φB(t) (3.16)

where the eligibility traces φA and φB act as time-varying weighting factors. When

τ is small, the update rule in the eligibility trace model (3.15) and (3.16) reduces to

that in the standard model (3.8) and (3.9).

Discretized Eligibility Trace

To analyze the impact of the dynamics of the eligibility traces on the evolution of ωA

and ωB, we discretize the eligibility traces φA and φB. We set the learning rate λ in

(3.15) and (3.16) to be its maximum value (λ = 1) which corresponds to the current

reward having the strongest possible influence on the subject. Then

ωA(t+ 1) = ωA(t) + [r(t)− ωZ(t)(t)]φA(t) (3.17)

ωB(t+ 1) = ωB(t) + [r(t)− ωZ(t)(t)]φB(t). (3.18)

We discretize φA and φB as follows. For Z ∈ {A,B}, if Z is the most recent choice

made, we set the value of φZ to be saturated at one because the impact of the current

reward has been accounted for by setting λ to be its maximum value. We let φZ

decay to zero immediately once the opposite choice Z̄ has been chosen consecutively.

With the eligibility trace modeled in this way we consider a process in which memory

fades quickly.

When a switch in choice is made (from Z at time t − 1 to Z̄ at time t), let the

stored memory of the unchosen alternative, φZ , take its value to be a small, positive

number ε ∈ (0, 1). This is a simple model of a subject “forgetting” the value of an
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unchosen reward. Then φA and φB take values in {0, ε, 1} and evolve according to

φZ(t) =


1 if Z = x1(t)

ε if Z = x̄1(t) = x1(t− 1)

0 if Z = x̄1(t) = x̄1(t− 1)

t = 1, 2, 3, . . . (3.19)

The resulting model, defined by (3.12) and (3.17)-(3.18), is a deterministic limit of

the soft-max choice model with discretized eligibility traces. Like the WSLS model,

the deterministic limit (as presented here) can replicate some human behavior. We

note, however, that it does not accurately represent the majority of human behavior

since it lacks stochasticity.

3.4.4 Soft-Max Choice Model with Social Feedback

Each individual in a group of decision makers can be modeled with a soft-max choice

model as described above in Section 3.4.2. Social feedback is introduced with a feed-

back term that interconnects the decision makers. Here, we model decision making for

one focal individual who receives feedback on the choices of M other decision makers,

none of whom receives any feedback themselves. In effect, we consider a team in a

network with a directed interconnection graph. Doing so makes the model tractable

in a way that allows for developing a Markov chain to represent the evolving state

of the model in the TAFC task. We are able to relax the directed assumption to

perform a numerical analysis of an undirected network also. Each of these analyses

appears in Chapter 5.

The approach developed by Nedic et al. [56, 57] for deriving a choice feedback

law is to bias anticipated rewards with a feedback parameter ν that reinforces the

focal individual’s tendency to choose A (respectively, B) when a majority of the M

others choose A (respectively, B). With this feedback, the probability that the focal
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individual chooses A in the next time step is

pA(t+ 1, ν) =
1

1 + e−µ(wA(t)−wB(t)+νu(t))
(3.20)

u(t) =


1 if |A| ≥ dM+1

2
e

−1 if |B| ≥ dM+1
2
e

0 otherwise

(3.21)

where |A| refers to the number of others (not receiving feedback) who choose A at

time t, and d·e gives the smallest integer greater than or equal to its argument. Again,

wA and wB represent the decision maker’s learned anticipated reward for choice A

and B. The anticipated rewards are also modeled by (3.8) - (3.9) so that

wZ(t+ 1) = (1− λ)ωZ(t) + λr(t)

wZ̄(t+ 1) = wZ̄(t) t = 0, 1, 2, . . .

where ·̄ denotes the “not” operator, Z corresponds to the choice at time t, and Z̄

the choice not made at time t. The parameter λ acts as a learning rate and satisfies

λ ∈ [0, 1]. Larger λ also implies less “memory” since the influence of previous rewards

decays. Note that the no-feedback case (3.7) is equivalent to pA(t+ 1, 0) in (3.20).

Several different choice feedback models were presented in [56, 57]. Models with

different numbers of fitting parameters were compared using the Akaike information

criterion together with estimated maximum likelihoods for the prediction of choice

sequences. The choice feedback model (3.20)-(3.21) performed well in those tests.

Another model that uses an additional “contrarion” parameter is shown in [57] to

fit the data more successfully. This additional parameter, which represents a deci-

sion maker’s tendency to agree or disagree with the M other decision makers, has a
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history dependency that breaks the Markov property. We find the model defined in

this section particularly convenient since in Chapter 5 we can make two reasonable

assumptions to develop a Markov chain and corresponding analysis of the evolution

of y(t) in the TAFC task.

3.5 Mixed Teams

By studying the TAFC task with social feedback from Section 3.3, we develop a

framework and formal understanding of decision making in teams. The analysis

of Chapter 5, which pertains to the soft-max choice model with social feedback,

defined in Section 3.4.4, yields results that can be applied to human and also designed

decision makers. By designing some of the decision makers in a team to be automated

and make choices using common models, we create mixed teams whose dynamics

are relatively well-understood. This allows us to apply our tools for analysis and

prediction, thereby ensuring that mixed teams of decision makers will exhibit desirable

behavior, or perform more optimally, than humans would on their own.

We consider each member of the team to have the same role, that they must chose

between A or B, sequentially in time, but they receive additional information, and

also share information of their own. Decision makers that we consider may be human,

or may be automated. New experiments explore our ability to design decision makers

and influence performance of a team. In Chaper 7, we design automated decision-

making and corresponding social feedback provided to a human subject in an effort

to determine the influence of the feedback and network interconnection properties.
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Chapter 4

Convergence in Deterministic

Decision-Making Models

While it is the case that choice sequences made by humans are not exemplary of a de-

terministic choice rule, we show in this chapter that deterministic models are capable

of reproducing similar behavior, and even replicating convergent behavior as seen in

data. In this chapter, we analyze the deterministic decision-making models described

in Sections 3.4.1 and 3.4.3 for human behavior in the TAFC task without social feed-

back. We prove conditions for each of the decision-making models to converge to the

matching behavior exhibited extensively in data [57, 41, 56]. See Section 3.2.4 for a

description of matching behavior and a matching point in reward structures for the

TAFC task.

The MS reward structure shown in Figure 3.1(a) is the simplest reward structure

with a matching point. Both the RO and CG structure of Figure 3.1 also have a

matching point. The convergence results of this chapter apply locally to this point in

these and other reward structures. Attraction to the matching point in these more

complex reward structures is an important factor in the context of social decision
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making; attraction to the matching point may be in conflict with social influences.

These issues in the social context are considered in Chapters 6 and 7.

The goal of the work here is to develop a framework and begin our analysis with

two of the deterministic decision-making models that are relevant for the TAFC task.

In Section 4.2, we prove convergence to matching for the simple WSLS model

introduced in Section 3.4.1. In Section 4.3 we prove convergence to matching for the

deterministic limit of the soft-max choice model (as defined in Section 3.4.3).

Our proof of convergence to a neighborhood of the matching point was first pub-

lished for the WSLS decision-making model in [18, 19]. A related analysis for the

WSLS model is performed in [87]. Our proof of convergence for the deterministic

limit of the choice model was first published in [19]. The theory in this Chapter was

developed in collaboration with Ming Cao.

4.1 Convergence to Matching Points

Decision makers in the TAFC, when faced with reward structures that contain match-

ing points, typically make choices in a way that drives y, their proportion of A in

the recent length-N choice history, toward the value at the matching point. This is

a well-known phenomenon in human behavioral experiments [40, 41]: human deci-

sion makers in TAFC tasks converge to choice sequences in the neighborhood of the

matching point for a variety of reward structures. However, there are relatively few

results that prove conditions for this phenomenon given well-established models like

the soft-max choice model. In [53], Montague and Berns argue based on an assump-

tion (see also Assumption 2(a) in Section 5.1) that the soft-max choice model should

converge to matching behavior in the TAFC task.
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Denote by y∗ the value of y at the matching point, i.e. at the intersection of the

two curves rA and rB. We consider the generic case when

y∗ /∈ Y , (4.1)

i.e., y∗ is not an integer multiple of 1/N . In the non-generic case, when y∗ ∈ Y , a

tighter convergence result applies. Let yl denote the greatest element in Y that is

smaller than y∗ and let yu denote the smallest element in Y that is greater than y∗.

Let yl
′
= yl − 1/N and yu

′
= yu + 1/N . Define

L ∆
= [yl, yu] and L′ ∆

= [yl
′
, yu

′
].

So that L′ is well defined, let 1/N < y∗ < (N − 1)/N and N ≥ 3.

4.2 Convergence of the WSLS Model

In this section, we analyze the convergence behavior of the WSLS system (3.1)-(3.6).

We consider the set of reward curves such that rA decreases monotonically and rB

increases monotonically with increasing y, i.e.,

d

dy
rA(y) < 0,

d

dy
rB(y) > 0, ∀y ∈ [0, 1] . (4.2)

The set of reward curves defined by (4.2) includes the linear MS curves of Fig-

ure 3.1(a) as well as a more general class of nonlinear reward curves. It also includes

the RO reward curves of Figure 3.1(b) locally about the matching point, as well as

the CG of Figure 3.1(c).

The linear curves used in the experiments [53] satisfy the conditions (4.1), (4.2)

and (4.3), so the analysis in this section provides an analytical understanding of
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human decision-making dynamics in two-alternative forced-choice tasks of the same

type. We prove both a local and a global convergence result to the matching point

for the WSLS.

To avoid considering a class of limit cycles that are not thought to be relevant

to human decision-making, it is necessary to consider the WSLS model in tasks that

have reward structures satisfying

1

3
≤ y∗ ≤ 2

3
. (4.3)

4.2.1 Local convergence

The WSLS decision maker exhibits oscillatory behavior when y(t) is near y∗. In the

following theorem we prove that if y ∈ L, i.e., the decision trajectory gets near the

matching point y∗, then y ∈ L′ for all future time. This means that the trajectory

remains closed.

Theorem 1. For system (3.1)-(3.6) satisfying conditions (4.1)-(4.3), if y(t1) ∈ L for

some t1 > 0, then y(t) ∈ L′ for all t ≥ t1.

Theorem 1 is best understood by examining a typical trajectory in the task. A

proof of Theorem 1 follows, but in order to introduce the notation used in this chapter,

consider Figure 4.1. We define p1 = (yl, rA(yl)), p2 = (yl, rB(yl)), p3 = (yu, rA(yu))

and p4 = (yu, rB(yu)). Figure 4.1 shows these points for an example set of reward

curves.

Consider a trajectory that starts at time t = t1 with y(t1) ∈ L with the MS

reward structure shown in Figure 4.1 as an example. For illustration, suppose we

are given a set of initial conditions y(t1) = yu, x1(t1) = A, xN(t1) = B and suppose

x1(t1 + 1) = B. Then y(t1 + 1) = y(t1) = yu and the reward r(t1 + 1) = rB(yu) >

rA(yu) = r(t1). In view of (3.6), we know that x1(t1 + 2) = B. If xN(t1 + 1) = A,
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rA

rB

Figure 4.1: Points p1, p2, p3, and p4 used to examine trajectories around the matching
point.

then y(t1 + 2) = y(t1 + 1) − 1/N = yl and r(t1 + 2) = rB(yl) < rB(yu) = r(t1 + 1).

Again by (3.6), it must be true that x1(t1 + 3) = A. Suppose xN(t + 2) = B, then

y(t1 + 3) = yu.

Tracking the system’s trajectory trajectory in this way shows how the decision

maker moves from p3, to p4, to p2 and back to p3 in Figure 4.1. One may arrive at the

conclusion that once y(t) enters L, it will stay in L. This is not, however, necessarily

true.

Consider a counterexample in which a trajectory again starts at p3. However, let

xN(t1) = B and x1(t1 + 1) = A. Then y(t1 + 2) = yu + 1/N /∈ L. Although L is not

an invariant set for y(t), trajectories of y(t) starting in L will always remain in L′.
This example motivates Theorem 1. In the following we prove Theorem 1

Proof

To prove Theorem 1, we first prove the following four lemmas.
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Lemma 1. For system (3.1)-(3.6), satisfying conditions (4.1)-(4.3), if x1(t1) = A,

x1(t1 + 1) = A and y(t1) < 1 for some t1 ≥ 0, then there exists 0 ≤ τ ≤ N such that

y(t) = y(t1) for t1 ≤ t ≤ t1 + τ and y(t1 + τ + 1) = y(t1) + 1/N .

Proof of Lemma 1: If xN(t1) = B, then y(t1 +1) = y(t1)+1/N . So the conclusion

holds for τ = 0. On the other hand, if xN(t1) = A, then y(t1 + 1) = y(t1) and

r(t1 + 1) = rA(y(t1 + 1)) = rA(y(t1)) = r(t1). According to (3.6), x1(t1 + 2) = A.

In fact A will be repeatedly chosen as long as the value of xN remains A. However,

since y(t1) < 1, there must exist 0 ≤ τ < N such that xN(t) = A for t1 ≤ t ≤ t1 + τ

and xN(t1 + τ + 1) = B. Accordingly, the conclusion holds. �

One can prove the following lemma, the counterpart to Lemma 1, with a similar

argument.

Lemma 2. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if x1(t1) = B,

x1(t1 + 1) = B and y(t1) > 0 for some t1 ≥ 0, then there exists 0 ≤ τ ≤ N such that

y(t) = y(t1) for t1 ≤ t ≤ t1 + τ and y(t1 + τ + 1) = y(t1)− 1/N .

Now we further study behavior of the system when its trajectory starts on the left

of the matching point y∗.

Lemma 3. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if y(t1) < y∗

and y(t1 + 1) = y(t1) − 1/N > 0 for some t1 ≥ 0, then there exists 0 ≤ τ ≤ N such

that

y(t) = y(t1)− 1/N for t1 ≤ t ≤ t1 + τ (4.4)

and

y(t1 + τ + 1) = y(t1). (4.5)

Proof of Lemma 3: We find it convenient to prove this lemma by label-

ing the following four points: s1 = (y(t1), rA(y(t1))), s2 = (y(t1), rB(y(t1))),

s3 = (y(t1) − 1/N, rA(y(t1) − 1/N)), s4 = (y(t1) − 1/N, rB(y(t1) − 1/N)), as shown
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in Figure 4.2.

rB

rA

Figure 4.2: Points s1, s2, s3, s4, s5, and s6 used in the proofs of Lemma 3 and Lemma 7.

We denote the reward values at these four points by r|si , i = 1, . . . , 4. Then

r(t1) = r|s1 or r|s2 . Since y(t1 + 1) < y(t1), it must be true that x1(t1 + 1) = B, then

r(t1 + 1) = r|s4 . Since r|s4 < r|s2 < r|s1 , we know x1(t1 + 2) = A. So at t1 + 2, the

system trajectory moves from s4 to either s1 or s3. If the former is true, the conclusion

holds for τ = 2. If the latter is true, since r|s3 > r|s4 , it follows that x1(t1 + 3) = A.

By applying Lemma 1, we know (4.4) and (4.5) hold. �

Similarly, we consider the situation when y(t1) > y∗ and y(t1+1) = y(t1)+1/N < 1

for some t1 ≥ 0. Denote four points: r1 = (y(t1), rA(y(t1))), r2 = (y(t1), rB(y(t1))),

r3 = (y(t1) + 1/N, rA(y(t1) + 1/N)) and r4 = (y(t1) + 1/N, rB(y(t1) + 1/N)). Using

the fact that r|r3 < r|r1 < r|r2 and a similar argument as that in the proof of Lemma

3, we can prove the following result.
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Lemma 4. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if y(t1) > y∗

and y(t1 + 1) = y(t1) + 1/N for some t1 ≥ 0, then there exists 0 ≤ τ ≤ N such that

y(t) = y(t1) + 1/N for t1 ≤ t ≤ t1 + τ (4.6)

and

y(t1 + τ + 1) = y(t1). (4.7)

Now we are in a position to prove Theorem 1.

Proof of Theorem 1: If y(t) ∈ L for all t ≥ t1, then the conclusion holds trivially.

Now suppose this is not true. Let t2 > t1 be the first time for which y(t) /∈ L. Then

it suffices to prove the claim that the trajectory of y(t) starting at y(t2) stays at y(t2)

for a finite time and then enters L. Note that y(t2) equals either yl−1/N or yu+1/N .

Suppose y(t2) = yl − 1/N , then the claim follows directly from Lemma 3; if on the

other hand, y(t2) = yu + 1/N , then the claim follows directly from Lemma 4. �

The local result is applicable to reward structures that have a local matching point

and satisfy (4.2) for y in a neighborhood of y∗. This includes the rising optimum

reward curves of Figure 3.1(a). This analysis has uncovered limit cycles about points

other than the matching point. The convergence results of this section apply for

general N ≥ 6. For lower values of N the system degenerates and the output y may

converge to 0 or 1.

4.2.2 Global convergence

Theorem 1 is a local convergence result which applies in the neighborhood L of the

matching point y∗. It can be further shown that the convergence is global. In Theorem

2 we prove that for most initial conditions, the decision trajectory will converge to

y ∈ L′, i.e., it will converge to this neighborhood of the matching point.
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It is easy to check that if the system starts with the initial condition y(0) = 0 and

x1(1) = B or the initial condition y(0) = 1 and x1(1) = A, then the trajectory of y(t)

will stay at its initial location. It will also be shown that when y∗ < 1
3

or y∗ > 2
3
, a

limit cycle of period three not containing y∗ may appear. Thus it is necessary that

condition (4.3) be satisfied, i.e., 1
3
≤ y∗ ≤ 2

3
.

To prove Theorem 2, we first show in Proposition 1 that if the trajectory y(t)

starts in (0, 1) then the trajectory always enters L after a finite time. Proposition 1

together with Theorem 1 then prove Theorem 2.

Proposition 1. For system (3.1)-(3.6), satisfying conditions conditions (4.1)-(4.3),

for any initial condition satisfying 0 < y(0) < 1, there is a finite time T > 0 such

that y(T ) ∈ L.

To prove Proposition 1, we need to prove the following four lemmas.

Lemma 5. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if y(t1) < y∗,

y(t1 + 1) = y(t1) and x1(t1 + 1) 6= x1(t1) for some t1 ≥ 0, then there exists a finite

τ > 0 such that

y(t1 + τ) = y(t1) + 1/N. (4.8)

Proof of Lemma 5: There are two cases to consider. (a) Suppose x1(t1 + 1) = A

and x1(t1) = B. Since y(t1 + 1) = y(t1) < y∗, we know r(t1 + 1) = rA(y(t1 + 1)) =

rA(y(t1)) > rB(y(t1)) = r(t1), so x1(t1 + 2) = A. Then the conclusion follows from

Lemma 1. (b) Now suppose instead x1(t1 +1) = B and x1(t1) = A. Again since y(t1 +

1) = y(t1) < y∗, we know r(t1 + 1) = rB(y(t1 + 1)) = rB(y(t1)) < rA(y(t1)) = r(t1),

so x1(t1 + 2) = A. As a result, either y(t1 + 2) = y(t1) + 1/N or y(t1 + 2) = y(t1 + 1).

If the former is true, then the conclusion holds for τ = 2; if the latter is true, then

the discussion reduces to that in (a). �

Using a similar argument, one can prove the following lemma, which is the coun-

terpart to Lemma 5.

80



Lemma 6. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if y(t1) > y∗,

y(t1 + 1) = y(t1) and x1(t1 + 1) 6= x1(t1) for some t1 ≥ 0, then there exists a finite

τ > 0 such that

y(t1 + τ) = y(t1)− 1/N. (4.9)

Now we show that the system will approach the matching point.

Lemma 7. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if 0 < y(t1) <

yl and y(t1 + 1) = y(t1)− 1/N for some t1 ≥ 0, then there exists a finite τ > 0 such

that

y(t1 + τ) = y(t1) + 1/N. (4.10)

Proof of Lemma 7: Denote the six points s1 = (y(t1), rA(y(t1))), s2 =

(y(t1), rB(y(t1))), s3 = (y(t1)− 1/N, rA(y(t1)− 1/N)), s4 = (y(t1)− 1/N, rB(y(t1)−
1/N)), s5 = (y(t1) + 1/N, rA(y(t1) + 1/N)) and s6 = (y(t1) + 1/N, rB(y(t1) + 1/N)),

as shown in Figure 4.2. Since y(t1 + 1) < y(t1), it must be true that x1(t1 + 1) = B.

If x1(t1) = A, we know from t1 to t1 + 1, the system trajectory moves from s1 to

s4. Since r(t1 + 1) = r|s4 < r|s1 = r(t1), we know x1(t1 + 2) = A. Then at t1 + 2, the

trajectory moves to either s1 or s3. We discuss these two cases separately.

• (a) If at t1 + 2 the trajectory moves to s1, since r|s1 > r|s4 , it follows that

x1(t1 + 3) = A. In view of Lemma 1, the conclusion holds.

• (b) If at t1 +2, the trajectory moves to s3, since r|s3 > r|s4 , we know x1(t1 +3) =

A.

Thus, in case (b), from Lemma 1, there exists a finite time t2 < N at which the

trajectory moves from s3 to s1. Because r|s1 < r|s3 , we have x1(t2 + 1) = B. Then at

time t2 + 1, the trajectory moves to either s2 or s4.
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Now consider two sub-cases: b(1) Suppose the former is true, that the trajectory

goes to s2. The conclusion follows directly from Lemma 5. b(2) Suppose the latter is

true, that the trajectory goes to s4. Because r|s4 < r|s1 , x1(t2 + 2) = A. Then y(t)

will remain strictly less than y(t1) + 1/N if a cycle of s4 → s3 → s1 → s4 is formed.

In fact, from the analysis above, this is the only potential scenario in case b(2) where

y(t) < y(t1) + 1/N for all t ≥ t1. Were such a cycle to appear, A would be chosen at

least twice as often as B. However, because y(t1) < yl = y∗ − 1/N < 1
3
, it must be

true that the proportion of A in xi(t1), 1 ≤ i ≤ N , is less than 1
3
. Thus such a cycle

can never happen. So the conclusion also holds for the sub-case b(2).

If on the other hand, x1(t1) = B, we know from t1 to t1 + 1, the system trajectory

moves from s2 to s4. Since r|s4 < r|s2 , we know x1(t1 + 2) = A. So at t1 + 2, the

trajectory moves to s3 or s1. If the former is true, the discussion reduces to ruling

out the possibility of forming a cycle of s4 → s3 → s1 → s4 which we have done in

b(2). Otherwise, if the latter is true, since r|s1 > r|s4 , we know x1(t1 + 3) = A. From

Lemma 1 we know there exists a finite time t3 at which y(t3) = y(t1) + 1/N , and

thus the conclusion holds for τ = t3− t1. Through consideration of each of the above

arguments, we have proved Lemma 7. �

Lemma 8 is the counterpart of Lemma 7 in that it applies in the same way only on

the opposite side of the matching point. Using Lemmas 2, 6 and a similar argument

as in the proof of Lemma 7, one can prove the following lemma.

Lemma 8. For system (3.1)-(3.6), with conditions (4.1)-(4.3) satisfied, if yu <

y(t1) < 1 and y(t1 + 1) = y(t1) + 1/N for some t1 ≥ 0, then there exists a finite

τ > 0 such that

y(t1 + τ) = y(t1)− 1/N. (4.11)

Now we are in a position to prove Proposition 1.

Proof of Proposition 1: For any 0 < y(0) < 1, either y(1) = y(0) + 1/N , or

82



y(1) = y(0), or y(1) = y(0)− 1/N . We will discuss these three possibilities in each of

two cases. First consider the case where y(0) < yl. If y(1) = y(0) − 1/N , according

to Lemma 7, there is a finite time t1 for which y(t1) > y(0). If y(1) = y(0) and

x1(1) 6= x1(0), according to Lemma 5, there is a finite time t2 for which y(t2) > y(0).

If y(1) = y(0) and x(1) = x(0) = A, according to Lemma 1, there is a finite time t3

for which y(t3) > y(0). If y(1) = y(0) and x(1) = x(0) = B, according to Lemma

2, there is a finite time t̄4 for which y(t̄4 − 1) = y(0) and y(t̄4) = y(t̄4 − 1) − 1/N .

Then according to Lemma 7, there is a finite time t4 for which y(t4) > y(0). So

for all possibilities of y(1) there is always a finite time t̄ ∈ {1, t1, t2, t3, t4} for which

y(t̄) > y(0). Using this argument repeatedly, we know that there exists a finite time

T1 at which y(T1) = yl ∈ L. Now consider the other case where y(0) > yu, then

using similar arguments, one can check that there exists a finite time T2 for which

y(T2) = yu ∈ L. Hence, we have proven the existence of T which lies in the set

{T1, T2}. �

Combining the conclusions in Theorem 1 and Proposition 1, we have proven The-

orem 2, which describes the global convergence property of y(t).

Theorem 2. For any initial condition of the system (3.1)-(3.6) satisfying 0 < y(0) <

1 with conditions (4.1)-(4.3) satisfied, there exists a finite time T > 0 such that for

any t ≥ T , y(t) ∈ L′.

4.3 Convergence of the Deterministic Limit of the

Soft-Max Choice Model

The deterministic limit of the soft-max choice model (derived from the stochastic

choice model by taking µ to infinity) exhibits very similar behavior with respect to

convergence in tasks with reward structures containing at least one matching point.

In this section we are able to prove convergence of y(t) to L′ (Theorem 3) for the

83



deterministic limit of the model with a discretized eligibility trace and reward struc-

tures with matching points. As in the analysis for the WSLS model, we consider

the general case (4.1) when y∗ /∈ Y . Also like the analysis for the WSLS model,

these results generalize to nonlinear curves. For clarity of presentation, however, we

specialize to intersecting linear reward curves defined by

rA(y) = kAy + cA

rB(y) = kBy + cB (4.12)

where kA < 0, kB > 0 and cA, cB > 0.

We first look at the case when the subject does not switch choice at a given time

t0.

Lemma 9. For any t0 > 0, if y(t0 − 1) < 1 and x1(t0 − 1) = x1(t0) = A, then there

exists a finite t1 ≥ t0 such that x1(t) = A for all t0 ≤ t ≤ t1 and y(t1) = y(t0−1)+1/N .

Proof of Lemma 9: If xN(t0 − 1) = B, then y(t0) = y(t0 − 1) + 1/N and so the

conclusion holds for t1 = t0. If on the other hand xN(t0−1) = A, then y(t0) = y(t0−1).

From (3.19) we know that φA(t0 − 1) = φA(t0) = 1 and φB(t0) = 0. Then it follows

from (3.17) that wA(t0 + 1) = r(t0) = rA(y(t0)) = rA(y(t0 − 1)) = wA(t0) and from

(3.18) that wB(t0 + 1) = wB(t0). Since x1(t0 − 1) = x1(t0) = A, from (3.12) it must

be true that wA(t0) > wB(t0). Thus we know wA(t0 + 1) > wB(t0 + 1), so again from

(3.12), we have x1(t0 + 1) = A. In fact, the choice of A will be repeatedly chosen as

long as the value of xN remains A. However, since y(t0 − 1) < 1, there must exist

t1 ≤ t0 + N such that xN(t1 − 1) = B and then for the same t1, we have x1(t) = A

for all t0 ≤ t ≤ t1, and y(t1) = y(t0 − 1) + 1/N . �

The following lemma is the counterpart to Lemma 9. What differs is only that

Lemma 10 applies to the opposite side of the reward structure. Therefore, a similar

argument proves Lemma 10.
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Lemma 10. For any t0 ≥ 0, if y(t0 − 1) > 0 and x1(t0 − 1) = x1(t0) = B, then

there exists a finite t1 ≥ t0 such that x1(t) = B for all t0 ≤ t ≤ t1, and y(t1) =

y(t0 − 1)− 1/N .

Lemmas 9 and 10 imply that if Z ∈ {A,B} is repeatedly chosen, then the antici-

pated reward for choice Z decreases as a result of the change in y while the anticipated

reward for the alternative Z̄ stays the same because the eligibility trace φZ̄ remains

zero. Hence, a switch of choices must happen after a finite time. Now we look at

the case when the subject switches choice at time t0 > 0, namely x1(t0) = x̄1(t0− 1).

Then from (3.19), we have φx1(t0−1)(t0) = ε; correspondingly from update rules

(3.17) and (3.18), we have wx1(t0−1)(t0 + 1) = wx1(t0−1)(t0) + ε(r(t0)−wx̄1(t0−1)(t0)) =

wx1(t0−1)(t0) + ε(wx̄1(t0−1)(t0 + 1)−wx̄1(t0−1)(t0)). Hence, the magnitude of ε is critical

in updating the value of the anticipated reward when a switch of choices happens.

It should be pointed out that in Section 3.4.3, to be consistent with the exponential

decay rate for eligibility trace in [11], we have made an assumption that ε is a small

number. This assumption can be stated by restricting the upper bound for the convex

combination of points on the rA and rB lines.

Assumption 4. (Restricted Convex Combination) For y ∈ Y,

(1− ε) min{rA(y), rB(y)}+ εmax{rA(y), rB(y)} < rA(y∗) = rB(y∗).

The following result guarantees that under specific circumstances the deterministic

limit of the soft-max choice model will not get stuck in an oscillatory cycle such that

recurring switches occur.

Lemma 11. Suppose Assumption 4 is satisfied. For any t0 > 0, if x1(t0) = A,

x1(t0 − 1) = B and y(t0 − 1) < y∗, then there exists a finite t1 ≥ t0 such that

x1(t) = A for all t0 ≤ t ≤ t1, and y(t1) > y∗.
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Proof of Lemma 11: From (3.19) we know that φA(t0) = 1 and φB(t0) = ε. So

from (3.17) and (3.18), it follows that

wB(t0) = r(t0 − 1) = rB(y(t0 − 1)), (4.13)

wA(t0 + 1) = r(t0) = rA(y(t0)), (4.14)

and

wB(t0 + 1) = wB(t0) + ε(r(t0)− wA(t0)) = wB(t0) + ε(rA(y(t0))− wA(t0)). (4.15)

Since x1(t0) = A, from (3.12) it must be true that wA(t0) ≥ wB(t0). Combining with

(4.15), we have

wB(t0 + 1) ≤ wB(t0) + ε(rA(y(t0))− wB(t0)) = (1− ε)wB(t0) + εrA(y(t0)).

Substituting (4.13), we have

wB(t0 + 1) ≤ (1− ε)rB(y(t0 − 1)) + εrA(y(t0)).

Since x1(t0) = A and x1(t0− 1) = B, we know y(t0) = y(t0− 1) or y(t0) = y(t0− 1) +

1/N . Since y(t0 − 1) < y∗, it must be true that either y(t0) = yu or y(t0) ≤ yl. We

consider these two cases separately. Case (a): y(t0) = yu. Set t1 = t0, then y(t1) > y∗

holds trivially. Case (b): y(t0) ≤ yl. Then rA(y∗) < rA(y(t0)) ≤ rA(y(t0 − 1)). Also,

wB(t0 + 1) ≤ (1− ε)rB(y(t0 − 1)) + εrA(y(t0 − 1)) < rA(y∗),
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where the last inequality follows from Assumption 4. Combining these with (4.14)

we know that

x1(t0 + 1) = A (4.16)

and consequently φA(t0 + 1) = 1 and φB(t0 + 1) = 0. In fact, A will be repeatedly

chosen, φA and φB will remain one and zero respectively until some finite time t1 > t0

for which wA(t1) = r(t1) = rA(y(t1)) is less than or equal to wB(t0 + 1) or y(t1) = 1.

Since wB(t0+1) < rA(y∗), it follows that y(t1) > y∗. So we have proved the conclusion

for case (b) and the proof is complete. �

The following lemma is the counterpart to Lemma 11. Its proof is nearly identical

since there is no structural difference between choices A and B in the TAFC task.

This is especially true for the MS structure we consider in this analysis.

Lemma 12. Suppose Assumption 4 is satisfied. For any t0 > 0, if x1(t0) = B,

x1(t0 − 1) = A and y(t0 − 1) > y∗, then there exists a finite t1 ≥ t0 such that

x1(t) = B for all t0 ≤ t ≤ t1, and y(t1) < y∗.

In order to estimate the increment of anticipated rewards, which is necessary for

this proof, we rely on a lemma which is true under the following assumption. Both

simulations and experiments have indicated that the deterministic choice model fits

subjects’ behavior only when ε is bounded away from zero. Hence, we make the

following assumption:

Assumption 5. (Bounded ε) The positive number ε is bounded below satisfying

ε ≥ max

{ −kA/N
rA(yl′)− rB(yl′)

,
kB/N

rB(yu′)− rA(yu′)
,
rA(yu

′
)− rB(yl

′
)

rA(yl)− rB(yl)
,
rB(yl

′
)− rA(yu

′
)

rB(yu)− rA(yu)

}
.

Assumption 5 allows us the following lemma:

Lemma 13. Suppose Assumption 5 is satisfied. For any t0 > 0, if y(t0) < yl
′
,

x1(t0 − 1) = x1(t0) = B and x1(t0 + 1) = A, then wB(t0 + 2) ≥ wB(t0 + 1)− kA/N .
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Proof of Lemma 13: Since x1(t0 − 1) = x1(t0) = B and x1(t0 + 1) = A, it follows

that

wB(t0 + 1) ≤ wA(t0 + 1) = wA(t0) < wB(t0) (4.17)

where

wB(t0 + 1) = rB(y(t0)) < rB(y(t0 − 1)) = wB(t0). (4.18)

Then

wB(t0 + 2) = wB(t0 + 1) + ε

(
wA(t0 + 2)− wA(t0 + 1)

)
≥ wB(t0 + 1) + ε

(
wA(t0 + 2)− wB(t0)

)
= wB(t0 + 1) + ε

(
rA(y(t0 + 1))− rB(y(t0 − 1))

)
.

From x1(t0 − 1) = x1(t0) = B and x1(t0 + 1) = A, we know that y(t0) = y(t0 − 1) or

y(t0) = y(t0−1)−1/N and y(t0+1) = y(t0) or y(t0+1) = y(t0)+1/N . Since y(t0) < yl
′
,

it follows that y(t0 + 1) ≤ yl
′

and y(t0 − 1) ≤ yl
′
. Because of the monotonicity of

rA and rB, it follows that wB(t0 + 2) ≥ wB(t0 + 1) + ε(rA(yl
′
) − rB(yl

′
)). Using

ε ≥ −kA/N
rA(yl′ )−rB(yl′ )

in Assumption 5, we reach the conclusion. �

Following similar steps and using ε ≥ kB/N

rB(yu′ )−rA(yu′ )
in Assumption 5, one can

prove the following lemma which is the counterpart to Lemma 13.

Lemma 14. Suppose Assumption 5 is satisfied. For any t0 > 0, if y(t0) > yu
′
,

x1(t0 − 1) = x1(t0) = A and x1(t0 + 1) = B, then wA(t0 + 2) ≥ wA(t0 + 1) + kB/N .

Decision epochs where subjects make a switch from one choice to another are

critical. For this reason, we examine time instances within the set T which includes

all instances for which t > 0 and x1(t) 6= x1(t− 1), i.e., T ∆
= {t : x1(t) 6= x2(t)}.

It is also necessary to consider some subsets of T . We define TA ∆
= {t : t ∈ T , x1(t) =

A, y(t− 1) < y∗} and TB ∆
= {t : t ∈ T , x1(t) = B, y(t− 1) > y∗}.
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As in the analysis of the WSLS model, we consider xi(0), i = 1, . . . , N , where

0 < y(0) < 1. Then wx1(0)(1) = r(0) = rx1(0)(y(0)) is determined correspondingly. To

simplify the analysis and rule out degenerate cases, we make the following assumption

about the value of wx̄1(0)(1).

Assumption 6. (Bounded wx̄1(0)(1)) Let 0 < y(0) < 1 and wx1(0)(1) = rx1(0)(y(0)).

The initial value wx̄1(0)(1) satisfies

wx̄1(0)(1) < wx1(0)(1), (4.19)

wx̄1(0)(1) < rA(y∗), (4.20)

and

wx̄1(0)(1) > max{rA(1), rB(0), rA(1) + (kB + kA)/N, rB(0)− (kB + kA)/N}. (4.21)

Now we are ready to study how the deterministic choice model with the eligibility

trace evolves with time.

Lemma 15. Suppose all the Assumptions 4 - 6 are satisfied. Then,

T = TA ∪ TB.

Proof of Lemma 15: From (4.19) we know that x1(1) = x1(0) and in fact x1(0)

will be repeatedly chosen until the reward for choosing x1(0) is below wx̄1(0)(1). Such

a switch will always happen because of (4.21). Let t0 denote the time at which such

a switch happens, i.e., x1(t0 − 1) = x1(0) and x1(t0) = x̄1(0). In view of (4.20), we

know that y(t0 − 1) < y∗ if x1(0) = B and y(t0 − 1) > y∗ if x1(0) = A. So t0 ∈ TA
if x1(0) = B and t0 ∈ TB if x1(0) = A, and thus t0 ∈ TA ∪ TB. By inspection, if

y(t0 − 1) ∈ L, then either Lemma 9 or Lemma 10 is applicable to t0; if on the other
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hand, y(t0−1) /∈ L, then either Lemma 11 or 12 is applicable to t0. This implies that

x1(t0) will be repeatedly chosen such that the time of the next switch t1 ≥ t0 satisfies

t1 ∈ Tx̄1(t0) ⊂ TA ∪ TB. Further, Lemmas 9 - 12 can be applied again to t1. Then, by

induction, we know all time instances for which a switch happens belong to TA ∪ TB.

�

This analysis uncovers the fact that values of y∗, kA and kB affect the range of the

interval containing y∗ to which y(t) converges. In this chapter, we are interested in

the sufficient condition under which such an interval is L′. We can write this explicitly

and do so through the following assumption. Assumption 7 puts a condition on the

relative value of critical points in the reward structure defined by rA and rB. These

points correspond to values of y in L′.

Assumption 7. (Points in L′)

rB(yl) + ε(rA(yu)− rB(yu)) ≥ rA(yu
′
), (4.22)

rA(yu) + ε(rB(yl)− rA(yl)) ≥ rB(yl
′
). (4.23)

Proposition 2. Suppose all the Assumptions 4-7 are satisfied. If t0 ∈ T , y(t0− 1) ∈
L′, then y(t) ∈ L′ for all t ≥ t0.

Proof of Proposition 2: The conclusion can be proved by induction if we can prove

the following fact: There is always a finite t1 > t0 such that t1 ∈ T and y(t) ∈ L′ for

all t0 ≤ t ≤ t1. In order to prove this fact, we need to consider four cases.

• Case (a): x1(t0) = A and y(t0 − 1) = yl
′
. Then

wB(t0 + 1) > rB(yl
′
) + ε

(
rA(y(t0))− rB(yl)

)
≥ rB(yl

′
) + ε

(
rA(yl)− rB(yl)

)
,

where the first inequality holds since rB(yl) > rB(yl
′
) and the last inequality

holds because rA(y(t0)) ≥ rA(yl). In view of the inequality ε ≥ rA(yu
′
)−rB(yl

′
)

rA(yl)−rB(yl)
in
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Assumption 5 and combining with Lemma 11, we know that there is always a

finite t1 > t0 such that t1 ∈ TB and y(t) ∈ L′ for all t0 ≤ t ≤ t1.

• Case (b): x1(t0) = A and y(t0 − 1) = yl. Then

wB(t0 + 1) ≥ rB(yl) + ε

(
rA(y(t0))− wA(t0)

)
> rB(yl) + ε

(
rA(yu)− rB(yu)

)
,

where the first inequality holds because wA(t0) ≥ wB(t0) and the last inequality

holds because rA(y(t0)) ≥ rA(yu) and wA(t0) = wA(t0 − 1) < wB(t0 − 1) =

rB(y∗) < rB(yu). Then in view of (4.22), we know wB(t0 + 1) ≥ rA(yu
′
), and so

there is always a finite t1 > t0 such that t1 ∈ TB and y(t) ∈ L′ for all t0 ≤ t ≤ t1.

• Case (c): x1(t0) = B and y(t0 − 1) = yu. Following similar steps as in case (b)

and using (4.23), we know there is always a finite t1 > t0 such that t1 ∈ TA and

y(t) ∈ L′ for all t0 ≤ t ≤ t1.

• Case (d): x1(t0) = B and y(t0 − 1) = yu
′
. Following similar steps as in (a)

and using the inequality ε ≥ rB(yl
′
)−rA(yu

′
)

rB(yu)−rA(yu)
in Assumption 5 and combining with

Lemma 12, we know that there is always a finite t1 > t0 such that t1 ∈ TA and

y(t) ∈ L′ for all t0 ≤ t ≤ t1.

In view of the discussion in cases (a)-(d), we conclude that the proof is complete. �

Proposition 3. Suppose all the Assumptions 4-7 are satisfied. There is always a

finite T ∈ T for which y(T − 1) ∈ L′.

Proof of Proposition 3: From (4.21) in Assumption 6, we know that x1(0) cannot

be repeatedly chosen for more than N times, and thus there is t0 ∈ TA ∪ TB. If

y(t0 − 1) ∈ L′, then set T = t0 and we reach the conclusion. If on the other hand,

y(t0 − 1) /∈ L′, then either Lemma 13 or 14 applies to t0 − 1. Without loss of

generality, suppose Lemma 13 applies, then wB(t0 + 1) ≥ wB(t0)− kA/N . By (4.21)
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wB(t0 + 1) > rA(1). So, there exists a t1 which is the smallest element in TB such

that t1 > t0. Then wA(t1) ≥ wB(t0 + 1) +kA/N > wB(t0). In fact, one can check that

switches will continue to exist and wx̄1(t) will be a monotonically strictly increasing

function until wx̄1(t) reaches either rA(yu
′
) or rB(yl

′
) at some finite time T ′. Set T

to be the smallest element in T that is greater than T ′, then it must be true that

y(T − 1) ∈ L′. �

Combining Propositions 2 and 3, we have proved the main result of this section.

Theorem 3. For system(3.1)-(3.3), (3.12), (3.17)-(4.1) and (4.12), if Assumptions

4-7 are satisfied, then there exists a finite T > 0, such that y(t) ∈ L′ for all t ≥ T .

This concludes the analysis of this chapter. We have proven conditions under

which both the WSLS and deterministic choice model converge to matching points.

In the following Chapter we open our analysis to consider the soft-max choice model

with all of its stochasticity.
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Chapter 5

Convergence for Independent

Decision Makers with Stochastic

Decision-Making Models

Since decision making in humans faced with complex tasks typically has random

properties found in the choice sequences, it is desirable to model behavior with a

stochastic decision-making strategy. In this Chapter we perform an analysis for a

stochastic decision-making model fitted to data of human subjects in the TAFC task.

Here we consider a single soft-max model decision maker faced with the TAFC task

described in Section 3.2.2. In this Chapter we focus on the case where decision makers

do not receive social feedback. In Chapter 6 we extend this analysis using the coupled

decision-making model system of [56, 57] described in Section 3.4.2.

Making use of two assumptions defined in Section 5.1, we derive a distribution

that gives the fraction of time at steady state that the decision maker spends with

the proportion of A in their history corresponding to each value y ∈ Y . The approach

is to identify the task and decision making model as a Markov process in Section 5.2

and compute the equilibrium probability distribution for that process in Section 5.3.
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We make use of the analytic description of the decision maker’s long-term behavior

in Section 5.4 to prove conditions under which the decision maker will converge to a

matching point. We also derive explicit dependence of performance on the decision-

making parameter µ, which quantifies the individual’s tendency to explore. The same

two assumptions used in this chapter will apply in the analysis of Chapter 6. At the

end of this Chapter, in Section 5.5, we compare the analytic results to data from

experiments with human subjects.

Our approach to analyze the soft-max choice model using a Markov process was

first published with preliminary results in [78] and presented at the American Control

Conference in Baltimore, MD in 2010. We also published this method of analysis,

along with preliminary results for decision making with social feedback in [80]. The

complete results of this chapter have been published in [79].

5.1 Assumptions

We make two assumptions for the task and soft-max choice model with the goal of

developing a Markov chain to analyze the decision making behavior. We take these

two assumptions to hold throughout this chapter and Chapter 6.

The state of the model decision maker in the TAFC task, described in Section 3.2.2,

is the N -element decision history x(t) and the two anticipated rewards wA(t) and

wB(t). The assumptions made in this section reduce the state to the scalar variable

y(t); we show further in Section 5.2 that with these assumptions, the system dynamics

can be described as a Markov process. While y(t) is deterministically given by x(t),

since x(t) evolves according to a stochastic process defined by the soft-max model,

we take y(t) as a random variable in our analysis in this chapter.
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Assumption 8, as stated below, applies for all reward structures. We make As-

sumption 9(a) when considering the MS, CG and DG reward structures and Assump-

tion 9(b) for the RO reward structure.

Assumption 8. Pr{xk(t) = A|x(t)} = y(t).

Assumption 9(a). wB(t)− wA(t) = ∆r(y(t))

Assumption 9(b). wB(t) − wA(t) = f(y(t)), where f(y) is given by the curve in

Figure 5.1.

Assumption 8 implies that the yN A’s and (1−yN) B’s in x(t) are uniformly dis-

tributed in the finite history. This assumption is believed to hold for choice sequences

when the decision making occurs over long time periods since for each y(t) visited

by the system, all possible combinations of ordering of x(t) should also occur with

approximately equal probability. Andrea Nedic has performed numerical simulations

indicating this to be true on average.

Given this assumption, the state of the system can be represented by y(t), wA(t)

and wB(t). Assumption 9(a) or 9(b) allows further simplification by replacing depen-

dence of the process on wA(t) and wB(t) by a single state, y(t). Note that ∆r used

in Assumption 9(b) is defined by ∆r := rB − rA.

Assumption 9(a) sets the difference in anticipated rewards at time t equal to

the difference in rewards evaluated at y(t). This assumption was introduced in a

paper by Montague and Berns [53] who argue that it is true “on average”. It is

equivalent to stating that the decision maker has perfect knowledge of the rewards

for each decision at time t. To further investigate the validity of this assumption, we

performed a numerical study without using Assumption 9(a) by building a Markov

chain with state y(t), wA(t) and wB(t). We used λ = 1 as this agrees well with the

fitted value of λ in the CG and DG tasks [57].
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By computing an equilibrium distribution numerically, without Assumption 9(a),

and comparing it to the equilibrium distribution we derive below in Section 5.3, where

we do apply Assumption 9(a), we observe that the two solutions with Assumption

9(a) vary insignificantly for the MS, CG and DG reward structures.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Choice History, y = i
N

f
(y

)

Figure 5.1: Average difference in anticipated reward f(y) = wB−wA used in Assump-
tion 9(b) for the RO reward structure (shown here for N = 20). When Assumption
9(b) applies, this finite set of values is substituted for ∆r.

Assumption 9(b) is specific to the RO reward structure of Figure 3.1(b) where

Assumption 9(a) does not apply. The function f(y) is determined from a simulation

in which the model decision maker made choice sequences in the RO task and the

computed anticipated rewards for each value of y were averaged. In the simulation

λ = 0.1, which approximates well the fitted value of λ for this RO structure [57].

Figure 5.1 is a plot of f(y) as a function of y = i
N
, i = 1, 2, . . . N in the case that

N = 20. Note that for y ≥ 0.65, f(y) = 0. A decision maker faced with the RO

reward structure in the alone condition does not make choice A often enough to

achieve y(t) ≥ 0.65. This is directly related to the difficulty of the RO task.
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5.2 Markov Model

In this Section we define the Markov process which is used to study the soft-max

choice model in the TAFC task. Proposition 4 defines transition probabilities for a

process with state y(t) that evolves according to the strategy defined by the soft-max

model.

Proposition 4. Suppose Assumptions 8 and 9(a) hold. Then, the model decision

maker (3.7) for the TAFC task (3.1)-(3.3) is a Markov process with state y(t) and

transition probabilities given by

Pr{y(t+ 1) = y(t)− 1

N
} =

eµ∆ry(t)

1 + eµ∆r
(5.1)

Pr{y(t+ 1) = y(t)} =
eµ∆r + (1− eµ∆r)y(t)

1 + eµ∆r
(5.2)

Pr{y(t+ 1) = y(t) +
1

N
} =

1− y(t)

1 + eµ∆r
(5.3)

where ∆r = ∆r(y(t)) is given by (3.5). In case Assumption 9(b) holds instead of As-

sumption 9(a), then the transition probabilities are given by (5.1)-(5.3) with ∆r(y(t))

replaced with f(y(t)).

Proof of Proposition 4:

Since for a given choice x1(t + 1) at time t + 1, y(t + 1) can only change from

its current value of y(t) to y(t) + 1
N
, y(t)− 1

N
or stay at y(t), we need only compute

the probability of each of these three events for all y(t) ∈ Y . Each of these events

depends upon the current value of y(t) as well as x1(t + 1) and xN(t) since y(t + 1)

will only differ from y(t) if x1(t+ 1) also differs from xN(t).
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The event that y(t+1) = y(t)− 1
N

requires x1(t+1) = B and xN(t) = A. Treating

these as independent events and using (3.7) with Assumption 8 yields

Pr{y(t+ 1) = y(t)− 1

N
} = Pr{x1(t+ 1) = B}Pr{xN(t) = A}

=
eµ(wB(t)−wA(t))y(t)

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption 9(a), we get (5.1).

Similarly, the probability that y(t+ 1) takes the value y(t) + 1
N

is given by

Pr{y(t+ 1) = y(t) +
1

N
} = Pr{x1(t+ 1) = A}Pr{xN(t) = B}

=
1− y(t)

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption 9(a), we get (5.3).

The event that y(t + 1) = y(t) requires either x1(t + 1) = A and xN(t) = A or

x1(t+ 1) = B and xN(t) = B. The probability of the union of these events is

Pr{y(t+ 1) = y(t)} = Pr{x1(t+ 1) = A}Pr{xN(t) = A}

+ Pr{x1(t+ 1) = B}Pr{xN(t) = B}

=
y(t) + (1− y(t))eµ(wB(t)−wA(t))

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption 9(a), we get (5.2). Since all of the prob-

abilities depend on y(t) only, the state at time t, the process is Markov. The case

when Assumption 9(b) holds follows similarly. In that case, the finite set of values

(shown in Figure 5.1) is substituted for ∆r. �

Equations (5.1)-(5.3) are used to build the (N + 1) × (N + 1) state transition

matrix P which has entries Pij = Pr{y(t+ 1) = j
N
|y(t) = i

N
}, i, j ∈ {0, 1, . . . , N + 1}.
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5.3 Steady-State Choice Distribution

By deriving a steady-state choice distribution for the Markov process we have iden-

tified, we develop an analytic expression for the fraction of time a decision maker

spends at each state in the task. The steady-state choice distribution serves as a

predictive tool. Using the expression derived in this section, we derive performance

as a function of the relevant parameters, study sensitivity of the model to those pa-

rameters, and even make predictions about decision making in scenarios that have

not yet been studied.

Since the Markov process modeled in Section 5.2 is tridiagonal with strictly posi-

tive elements, any state can be reached from any another in finite time, guaranteeing

irreducibility. It is aperiodic since return to state i from state i can happen as quickly

as one time step, but no state is absorbing. Thus, the process has a unique limiting

distribution π = (π0, π1, . . . , πN) describing the fraction of time the chain will spend

in each of the enumerated states y = i/N , i = 0, 1, . . . , N , in the long run (as t→∞)

[83]. This steady-state distribution is the solution to the following equations:

πP = π (5.4)

N∑
i=0

πi = 1. (5.5)

We derive this steady-state distribution with the following proposition.

Proposition 5. For the transition probabilities given by (5.1) - (5.3) the unique

steady-state distribution is

πi =
αi(1 + eµ∆r( i

N
))e−µβi∑N

j=0 αje
−µβj(1 + eµ∆r( j

N
))

(5.6)
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where αi = N !
(N−i)!i! and βi =

∑i
j=1 ∆r( j

N
).

Proof of Proposition 5: Solving (5.4) alone yields a row vector v with elements given

by

vi =
N !

(N − i)!i! (1 + eµ∆r( i
N

))e−µ
Pi
j=1 ∆r( j

N
).

To solve (5.5) we normalize the vector v to get

π =
v∑N
i=0 vi

.

The elements of π are then given by (5.6). �

The distribution π from (5.6) is plotted in Figure 5.2 for each of the reward

structures shown in Figure 3.1. The distribution in Figure 5.2(a) shows that the

decision maker in the MS task spends most of the time making choices that keep y

near the matching point (rather than near the optimal solution at the peak of the

average reward curve). Should choice A be made more frequently, then higher rewards

would be received.

Figure 5.2(b) shows the distribution for a decision maker in the RO task. This

plot illustrates that, when faced with the RO reward structure, the decision maker

is unable to find the global optimum at y = 1. Instead, time is spent at the local

optimum where y = 0 and near the matching point. It is indeed rare for a decision

maker to find the global optimum in this RO task [57].

In contrast Figure 5.2(c) shows for the CG structure that the decision maker

spends most time making choices that yield the optimal average reward. Note that

the distribution peaks at the matching point; i.e. the decision maker spends the

highest fraction of time with proportion of choice A at the matching point. This is a

much easier task since the optimum coincides with the matching point. The DG task

is more difficult than the CG task since the optimum is divergent. The symmetry
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of the reward structures causes decision makers to diverge to choice sequences with

y < 0.5 and y > 0.5 with equal probability. The distribution in Figure 5.2(d) shows

how choice sequences diverge from the point of intersection in the reward curves. The

optimal strategy is for a decision maker to choose A half the time - as is typical of

decision makers in the CG task.

The distribution shown in Figure 5.2(a) agrees qualitatively with experimental

results, see for example those reported in [28]. Likewise the predicted distributions

in Figures 5.2(b), 5.2(c) and 5.2(d) agree qualitatively with experimental results in

[56, 57]. We also include direct comparisons to experimental data in Section 5.5.

5.4 Performance

The analytic expression π for the steady-state behavior presented in 5.6 leads to a

number of interesting findings. In this section we look at performance of the soft-max

model in the TAFC task through two approaches.

First we show conditions for which the decision maker converges to a value of

y that corresponds to a matching point. To do this we consider a class of reward

structures with a unique matching point (MS and CG reward structures of Figures

3.1(a) and 3.1(c) are two examples). Second we derive the sensitivity of the expected

value of reward earned by the decision maker to the parameter µ in the soft-max

model (3.7). This can be done by direct differentiation of (5.6). The sensitivity

analysis appears in Section 5.4.2.

5.4.1 Steady-State Matching

For clarity, we again define the concept of reward structures with a matching point.
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Figure 5.2: Steady-state distributions: The probability πi that the decision maker
has proportion y = i

N
of A’s in their choice history, as given by (5.6), is shown for

i = 1, 2, . . . , N by the circular points for each reward structure with N = 20. As
before, in each plot the dotted line depicts rA, the reward for choice A. The solid
line depicts rB, the reward for choice B. The dashed line is the average value of the
reward. Each is plotted as a function of y. The values of the parameter µ for RO,
CG and DG tasks are from the best fit to experimental data [57]. (a) MS with µ = 5,
(b) RO with µ = 11, (c) CG with µ = 2.5, (d) DG with µ = 2.91.
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Definition 1. A reward structure with a unique matching point of type 1 consists

of reward curves rA(y), rB(y) for which there exists y∗ = i∗

N
, i∗ ∈ {1, 2, . . . , N − 1},

that satisfy ∆r(y∗) = 0, ∆r(y) < 0 for y < y∗, and ∆r(y) > 0 for y > y∗.

There are relatively few results that prove conditions for matching behavior given

well-established models like the soft-max choice model. This work represents the first

rigorous mathematical proof of matching behavior for the soft-max choice model.

In this section we prove steady-state matching behavior for the soft-max model

by finding sufficient conditions on the slope µ of the soft-max function that guarantee

that πi is greatest for y = i/N at or near the matching point. In Theorem 4 below,

we find a bound µ1 such that if µ > µ1 then πi peaks in a small neighborhood of the

matching point. In Theorem 5 we find a bound µ2 > µ1 such that if µ > µ2 then πi

peaks at the matching point.

Theorem 4. Consider a reward structure with a unique matching point of type 1 and

suppose that Assumptions 8 and 9(a) hold. If

µ > µ1 := max

{
1− γ

γ∆r
(
i∗+2
N

)
,

1− γ
γ∆r

(
i∗−2
N

)

}
(5.7)

then the steady-state choice distribution is maximum for y ∈ {y∗ − 1
N
, y∗, y∗ + 1

N
}.

Here γ = (N−i∗)!i∗!
2bN

2
c!dN

2
e! where b·c gives the largest integer less than its argument and d·e

gives the smallest integer greater than or equal to its argument.

Proof of Theorem 4: To prove Theorem 4 we examine ρ(i) = πi/πi∗ , the ratio of time

spent at y = i
N
, i 6= i∗ to time spent at y∗ = i∗

N
. From (5.6) we compute

ρ(i) =
(N − i∗)!i∗!(1 + eµ∆r( i

N
))e−µ

Pi
j=1 ∆r( j

N
)

2(N − i∗)!i∗!e−µ
Pi∗
j=1 ∆r( j

N
)

. (5.8)
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We show that ρ(i) < 1 for all i /∈ {i∗ − 1, i∗, i∗ + 1} by proving each of two cases. In

the first case we show that ρ(i) < 1 for all i > i∗ + 1. In the second case we show

that ρ(i) < 1 for i < i∗ − 1.

Case 1 : Let ε = i− i∗ with ε > 0. The ratio ρ(i) then becomes

ρ(i) =
(N − i∗)!i∗!(1 + eµ∆r( i

∗+ε
N

))e−µ
(

∆r( i
∗+1
N

)+···+∆r( i
∗+ε
N

)
)

2(N − i∗ − ε)!(i∗ + ε)!
. (5.9)

Replacing (N − i)!i! in the denominator of (5.9) with its minimal possible value for

i ∈ {0, 1, . . . , N} yields the inequality

ρ(i) ≤ γ(1 + e−µ∆r( i
∗+ε
N

))e−µ
(

∆r( i
∗+1
N

)+···+∆r( i
∗+ε−1
N

)
)

(5.10)

where γ = (N−i∗)!i∗!
2bN

2
c!dN

2
e! .

Now assume ε ≥ 2. Since ∆r( i
∗+ε
N

) > 0 for all ε ≥ 1, ρ(i) decreases with increasing

ε so from (5.10) we can write the strict inequality

ρ(i) < γ(1 + e−µ∆r( i
∗+2
N

)). (5.11)

If (5.7) is satisfied then (5.11) becomes ρ(i) < 1.

Case 2 : Let ε = i− i∗ with ε < 0. Following the same steps as in Case 1, and making

use of the fact that ∆r( i
∗−ε
N

) < 0 for all ε > 0, we can write the inequality

ρ(i) ≤ γ(1 + e−µ|∆r(
i∗−ε
N

)|)e−µ
(
|∆r( i

∗−ε+1
N

)|+···+|∆r( i
∗
N

)|
)
. (5.12)
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Now assume ε ≤ −2. Since ρ(i) decreases with decreasing ε for ε < 0, we can

write the strict inequality

ρ(i) <
(N − i∗)!i∗!
bN

2
c!dN

2
e! (1 + e−µ|∆r(

i∗−2
N

)|). (5.13)

If (5.7) is satisfied then (5.13) becomes ρ(i) < 1. �

Theorem 5. Consider a reward structure with a unique matching point of type 1 and

suppose that Assumption 8 and 9(a) hold. If

µ > µ2 := max

{
1− γ

γ∆r
(
i∗+1
N

)
,

1− γ
γ∆r

(
i∗−1
N

)

}
(5.14)

then the steady-state choice distribution is maximum for y = y∗. Here γ = (N−i∗)!i∗!
2bN

2
c!dN

2
e!

where b·c gives the largest integer less than its argument and d·e gives the smallest

integer greater than or equal to its argument.

Proof of Theorem 5: Again we examine ρ(i) = πi/πi∗ . To prove Theorem 5 we follow

the same process used in Theorem 4. We show that ρ(i) < 1 for all i 6= i∗ by proving

each of two cases. In the first case we show that ρ(i) < 1 for all i > i∗. In the second

case we show that ρ(i) < 1 for i < i∗.

Case 1: Let ε = i− i∗ with ε > 0.

We assume ε ≥ 1. We have shown that ρ(i) decreases with increasing ε so using

Equation 5.10 we can arrive at the strict inequality

ρ(i) <
N − i∗

2(i∗ + 1)
(1 + e−µ∆r( i

∗+1
N

)). (5.15)

If (5.14) is satisfied then (5.15) becomes ρ(i) < 1.
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Case 2: Let ε = i − i∗ with ε < 0. We assume ε ≤ −1. Since ρ(i) decreases with

decreasing ε for ε < 0, we can write the strict inequality

ρ(i) <
(N − i∗)!i∗!
bN

2
c!dN

2
e! (1 + e−µ|∆r(

i∗−1
N

)|). (5.16)

If (5.14) is satisfied then (5.16) becomes ρ(i) < 1. �

Example 1: For the MS reward structure of Figure 3.1(a), we have rA(y) = kAy+cA

and rB(y) = kBy + cB where kA = −1
2
, cA = 3

5
, kB = 1 and cB = 0. For this example

with N = 20, by Theorems 4 and 5, µ1 = 5.45 and µ2 = 10.91. These values shrink

for smaller N and grow for larger N .

Example 2: For the CG reward structure of Figure 3.1(c), we have

rA(y) = e
−
„
y−ȳA√

2σA

«2

+ cA, rB(y) = e
−
„
y−ȳB√

2σB

«2

+ cB (5.17)

with ȳA = 2
5
, ȳB = 3

5
and σA = σB = 1

5
and cA = cB = 3

10
. In this example with

N = 20, by Theorem 4, µ1 = 3.30. By Theorem 5, µ2 = 6.06.

5.4.2 Sensitivity to Model Parameters

A number of interesting quantities can be computed from the expression for π in

Equation (5.6). The analyses in this chapter can be used to develop tools for design

and performance metrics to monitor decision making, or make predictions before tasks

are even performed. In the previous section we proved conditions for matching. Here

we are concerned with performance in the long run.

Given the fraction of time spent at each proportion of choice A, we can compute

sensitivity of long-run performance to task parameters. This sensitivity is computed
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here with respect to the parameter µ in the soft-max function. As mentioned in

Section 3.4.2, larger µ corresponds to increased certainty in the decision making,

which can also be interpreted as a reduced tendency to explore.

The average reward, from Equation (3.4), can be written r̄(y) = yrA(y) + (1 −
y)rB(y). For each value of y, this is the reward that would be received on average

if the decision maker were to maintain that value of y. So the expected value of the

reward is the sum of each average reward multiplied by the fraction of time spent at

each corresponding proportion of choice A and is written

r̃ =
N∑
i=0

πir̄i. (5.18)

The sensitivity of performance to µ can then be computed as the derivative of the

expected value of the reward with respect to µ:

d

dµ
r̃ =

N∑
i=0

r̄i
d

dµ
πi =

N∑
i=0

(
i

N
rA
( i
N

)
+
N − i
N

rB
( i
N

)) d

dµ
πi. (5.19)

By denoting gi(µ) := (1 + eµ∆r( i
N

)) and M(µ) :=
∑N

j=0 πj, the derivative of πi with

respect to µ can be written

d

dµ
πi =

αie
−µβi(∆r( i

N
)eµ∆r( i

N
) − βigi(µ))

M(µ)

− αie
−µβigi(µ)

∑N
j=0 αje

−µβj
(
∆r( j

N
)eµ∆r( j

N
) − βjgj(µ)

)
M(µ)2

. (5.20)

Example 1 continued: Consider again the MS reward structure of Figure 3.1(a).

The derivative of the expected value of reward with respect to µ, given by (5.20) is

plotted in Figure 5.3 along with the expected value of the reward for N = 20. For

this reward structure there is a critical point at µc = 1.15. For µ < µc increasing µ
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Figure 5.3: The derivative of the expected value of reward for the MS reward structure
shown in Figure 3.1(a). The dotted line is d

dµ
r̃ from Equation (5.20). The solid line

is the expected value of reward, r̃. Both are plotted as a function of µ for N = 20.

results in substantially higher reward. However, as µ increases further, the expected

value of reward decreases. This is an example for which some exploratory behavior

in the decision making is beneficial and is directly related to the results of Theorems

4 and 5: for µ > µ1 = 5.11, i.e., with too much certainty (equivalently not enough

exploration), the decision maker converges to the matching point, which is not the

optimal strategy.

Example 2 continued: Consider again the CG reward structure of Figure 3.1(c).

The derivative of the expected value of reward with respect to µ, given by (5.20) is

plotted in Figure 5.4 along with the expected value of the reward for N = 20. In this

example, d
dµ
r̃ is positive for all µ. The derivative is always positive in this example

(for any N) because the matching point coincides with the maximum of the expected

value of reward.

Whenever a decision maker converges to y∗ in the CG reward structure, it is

also the case that the highest reward on average is received. Therefore, increasing

the parameter µ, or the certainty in the decision making, results in higher expected
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Figure 5.4: The derivative of the expected value of reward for the CG reward structure
shown in Figure 3.1(c). The dotted line is d

dµ
r̃ from Equation (5.20). The solid line

is the expected value of reward, r̃. Both are plotted against µ for N = 20.

reward for the task. We note, however, that there is not a great deal of gain in

performance once µ increases above a threshold approximately equal to 5.

The expressions derived in this chapter can now serve as a tool for designing au-

tomated decision makers that use the soft-max choice model as a strategy. Designing

automated decision makers becomes important in Chapters 6 and 7 where we consider

mixed teams of decision makers in a network, each receiving social feedback.

5.5 Comparison to experimental results

To validate the analysis of our model, and to understand its limitations, we compare

the steady-state distributions given by (5.6) to distributions taken from experimental

data used in [56]. In these experiments subjects made a total of 150 choices. The

distributions, plotted for the RO, CG, and DG reward structures in Figure 5.5, are

the percentage of time spent with each possible choice history y = i
N
, i = 1, 2, . . . , N ,

averaged over all subjects in the alone (no social feedback) condition. In these exper-

iments N = 20. Note that data for the MS structure is not shown here. The authors
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of [56] and [57] do not run experiments for the MS task. For experimental data that

shows convergence to the matching point in MS reward curves, and agrees well with

our results, see Figure 2 of [28].
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Figure 5.5: Comparison of experimental data from [56] to analytic prediction of the
steady-state distrubution (5.6). Subjects made a total of 150 choices in the experiment
and the distributions shown are averaged over all subjects. In each plot circles are
from Equation (5.6) and x’s are from data. (a) RO, (b) CG, (c) DG.

Some of the distributions shown in Figure 5.5 agree well with experimental data

through a qualitative comparison. Some distributions agree with the data better

than others. The distributions for the CG task in Figure 5.5(b) are very close to one

another. The predicted distribution only differs slightly from the one computed from

data. The distributions for the DG task in Figure 5.5(c), however, are dissimilar
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The disagreement between predicted and computed distributions is likely due to

the convergence rate which we understand varies among tasks. With only 150 choices

made in these experiments, comparison between a steady-state distribution (derived

for t = ∞), and experimental data depends upon the rate that subjects converge in

each task. For instance, in the DG task, sufficient time was not allowed for subjects to

converge to the steady-state distribution. In the CG task, however, the convergence

rate is much higher. This is related to the difficulty level of each task (the CG task

is easy and decision makers quickly find the optimum). Subjects typically do a lot

of exploring in the more difficult DG task, in part due to the divergent nature of the

optimal point in the reward structure.

We also see that the distributions for the RO task in Figure 5.5(a) differ in two

ways. The distribution given by (5.6) is qualitatively similar to the distribution from

data, but shifted slightly to the right. It is also true that subjects spent more time

with y = 0 than predicted for the steady-state distribution. It’s most important,

however, to note that our analysis does predict that few subjects will discover the

global optimum in the RO task; both distributions are close to zero for y > 0.5. It is

likely that differences between (5.6) and experimental data for the RO task arise due

to limitations on our ability to estimate f(y) in Assumption 9(b). Since Assumption

9(a) does not apply, and we cannot directly measure wB − wA for a subject, we find

it convenient to estimate f(y) using a maximum likelihood method. It is likely that

this introduces some error which accounts for the differences in the curves plotted in

Figure 5.5(a).

Differences in the distributions of Figure 5.5 emphasize the importance of properly

applying our predictive tools. Perfect prediction of human behavior is not feasible,

but understanding characteristics of the behavior and the role of relevant parameters

is highly valuable. We aim to use these tools to assist in the design of mixed teams

of decision makers. For example, in Chapter 6 we predict whether or not decision
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makers in the RO task can be led toward the global optimum by introducing designed

elements. Whether predictions of this type are suitable is an issue addressed in

Chapter 7 where we discuss experiments that will test our hypotheses.

This concludes the analysis of this chapter. In the following chapter a similar

approach is used to analyze decision making with social feedback. The method used

in this chapter is extended to consider coupled model decision makers that share

choice feedback.
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Chapter 6

Decision Making in a Social

Context and with Mixed Teams

In this chapter we leverage experimental results and extend the analysis of Chapter 5

to study coupling of soft-max model decision makers. We consider a group of model

decision makers simultaneously making decisions with choice feedback in the TAFC

task and develop a formal understanding of the role of feedback, network topology,

and individual decision-making characteristics in the performance of individuals in

the group. We derive, analytically, the steady-state distribution analogous to the

expression for π that we develop in Chapter 5. We do so by considering the TAFC

task in a social context as described in Section 3.3, and using the extended model to

consider choice feedback as described in Section 3.4.4. The analysis is similar to that

of Chapter 5 in that we employ the assumptions of Section 5.1 and again identify a

Markov process around the state of a focal decision maker.

For the purpose of the tractability of our analysis, we focus on directed information

passing, and we examine the decision dynamics of the focal individual who receives

choice feedback from M others. Those M others do not receive any social feedback.
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We also perform an analysis that includes bi-directional choice feedback, computing

the steady-state distribution in that case numerically.

In Section 6.1 we identify the task and decision making-model as an inhomoge-

neous Markov process and we compute the expected state transition probabilities. We

investigate convergence in Section 6.2 and compute the expected equilibrium proba-

bility distribution for the process. In Section 6.3 we study performance of decision

making in the CG task in this social context. We first prove that our model predicts

the (small) negative impact of choice feedback on performance in the CG task as

observed in [57]. We next study the sensitivity of performance in the CG task to

decision-making parameters µ, ν and M . In Section 6.4 we analyze decision-making

dynamics in the case of undirected social feedback and compare results for undirected

versus directed feedback in the CG and DG tasks. In Section 7.1, we make predictions

on the role of choice feedback in the difficult RO task by designing a heterogeneous

group of M others and investigating conditions that lead to dramatic improvement

in performance of the focal decision maker.

The approach taken in this chapter to use a Markov chain for analyzing the soft-

max choice model is analogous to that of Chapter 5. This method has been published

with preliminary results in [78] and [80]. We focus primarily on social effects in [80].

The work that appeared in [80] was presented at the IEEE Conference on Decision

and Control in Atalanta, GA in 2010. The results presented in this chapter have been

published in [79].

6.1 Expectation of the Markov Model

The identification of the dynamics of the focal decision maker with directed choice

feedback from M others as a Markov process with state y(t) is analogous to that for

the decision maker in the alone condition studied in Section 5.2. However, in the
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social context the Markov process is inhomogeneous because at each time t, the one-

step state transition matrix depends upon the choices of others through the function

u(t) in (3.21), which models the social feedback imposed by the choices condition.

We can calculate the probability of each possible outcome for the value of u(t) at

each time. By conditioning on the value of u(t) we analyze the expectation of the

inhomogeneous process. The expectation of the state transition matrix is given in

the following proposition.

Proposition 6. Suppose Assumptions 8 and 9(a) hold. Then, the model representing

the focal individual receiving choice feedback from M others (3.20)-(3.21) for the

TAFC task (3.1)-(3.3) is a Markov process with state y(t) and expected state transition

probabilities given by

Pr{y(t+ 1) = y(t)− 1

N
} =

[
1− p̄A

(
y(t)

)]
y(t) (6.1)

Pr{y(t+ 1) = y(t)} =
[
1− p̄A

(
y(t)

)](
1− y(t) + p̄A

(
y(t)

)
y(t) (6.2)

Pr{y(t+ 1) = y(t) +
1

N
} = p̄A

(
y(t)

)(
1− y(t)

)
(6.3)

where ∆r = ∆r(y(t)) is given by (3.5) and p̄A(y(t), ν) is

p̄A(y(t), ν) =
Pr{u(t) = 1}
1 + eµ(∆r−ν)

+
Pr{u(t) = −1}

1 + eµ(∆r+ν)
+

Pr{u(t) = 0}
1 + eµ∆r

. (6.4)
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The conditional probabilities on u(t) are given by

Pr{u(t) = 1} =
M∑

k=dM+1
2
e

 M

k

 pA(∞, 0)k(1− pA(∞, 0))M−k,

Pr{u(t)− 1} =
M∑

k=dM+1
2
e

 M

k

 (1− pA(∞, 0))kpA(∞, 0)M−k,

Pr{u(t) = 0} = 1− (Pr{u(t) = 1}+ Pr{u(t) = −1}) (6.5)

and

 M

k

 = M !
k!(M−k)!

. In case Assumption 9(b) holds instead of Assumption 9(a),

then the results hold with ∆r(y(t)) replaced with f(y(t)).

Proof of Proposition 6:

Since for a given choice x1(t + 1) at time t + 1, y(t + 1) can only change from

its current value of y(t) to y(t) + 1
N
, y(t)− 1

N
or stay at y(t), we need only compute

the probability of each of these three events for all y(t) ∈ Y . Each of these events

depends upon the current value of y(t) as well as x1(t + 1) and xN(t) since y(t + 1)

will only differ from y(t) if x1(t+ 1) also differs from xN(t).

The event that y(t+1) = y(t)− 1
N

requires x1(t+1) = B and xN(t) = A. Treating

these as independent events and using (3.20) yields

Pr{y(t+ 1) = y(t)− 1

N
} = Pr{x1(t+ 1) = B} ∗ Pr{xN(t) = A} =

eµ(wB(t)−wA(t)−νu(t))y(t)

1 + eµ(wB(t)−wA(t)−νu(t))
.

Substituting in the identity of Assumption 9(a), and treating the M peer decisions as

independent events, we condition on the value of u(t) and get Pr{x1(t+ 1) = B} =

1− p̄A(y(t), ν) which with Assumption 8 gives us (6.1).
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Similarly, the probability that y(t+ 1) takes the value y(t) + 1
N

is given by

Pr{y(t+ 1) = y(t) +
1

N
} = Pr{x1(t+ 1) = A} ∗ Pr{xN(t) = B} =

1− y(t)

1 + eµ(wB(t)−wA(t)−νu(t))
.

Conditioning on the value of u(t) and substituting in the identity of Assumption 9(a),

we get (6.3).

The event that y(t + 1) = y(t) requires either x1(t + 1) = A and xN(t) = A or

x1(t+ 1) = B and xN(t) = B. The probability of the union of these events is

Pr{y(t+ 1) = y(t)} = (Pr{x1(t+ 1) = A})(Pr{xN(t) = A})

+ Pr{x1(t+ 1) = B} ∗ Pr{xN(t) = B}

=
y(t) + (1− y(t))eµ(wB(t)−wA(t)−νu(t))

1 + eµ(wB(t)−wA(t)−νu(t))
.

Conditioning on the value of u(t) and substituting in the identity of Assumption 9(a),

we get (6.2). Since the probabilities depend only upon y(t), the current value of the

state at time t, the process is Markov. By conditioning on u(t), the results (6.1)-(6.3)

provide the expectation of the transition probabilities. The case when Assumption

9(b) holds follows similarly. �

The (N + 1)× (N + 1) one-step state transition matrix P (t) has entries

Pij = Pr{y(t+ 1) =
j

N
|y(t) =

i

N
}, (6.6)

i, j ∈ {0, 1, . . . , N + 1}. Using (6.1)-(6.3) we can build the expectation P of this

transition matrix.
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6.2 Convergence and Steady-State Choice Distri-

bution

By identifying a Markov chain in this way for coupled soft-max model decision makers

with choice feedback allows us to compute the steady-state distribution of y. In this

section, we compute the expected steady-state distribution of y by using the expected

state transition matrix P. The process is similar to that of Chapter 5 where we

considered isolated decision makers that did not receive social feedback.

Since the Markov process in Section 6.1 has a tridiagonal one-step state transition

matrix with strictly positive elements, any state can be reached from any another

in finite time, guaranteeing irreducibility. It is aperiodic since return to state i from

state i can happen as quickly as one time step, but no state is absorbing. Thus, the

process has a unique limiting distribution π = (π0, π1, . . . , πN) describing the fraction

of time the chain will spend in each of the enumerated states y = i
N
, i = 0, 1, 2 . . . N ,

in the long run (as t→∞) [83]. We summarize this in the following proposition.

Proposition 7. For the expected transition probabilities given by (6.1) - (6.3) the

unique expected steady-state distribution is

πi = αi

∏i
j=1 q(

i
N
, ν)∑N

j=0 αj
∏j

k=1 q(
k
N
, ν)

(6.7)

where αi = N !
(N−i)!i! and q( i

N
, ν) =

p̄A( i−1
N
,ν)

1−p̄A( i
N
,ν)
.

Proof of Proposition 7: Solving (5.4) alone yields a row vector v whose elements are

given by

vi =
N !

(N − i)!i!
i∏

j=1

p̄A( j−1
N
, ν)

1− p̄A( j
N
, ν)

.
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To solve (5.5) we normalize the vector v to get π = v/
∑N

i=0 vi. The elements of π are

then given by (6.7). �

6.3 Performance with Choice Feedback in the CG

task

The CG reward structure is unique in that the maximum of the average reward

(optimal point in the reward structure) coincides with an attracting matching point

at y∗ = 0.5. Therefore, decision makers in the CG task should maximize time spent

with y = 0.5. For this reason, a key measure of performance in the TAFC task

with CG reward structure is variance in y about y∗ = 0.5. For the symmetric CG

structures of the form (5.17) in which cA = cB, ȳA < ȳB and |ȳA| = |ȳB| (as in Figure

3.1(c)) better performance corresponds to minimizing the variance about y = 0.5.

In this section we prove for our predictive model of the expected steady-state

distribution of y(t) that the variance about y = 0.5 is minimal for ν = 0; i.e.,

receiving choice feedback from other decision makers in the CG task is predicted to

degrade performance. This agrees well with experimental results of [57]. We perform

additional analyses in the section by investigating the effect on performance of the

strength of the feedback ν, the number of other decision makers M and the focal

individual’s own exploratory parameter µ.

6.3.1 Effect of Choice Feedback on Reward

We prove here that variance is minimized when the strength of the choice feedback

is smallest, i.e., when ν = 0. The impact is that with choice feedback (corresponding

to ν 6= 0), the focal individual tends to do more exploring away from the optimal

solution and performance deteriorates.
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Let Σ denote the variance, or second moment, of the expected steady-state distri-

bution about y = 0.5. Then using π given by (6.7), Σ can be written as a function of

the feedback gain ν as

Σ(ν) =

∑N
i=0 αi(

i
N
− 1

2
)2Qi(ν)∑N

j=0 αjQj(ν)
, (6.8)

where Qi(ν) :=
∏i

j=1 q(
j
N
, ν).

The following theorem captures the result that choice feedback degrades performance

in the TAFC task with CG reward structure.

Theorem 6. Consider the CG reward structure of the form (5.17) where the matching

point and optimal choice sequence coincide at y = 0.5. Consider a focal decision maker

who receives choice feedback from M = 4 others who receive no feedback. Suppose that

Assumptions 8 and 9(a) hold. Then, the variance Σ(µ, ν) about y = 0.5 of the expected

steady-state choice distribution of the focal individual is minimal for ν = 0.

We prove Theorem 6 by first proving four lemmas.

Lemma 16. ν = 0 is a critical point of Σ(µ, ν)

To prove Lemma 16 we introduce the following:

Lemma 17. Q′i(0) := ∂
∂ν

∏i
j=1 q(

i
N
, ν)
∣∣
ν=0

= 0.

Proof of Lemma 17: We compute

∂q

∂ν
( i
N
, ν) =

∂
∂ν
p̄A
(
i−1
N
, ν
)

1− p̄A
(
i
N
, ν
) +

∂
∂ν
p̄A
(
i
N
, ν
)(

1− p̄A
(
i−1
N
, ν
))(

1− p̄A
(
i
N

)
, ν
)2 . (6.9)

For the CG reward schedule pA(∞, 0) = 1
2
. Using this and M = 4 in (6.5), we can

compute the conditional probabilities on u(t). Substituting these into (6.4) for p̄A
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gives

p̄A( i
N
, ν) =

3

4

1

(1 + eµ∆r)
+

1

8

[
1

1 + eµ(∆r−ν)
+

1

1 + eµ(∆r+ν)

]
(6.10)

where ∆r = ∆r( i
N

). Differentiating p̄A with respect to ν yields

∂

∂ν
p̄A( i

N
, ν) =

µeµ∆r

8

[
e−µν

(1 + eµ(∆r−ν))2
− eµν

(1 + eµ(∆r+ν))2

]
. (6.11)

Evaluating (6.11) at ν = 0 we get ∂
∂ν
p̄A( i

N
, ν)|ν=0 = 0,∀i. Therefore, in (6.9) we see

that ∂
∂ν
q( i

N
, ν)|ν=0 = 0. From the definition of Qi(ν) we can write

Q′i(ν) =
i∑

k=1

∂

∂ν
q
(
k
N
, ν
) i∏
j=1,j 6=k

q
(
j
N
, ν
)
. (6.12)

Evaluating (6.12) at ν = 0 with ∂
∂ν
q( i

N
, ν)|ν=0 = 0 gives Q′i(0) = 0. �

Proof of Lemma 16: The derivative of Σ(µ, ν) can be written

∂

∂ν
Σ(µ, ν) =

∑N
i=1 αi(

i
N
− 1

2
)2Q′i(ν)∑N

k=1 αkQk(ν)
−
∑N

i=1 αi(
i
N
− 1

2
)2Qi(ν)

∑N
k=1 αkQ

′
k(ν)(∑N

k=1 αkQk(ν)
)2 .

It follows from Lemma 17 that ∂
∂ν

Σ(µ, ν)|ν=0 = 0. �

It is now left to show that ν = 0 is a minimum of Σ(µ, ν).

Lemma 18. ∂2

∂ν2 Σ(µ, ν)
∣∣
ν=0

> 0.

To prove Lemma 18 we introduce the following:

Lemma 19. Q′′i (ν) < 0.

Proof of Lemma 19: Differentiating Q′i(ν) with respect to ν, and making use of the

fact that ∂
∂ν
p̄A( i

N
, ν)|ν=0 = 0 gives

Q′′i (0) =
∂2

∂ν2 p̄A( i−1
N
, ν)|ν=0

(
1− p̄A( i

N
, 0)
)(

1− p̄A( i
N
, 0)
)2 +

∂2

∂ν2 p̄A( i
N
, ν)|ν=0

(
p̄A( i−1

N
, 0)
)(

1− p̄A( i
N
, 0)
)2 . (6.13)
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Since

∂2

∂ν2
p̄A(

i

N
, ν)|ν=0 = −µ

2eµ∆r( i
N

)(1 + e2µ∆r( i
N

))

(1 + eµ∆r( i
N

))4
< 0, (6.14)

we can conclude that Q′′i (0) < 0. �

Proof of Lemma 18: Invoking Lemma 17 we can write

∂2

∂ν2
Σ(µ, ν)

∣∣
ν=0

=

∑N
i=0 αi

(
i
N
− 1

2

)2
Q′′i (0)∑N

k=0 αkQk(0)
−
∑N

i=0 αi
(
i
N
− 1

2

)2
Qi(0)

∑N
k=0 αkQ

′′
k(0)(∑N

k=0 αkQk(0)
)2 .

(6.15)

Denote the numerator of ∂2

∂ν2

∣∣
ν=0

Σ(µ, ν) by Γ. Then

Γ =
N∑
i=0

N∑
k=0

γi,k (6.16)

where γi,k = αiQ
′′
i (0)αkQk(0)

[(
i
N
− 1

2

)2 − ( k
N
− 1

2

)2]
. Lemma 19 tells us that γi,k > 0

for all i, k that satisfy (
i

N
− 1

2

)2

−
(
k

N
− 1

2

)2

< 0. (6.17)

It is also true that γN
2
,N

2
= 0. It can be shown that for all i, k 6= N

2
γi,k > 0, and that

γN
2
,N

2
= 0. It therefore must be true that Γ =

∑N
i=0

∑N
k=0 γi,k > 0. �

Proof of Theorem 6: Lemma 16 and Lemma 18 guarantee that ν = 0 is a minimum

of Σ(µ, ν). �

6.3.2 Sensitivity

With this model of choice feedback and corresponding steady-state distribution, we

can compute sensitivities to parameters in the same fashion as was done in Chapter

(5). The method involves differentiating Equation 3.20 with respect to the parameter

of interest. In this section we examine the sensitivity of performance in the CG task

with choice feedback to decision-making parameters ν, µ and M .
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Figure 6.1: Steady-state distribution of y for the CG task with choice feedback. (a)
M = 4, (b) M = 2. In each plot µ = 2.6, the circles correspond to ν = 0 (no
feedback), and the x’s to ν = 1 (“full” feedback). The value of µ is chosen to be in
accordance with the fitted values provided in [57].
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In Figure 6.1 the (expected) steady-state distribution of y is plotted without feed-

back and with feedback in the cases M = 4 and M = 2. Here we have used µ = 2.6,

which is the fitted value for an individual in the CG task with choice feedback [57].

In Figure 6.2 the normalized standard deviation 100
√

Σ(µ, ν,M) is plotted as a func-

tion of ν for three different values of µ and M . These results will be compared with

experimental data in the following section.

In both figures, it can be seen that variance increases as a function of ν for each

value of µ and M plotted; this is as predicted for the case M = 4 by Theorem 6. We

also see that variance is higher for smaller M . This implies that social feedback of

this kind has a greater effect on performance in smaller groups of decision makers.

The results also show that dependence of the variance on µ is significant. In

Figure 6.2 it can be seen that increasing µ (certainty in the decision making) magnifies

sensitivity to the feedback gain ν. In Section 5.4.2 we showed that increasing µ in

the CG task decreases variance for a single individual without social feedback. The

exploratory parameter µ and the feedback gain ν have a coupling effect in the CG

task with social feedback that causes a more substantial decrease in performance as

ν increases for larger values of µ.

6.3.3 Comparison to Experimental Data

We have predicted that variance about the optimum in the CG task should increase

with increasing influence of choice feedback. The authors of [56] and [57] have seen

signs of this in the data, they also showed that performance deteriorates most signif-

icantly in the CG task when decision makers have social feedback that depends on

the rewards of the M others, although we do not consider that feedback mode in this

thesis. In Figure 6.3 we plot variance from the experiments performed in [57]. Here

we are comparing variance from experimental data in two conditions: with choice

feedback (dashed line) and without any feedback (solid line).
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Figure 6.2: Standard deviation of expected steady-state distribution of y from the
mean y = 0.5 for the CG task as a function of feedback parameter ν (given by
100
√

Σ(µ, ν,M)). (a) µ = 0.5, (b) µ = 2.60, the fitted value from [57] (c) µ = 10. In
each plot, the dotted curve corresponds to M = 2, the solid curve to M = 4 and the
dashed curve to M = 10.
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Figure 6.3: Variance in the decision making for experiments run with and without
choice feedback. Each is plotted against the number of choices made. No feedback is
shown with a solid line, choice feedback is shown with a dashed line. This figure was
constructed using data provided by Andrea Nedic [57].

This data was collected from experiments with a duration of 150 choices and

reward structures which depend on N = 20 of the most-recent choices. The variance

is averaged over all subjects. There is a clear trend in Figure 6.3 which suggests that

variance in the CG task with choice feedback is higher, thereby agreeing with our

results in this section - in particular Theorem 6. It should be noted, however, that

while the average variance over the 150 choices is higher with choice feedback, there

are points in the data where variance in the alone condition is higher. It is possible

that the effect is greater for longer time periods; i.e. approaching the steady state.

It may also be the case that some subjects choose not to pay much attention to the

social feedback, and therefore should be parametrized by a small ν.
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6.4 Undirected Feedback

Conclusions drawn in Section 6.1-6.3 are the result of an analysis of decision making

with directed social feedback. We are also interested in studying teams with social

feedback that is undirected, particularly as undirected feedback was used in the ex-

periments of [56, 57] (see Section 3.3). There may also be fundamental differences in

the behavior (and performance) among teams with directed vs undirected feedback.

A formal understanding of this difference can provide a valuable understanding for

how to design the topology of networks used to build mixed teams.

It is not tractable to derive analytic results for coupled model decision makers

that share choice feedback within a network that is not directed. The Markov chain

required to analyze the undirected case prohibits us from deriving a closed-form,

analytic solution for the steady-state distribution. In this section we numerically

derive equilibrium distributions for a focal decision maker that receives, and shares,

choice feedback in the TAFC task.

The method used here is to numerically compute steady-state distributions for a

focal decision maker coupled with M others in an undirected network. We consider

again a group of (M + 1) soft-max model decision makers simultaneously making

decisions in the TAFC task in a social context. However, in the undirected case, each

decision maker receives choice feedback from each of the other M decision makers, i.e.,

the graph that describes the communication topology is complete. The probability

that any of the decision makers chooses A is given by (3.20) where feedback depends

on the choices of others. We make Assumptions 8 and 9(a) (or 9(b)) so that the state

of decision maker k is yk(t), k = 1, . . . ,M + 1. Because the decision makers are all

interconnected, we must retain the state of each decision maker, so the state of the

system becomes (y1(t), . . . , yM+1(t)).

To study the dynamics, we first identify the task and decision-making model as

a Markov process. As in Section 6.1, the Markov process is inhomogeneous, and we
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can compute the expectation of the state transition probabilities by conditioning on

uk(t), k = 1, . . . ,M + 1. We then use these probabilities to build the expected state

transition matrix P, which in this case will be a matrix of dimension (N + 1)M+1 ×
(N + 1)M+1.

Proposition 8. Suppose Assumptions 8 and 9(a) hold. Then (M+1) model decision

makers each receiving choice feedback from the M others (3.20)-(3.21) for the TAFC

task (3.1)-(3.3) form a Markov process with state (y1(t), . . . , yM+1(t)) and expected

state transition probabilities given by

Pr{yi(t+ 1) = yi(t) +
di
N
, i = 1, . . . ,M + 1} =

M+1∏
i=1

p̂i,di (6.18)

where

p̂m,d(t) =



(1− pA,m(t))ym(t) if d = −1

pA,m(t)ym(t) + (1− ym(t))(1− pA,m(t)) if d = 0

pA,m(t)(1− ym(t)) if d = 1

0 otherwise

(6.19)

The probability pA,m(t) that decision maker m chose A is given by

pA,m(t) =
Pr{um(t) = 1}

1 + eµm(∆r(ym)−νm)
+

Pr{um(t) = −1}
1 + eµm(∆r(ym)+νm)

+
Pr{um(t) = 0}
1 + eµm(∆r(ym))

. (6.20)

Pr{um(t) = 1} (respectively, Pr{um(t) = −1}) is the probability that, among the M

decision makers excluding decision maker m, at least dM+1
2
e chose A (respectively, B)

at time t. Pr{um(t) = 0} = 1 − Pr{um(t) = 1} − Pr{um(t) = −1} is the probability

that an equal number of A’s and B’s were chosen. In case Assumption 9(b) holds

instead of Assumption 9(b), then the results hold with ∆r(y(t)) replaced with f(y(t)).

Proof of Proposition 8:
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Since for a given choice by decision maker m at time t + 1, ym(t + 1) can only

change from its current value of ym(t) to ym(t) + 1
N
, ym(t) − 1

N
or stay at ym(t), we

need only compute the probability p̂m,d of each of these three events, d = 1, d = −1,

d = 0, for all ym(t) ∈ Y and each m. Each of these events depends upon the current

state (y1(t), . . . , yM(t)), as well as each decision maker’s most recent choice and oldest

choice in their history of N choices, since ym(t + 1) will only differ from ym(t) for

decision maker m if the most recent decision also differs from the oldest decision in

the history. The probabilities p̂m,d of (6.19) are derived analogously to (6.1)-(6.3) in

Proposition 6 with the probability pA,m that decision maker m chooses A of (6.20)

derived analogously to p̄A of (6.4). The computation of pA,m(t) requires conditioning

on the value of um(t).

Treating each decision maker’s choice as an independent event, the transition

probabilities for the group are given by (6.18). Since the probabilities depend only

upon (y1(t), . . . , yM(t)), the current value of the state at time t, the process is Markov.

The case when Assumption 9(b) holds follows similarly. �

Because of the high dimensionality of the matrix P, we compute the expected

distributions numerically. This is done by raising P to a high power so that the

elements along each column are equal. Any row in the resulting matrix then has the

steady-state distribution as its elements. All rows being equal corresponds to the fact

that the probability of transitioning to any of the possible states in the long run is

independent of the initial condition.

In Figure 6.4 we show the numerically-computed expected steady-state distribu-

tion for one of the decision makers where there is undirected choice feedback and

M = 2. The distribution in the undirected case for the CG task is plotted with x’s

in Figure 6.4(a). We compare this to the distribution for the focal decision maker

in the case of directed choice feedback and M = 2, which is plotted with circles in

Figure 6.4(a) (computed from (6.7)). We see that there is little difference in the
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Figure 6.4: Comparison of expected steady-state distribution with undirected versus
directed choice feedback. In both plots circles correspond to directed feedback (where
π is computed from (6.7)) and x’s correspond to undirected feedback (where π is
computed numerically). (a) CG task with µ = 2.6. (b) DG task with µ = 2.9. In
both cases values for µ are chosen in accordance with the fitted values provided in
[57].
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distributions, suggesting that for our model the CG task results do not depend signif-

icantly on whether the feedback is undirected or directed. This is consistent with our

comparison between the model predictions in the directed case and the experimental

data in the undirected case for the CG task as described in Section 6.3.1.

The same comparison between the undirected case and the directed case for the

DG task is shown in Figure 6.4(b). Recall for the DG task that the optimal solution

at y = 0.5 is a diverging point; because of the symmetry in the reward structure,

decision makers diverge to choice sequences with y > 0.5 and y < 0.5 with equal

probability.

The plots in Figure 6.4(b) show that for the DG task the undirected case can

differ substantially from the directed case. In this example where µ = 2.9 for all

decision makers [57] and M = 2, the focal decision maker makes steady-state choices

in the undirected case that are further from the optimal solution as compared to

the steady-state choices in the directed case. This suggests that undirected feedback

reinforces the tendency for decision makers to move toward relatively high and low

values of y, leading to reduced performance as compared to the directed feedback

case. The result illustrates the influence that the interconnection topology can have

on performance of a group of decision makers.

Comparison between directed and undirected topologies is a topic addressed in

Chapter 7 where we discuss new experiments with human subjects and various inter-

connection topologies. The comparison in this section requires numerical computation

of distributions for the undirected case. In the numerical computations, the state of

each decision maker is included in the Markov chain. The size of the state space

prohibits numerical computations for M > 2.

This concludes the analysis of this chapter. We are now in a position to apply the

predictive tools developed here. In the following chapter, we use our tools to design

mixed teams of decision makers.
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Chapter 7

Experiments and Design of

Decision-Making Dynamics

The success of our approach has allowed us to perform analytic validations of the

agreement of the soft-max choice model with experimental data. This has been

presented in Chapters 5 and 6. This chapter takes our analysis into a new realm and

makes predictions about the behavior of a team of decision makers, some of which

receive designed feedback. The findings of the work in this chapter have prompted

us to design new experiments that are currently being performed.

The notion of designing social feedback carries along several themes with it, bring-

ing up a number of issues. Studying the change in behavior of a focal decision maker

to properties of the social feedback provided is a primary goal of this work. The

predictions made in this chapter allow us to find interesting “tipping points” in the

decision making. That is, we have isolated types of feedback which, though they

differ slightly, can have dramatically different results for a decision maker receiving

that feedback.

It is also of interest to develop tools and benchmarks for the design of automated

decision makers. By changing properties of the decision-making strategies employed
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by members of the team in a principled way, and measuring the effects, we propose

tools to develop a methodology for designing decision-making teams.

7.1 Predicted Performance with Designed Deci-

sion Makers

In this section we use our predictive model to study performance for the RO task in

the social context. Recall that the RO task is considered difficult because the decision

maker must endure a period of very poor performance in order to find the optimal

choice sequence and even if the optimal solution is found, the RO reward curves

make it challenging to sustain. To investigate the influence of choice feedback on the

ability of the focal individual to find the optimal solution in the RO task, we design

the decision-making parameters of the group of M others who provide feedback to

the focal individual and examine the resulting decision-making dynamics using our

predictive model. We consider a heterogeneous group of decision makers in the social

TAFC task as defined in Section 3.3 of Chapter 3. We illustrate with an example in

which a change in the decision-making parameters of only one individual in the group

providing feedback can have a dramatic (and positive) effect on performance of the

focal decision maker.

Consider a focal decision maker who receives choice feedback from M = 4 other

decision makers. We implement our design by prescribing the probability pA,m that

decision maker m chooses A, for m = 1, 2, 3, 4. We consider constant (and heteroge-

neous) values for pA,m. Figure 7.1 shows the expected steady-state distribution for

the focal individual with choice feedback from four decision makers with two different

designs. In both designs we set pA,1 = .05, pA,2 = .95, and pA,3 = 0.5; this means

that among the four decision makers providing feedback, decision maker 1 sustains

choice sequences near the local optimum at y = 0, decision maker 2 finds and sustains

133



the global optimal solution at y = 1 and decision maker 3 is a “noisy” player who

randomly chooses A or B. Designing the choice probabilities for these three deci-

sion makers in this way does not create a bias towards A or B for the focal decision

maker. The difference between the two designs comes in how we prescribe the prob-

ability pA,4 for decision maker 4. In the first design, corresponding to Figure 7.1(a),

we set pA,4 = 0.05, i.e., decision maker 4 sustains choices near the local optimum

at y = 0. However, in the second design, corresponding to Figure 7.1(b), we set

pA,4 = 0.95, i.e., decision maker 4 sustains choices near the global optimum at y = 1.

The results of the steady-state distribution show that in the first design, the focal

decision maker does not find the global optimal but rather chooses B most of the time

and remains close to the local optimal solution at y = 0 (Figure 7.1(a)). However, the

results of the second design are dramatically different. The change in the probability

of choosing A by decision maker 4 in the second design makes all the difference in

helping the focal decision maker find and sustain choices close to the global optimal

solution (Figure 7.1(b)).

The space of possible designed feedback is large and we want to make predictions

in a principled way. In the RO task, a measure of good performance is whether

decision makers “discover” the optimum choice sequence; i.e. find the maximum

value in the reward structure. By calculating the probability that a decision maker’s

choice history will have proportion of A greater than a chosen value, we can predict

the likelihood that the optimum choice sequence is discovered. We calculate this

probability from the following:

Pr{y(t) > yc =
ic
N
} =

N+1∑
i=ic

πi(µ, ν,∆r, pA,1, . . . , pA,4) (7.1)

where yc is a critical value of y that we pick and ic is the corresponding number of

choices A made in the last N trials to achieve yc. Recall Equation 6.7 where πi is

expressed analytically.
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Figure 7.1: Expected steady-state distribution of y(t) for a focal decision maker
receiving choice feedback from four designed decision makers in the RO task. In
each case decision makers 1-3 choose A with probability pA,1 = .05, pA,2 = .95,
and pA,3 = 0.5. (a) Decision maker 4 chooses A with probability pA,4 = .05. The
distribution for the focal decision maker is shown with circles; the focal decision
maker spends most time near the local optimal solution at y = 0. (b) Decision maker
4 chooses A with probability pA,4 = .95. The distribution for the focal decision maker
is shown with x’s; the focal decision maker finds and sustains choices near the global
optimal solution at y = 1.
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We now have an analytic function which depends on feedback from the designed

decision maker 4, and also parameters of the focal decision maker and environment.

This probability function is plotted for three cases of yc in Figure 7.2(b). The values

of yc are depicted in Figure 7.2(a) by the vertical lines. Consider yc = 0.45, plotted in

light grey. Should a decision maker make choice sequences such that y(t) > 0.45, then

they will reside in the domain lying to the right of the light gray vertical line in Figure

7.2(a) (which is shaded in light grey). In Figure 7.2(b) the corresponding probability

of an individual converging to such choice sequences is plotted as a function of pA,4.

For low pA,4 we have that Pr{y(t) > 0.45} = 0. There is a critical value of pA,4 roughly

equal to 0.6, where half the time is spent with y(t) > 0.45. For increasing pA,4 the

decision maker is influenced to have higher proportion of A in their history, moving

closer to the optimal. As we increase yc greater pA,4 is required to restrict the behavior

to domains corresponding to the higher reward. Figure 7.2 shows the prediction for

yc = 0.70 (medium grey) and yc = 0.85 (dark grey).

The case of yc = 0.85 defines a domain which is essentially optimal. Should

choices be made such that y(t) > 0.85 for a sustained period, much higher rewards

will be earned in the task. We see from the dark grey curve in Figure 7.2(b) that for

pA,4 = 0.90, the predicted behavior is to spend more than half the time very close

to the optimal solution. We have chosen a value of pA,4 = 0.95 in experiments and

are expecting subsequent choices sequences to be near optimal for the majority of the

experiment’s duration as shown in Figure 7.1(b).

We saw in Section 6.3 that for the easy CG task, choice feedback was detrimental

to performance. It is significant that for the difficult RO task our model predicts

that performance can be significantly improved by choice feedback. Such results

may prove useful in the design of human-robot decision-making teams where well

justified methodology is needed for programming the decision-making parameters of
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Figure 7.2: Probability that a focal decision maker receiving choice feedback will have
choice sequences such that y(t) > yc in the RO task. (a) Domains of interest for three
cases of yc. The vertical lines coincide with yc = 0.45, 0.70, and 0.90 (light, medium,
and dark grey, respectively) and corresponding domains shaded. (b) The probability,
given by (7.1) is plotted as a function of the designed feedback pA,4 under three cases:
yc = 0.45 (light grey), yc = 0.70 (medium grey), yc = 0.85 (dark grey).

137



the robots to optimize team performance. In the following section we detail the

experiments planned to test these predictions.

7.2 Designed Feedback Experiments

Experiments that will test the hypothesis of this chapter are currently underway.

The experiments, led by Damon Tomlin of the Psychology Department, aim to test

human subjects receiving choice feedback from designed choice sequences to experi-

mentally verify our prediction that such a change in the choice feedback may result

in a significant performance increase for a focal subject.

Our predictions will be tested by each of the canonical reward structures we con-

sider for the TAFC task. While we expect interesting findings in each of the re-

ward structures, and aim to compare our directed feedback analysis of Chapter 6

with experimental results, the potential for increasing performance in the RO reward

structure is of particular interest.

The behavioral experiments which are currently underway have two components.

Since the social feedback analysis of this thesis relies on assuming feedback is directed,

we test a condition with directed social feedback in these new experiments. We

also switch the social feedback to designed feedback from decision makers that we

program. These can be interpreted as robotic decision makers that interact with a

human subject as a peer.

• Directed Social Feedback: Subjects in this experiment will face the TAFC task

under choice feedback conditions, but rather than receive feedback from M = 4

other subjects making live choices in real time (as was the case in previous

experiments), they will be receiving feedback from M = 4 “typical” decision

makers who had already participated in an experiment without social feedback.
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This allows us to acquire data for a focal decision maker in a network with

directed choice feedback.

• Designed Social Feedback: Subjects in this experiment will face the TAFC task

with directed choice feedback, but the feedback they receive will come from

M = 4 designed decision makers. The design of the decision making dynamics

for the four automated decision makers in the group will be as discussed in

Section 7.1. This experiment allows us to test our predictive capability, in

the RO task and other reward structures and help us to explore the effects of

designed feedback in each scenario.

The two primary goals are to perform experiments with directed feedback from

actual human subjects, and also to study the effects of designed social feedback.

The latter goal is one that should require extensive experimentation. While our

analysis in this chapter sheds light on a potentially important effect which arises in

the RO structure, determining the broad-reaching effects of designing feedback in

teams of decision makers is a sizable challenge. For instance, the effect on variance,

exploration, engagement (boredom), and even trust, are all critical issues which should

be considered.
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Chapter 8

Conclusion and Ongoing Work

The contributions of this thesis are comprised of several model-based analyses which

have led to the development of predictive tools to assist the design of mixed teams.

Predictions we’ve made using tools developed in this work have prompted the design

of new experiments. In the experiments discussed in Chapter 7, we aim to test our

hypotheses and gather data for mixed teams of human/robot decision makers in the

TAFC task. Relevant applications and methods of interaction between humans and

robots are also of particular interest. Through developing a robotic testbed that

supports real-time operation of multiple, robotic vehicles in a three-dimensional field,

we have directed our research toward more natural and relevant tasks for human and

robotic decision makers. Several experiments are planned that will use the multi-

vehicle testbed. Plans for those experiments are described in this chapter.

8.1 Summary

In the work of this thesis we have focused primarily on the TAFC task as presented in

Chapter 3. In Chapters 4 through 6, we presented the tools we developed to provide

a predictive capability for decision making in teams with social feedback. Chapters

4 and 5 focus on an individual decision maker that does not receive social feedback.
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In Chapter 6 our analysis is extended to allow for social feedback. In Chapter 7 we

used our results to identify a scenario where robotic decision makers designed into a

mixed team with humans can significantly improve performance.

While these tools apply directly to a subset of scenarios that the TAFC task can

be mapped to, the principles that we uncover in this work are likely to extend to

different and more complex tasks. In this chapter, we present plans to study a spatial

decision-making task with physical robots that work together with humans. Details of

the spatial task and plans for experiments with out robotic testbed appear in Section

8.2.2. There are also many real-world scenarios that the TAFC task can be mapped

to. In Section 8.2.1 we motivate an oil spill application for the TAFC task.

In Chapter 2 we presented details of the robotic testbed which is comprised of a

fleet of underwater vehicles that navigate a three-dimensional, virtual (imposed) re-

source field. The testbed will be used as part of a study to investigate decision-making

with humans and physical robots working together. Some planned experiments are

detailed in Section 8.2.2. Experiments that focus specifically on joint decision making

in mixed teams, but without using physical robots, were presented in Chapter 7.

8.2 Ongoing and proposed work

In this section we lay out experiments that are designed to incorporate human decision

makers in an integrated robotic decision-making task. The goal is to perform exper-

iments with physical robots that interact in real time with human decision makers

and to study a task in which the alternatives (choices) are given concrete meaning. In

Section 8.2.1 we introduce a relevant application for the TAFC task that we study in

this thesis. Through considering that application, and developing new experimental

paradigms with our psychologist and neuroscientist collaborators, we have created a

new task which more naturally maps to scenarios that have a spatial element. That
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task is described in Section 8.2.2. Experiments with our robotic testbed will test the

ability of humans and robots to work together in a relevant scenario such as this.

The experiments use the hardware described in Chapter 2 and are laid out in Section

8.2.3.

8.2.1 Application

Consider a decision-making application in which a team of decision makers works

together in a TAFC task. Take, for example, the aftermath of a large oil spill in the

ocean. A cleanup operation is taking place, and equipment is being distributed in the

field to collect the spilled oil. To maximize efficiency and speed the cleanup process,

a strategy that sends oil-collecting vessels to the areas of maximal concentration of

oil is employed. The problem at hand is then an information collection problem; i.e.

the decision-making team must determine the areas of maximal concentration of oil.

The team has access to information from autonomous vehicles equipped with

sensors that are also deployed in the contaminated area. Consider two autonomous

vehicles that move around in a fixed region. The vehicles have automated control that

prescribes their motion in the field. The movement is regular, although each vehicle

moves in a different pattern, perhaps according to a different control algorithm (each

may be optimized for different behavior). One vehicle may be programmed to find

the centroid of an area with given concentration, another may be programmed to

track gradients, or find boundaries in the field.

The decision-making team must acquire information from the autonomous vehicles

deployed in the oil spill region. The data is acquired in real time, and informs the

decision of where to send oil-collecting vessels. An operator in the team may query

a vehicle to get an assessment at that point. Consider the case in which the cost of

communication is high (which is certainly true for systems that operate below the

ocean surface). The operator then must choose between one of the vehicles to query.
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We denote the vehicles A and B. The metric (or “reward”) received in response to a

query should be one indicating the impact that the corresponding measurement and

location have on the assessment. The goal for the team is to maximize that impact.

Vehicle dynamics, and also the dynamics of the oil in the ocean, make for a time-

varying environment and a complex resource allocation and decision-making problem.

Although we have described a scenario that maps to the TAFC task we study, it is

likely the case that rewards received by human supervisors in this application are

noisy and much more complex than those studied in our experiments or the analyses

of Chapters 4-7. There are almost certainly, however, likely to be characteristics

in the reward structure which we have studied in this work, and subsequent effects

on decision-making behavior should be expected. For instance, convergent matching

points, and hidden points of optimality should exist for some time periods in this task.

It should be true that certain choice sequences would lead to higher performance.

Should this exercise be one that continues over time, there should be correlations

in the distribution of the oil since its movement follows some prescribed dynamics.

In that case, there is something to be learned about the environment and social

feedback should prove valuable. The approach we described in Chapter 7 could

be of considerable use. We envision tasking mixed teams with decision making in

applications of this nature. Those teams could be made up of some human and some

automated decision makers.

8.2.2 Experiments with Human-Robot Teams

We aim to gather experimental data for human subjects that work jointly with robotic

platforms in a real-world setting. Our robotic testbed allows us to validate results and

test hypotheses in a controlled environment which can be quickly reconfigured for an

array of experiments. This section details plans that have been made to study inte-
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grated decision making with humans and robots exploring three-dimensional resource

fields using the testbed presented in Chapter 2.

We have designed a number of experiments to run with humans and robots making

joint decisions about where and how to move in the field, and how to share information

within the team. While at first we are running experiments that integrate a decision

maker with a role equivalent to that of subjects in the two-alternative, forced-choice

task, we are also taking what we have learned from our predictive capability and

designing more complex paradigms for integrating the human input.

The bulk of experiments planned for the future of the testbed discussed in Chapter

2 will emphasize integrating human decision making for a spatial task. The spatial

task is similar to the TAFC task. In fact, the task we consider grew out of the

studies, and is informed by findings with the TAFC task. While the TAFC task

can be thought of as one-dimensional (the state of decision makers is confined to an

interval defined by y ∈ [0, 1]) the spatial task is two dimensional. The action space

(available choice alternatives) for the spatial task is larger as well.

In the spatial task developed by Damon Tomlin, subjects see a grid of locations

that they can visit. They make the choice to move from their current location to

another location by making one step either up, down, left, or right. They may also

choose to remain at the current location. The size of the action space is then 5

alternatives.

Damon Tomlin has run some experiments with human subjects performing the

spatial task. An analysis of the data that was performed by Paul Reverdy and

Andrea Nedic has indicated that subjects in the spatial task have a point in the space

intended as a destination. The hypothesis is that individual choices are made to

navigate toward a target, rather than for the sake of visiting each point along the

way. This preliminary finding has motivated a slight change to the spatial task from

its original design by Damon Tomlin.
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One convenient, and common, way to task autonomous vehicles that are deployed

in a field is to assign a target to each vehicle. Vehicles have onboard control that

directs them to the assigned target. In this context, vehicles are sequentially assigned

targets, once they arrive at a target they remain on location or continue to the next

target. By modifying the spatial task to allow decision makers to choose targets,

rather than the five navigation-based choices (up/down, left/right, and stay), we can

link rigorous studies of human decision making in an abstract task with a concrete

problem of interaction and joint decision making with humans and robots.

8.2.3 Experimental variations

We have a plan to go about studying joint decision making with humans and robots

using our multi-vehicle, robotic testbed and a remote human interface (see Chapter 2

for hardware details). The approach is to use physical robots and to add complexity

to the study in a systematic way. The ultimate goal is to draw conclusions about

teams of human decision makers who are integrated with a team of robotic decision

makers. The robotic elements include the mobile robots that carry out tasks and

explore environments, but may also include automated decision-making capabilities

which act as peers to the human decision makers. This concept of mixed teams is

discussed in depth in Chapter 6.

A subject in the robotic testbed experiments interacts with the remote interface

we have designed and built to incorporate human input. The human is provided

with live video feeds from the robots and a map with vehicle location(s) is displayed

as well. The map is a two-dimensional area that shows vehicle location(s) in the

horizontal plane. The interface allows for the subject to select a location on the

map, thereby identifying that location as a target. Feedback on performance is also

displayed. Performance in these experiments depends upon the underlying reward

structure which is imposed via a virtual resource field. Several resource fields will be
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imposed, each being mapped from reward structures previously studied in the spatial

task. In each variation the duration of the experiment is fixed.

The first variation of our experiment is designed to include one human decision

maker in the loop. The subject chooses targets in a two-dimensional area with an

imposed resource field. A single vehicle moves to the assigned target (a cylinder about

the point in three-dimensions). Then the vehicle remains on station until a new target

is selected. Targets may also be switched before a vehicle arrives. Feedback of the

reward (resource measured by the robot along its route to the target) is provided

at a constant, steady rate after each target is chosen. The subject continues with

the task, sequentially identifying targets, or choosing to keep the most recent target

active. Their goal is to maximize accumulated reward. In this first variation, the

imposed resource field is time invariant, and two-dimensional.

A number of variations of the task can be considered in the case of a single

human subject. These include allowing for different reward feedback paradigms,

and making use of multiple vehicles. In each variation, feedback of the reward is

provided at a constant, steady rate, but can also include additional information.

For example, a map of the estimated field based on accumulated measurements or

a map of uncertainty in the information can be displayed by the interface using an

overlay so that vehicle and target locations are displayed together with the additional

information. When uncertainty in the information is provided as a performance

metric, the subject’s goal is to minimize the uncertainty.

In experiments involving multiple vehicles, several methods of deployment are

planned. The subject is still tasked with selecting targets, and vehicles are used to

visit those targets, but now a coordinated formation of vehicles can collect multiple

measurements and provide filtered, more accurate estimates of the field at the for-

mation’s centroid. Vehicles can travel toward the selected target while also climbing

the gradient of the imposed field, or performing other adaptive coordinated behav-
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iors such as dynamically servicing targets to minimize wait times. We also plan to

add constraints to the physical space; i.e. obstacles, danger zones, adversaries, and

additional environmental dynamics such as current.

Complexity can also be added to the imposed resource field. We plan to use fields

that are time-varying and “consumable” so that measurements depend on the time

and location they are taken. Ultimately, fields considered in these experiments will

also vary in all three spatial dimensions.

The next step is to incorporate input from multiple subjects, each selecting tar-

gets in parallel. This will require additional infrastructure to accommodate multiple

human decision makers. The interface in its current form is designed to incorporate a

single human in the system. Multiple subjects will choose targets in a two-dimensional

landscape (in parallel). Each of the subjects’ targets is serviced by a vehicle (or a

vehicle group). We also consider the case of mixed human / robot decision makers in

this context. Feedback of the reward can be provided with the same variations men-

tioned previously but will also include social feedback so that information is shared.

One practical way of sharing relevant information is to provide an estimate of the

resource field as computed from all of the measurements (from each subject).

There is a large space of alternative variations of these experiments. It should

be noted that another way to integrate a team with this testbed is by enforcing the

constraint that only one decision is made for the group. This is in contrast to the

tasks we have studied since each decision maker in the group makes a decision in

parallel to the rest of the group. Instead, all of the decision makers can work together

to agree on single, collective decision. The testbed can be adapted to incorporate this

type of decision-making protocol as well. It is likely that such studies would prove

useful and result in interesting findings.

By starting with a well-defined task that can be modeled and studied analytically,

we have set about building an experimental study of joint decision making in mixed
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teams that has a strong foundation in well-understood principles. Much work is yet

to be done toward this end, but the work in this thesis provides a starting point for

designing mixed teams of decision makers that are comprised of humans and robots.

Though the TAFC task is simple in its formation, we’ve shown that human subjects

exhibit suboptimal behavior when faced with some reward structures and are also

sensitive to social feedback – findings that suggest formal studies of the decision

making in this context are warranted.

Through systematic increases in the complexity of our analysis, and collabora-

tions with psychologists and neuroscientists performing experiments with human sub-

jects, we’ve developed valuable tools for predicting decision-making behavior in mixed

teams that share social feedback. In this section we’ve outlined how to move forward

with these studies with the goal of further developing design tools for building mixed

teams. These studies prove to be rewarding from both a scientific and an engineering

perspective. As this research continues, advancements will be made not only toward

understanding how humans perform complex tasks, but also toward how to engineer

systems to assist humans when the need arises.
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