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Abstract

In this thesis we use nonlinear systems analysis to study dynamics and design control

solutions for vehicles subject to hydrodynamic or aerodynamic forcing. Application of

energy-based methods for such vehicles is challenging due to the presence of energy-

conserving lift and side forces. We study how the lift force determines the geometric

structure of vehicle dynamics. A Hamiltonian formulation of the integrable phugoid-

mode equations provides a Lyapunov function candidate, which is used throughout

the thesis for deriving equilibrium stability results and designing stabilizing control

laws.

A strong motivation for our work is the emergence of underwater gliders as an im-

portant observation platform for oceanography. Underwater gliders rely on buoyancy

regulation and internal mass redistribution for motion control. These vehicles are

attractive because they are designed to operate autonomously and continuously for

several weeks. The results presented in this thesis contribute toward the development

of systematic control design procedures for extending the range of provably stable

maneuvers of the underwater glider.

As the first major contribution we derive conditions for nonlinear stability of longi-

tudinal steady gliding motions using singular perturbation theory. Stability is proved

using a composite Lyapunov function, composed of individual Lyapunov functions

that prove stability of rotational and translational subsystem equilibria. We use the

composite Lyapunov function to design control laws for stabilizing desired relative

equilibria in different actuation configurations for the underwater glider.

We propose an approximate trajectory tracking method for an aircraft model.

Our method uses exponential stability results of controllable steady gliding motions,

derived by interpreting the aircraft dynamics as an interconnected system of rota-

tional and translational subsystems. We prove bounded position error for tracking

prescribed, straight-line trajectories, and demonstrate good performance in tracking
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unsteady trajectories in the longitudinal plane.

We present all possible relative equilibrium motions for a rigid body moving in a

fluid. Motion along a circular helix is a practical relative equilibrium for an under-

water glider. We present a study of how internal mass distribution and buoyancy of

the underwater glider influence the size of the steady circular helix, and the effect of

a vehicle bottom-heaviness parameter on its stability.
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Chapter 1

Introduction

In this thesis we focus on using nonlinear systems tools to study dynamics of vehicles

subject to hydrodynamic or aerodynamic forces and moments. Our work is largely

motivated by the emergence of a new class of autonomous underwater vehicles (AUVs)

called underwater gliders [1, 2]. Underwater gliders are autonomous vehicles that

rely on changes in vehicle buoyancy and internal mass redistribution for regulating

their motion. They do not carry thrusters or propellers and have limited external

moving control surfaces. They are underactuated and difficult to maneuver. On

the other hand, underwater gliders are extremely energy efficient and have already

demonstrated high endurance, making them very attractive for oceanographic surveys

requiring long-term deployment and autonomous operation [3, 4].

The motion of an underwater glider is determined by its shape, size, total mass

and distribution of mass, as well as properties of the surrounding fluid. In this thesis

we consider a physics-based model derived from rigid body equations of motion for

describing underwater glider dynamics. The model we use incorporates important

viscous effects in the form of added mass and added inertia caused by a heavy sur-

rounding fluid, and in the form of external hydrodynamic forces and moments caused

by the motion of the rigid body relative to the fluid. The equations of motion are
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derived in [5, 6] and have the same structure as the US Navy standard submarine

equations of motion. The latter set of equations were first presented in [7] and re-

vised in [8]. The model we consider has fewer number of external moment and force

coefficients than those present in the most general set of equations for an underwater

vehicle. A high-fidelity coefficient-based vehicle model would require a detailed pa-

rameter estimation and experimental validation, which is not a focus of this thesis.

Detailed estimation of parameters was performed in [9] for underwater gliders; similar

work on other underwater vehicles includes [10] for the REMUS vehicle, [11] (a pro-

peller driven low-cost AUV), and [12] for the NPS AUV II. On the other hand, in this

thesis we attempt to understand underwater glider dynamics by employing approxi-

mations that focus our attention on certain dynamical structures. These dynamical

structures play a critical role in determining many important modes of motion and

the associated stability properties.

1.1 Motivation

Since underwater gliders are underactuated and it is very desirable to design con-

trollers that contribute towards high endurance for these vehicles, we devote a con-

siderable amount of attention towards understanding their natural dynamics. The

goal is to be able to beneficially use natural dynamics in designing control algo-

rithms that demand minimal on-board energy consumption. Our approach involves

the application of several tools from nonlinear systems theory [13]. We seek to derive

analytical results that identify parameters responsible for certain useful properties of

the system. As a consequence, our results characterize the qualitative properties of

the underwater glider across a wide range of vehicle parameters. For example, one of

our stability results for longitudinal plane steady gliding (proved using a composite

Lyapunov function in Chapter 5) depends critically only on the signs of certain ve-
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hicle parameters. Furthermore, the stability results, although mostly local in nature,

cover a wider range of operating conditions.

The nonlinear systems based approach taken in our work complements various

vehicle specific studies that typically focus on designing and implementing control

systems for regulating a specific set of motions. Linearized dynamics are commonly

used in such studies. Examples of vehicle specific studies include work related to three

commercially available underwater gliders: the Slocum glider (shown in Figure 1.1)

[14] developed by Webb Research Corporation, the Spray glider [15] of Scripps Insti-

tute of Oceanography and the Seaglider [16] developed at University of Washington.

Examples of similar work on design and control system development of other AUVs

are [11, 17, 10] for the REMUS vehicle, [18] for the Starbug AUV developed for en-

vironmental monitoring on the Great Barrier Reef off the Australian coast, [19] for

the SeaBED AUV developed for high resolution optical and acoustic sensing, [20, 21]

for a line of low-cost miniature AUV’s developed at Virginia Polytechnic Institute

and State University and the United States Naval Academy. Many of these vehi-

cles incorporate separate proportional-integral-derivative (PID) type control loops

for regulating motion along different motion axes or for regulating a desired vehicle

behavior. For instance, the Slocum glider uses proportional control to regulate the

position of an internal movable mass in order to achieve a desired vehicle pitch. The

controller gains are tuned on the basis of user experience, experimental testing and

linear analysis.

Nonlinear systems analysis and control design attempt to exploit inherent system

nonlinearities, and develop solutions that require low control effort and guarantee

performance over a wide operating regime. We present work that attempts to cast

important elements of glider dynamics in a modern geometric framework of mechanics

[22]. The geometric framework provides various tools that determine the properties

of a system based on its dynamic structure. There is a growing body of litera-
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Figure 1.1: A Slocum underwater glider in Monterey Bay, off the California coast
during the Autonomous Ocean Sampling Network-II experiment in August 2003. The
glider was operated by David Fratantoni of Woods Hole Oceanographic Institution.

ture on applying geometric tools for dynamical systems analysis and control design.

For example, systematic nonlinear control design techniques like the method of con-

trolled Lagrangians [23] and the equivalent method of interconnection and damping

assignment [24] are emerging. There are technical challenges in directly applying

such tools to systems involving the aero/hydrodynamic forces due to the presence of

energy-conserving lift and side-force components, but these tools are very attractive

especially in the light of a demand for low-energy control solutions for underwater

gliders and other AUVs.

Although the results we present in this thesis pertain mainly to the underwater

glider application, the methods and approaches we use are applicable to other AUVs

and to other types of vehicles such as airships and sailplanes. Airships in particular

have strong similarities in their dynamics with underwater gliders. Both operate in

a surrounding fluid whose relative density is comparable to their own. Added mass
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effects are important in both cases. The reference [25] presents a dynamic model of

the airship and analysis of various modes of motion. References [26, 27, 28, 29, 30]

present control system development and numerical simulation studies for airships.

1.2 Thesis Overview

Motivated by the emergence of underwater gliders as a promising technology and by

the strength of nonlinear systems analysis and control design methodologies, we focus

on the following set of problems in this thesis:

1. Characterize the parameter dependence and nonlinear stability of underwater

glider relative equilibrium motions that may be utilized for nonlinear control

synthesis.

2. Design low-energy control solutions that may be applicable to the general class

of vehicles subject to aerodynamic forces and moments.

We study dynamic models of underwater gliders and aircraft of different orders of

complexity. We calculate the associated relative equilibrium motions and study their

stability properties. We design control laws to regulate desired steady motions and

also to track desired unsteady trajectories.

Chapter 2 presents background information about development of underwater

glider technology as well as study of their dynamics and control design. We briefly

describe commercially available underwater gliders and important elements of their

construction that help generate controllable gliding motions. We present a mathemat-

ical model [6] that describes glider dynamics and discuss the properties of this model,

including the inherent approximations. We specialize this model to the longitudinal

plane of the vehicle and survey linear systems analysis results for a laboratory scale

underwater glider ROGUE [31], developed at Princeton University. We also discuss
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various nonlinear control design approaches that have been employed for aerospace

and underwater vehicles, and highlight the important aspects of our approach.

In Chapter 3 we present results from the Autonomous Ocean Sampling Network

II (AOSN II) project [32], in which underwater gliders played a pivotal role in ocean

sampling. Underwater gliders are expected to play an increasingly important role in

oceanography in the forthcoming decades. This motivates further research in vehicle

design and control synthesis. As we already noted, control laws that demand low

energy are critical for underwater gliders. We further discuss various ways in which

nonlinear systems analysis may contribute towards development of underwater glider

technology.

The hydrodynamic lift force is an important characteristic of the underlying struc-

ture of underwater glider dynamics. Since lift is an energy conserving force, it can

potentially be incorporated within a Hamiltonian framework. In Chapter 4 we present

such a framework for the conservative part of the translational dynamics of the under-

water glider in the longitudinal plane. The system we describe is the phugoid mode of

underwater glider dynamics, much like the phugoid mode of aircraft [33, 34]. We dis-

cuss connections between the phugoid-mode dynamics and Hamiltonian descriptions

of some well known, planar mechanical systems.

In Chapter 5 we use singular perturbation theory [13, 35] to study the dynamics

of underwater gliders. We identify slow and fast subsystems, and reduce the glider

dynamics to the slow subsystem. This slow subsystem is a generalization of the

phugoid-mode model of Chapter 4. We derive Lyapunov functions to prove exponen-

tial stability of the equilibria of slow and fast subsystems, and use these functions to

construct a composite Lyapunov function for proving the asymptotic stability of the

relative equilibrium of the underwater glider. The composite Lyapunov function is

also used to derive estimates of the region of attraction of glider relative equilibria.
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Chapter 6 presents application of results from Chapter 5 to design control laws for

stabilizing desired steady gliding motions of underwater gliders. We consider three

different control actuation configurations: pure torque control, buoyancy control, and

elevator control. The elevator control model incorporates a moment-to-force coupling

term that renders control synthesis challenging. For all three control configurations,

our control synthesis is based on the composite Lyapunov function constructed in

Chapter 5.

In Chapter 7 we apply gliding stability results to the position tracking problem

for a Conventional Take Off and Landing (CTOL) aircraft. The CTOL aircraft model

considered in [36] has been widely studied as a prototypical aircraft model for non-

linear control design. Common nonlinear control approaches have been based on

feedback linearization techniques. Such methods have to deal with the nonminimum

phase nature of the problem and may yield large control inputs. We present an al-

ternative method, based on exponential stability of steady gliding motions. We first

prove exponential stability of CTOL steady glides by interpreting the aircraft as an

interconnected system of translational and rotational subsystems. We then propose

an approximate trajectory tracking methodology in which a desired trajectory is ap-

proximated using a set of steady glides.

Chapter 8 focuses on the three-dimensional steady motions of underwater gliders.

We first describe all possible relative equilibrium motions for a rigid body moving

through a fluid in three-dimensional space. Only a subset of these relative equilibria

may be realized by underwater gliders, and they correspond to motion along circular

helices and straight lines. Furthermore, the range of properties of possible circular

helices and straight lines depends on vehicle parameters. We present a simulation of

circular helical motion using model parameters corresponding to a Slocum underwater

glider. We also calculate a subset of the envelope of attainable circular helical motions

by adjusting the vehicle mass and internal mass redistribution. We investigate the

7



stability of motion along a circular helix. In particular we discuss how stability

changes with respect to a bottom-heaviness parameter.

Chapter 9 summarizes the methods and results presented in this thesis, and indi-

cates some avenues for related future work.
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Chapter 2

Underwater Glider Modelling and

Control

Our development of nonlinear stability results and control methodologies is largely

motivated by the emergence of a new class of ocean vehicles called underwater glid-

ers. These vehicles are rapidly becoming important assets in ocean sampling and

have strong potential for applications in environmental monitoring and real-time as-

sessment of ocean dynamics. The high endurance of underwater gliders enable their

long-term deployment in the oceans. Being autonomous they have lower operating

costs, making them ideal candidates for large scale ocean sampling tasks. In Chapter

3 we discuss results from an experimental ocean sampling project in which underwa-

ter gliders demonstrated their capabilities and played an important role in collecting

valuable data for ocean scientists. Underwater gliders are also inspiring development

of similar technologies for exploring extra-terrestrial dense environments such as the

atmosphere of Venus or the speculated oceans of Europa, one of Jupiter’s moons [37].

In §2.1 we introduce a set of underwater gliders that have been successfully de-

ployed in the oceans. We discuss important elements of underwater glider configura-

tion and how they determine the nominal motion of the vehicle. In §2.2 we present a

9



mathematical model that describes the dynamics of underwater gliders. We describe

what aspects of underwater glider dynamics have been accounted for in the model

and the inherent approximations. We specialize the dynamics to the longitudinal

plane in §2.3 and summarize linear stability and control results for a laboratory scale

underwater glider developed at Princeton University. In §2.4 we briefly survey dif-

ferent nonlinear control methods for underwater and aerospace vehicles, and indicate

the main characteristics of our approach.

2.1 Ocean-Class Underwater Gliders

The development of ocean-class underwater gliders has been primarily driven by a

need to develop low-cost observational platforms that can efficiently and autonomously

gather a wide range of scientific data from the ocean for long periods of time. This

need is being addressed by a set of multi-institutional research programs supported by

the United States Office of Naval Research (ONR), including the Autonomous Ocean

Sampling Network (AOSN) [3] and Adaptive Sampling and Prediction (ASAP) [4]

projects discussed in Chapter 3.

The vision of underwater gliders playing an important role in efficient data gath-

ering of the ocean was laid out in an article written by Henry Stommel [38]. This

vision was recognized in the establishment of the AOSN research initiative [39]. The

AOSN project has led to the development of three sea-faring underwater gliders - the

Slocum [14] developed by Webb Research Corporation, the Spray [15] developed by

Scripps Institution of Oceanography and the Seaglider [16] developed at University

of Washington. A review of operation of these gliders, their design considerations

and technical specifications, including a discussion of the navigational and science

sensors they carry and their communication capabilities, is provided by Rudnick et al

[1]. Below we discuss the most important features pertaining to their dynamics and

10



control.

The Seaglider, Slocum, and Spray propel themselves by changing their buoyancy

and redistributing internal mass. The basic principle of operation is very simple:

a rigid body immersed in a fluid sinks, floats or rises depending on whether it is

negatively buoyant (i.e., heavier with respect to the surrounding fluid), neutrally

buoyant or positively buoyant. If such a rigid body is also equipped with lifting

surfaces, such as wings, it can achieve motion in the horizontal plane in addition

to the vertical motion due to buoyancy. A purely horizontal displacement may be

obtained by combining a series of downward and upward straight gliding motions as

shown in Figure 2.1.

Lighter Heavier

Net Horizontal Displacement

Figure 2.1: Nominal Underwater Glider Motion

The mechanism on the underwater glider that effects the change in buoyancy is

called the “buoyancy engine”. All three gliders mentioned in this section pump a

fluid (oil or water) between an internal reservoir and an external bladder in order

to change the vehicle volume, thus changing their relative density with respect to

the surrounding fluid and their buoyancy. The pumping energy is typically derived

from electric batteries. There is also a version of the Slocum glider that utilizes

the thermal gradient of the ocean (deeper water is cooler) to derive the pumping

energy. The thermal Slocum has an external bladder, which contains a working fluid

that undergoes a volume change due to a change of state caused by the difference in

temperatures between the near-surface water and deep-sea water.
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The battery pack (or an alternative internal mass) is moved fore and aft to move

the center of gravity of the underwater glider fore and aft, and consequently to adjust

vehicle attitude and flight path angle. An effective lateral displacement of the center

of gravity that causes a rolling motion may be achieved by rotating an asymmetric

portion of the battery pack about the longitudinal axis. In Seaglider and Spray, the

roll induces a yawing moment that is used to steer the underwater glider. The Slocum

has a dedicated external rudder for steering control.

2.2 Mathematical Model for Underwater Glider

Dynamics

A mathematical model for describing underwater glider dynamics is presented in [6, 5].

In this section we present the equations of motion of this model. The reader is referred

to [5] for a derivation of equations of motion. The underwater glider is modelled as

a homogeneous rigid body containing two internal point masses. The vehicle hull is

considered to be homogenous with a total mass of mh. One internal point mass, whose

(controllable) value we denote by mb, models the buoyancy regulating mechanism of

the underwater glider. Although mb may be distributed within the internal volume

of the vehicle, rotational inertia of this mass is negligible. This point mass is fixed

at the center of buoyancy (CB) of the vehicle. The other internal point mass, whose

constant value we denote by m̄, models the internal moving battery packs of the

glider. The (controllable) position of m̄ with respect to the CB of the rigid body

is denoted by rP = (rP1, rP2, rP3)
T ∈ R3. See Figure 2.2 for an illustration of the

positions of the point masses within the hull of the underwater glider.

We assume the rigid body to be ellipsoidal for the sake of simplicity. The CB of

the glider is located at the center of the ellipsoid. We attach a frame of reference at

the CB. This is the body fixed frame. We align the body fixed frame such that body

12



mb

  _
 m

 rP

Figure 2.2: Point mass locations within the hull of the underwater glider.

1 axis lies along the long axis of the glider, positive in the direction of the nose. The

body 2 axis lies in the plane of the wings and is orthogonal to the body 1 axis. The

body 3 axis is orthogonal to the body 1 and 2 axes, as shown in Figure 2.3.

i

j

k

1
e

2
e

3
e

Figure 2.3: Body frame assignment

The position of the origin of the body fixed frame with respect to an inertial frame

(fixed-to-earth frame) is b ∈ R3. The orientation of the body fixed frame is specified

by a rotation matrix R ∈ SO(3), where SO(3) is a Lie group (see Appendix A for the

definition of Lie group) containing all 3 × 3 orthogonal matrices whose determinant

is equal to 1. Rotation matrices have certain special properties that we will use in

our analysis and control design.

We denote the inertial velocity of the underwater glider in body-fixed frame co-

13



ordinates by the vector v = (v1, v2, v3)
T ∈ R3 and in inertial frame coordinates by

ḃ ∈ R3. The angular velocity is Ω = (Ω1, Ω2, Ω3)
T ∈ R3 in body coordinates and

ω ∈ R3 in inertial coordinates. The rotation matrix R transforms vectors in body

coordinates to corresponding vectors in inertial coordinates. Thus, ḃ = Rv and

ω = RΩ.

2.2.1 Kinematics

The configuration of the underwater glider system can be completely described by

specifying the following variables: (b, R, rP ) ∈ R3 × SO(3) × R3. We do not im-

pose any restrictions on how the underwater glider moves in space or the way m̄

moves internally. Thus, the kinematics of the system are described by the following

equations:

db

dt
= Rv (2.1)

dR

dt
= RΩ̂ (2.2)

drP

dt
= ṙP . (2.3)

The ˆ operator used in equation (2.2) maps vectors x = (x1, x2, x3)
T ∈ R3 to 3 × 3

skew symmetric (cross-product-equivalent) matrices as follows:

x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0




.

For any x,y ∈ R3, x× y = x̂y.
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2.2.2 Dynamics

Before we present the equations of motion describing the dynamics of the under-

water glider, we need to introduce the inertia and mass matrices. We consider the

contributions of the rigid body plus buoyancy point mass (mb) separately from the

internal moving point mass (m̄). Let the total stationary mass of the underwater

glider be ms = mh + mb, where mh is the mass of the rigid body. Js = Jh is the

moment of inertia matrix corresponding to the stationary mass. The mass/inertia

matrix corresponding to the stationary mass of the vehicle is

Is =




msI3 0

0 Js


 ,

where I3 is the 3× 3 identity matrix.

The motion of the underwater glider induces a flow of the surrounding fluid,

which in turn affects the glider dynamics. For example, in order to accelerate the

underwater glider it is also necessary to accelerate some of the surrounding fluid.

Thus, a greater force or moment is required to change the linear or angular momentum

of the underwater glider compared to an identical vehicle operating in a vacuum. This

effect is captured through an added mass/inertia matrix

If =




Mf DT
f

Df Jf


 ,

where Mf , Jf and Df are the added mass, added inertia and the added cross term

matrices respectively. The elements of If depend on the external shape of the rigid

body and the density of the surrounding fluid. Their computation is described in

standard hydrodynamics textbooks such as [40, 41]. If we neglect the added mass

and inertia contributions of the wings and tail of the underwater glider assuming
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that at low angles of attack the contribution of the wings and tail is dominated

by lift, drag and associated moments, the matrices Mf and Jf can be taken to be

diagonal and Df = 0. This approximation is used throughout this thesis. With this

approximation we can define the total mass, M , and inertia, J , matrices corresponding

to the stationary mass of the underwater glider system as follows:

M = msI3 + Mf = diag(m1,m2,m3)

J = Js + Mf = diag(J1, J2, J3)

References [6, 5] consider more general arrangements of internal point masses. The

arrangement we consider in this thesis is sufficient for describing the most important

aspects of underwater glider dynamics.

The dynamical equations of motion are:

v̇ = M−1F̄ (2.4)

Ω̇ = J−1T̄ (2.5)

Ṗ P = ū, (2.6)

where,

P P = m̄(v + ṙP + Ω× rP )

F̄ = (Mv + P P )×Ω + m0gRT k + Fext − ū

T̄ = (JΩ + r̂P P P )×Ω + Mv × v + m̄gr̂P RT k + Text − r̂P ū.

In the above equations m0 is the buoyancy of the vehicle. It is the total mass of the

vehicle minus the mass of the displaced fluid: m0 = mh +mb + m̄−mdf , where mdf is

the mass of the displaced fluid. The vector k = (0, 0, 1)T represents the direction of

gravity in the inertial reference frame. The vector P P = (PP1, PP2, PP3)
T represents
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the momentum of the internal moving point mass in body coordinates. The vector

ū = (u1, u2, u3)
T is the total force acting on the internal moving point mass, and is

equal to

ū = P P ×Ω + m̄g
(
RT k

)
+ ũ, (2.7)

where ũ = RT
∑K

k f intk
in the total internal force exerted by the rigid body on

the internal point mass, expressed in body coordinates. ũ may be considered to

be a control force that can be specified. Alternatively, we can use relation (2.7) to

interpret ū as the control force, which is the interpretation used in [6]. Fext includes

all the external forces acting on the underwater glider system except gravity, and

Text are external moments. The non-gravitational external forces we consider are the

hydrodynamic lift, drag and side forces, and external moments are the hydrodynamic

moments about the three body axes.

2.2.3 Buoyancy Control

The buoyancy engine of the glider is modelled using a control signal, u4, which rep-

resents the rate of change of the buoyancy point mass:

ṁb = u4. (2.8)

2.2.4 Further Discussion of Model Components

Equations (2.1)-(2.8) completely describe the motion of the underwater glider system.

Below we list the important components of the model.

1. The added mass and added inertia effects are included in the matrices Mf and

Jf , embedded in M and J respectively. We have made an assumption that Mf

and Jf are diagonal and neglected the cross term Df . These are reasonable
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assumptions for the purpose of studying the dynamics and the use of feedback

control compensates the perturbations due to the terms that have been ignored.

2. The buoyancy engine is modelled by equation (2.8). Typically there is a limit

on the magnitude of the control signal u4. The saturation of u4 is considered in

the control laws that we design: the control laws do not require a rapid change

in the vehicle buoyancy.

3. The viscous forces and moments are included in Fext and Text,

Fext =




−D

SF

−L




and Text =




MDL1

MDL2

MDL3 ,




where D, L, and SF represent the hydrodynamic lift, drag, and side forces

respectively. MDLi
are the hydrodynamic moments. We use a coefficient-based

model for the hydrodynamic forces and moments, similar to the models used in

the aircraft dynamics literature [42, 43], but considerably simpler. Our goal is to

include important aspects of vehicle dynamics using a small set of parameters so

that the resulting model is amenable to tools of nonlinear systems and control.

While the model we consider does not include all dynamical effects, the control

laws and design insights gained from the analysis will be useful in analytical

or numerical analysis of more detailed models. Furthermore, use of feedback

control is expected to provide robustness to unmodelled dynamics. The hy-

drodynamic force and moment model described below fulfills the objective of

encoding important dynamical effects as well as having a reasonably small set
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of vehicle parameters:

D = (KD0 + KDα2)V 2 (2.9)

SF = KββV 2 (2.10)

L = (KL0 + KLα)V 2 (2.11)

MDL1 = KMRβV 2 + Kq1Ω1V
2 (2.12)

MDL2 = (KM0 + KMα + Kq2Ω2)V
2 (2.13)

MDL3 = KMY βV 2 + Kq3Ω3V
2, (2.14)

where α = tan−1
(

v3

v1

)
is the angle of attack and β = sin−1

(
v2

V

)
is the sideslip

angle. See Figure 2.4 for a pictorial representation of angles α and β; α is the

angle from the projection of the velocity vector on the body 1-3 plane to the

body 1 axis and β is the angle from the projection of the velocity vector on the

body 1-3 plane to the velocity vector. The hydrodynamic coefficients appearing

in the above equations may be estimated by using reference data for generic

aerodynamic bodies [44], and verified either by wind tunnel tests or parameter

identification techniques. Reference [45] presents estimates of lift, drag and

pitching moment coefficients based on wind tunnel experiments for a scaled

model of a Slocum glider. Estimates of hydrodynamic coefficients calculated

using steady gliding data collected during sea trials of a Slocum underwater

glider are presented in [46].

4. The coupling between the position and momentum of the internal moving point

mass m̄ and the rigid body motion appears in the terms containing rP , P P and

ū. Equation (2.6) describes the dynamics governing the motion of m̄. We recall

that m̄ is free to move inside the rigid body. However, in most glider designs

the motion is constrained by some sort of internal mechanism such as a railing
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Figure 2.4: Schematic showing the angle of attack α and side slip angle β for a
torpedo-shaped underwater glider (like the Slocum [14]).

or a screw. The constraint forces causing such a motion must be included in ū.

2.3 Longitudinal Plane Equations of Motion

The plane formed by the 1 and 3 body axes of the underwater glider is longitudinal

plane. The longitudinal plane is an invariant plane under the dynamics represented

by equations (2.1)-(2.8) provided that the vehicle is symmetric about the same plane.

If such a vehicle starts with a set of initial conditions that correspond to motion in

the longitudinal plane (the required conditions are v2 = 0, Ω1 = Ω3 = 0, rP2 = 0,

PP2 = 0 and RT k · j = 0) and if u2 = 0 the vehicle will remain in the longitudinal

plane for all time. The last condition listed within parentheses implies that the

gravity vector must be in the longitudinal plane of the vehicle. Further assuming

(without loss of generality) that the invariant longitudinal plane of the underwater
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glider coincides with the x-z plane in the inertial reference frame, we can write the

equations describing the motion of the underwater glider as follows:

ẋ = v1 cos θ + v3 sin θ (2.15)

ż = −v1 sin θ + v3 cos θ (2.16)

θ̇ = Ω2 (2.17)

v̇1 =
1

m1

{
−m3v3Ω2 − PP3Ω2 −m0g sin θ + L sin α−D cos α

− u1

}
(2.18)

v̇3 =
1

m3

{
m1v1Ω2 + PP1Ω2 + m0g cos θ − L cos α−D sin α

− u3

}
(2.19)

Ω̇2 =
1

J2

{
(m3 −m1) v1v3 − m̄g (rP1 cos θ + rP3 sin θ) + MDL2

+ rP1u3 − rP3u1 − Ω2 (rP1PP1 + rP3PP3)
}

(2.20)

ṙP1 =
1

m̄
PP1 − v1 − rP3Ω2 (2.21)

ṙP3 =
1

m̄
PP3 − v3 + rP1Ω2 (2.22)

ṖP1 = u1 (2.23)

ṖP3 = u3 (2.24)

ṁ0 = u4, (2.25)

where θ is the pitch angle, equal to the sum of the angle of attack α and flight path

angle γ, as shown in Figure 2.5. We note that equation (2.4) and the above set of

equations assume a constant acceleration due to gravity (the flat-earth assumption).

Table 2.3 summarizes definitions of all variables used in equations (2.15)-(2.25).

If the controls u1, u3 and u4 do not depend on the translational position (x, z), the

longitudinal dynamics are invariant with respect to the position of the underwater

glider. This implies that the longitudinal dynamics can be further reduced to equa-

tions (2.17)-(2.25). The fixed points of this reduced system are the relative equilibria
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α angle of attack
D drag force component
g acceleration due to gravity
L lift force component
m0 vehicle heaviness
m1 added mass along body-1 direction
m3 added mass along body-3 direction
m̄ internal moving mass

MDL2 pitching moment
J2 added moment of inertia along the body-2 direction
Ω2 pitch rate

(PP1, PP3) total momentum of m̄ in body coordinates
(rP1, rP3) position of m̄ with respect to CB in body coordinates

θ pitch angle
(u1, u3) components of total force on m̄ in body coordinates

u4 buoyancy control
(v1, v3) velocity components in body coordinates
(x, z) inertial position coordinates of the CB

Table 2.1: Definitions of all variables appearing in the underwater glider longitudinal
equations of motion (2.15)-(2.25).

L

D
m g

e3

e1

V

MDL
g

a

q

0

i

k

2

Figure 2.5: External forces and moment in the longitudinal plane.
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of the longitudinal dynamics, and they correspond to steady gliding motions of the

underwater glider.

The vehicle speed V =
√

v2
1 + v2

3 and flight path angle γ are constant during

a steady gliding motion. In [6] steady gliding paths corresponding to a prescribed

equilibrium speed Ve and equilibrium flight path angle γe were computed. The hy-

drodynamic lift and drag coefficients determine the permissible values of γe within

the interval (−π
2
, π

2
). In [6] it was shown that γe must lie within the following set:

γe ∈


tan−1


2

KD

KL


KL0

KL

+

√(
KL0

KL

)2

+
KD0

KD





 ,

π

2





⋃



−

π

2
, tan−1


2

KD

KL


KL0

KL

−
√(

KL0

KL

)2

+
KD0

KD









 (2.26)

The magnitude of the shallowest steady flight path angle is smaller for lower values

of KD(> 0). Given Ve and a permissible γe, reference [6] computes the corresponding

equilibrium values of m0, α, rP1 and rP3. It is shown that in general there exists a

one-parameter family of solutions for equilibrium internal mass position (rP1e , rP3e)

corresponding to a steady gliding motion. The projection of (rP1e , rP3e) along the

direction of gravity determines the “bottom-heaviness” [47] of the vehicle, which

affects the stability of the equilibrium motion.

For a given (rP1e , rP3e) and equilibrium buoyancy m0e, the equilibrium speed and

flight path angle are given by the following equations.

Ve =

√
|m0e|g

{Le(αe)2 + De(αe)2} 1
4

(2.27)

γe = tan−1 Le(αe) sin αe −De(αe) cos αe

Le(αe) cos αe + De(αe) sin αe

, (2.28)

where Le(αe) = (KL0 + KLαe) V 2
e , De(αe) = (KD0 + KDα2

e) V 2
e and αe is the solution
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of the following nonlinear equation:

m0e(m3 −m1) sin αe cos αe + m0e (KM0 + KMαe)

− m̄rP3e

{
(KL0 + KLαe) sin αe −

(
KD0 + KDα2

e

)
cos αe

}

− m̄rP1e

{
(KL0 + KLαe) cos αe +

(
KD0 + KDα2

e

)
sin αe

}
= 0 (2.29)

2.3.1 Linear Stability and Control Analysis for a Laboratory

Scale Underwater Glider

The stability of steady glides can be determined by linearizing the longitudinal equa-

tions of motion. The linearization is carried out in [6, 48] with equations (2.15)-(2.16)

for x and z replaced by a single equation for the variable z
′
, which represents the per-

pendicular component of the vector to the underwater glider from a certain desired

steady glide path, as shown in Figure 2.6. The evolution of z
′
is given by the following

equation:

ż
′
= sin γe (v1 cos θ + v3 sin θ) + cos γe (−v1 sin θ + v3 cos θ) , (2.30)

where γe is the steady flight path angle corresponding to the desired path.

Linear stability, controllability and observability of four steady glides were deter-

mined in [6, 48] for a laboratory scale underwater glider ROGUE [31] built at Prince-

ton University. Following parameter values were used in the analysis: m1 = 13.22 kg,

m3 = 25.22 kg, m̄ = 2 kg, J2 = 0.1 Nm2, KD0 = 18 N(s/m)2, KD = 109 N(s/m)2,

KL = 306 N(s/m)2, KM = -36.5 Nm(s/m)2, Kq = 0 Nms(s/m)2. Two of the steady

glides investigated were downward gliding motions at flight path angles of -30o and

-45o, and the other two were upward gliding motions at flight path angles of 30o and

45o. All of them had a slow unstable mode caused by the motion of m̄ relative to the

body of the glider.
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Figure 2.6: Planar gliding controlled to a line.

For example, we consider the steady gliding motion with a flight path angle of

-45o and a speed of 0.3 m/s. The linearized dynamics of the uncontrolled (i.e., u1 =

u3 = u4 = 0) ROGUE glider about this equilibrium has a pair of eigenvalues at

0.099± 2.325i. Recall that glider dynamics were derived by considering m̄ to be able

to freely move within the glider body. Also recall that (u1, u3) represents the total

force acting on m̄, including the interaction force between the rigid body and m̄.

Setting u1 = u3 = 0 amounts to setting the momentum of m̄ constant, i.e., setting

the interaction force between m̄ and the rigid body such that the momentum of m̄

remains constant. This interaction force causes the unstable mode observed in the

linearized dynamics. The instability is similar to the fuel slosh instability observed in

aircraft and space vehicles [49]. We can study the dependence of the unstable mode

on the value of the internal mass m̄. The unstable pair of eigenvalues crosses over

to the left half plane when m̄ is made sufficiently small. For the equilibrium under

consideration this happens when m̄ is smaller than 0.257 kg.

The steady glides reported in [6, 48] are locally controllable, with controllability

extending to the z
′

state as well. Thus, it is possible to design a linear control
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law for (u1, u3, u4)
T to regulate the motion of the glider to a prescribed straight line.

Interestingly, full state controllability is preserved even when the internal mass motion

is restricted to be along just one of the body axes. However, for large motions, such

as switching from an upward glide to a downward glide path, care needs to be taken

if restricting the degrees of freedom of the movable mass. For instance, while the

motion of the movable mass restricted to the body 1 axis is sufficient for sawtooth

maneuvers, motion restricted to the body 3 axis does not allow for both upward and

downward steady glide motions.

All states except z
′
are observable for the linear models computed in [6, 48] with

measurements restricted to internal mass position (rP1, rP3) and the vehicle heaviness

m0. All states except z
′
are also observable with measurements limited to the pitch

angle θ, rP1 (or rP3) and m0.

2.3.2 Transformation from Force to Acceleration Control

The motion of the internal point mass m̄ in most glider designs is restricted by some

sort of supporting mechanism (for example a railing). Such a mechanism also makes

it possible to directly control the acceleration of the point mass relative to the vehicle

body, and consequently the relative velocity and position of m̄. This situation can

be realized in the underwater glider model by performing a coordinate and feedback

control transformation [50].

We consider the coordinate transformation derived from equations (2.21)-(2.22):




PP1

PP3


 7→




ṙP1

ṙP3


 =




1
m̄

PP1 − v1 − rP3Ω2

1
m̄

PP3 − v3 + rP1Ω2


 . (2.31)

Differentiating the above equation once gives equations for r̈P1 and r̈P3 in terms of
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control inputs u1 and u3:




r̈P1

r̈P3


 = Z + F




u1

u3


 , (2.32)

where

Z =




1
m1

X1 + ṙP3Ω2 + rP3Y
J2

1
m3

X3 − ṙP1Ω2 − rP1Y
J2




F =




(
1
m̄

+ 1
m1

+
r2
P3

J2

)
− rP1rP3

J2

− rP1rP3

J2

(
1
m̄

+ 1
m3

+
r2
P1

J2

)




X1 = −m3v3Ω2 − m̄(v3 + ṙP3 − rP1Ω2)Ω2 −m0g sin θ + L sin α−D cos α

X3 = m1v1Ω2 + m̄(v1 + ṙP1 + rP3Ω2)Ω2 + m0g cos θ − L cos α−D sin α

Y = (m3 −m1)v1v3 − m̄g(rP1 cos θ + rP3 sin θ) + MDL2

−Ω2 (rP1PP1 + rP3PP3) .

The above equations are linear in u1 and u3, and we can check that the determinant

of F is always nonzero. Thus, we can choose the following control law:




u1

u3


 = F−1


−Z +




w1

w3





 , (2.33)

where w1 and w3 are acceleration inputs. We also set

u4 = w4. (2.34)

Now, if we define η = (x, z, θ, Ω2, v1, v3)
T , ζ = (rP1, ṙP1, rP3, ṙP3,m0)

T , w = (w1, w3, w4)
T
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the resulting equations of motion of the underwater glider are

η̇ = q(η, ζ,w)

ζ̇ = Aζ + Bw,

where,

A =




0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0




, B =




0 0 0

1 0 0

0 0 0

0 1 0

0 0 1




,

and q is the vector field obtained by substituting the mapping (2.31) and the equation

(2.33) in equations (2.15)-(2.20). To study the stability of the relative equilibria we

only consider the states of a reduced system: (ηr, ζ), where ηr = (θ, Ω2, v1, v3). This

reduction is possible since the dynamics (2.35)-(2.36) are invariant with respect to

the glider position (x, z). The equations of motion for this reduced system are:

η̇r = qr(ηr, ζ,w) (2.35)

ζ̇ = Aζ + Bw, (2.36)

where qr is the vector of last four components of q.

We note that the gliding relative equilibria are not changed due to the coordinate

and feedback transformation, but the nature of the system stability at these equilibria

is altered. Linearization of the dynamics about the steady glides for the laboratory

scale glider ROGUE in [50] shows that the steady gliding equilibria that were unstable

before the feedback (2.33)-(2.34) may be rendered stable for the feedback controlled
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system by simply choosing an appropriate equilibrium (rP1, rP3). As in [6, 5] there

is a one-parameter family of internal mass positions (rP1, rP3) corresponding to a

desired, permissible steady gliding speed and flight path angle, and as before this

family may be parameterized by a bottom-heaviness parameter rbh, which describes

the component of (rP1, rP3) in the direction of gravity. Thus, we can always choose

(rP1, rP3) for a desired equilibrium such that rbh is large enough (i.e., the vehicle is

sufficiently bottom-heavy) for the equilibrium of the feedback controlled system to

be stable. We choose

w = K (ζ − ζe) , (2.37)

where K is a control gain matrix such that all eigenvalues of the matrix A + BK

have negative real parts. Now, the Jacobian matrix of (2.35)-(2.37) has the following

upper block-triangular form:




(
∂qr

∂�r

)
e

(
∂qr

∂�

)
e

0 A + BK


 .

The set eigenvalues of the above Jacobian matrix are the union of eigenvalues of

A+BK and the eigenvalues of
(

∂qr

∂�r

)
e
. Thus, if all eigenvalues of

(
∂qr

∂�r

)
e
have negative

real parts (which will be true for a sufficiently bottom-heavy glider, as illustrated in

an example discussed below), the gliding equilibrium will be linearly stable. This

condition further implies that the same equilibrium for the underwater glider with

(rP1, rP3) and m0 set to their equilibrium values is also stable since the dynamics of ηr

(equation (2.35)) does not influence ζ (equation (2.36)). This conclusion is consistent

with experimental observations of stable, gliding motions observed for ROGUE and

other underwater gliders with fixed internal mass position and constant buoyancy.

To illustrate the effect of bottom-heaviness on the stability of straight gliding
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motions we plot the dependence of eigenvalues of
(

∂qr

∂�r

)
e

on rbh. We consider the

equilibrium corresponding to steady gliding with a flight path angle of −45o and speed

0.3 m/s with the same vehicle parameters as those considered in [6, 5]. Figure 2.7

shows the variation of eigenvalues of
(

∂qr

∂�r

)
e

with respect to rbh. The real part of one

of the eigenvalues becomes positive when rbh is approximately -0.0068 m. Thus the

internal point mass m̄ needs to be sufficiently low so that the vehicle is sufficiently

bottom-heavy to ensure the stability of the steady gliding motion. We note that

to the left of point A there is a pair of complex conjugate eigenvalues and two real

eigenvalues. The latter come together at point A and go apart at point B. Points A

and B correspond break in and break away points respectively of a root locus plot of

the system with rbh interpreted as the adjustable control gain.
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Figure 2.7: Dependence of stability of longitudinal plane steady glides on vehicle
bottom-heaviness

Simulations of the closed-loop system (2.35)-(2.37) suggest a very large region of

attraction. This is illustrated by a switch from a downward 45o glide to an upward
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45o glide for the ROGUE, as shown in Figure 2.8. In this simulation we have chosen

the matrix K to be a diagonal matrix with the following diagonal vector: 1exp(2).[1

3 1 3 0.5]. The simulation is started with the underwater glider moving along a -45o

steady glide. At t = 5 s the glider is commanded to switch to a +45o steady glide.
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Figure 2.8: Switching between downward and upward steady glides

2.4 Nonlinear Control of Underwater and Aerospace

Vehicles

Several nonlinear systems tools have been brought to bear in the last couple of decades

for aircraft control problems. Methods applied to aircraft control include feedback

linearization [51, 52, 53, 54, 55], backstepping [56, 57] and passivity [58] based tech-

niques. These tools have been applied to the design of nonlinear control laws for

simple models that incorporate salient features of aircraft dynamics and, in some
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instances, to models that incorporate elaborate, empirically determined dependence

of external forces and moments on aircraft velocity and orientation. Examples of

simple models that have been extensively studied are the Conventional Take-Off and

Landing (CTOL) model considered in [36] and the Vertical Take-Off and Landing

(VTOL) model considered in [59].

The nature of aerodynamic forcing makes the application of nonlinear systems

tools challenging. The problem is complex due to the strong coupling between force

and moment generation mechanisms inherent in aerodynamic control using external

moving surfaces. For instance, in order to increase the angle of attack a pitch-up mo-

ment needs to be created. This is achieved by generating an appropriate force on the

control surface. If an aft control surface (such as an elevator on the aft tail) is used, a

negative lift generation is necessary to produce a pitch-up moment. Such a coupling

between moment and force generation is responsible for the longitudinal dynamics

being non-minimum phase in the problem of flight trajectory tracking. One way to

work around this problem is to simply neglect the coupling terms in designing the

control law by inversion of dynamics. This method was considered in [51] and good

performance was demonstrated for the full system. Another approach is to make use

of method for stable inversion of dynamics [60, 61, 62]. Input and state trajectories

that achieve a desired output trajectory are calculated. These inputs are fedforward

in conjunction with a feedback control law that locally stabilizes the inverse state tra-

jectory. Alternative methods achieve approximate tracking by neglecting the coupling

between moment and force generation [63, 64]. Some of these methods are applied to

the CTOL aircraft model in [36].

Our approach in this thesis is based on designing control laws that beneficially

use the natural dynamics of the system. The control actions are sometimes chosen

deliberately to mimic the effects of hydrodynamic forces and moments so that we

can design hydrodynamic effects to our advantage. For example, in Chapter 6 we
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use torque control proportional to the underwater glider angle of attack so that we

can design a closed-loop pitching moment coefficient. The motivation is to design

control laws that demand minimal on board energy. Our approach allows us to use

theoretical results about stability of the uncontrolled system for designing control

laws to achieve desired closed-loop motions.
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Chapter 3

Underwater Glider Operations

The Autonomous Ocean Sampling Network II (AOSN-II) [3] sea trials performed

in Monterey Bay during July-August, 2003 provided a demonstration of underwater

gliders cooperatively collecting data from the ocean. During AOSN-II underwater

gliders travelled along nominal steady gliding paths between waypoints in the ocean.

We give a brief description of the AOSN-II project in §3.1. We present a summary

of results from two control demonstrations in §3.2. These results were presented in

[65, 32]. In §3.3 we discuss problems and scenarios where underwater glider dynamics

and control become important for either performing or optimizing ocean sampling

tasks. The AOSN-II and its successor projects, such as the Adaptive Sampling and

Prediction (ASAP) project [4], provide strong motivation for the study of under-

water glider dynamics and control design. Energy efficient control laws will further

enhance underwater glider capabilities, useful for adaptive ocean sampling and other

applications.

3.1 Autonomous Ocean Sampling Network-II

The Autonomous Ocean Sampling Network [3] research initiative aims to develop a

sustainable, integrated observation-modeling system for the oceans. It constitutes
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a major effort towards improving the state of the art in sustainable, ocean state

prediction technology. The initiative promotes research and development in several

disciplines ranging from marine ecology to underwater glider dynamics and control.

Important foci are in (a) developing components of a mostly autonomous adaptive

sampling infrastructure, (b) designing adaptive sampling methods that are intended

to provide optimal data to ocean models so that the models can accurately predict

interesting scientific phenomena in the ocean and (c) improving understanding of

ocean science through data collected by various platforms.

The sea trials conducted in Monterey Bay during July-August 2003, called AOSN-

II, demonstrated the feasibility of an integrated system. During AOSN-II sampling

patterns of various mobile observational assets such as ships, airplanes, propeller

driven autonomous underwater vehicles (for example, the REMUS [66] and the Do-

rado [67]) and underwater gliders (Slocum [14] and Spray [15]) were planned and,

in some cases, adapted using predictions from independently running ocean models.

The ocean models used in AOSN-II were the Harvard Ocean Prediction System [68],

the Regional Ocean Modeling System [69] and the Innovative Coastal-Ocean Observ-

ing Network model [70]. These models were in turn supplied with data coming from

mobile assets, as well as other sources such as CODAR (COntinental raDAR) data,

satellites, fixed moorings and surface drifters. Further details about the operational

scenario during AOSN-II can be found in [1, 71, 65].

Underwater gliders collected a vast amount of data during the AOSN-II experi-

ment. The Spray gliders operated tens of kilometers away from the shore while Slocum

gliders collected data closer to the shore. For most part of the experiment both types

of gliders traversed along preplanned sampling paths. These sampling paths were

80-100 km long lines perpendicular to the shore for the Spray gliders whereas for the

Slocum gliders they were closed polygons that were formed by connecting predeter-

mined waypoints by straight lines.
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Figure 3.1 shows a schematic of different levels of control implementation in a

typical multi-glider operation such as AOSN-II. The gliders have on-board “low-level”

control implementation that regulate their motion in accordance with commands

supplied by a “high-level” control module. The low-level control is typically designed

to yield a finite set of “behaviors”. Example behaviors include station keeping and

waypoint tracking. More advanced behaviors could include trajectory tracking or

maneuver regulation. In the AOSN-II demonstrations described in §3.2 the high-

level control was in the form of waypoint specification. The waypoint lists were

determined centrally for all gliders based on data from navigational sensors of gliders,

as well as environmental data (such as temperature, salinity, flow fields, etc.) from

all observation platforms and forecast from ocean models. The on-board low-level

control ensured that the gliders travelled to the specified waypoints.

Figure 3.1: Glider Control Architecture in a Multi-Vehicle Fleet.

In AOSN-II the Slocum underwater gliders, operated by David Fratantoni of

Woods Hole Oceanographic Institution, were used to demonstrate multi-vehicle for-

mation control and real time particle (drifter) tracking capabilities. We present a

summary of results from these demonstrations in the following section. Further de-
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tails regarding implementation of high level control algorithms on Slocums during

AOSN-II, including a discussion of communication and navigation constraints can be

found in [72, 65].

3.2 High-Level Control Demonstrations

Underwater gliders make extremely useful mobile observation platforms for oceano-

graphic sampling. Their utility is further enhanced when they collect data coopera-

tively. Cooperation amongst underwater gliders and between other sensor platforms

and gliders yield many valuable adaptive sampling strategies. For instance a cooper-

ative group of vehicles can measure and climb gradients in fields of scalar variables

such as temperature or chlorophyll concentration more efficiently than a group of

independently operating vehicles [73, 74]. An adaptable formation of vehicles makes

it possible to gather data about oceanographic process occurring at various spatial

and temporal scales [75].

3.2.1 AOSN-II Formation Control Demonstration

During AOSN-II formation control strategies were designed based on the method of

Virtual Bodies and Artificial Potentials (VBAP). The VBAP method is developed in

[76, 77, 73] and adapted to operational constraints of the AOSN-II Slocum underwa-

ter gliders in [72]. The central theme of the VBAP methodology involves inducing

cooperation in a group of vehicles through forces derived from artificial potential

energy functions. Artificial potentials are introduced between vehicles as well as be-

tween vehicles and moving reference points called virtual leaders. The forces induced

by artificial potentials are similar to those due to a nonlinear spring. They vanish

when the two interacting agents are a certain (desired) distance apart. The force is

attractive if the agents are farther and repulsive if they are closer than the desired
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distance.

A desired formation motion can be obtained by choosing appropriate potential

functions and virtual leaders, and group mission objectives can be realized by direct-

ing the motion of virtual leaders appropriately. For instance a group of three vehicles

can be controlled to move in an equilateral triangle formation with the centroid of

the group climbing the temperature gradient in a plane, calculated using temperature

measurements from the vehicles. Convergence of the group to the desired formation is

independent of the collective mission objective of the group. The stability of a forma-

tion may be proved using Lyapunov functions constructed from artificial potentials

employed to achieve the formation [76, 73].

During AOSN-II, in a demonstration conducted on August 16, 2003, a group of

three vehicles was controlled to move in an equilateral triangle formation with its

centroid required to follow a predetermined path. The desired triangle side length

was changed from 6 km to 3 km in the middle of the demonstration. Figures 3.2 and

3.3 show the path followed by the vehicle group and the average distance between

vehicles during the course of the demonstration respectively. The performance of

the group was good especially in light of strong, unknown currents present during

the demonstration. Further analysis of the results of the demonstration is given in

[65, 74, 32].

3.2.2 Real-time Drifter Tracking Demonstration

A demonstration of a Slocum underwater glider tracking a surface drifter was per-

formed during AOSN-II on August 23, 2003. A surface drifter moves approximately

according to the ocean flow. Ocean flow transports water bodies containing interest-

ing biology, which can be followed by drifters. Drifters are also often used to track

major ocean currents or oil, and other pollutant spills in the ocean.

During this demonstration the surface drifter transmitted its position every 30
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minutes. This data arrived at the central planning station with a time lag of 15

minutes. In order to follow the drifter in real time it was necessary to predict the

future trajectory of the drifter. More details regarding the prediction scheme used

and time delays inherent in the control implementation are described in [65, 32].

The goal of the demonstration was to have a Slocum glider travel back and forth

along a chord of a circle, of a certain specified radius, with respect to the drifter as

described in Figure 3.4. The actual tracks followed by the drifter and the underwater

glider are shown in Figure 3.5.

The underwater glider approximately followed the drifter during the demonstra-

tion. Various factors, including limited sensitivity of drifter position measurements

and uncertainty in ocean currents, contributed to errors in drifter tracking. The per-

formance of tracking may be vastly improved if the underwater glider is allowed to

track the drifter with a small time delay such that the glider crisscrosses the actual

path traced by the drifter, instead of tracking a predicted drifter path in real time.
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Drifter path

Glider path

Glider path with

respect to the drifter

Figure 3.4: Drifter tracking demonstration plan: The solid circles indicate drifter
positions at two time instants, and the line connecting the solid circles is the drifter
path. The solid line crossing the drifter path is the desired glider path. The glider
path relative to the drifter is a chord (dashed lines) of a circle (dashed circles) of
specified radius about the drifter [65, 32].

3.2.3 Synoptic Area Coverage

A focus of the Adaptive Sampling And Prediction (ASAP) [4] project is the design

of coordinated glider control algorithms for groups of underwater gliders operating in

a specified region of the ocean such that the gliders collect optimal data of certain

ocean processes, specified by their spatial and temporal scales, for input to ocean

models. The goal is to cover as large an area of the ocean and as broad a spectrum

of spatial and temporal frequencies of ocean process as possible with a given group of

underwater gliders. A methodology for this purpose, developed in [78, 79, 80], relies

on a sampling metric based on Objective Analysis [81, 82], a linear data assimilating

scheme. A summary of developments toward designing mobile sensor networks that

optimize the sampling metric is provided in [75]. Demonstrations of the application of

synoptic area coverage sampling methods on underwater glider groups in the ASAP

project are scheduled to take place in Monterey Bay in August 2006.
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3.3 Low-Level Underwater Glider Control

AOSN-II and ASAP projects demonstrate strong potential for extensive application

of underwater gliders for ocean sampling tasks. Underwater glider operation in these

projects rely on inherent stability of steady gliding motions. Active low-level control

laws employed are fairly simple at the moment. They are limited to bang-bang

control or proportional-derivative control of buoyancy, center of gravity position and

vehicle heading. These control laws are adequate for current operations but more

advanced techniques that pay attention to the nonlinear underwater glider dynamics

will increase the variety of tasks that the vehicles can accomplish. Some applications

where control laws and strategies designed using nonlinear systems analysis may be

important are discussed below:

1. Applications involving underwater gliders collecting data related to processes
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with very small spatial scales require careful attention to vehicle dynamics. We

may consider a group of tiny underwater gliders whose longest length dimension

may be a few inches. Such vehicles equipped with sensors could locate interest-

ing features cooperatively in small domains. For such tasks, collision avoidance

methods based on vehicle dynamics are important.

2. Study of underwater glider dynamics allows us to compute optimal gliding mo-

tions for a given glider design as well as to compute optimal designs for given

mission and vehicle size requirements. A discussion regarding optimal motions

and optimal glider design can be found in [9] and in Chapter 7 of [5].

3. Analysis of nonlinear dynamics throws light on certain nontrivial motions that

may be efficiently accomplished by underwater gliders. Some desirable maneu-

vers may be small perturbations of natural vehicle trajectories. Such maneuvers

may be stably realized with minimal control by utilizing inherent vehicle dy-

namics.

4. We can classify different steady motions of a glider. Unstable steady motions

that cannot be observed in laboratory tests can be identified and stabilized using

active control. We may combine different stable or stabilizable steady motions

to yield useful maneuvers. For instance we may use a steady circular helical

motion, studied in Chapter 8, to switch between (invariant) vertical planes of

steady straight-line glides.

5. Tracking of desired trajectories may be accomplished in an energy efficient and

stable manner using nonlinear control laws. Trajectory tracking methods using

steady gliding motions are discussed in Chapter 7.

6. Since underwater gliders have limited control authority their motion is sig-

nificantly influenced by ocean currents. Controlled current compensation by
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adjusting underwater glider trajectories may improve sampling accuracy.

The remainder of this thesis addresses several issues pertaining to underwater

glider dynamics and control that may be directly or indirectly useful in the context

of the above mentioned, motivating applications. The stability analysis and control

methodologies discussed in this thesis are presented mostly with respect to underwater

glider models, but are also applicable to other vehicles moving through a fluid.
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Chapter 4

Hamiltonian Description of

Phugoid-Mode Dynamics

In this chapter we formulate underwater glider dynamics in a modern geometric frame-

work of mechanics [22]. We focus on how the hydrodynamic lift plays an important

role in determining the motion of the underwater glider by studying the phugoid-

mode dynamics. The phugoid-mode equations we consider are energy conserving,

which suggests a Hamiltonian formulation. We present several Hamiltonian formu-

lations, including one using 2-dimensional canonical Hamilton’s equations. For the

latter formulation the Hamiltonian function of the system is not the energy of the

underwater glider, but a scalar multiple of Lanchester’s second conserved quantity

[34, 33], commonly used to parameterize different classes of motion corresponding to

phugoid-mode dynamics. This Hamiltonian function is used in Chapter 5 to derive

the Lyapunov function candidate for proving the stability of longitudinal dynamics of

the underwater glider. The other Hamiltonian formulations are derived by comparing

phugoid-mode dynamics with the equations of motion of a charged particle in a mag-

netic field, and using the notion of the vector potential [83, 22]. We also investigate

connections between the phugoid-mode dynamics and two (equivalent) conservative,
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planar systems that may be interpreted as Hamiltonian systems: the simple pendulum

and the thin elastic rod. The results of this chapter motivate further investigation of

glider dynamics in a geometric framework. The results presented in this chapter and

future work on the analysis of underwater glider dynamics in a geometric framework

are motivated by the potential of emerging tools such as [23, 24] for the development

of low-energy nonlinear control solutions.

For our analysis in this chapter we consider an energy-conserving model of under-

water glider dynamics. The underwater glider model of Chapter 2 considers a number

of factors including added mass effects, internal moving mass dynamic coupling and

viscous external forces and moments. In this chapter we consider dynamics in the

longitudinal plane and ignore contributions from added mass and internal moving

mass. We also do not include the nonconservative drag force and the nonconservative

pitching moment. The above simplifications yield a model, which is at the core of

underwater glider dynamics. This model is equivalent to Lanchester’s phugoid-mode

model [34] for aircraft longitudinal dynamics after a time scaling [5]. Although the

model considered in this chapter only approximates underwater glider longitudinal

dynamics, it serves the purpose of focusing on the effect of an important dynamical

structure caused by the lift force component. The energy conserving lift force com-

ponent always acts perpendicular to the direction of velocity and is responsible for a

nontrivial geometric structure for underwater glider dynamics.

In §4.1 we present the phugoid-mode model for an underwater glider and show

how the equations describing the model can be written as Hamilton’s equations. For

comparison, we present Hamiltonian equations of motion for three other dynamic

systems in §4.2: a charged particle moving in a magnetic field, a simple pendulum

and a thin elastic rod (the elastica). Connections between these systems and the

phugoid-mode model are established in §4.3. Lagrangian and canonical Hamiltonian

formulations for the phugoid-mode model are also presented.
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4.1 Phugoid-Mode Model

The phugoid-mode model for an underwater glider is derived following Lanchester

[34, 33] by restricting the motion of the glider to the longitudinal plane and making

the following assumptions or simplifications:

1. A large moment of inertia pitching coefficient (KM) coupled with a small mo-

ment of inertia about the pitching axis (J2) enables the angle of attack to quickly

converge to a constant value.

2. The effect of hydrodynamic drag is not considered.

3. Added masses along the body 1 and body 3 axes are considered to be equal. This

implies that m1 = m3, which corresponds to a spherically-shaped underwater

glider.

4. The internal movable mass is fixed at the center of buoyancy, i.e., rP = 0.

In Chapter 5 we use singular perturbation theory to rigorously show under what

conditions simplification 1 is indeed justified. Drag is excluded in our present analysis

in order to make the underwater glider model conservative. Including drag annihilates

some natural classes of motion of the phugoid-mode model. Drag is included in sub-

sequent analyses of glider dynamics in later chapters, and its significance described.

Assumptions 3 and 4 are not necessary for energy conservation but are required for

the Hamiltonian formulations presented in this chapter. The Hamiltonian function

used in the formulation presented in §4.1 is used in §5.2 to construct a Lyapunov

function to prove exponential stability of gliding motions in the presence of drag.

Applying the above assumptions in the equations of motion (2.15)-(2.25) presented

in §2.3, and using inertial velocity coordinates (ẋ, ż) instead of body velocities (v1, v3),

we get the following equations of motion for the phugoid-mode model of an underwater
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glider:

dx

dt
= ẋ (4.1)

dz

dt
= ż (4.2)

dẋ

dt
=

K

m1 + m̄
(ẋ2 + ż2)

1
2 ż (4.3)

dż

dt
=

1

m1 + m̄

(
m0g −K(ẋ2 + ż2)

1
2 ẋ

)
, (4.4)

where K is a constant lift coefficient, equal to KL0+KLα. The definitions of masses m

and m̄ are the same as those in §2.2.2. Equations (4.1)-(4.4) are identical in structure

to the phugoid-mode dynamical equations of an aircraft. The aircraft phugoid-mode

equations may be derived from the above equations by replacing both m0 and m1 +m̄

by the mass of the aircraft.

Equations (4.1)-(4.4) represent a conservative system. The total energy of the

underwater glider in the phugoid-mode model, E = 1
2
(m1 + m̄)(ẋ2 + ż2) − m0gz,

remains constant.

The phugoid-mode dynamics are invariant with respect to the position of the

underwater glider, i.e., we have full R2 symmetry. This implies that we only need to

consider a reduced system consisting of equations for ẋ and ż, i.e., equations (4.3)-

(4.4). The solutions x(t) and z(t) can be reconstructed by integration of ẋ and ż.

The relative equilibria of phugoid-mode dynamics are solutions of equations (4.1)-

(4.4) with constant velocity, i.e., ẋ(t) = ẋe, ż(t) = że. We have one such relative

equilibrium solution,

ẋe =

√
m0g

K

że = 0.
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The above relative equilibrium corresponds to a steady, horizontal motion of the

underwater glider. We note that the steady horizontal motion is not a feasible solution

for a real underwater glider but is present in this model as a consequence of the absence

of drag.

Lanchester [34, 33] showed that the phugoid-mode model has a second conserved

quantity C, in addition to energy:

C =
ẋ

|ẋe| −
1

3

(
ẋ2 + ż2

ẋ2
e

)3/2

(4.5)
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Figure 4.1: Phugoid-mode trajectories

Thus, the phugoid-mode model is integrable, and the quantity C parameterizes

the trajectories of the model as shown by Lanchester [34, 33]. Figure 4.1 shows

simulations run for 6 s for the four different classes of trajectories of a phugoid-mode

model with the following parameters: m1+m̄ = 14 kg, m0 = 1 kg and K = 100 kg/m.
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C = 2/3 corresponds to the relative equilibrium motion (steady level flight path).

Values of C between 0 and 2/3 yield wavy trajectories. This is the most common

phugoid mode observed in commercial aircraft. Negative values of C correspond to

trajectories with loops. This mode may be observed in the flight of a paper airplane.

Figures 1.3-2a and 1.3-2b of reference [42] show simulations illustrating the above

modes in the longitudinal motions of a paper airplane. For values of C near 0, we get

trajectories with a sharp cusp. C = 0 corresponds to a singular trajectory, a single

flight with the flight path angle varying between - 90o and +90o over an infinite time

interval. We note that C may be set by picking an appropriate initial velocity for the

underwater glider.

The reduced phugoid-mode dynamics, i.e., equations (4.3)-(4.4) may be written

as Hamilton’s equations if we interpret the generalized coordinate to be q = ẋ and

the momentum to be p = ż, as noted in [84]. Interestingly, a similar Hamiltonian

formulation appears in the case of point-vortex models [85]. Consider the Hamiltonian

function H = − m0g
m1+m̄

|ẋe|C, i.e.,

H =
−m0g

m1 + m̄
|ẋe|C

=
−m0g

m1 + m̄
|ẋe|

(
ẋ

|ẋe| −
1

3

(
ẋ2 + ż2

ẋ2
e

) 3
2

)

=
K

3(m1 + m̄)
(ẋ2 + ż2)

3
2 − m0g

m1 + m̄
ẋ. (4.6)

In deriving the last equality of equation (4.6) we have used the relation m0g = Kẋ2
e.

Using H, equations (4.3)-(4.4) can be rewritten as Hamilton’s equations:

dẋ

dt
=

∂H

∂ż
(4.7)

dż

dt
= −∂H

∂ẋ
. (4.8)
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4.2 Three Related Systems: Charged Particle, Pen-

dulum, and Elastic Rod

In the Hamiltonian system given by equations (4.7)-(4.8) both state variables are

velocities. Thus, it is not clear how to interpret the geometric structure of the system.

The system is Hamiltonian on the cotangent bundle (a symplectic manifold) T ∗R

with the Hamiltonian function H given by equation (4.6), but there is ambiguity in

choosing between ẋ or ż for the base and fiber variables.1 However, the Hamiltonian

function H leads us to a Lyapunov function candidate for proving the stability of

the equilibrium of longitudinal dynamics of the underwater glider in Chapter 5. A

complete understanding of the geometric structure of the phugoid-mode model may

provide us with better insight for dynamical system analysis and control design, and

facilitate application of tools such as [23, 24] to the underwater glider system. With

this motivation we study comparisons between the phugoid-mode system and three

conservative, planar systems whose Hamiltonian structures are well understood. The

latter systems are described in this section and the comparisons are discussed in §4.3.

4.2.1 Charged Particle in a Magnetic Field

Consider a particle of mass m carrying a charge q moving in a magnetic field B =

(Bx, By, Bz)
T , as shown in Figure 4.2. Let r = (x, y, z)T be the position of the particle,

with z increasing in the direction of gravity. Let V = (Vx, Vy, Vz)
T be its velocity

with respect to a laboratory-fixed frame of reference. The dynamics of the charged

1See Appendix B for a brief introduction to Hamiltonian systems and the associated geometry,
including the definition of a symplectic manifold. Appendix A provides the definition of a cotangent
bundle such as T ∗R. The cotangent bundle is essentially a phase space associated to any configura-
tion manifold. If a configuration manifold Q has coordinates (q1, q2, . . . , qn), the cotangent manifold
has coordinates (q1, q2, . . . , qn, p1, p2, . . . , pn), where (p1, p2, . . . , pn) belongs to the dual space of the
tangent space at (q1, q2, . . . , qn).
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particle, governed by the Lorentz law, are described by the following equations:

dr

dt
= V (4.9)

dV

dt
=

q

m
B × V . (4.10)

m

F

g

X

Z

V

+q

B

Figure 4.2: Schematic of the motion of a charged particle in a magnetic field.

The above dynamics can be represented as a (noncanonical) Hamiltonian system

on the cotangent bundle T ∗R3, which is interpreted as a symplectic manifold endowed

with the following symplectic 2-form [22]:

ΩB = m (dx ∧ dpx + dy ∧ dpy + dz ∧ dpz) (4.11)

− q(Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy), (4.12)

where (px, py, pz)
T = p = mV is the momentum of the charged particle, and the

symbol ∧ denotes the wedge product2. In the matrix formulation, the symplectic

2The general definition of the wedge product of two 1-forms is given in Appendix A. As an
example, if we represent the one forms dx by a = [1 0 0 0 0 0] and dpx by b = [0 0 0 1 0 0], then the
wedge product dx ∧ dpx may be represented as a 6× 6 matrix aT b− bT a.
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2-form ΩB may be written as the skew-symmetric matrix

ΩB =




0 −qBz qBy m 0 0

qBz 0 −qBx 0 m 0

−qBy qBx 0 0 0 m

−m 0 0 0 0 0

0 −m 0 0 0 0

0 0 −m 0 0 0




. (4.13)

Consider the Hamiltonian function H to be the sum of the kinetic and potential

energies of the charged particle:

H =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz. (4.14)

The Hamiltonian vector field XH = (XH1 , XH2 , XH3 , XH4 , XH5 , XH6)
T that gov-

erns the motion of the charged particle is implicitly defined using

dH = iXH
ΩB, (4.15)

where iXH
ΩB is the interior product of XH and ΩB. Using this definition we have, in

matrix form,

iXH
ΩB = XT

HΩB (4.16)

=




q(BzXH2 −ByXH3)−mXH4

q(BxXH3 −BzXH1)−mXH5

q(ByXH1 −BxXH2)−mXH6

mXH1

mXH2

mXH3




T

. (4.17)
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We compute

dH =

[
0 0 −mg mẋ mẏ mż

]
. (4.18)

Now, we can readily check that equation (4.15) represents dynamics of the charged

particle described by equations (4.9)-(4.10). Thus, the charged particle dynamics is

Hamiltonian on the symplectic manifold (T ∗R3, ΩB), and can be derived using the

with the Hamiltonian function H defined by equation (4.14).

4.2.2 Simple Pendulum

Consider a point mass m suspended by a massless rigid rod of length l, as in Figure 4.3.

Let (x, y, z) describe the position of the mass in a laboratory-fixed reference frame.

We consider the motion of the pendulum in the x − z plane (y = 0). The equations

of motion are

dx

dt
= ẋ (4.19)

dz

dt
= ż (4.20)

dẋ

dt
= −T cos θ (4.21)

dż

dt
= mg − T sin θ, (4.22)

where T = (m/l)(ẋ2 + ż2)+mg cos θ is the tension in the rod and θ is the angle made

by the rod with the z-axis of the reference frame. We have cos θ = z/l and sin θ = x/l.

Thus, due to the rigidity of the rod, we have the constraint equation: x2 + z2 = l2.

Due to this constraint, the simple pendulum dynamics can be completely described

by the equation governing the evolution of θ:

ml
d2θ

dt2
+ mg sin θ = 0 (4.23)
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m

l q

T

g

X

Z

Figure 4.3: Planar Simple Pendulum

The above dynamics can be expressed as Hamilton’s equations on the cotangent

bundle T ∗R endowed with the canonical symplectic structure, using the total energy

E =
1

2m
p2

θ −mgl cos θ

as the Hamiltonian function, with θ as the configuration variable and the correspond-

ing conjugate momentum pθ = mlθ̇. The Hamilton’s equations are:

dθ

dt
=

∂H

∂pθ

=
pθ

m
(4.24)

dpθ

dt
= −∂H

∂θ
= −mgl sin θ, (4.25)

equivalent to equation (4.23), describing the simple pendulum dynamics.

4.2.3 Elastic Rod

The problem of elastica [86] considers shapes of a thin rod under the action of forces

and couples applied at its ends. The rod is assumed to be straight in the unstressed
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state. It is also assumed that the rod undergoes a planar deformation without any

twist.

Let equal and opposite forces of magnitude R be applied at each end of the rod so

that the total external force is zero. Figure 4.4 shows the forces and moment acting

on a section of the rod. Let s represent the path length from one end of the rod and

θ(s) be the angle made by the tangent to the center line with the line of action of

R at the end from which s is measured. Let T (s) and N(s) respectively represent

the tension and normal forces at the section taken at s. Let M(s) be the bending

moment.

q

T
N

M

R

Figure 4.4: Forces acting on a section of the elastic rod. [86]

A linear constitutive relation between the bending moment and the curvature

κ(s) = dθ(s)
ds

of the rod is assumed:

M(s) = EAr2
gκ(s), (4.26)

where E is the Young’s modulus for the material of the rod, A is the area of cross

section (assumed to be uniform over s) and rg is the radius of gyration of the cross-
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section about a principal axis in the plane of the cross-section.

The equations of equilibrium of the rod are

T = −R cos θ (4.27)

N = −R sin θ (4.28)

dM

ds
+ N = 0. (4.29)

Kirchhoff [87] noticed that the governing equations of the shape of elastica are

identical to the equations describing the motion of a simple pendulum. This can

be readily seen by substituting the constitutive relation (4.26) in equation (4.29) to

get equation (4.30) and comparing with pendulum dynamics described by equation

(4.23).

EAr2
g

d2θ

ds2
+ R sin θ = 0. (4.30)

We note that the analogue of time evolution is the progression of distance in the

problem of elastica. Thus, the various shapes of the elastic rod (presented in [86] for

example) are similar to the shapes of θ-trajectories (plots of θ versus t) of the planar

simple pendulum. The analogy between the elastic rod and the pendulum can be

extended to the Hamiltonian structure; the equations of a thin elastic rod can also

be described using canonical Hamilton’s equations.

4.3 Alternative Representations of the Phugoid-

Mode Model

In this section we study the similarities between the phugoid-mode model and the

Hamiltonian systems presented in the previous section. This allows us to interpret

56



the action of the lift force in the phugoid-mode model in terms of forces present in

other Hamiltonian systems and also to derive alternative Hamiltonian formalisms.

4.3.1 A Noncanonical Hamiltonian Formulation

We note that a charged particle in a magnetic field experiences a force (Lorentz force)

that always acts perpendicular to the particle’s velocity, quite like the lift force on the

underwater glider. The magnitude of the force is proportional to speed in both cases.

In the case of the charged particle it is a linear dependence on speed, but the common

hydrodynamic lift model calls for a quadratic dependence on speed. However, we can

induce a quadratic dependence of the Lorentz force by considering a varying magnetic

field, whose strength depends on the speed of the particle.

If we consider a magnetic field with Bx = Bz = 0 and with By = −(K/q)
√

ẋ2 + ż2,

and if we restrict to planar motion of the charged particle (i.e., ẏ = 0), we recover

the equations of motion of the phugoid mode for an underwater glider with m1 +

m̄ = m. This also implies that we can interpret the phugoid-mode dynamics as

being Hamiltonian on the cotangent bundle T ∗R2, endowed with the noncanonical

symplectic form,

ΩB = m (dx ∧ dẋ + dz ∧ dż) + K
√

ẋ2 + ż2 dz ∧ dx (4.31)

≡




0 K
√

ẋ2 + ż2 m 0

−K
√

ẋ2 + ż2 0 0 m

−m 0 0 0

0 −m 0 0




.

The Hamiltonian function is the the total energy of the underwater glider

H =
1

2
(m1 + m̄)(ẋ2 + ż2)−m0gz. (4.32)
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The Hamiltonian vector field XH = (XH1 , XH2 , XH3 , XH4)
T that represents the

phugoid-mode dynamics is implicitly defined by

dH = iXH
ΩB. (4.33)

We compute

iXH
ΩB = XT

HΩB =




−K
√

ẋ2 + ż2 −mXH3

K
√

ẋ2 + ż2 −mXH4

mXH1

mXH2




T

, (4.34)

dH =

[
0 −m0g mẋ mż

]
. (4.35)

Now, we can readily check that equation (4.33) represents the phugoid-mode dy-

namics described by equations (4.3)-(4.4). Thus, the phugoid-mode dynamics is

Hamiltonian on the symplectic manifold (T ∗R2, ΩB), where ΩB is a noncanonical

symplectic form defined by equation (4.31), derived using the Hamiltonian function

H given by equation (4.32).

4.3.2 A Lagrangian Formulation

Inspired by the similarity between the Lorentz force and the hydrodynamic lift, we

describe a Lagrangian formulation for the phugoid-mode dynamics using the notion

of the vector potential function used for describing the dynamics of a charged particle

in a magnetic field [83, 22].

We consider a Lagrangian system on the tangent bundle TR2. The coordinates

on TR2 are the position and velocity of the underwater glider: (x, z, ẋ, ż). The Euler-
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Lagrange equations are

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
, (4.36)

where,

q = (x, z)T , q̇ = (ẋ, ż)T .

We take the Lagrangian function to be

L(q, q̇) =
1

2
(m1 + m̄)‖q̇‖2 + KA · q̇ + m0gz, (4.37)

where,

A = (A1, A2)
T =

(
− (2m0gz)

3
2

3m0g
√

m1 + m̄
, 0

)T

.

We interpret A to be a vector potential as in [83, 22].

The conjugate momenta are

p = (p1, p2)
T =

∂L

∂q̇
(4.38)

= (m1 + m̄)q̇ + KA

=

(
(m1 + m̄)ẋ +

−K (2m0gz)
3
2

3m0g
√

m1 + m̄
, (m1 + m̄)ż

)T

.

We calculate,

d

dt

(
∂L

∂ẋ

)
= (m1 + m̄)ẍ−K

(
2m0gz

m1 + m̄

) 1
2

ż,
∂L

∂x
= 0 (4.39)

d

dt

(
∂L

∂ż

)
= (m1 + m̄)z̈,

∂L

∂z
= −K

(
2m0gz

m1 + m̄

) 1
2

ẋ + m0g. (4.40)
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The Euler-Lagrange equations (4.36) for L may be written as follows

(m1 + m̄)ẍ = K

(
2m0gz

m1 + m̄

) 1
2

ż (4.41)

(m1 + m̄)z̈ = m0g −K

(
2m0gz

m1 + m̄

) 1
2

ẋ. (4.42)

The total energy E for the above Lagrangian system is conserved, i.e.,

E =
1

2
(m1 + m̄)(ẋ2 + ż2)−m0gz = constant. (4.43)

For the zero-energy trajectory (E = 0) we have

2m0gz

m1 + m̄
= ẋ2 + ż2.

Thus, the zero-energy trajectory of the above Lagrangian system (equations (4.41)-

(4.42)) is identical to a trajectory of the phugoid-mode model (equations (4.1)-(4.4)).

Furthermore, all trajectories of the above Lagrangian system can be mapped to a

zero-energy trajectory by appropriate change of coordinates: z → zn = z + E/(m0g).

This change of coordinates does not affect the form of the Euler-Lagrange equations.

Thus, there is a one-to-one correspondence between the trajectories of the Lagrangian

system described by equations (4.41)-(4.42) and those of the phugoid-mode model

described by equations (4.1)-(4.4).

4.3.3 A Canonical Hamiltonian Formulation

In this subsection we use the Legendre transform to derive a canonical Hamiltonian

system from the Lagrangian system described in the previous subsection.

The Legendre transform maps q̇ ∈ TqR2 to p ∈ T ∗
qR2 according to equation

(4.38), and the Lagrangian L defined on the tangent bundle TR2 to the Hamiltonian
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H (equal to the total energy) defined on cotangent bundle T ∗R2 according to

H(q,p) = p . q̇ − L(q, q̇)

=
1

2
(m1 + m̄)‖q̇‖2 −m0gz

=
1

2(m1 + m̄)
‖p−KA‖2 −m0gz. (4.44)

The zero-energy trajectory of the canonical Hamiltonian system on T ∗R2 with

the above Hamiltonian function is equivalent to a trajectory of the phugoid-mode

model. To see that let us evaluate Hamilton’s equations corresponding to the above

Hamiltonian function with generalized coordinates q and the corresponding conjugate

momenta p. Hamilton’s first equation,

q̇ =
∂H

∂p
=

1

m1 + m̄
(p−KA) , (4.45)

is consistent with the definition of the conjugate momentum p given by equation (4.38).

Hamilton’s second equation is

ṗ = −∂H

∂q
= − 1

m1 + m̄




∂A1

∂x
∂A1

∂z

∂A2

∂x
∂A2

∂z




T

(p−KA) + (0,m0g)T

=

(
0,− (2m0gz)

1
2√

m1 + m̄
(p1 −KA1)

)T

+ (0,m0g)T . (4.46)

Using the definition of p (equation 4.38) we evaluate

ṗ1 = (m1 + m̄) ẍ− K(2m0gz)
1
2 ż√

m1 + m̄
(4.47)

ṗ2 = (m1 + m̄) z̈. (4.48)

Substituting the above expressions as well as the zero-energy condition (E = 1
2
(m1 +

m̄) (ẋ2 + ż2)−m0gz = 0) in equation (4.46), and solving for ẍ and z̈ we recover the
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phugoid-mode equations (4.3)-(4.4).

Furthermore, as in the previous subsection, we can induce a coordinate mapping

to establish a one-to-one correspondence between the trajectories of the canonical

Hamiltonian system of this section and those of the phugoid-mode dynamics.

4.3.4 Connections to Simple Pendulum and Elastic Rod

We have seen that the dynamics of a planar simple pendulum and a thin elastic

rod are analogous in §4.2.3. The connection between these analogous systems and

the phugoid-mode model is less direct. The tension force in the simple pendulum is

similar to the lift force in the phugoid mode but the tension has a different functional

dependence. The magnitude of tension in the pendulum has a quadratic dependence

on speed but it also depends on the position of the mass:

T = (m/l)(ẋ2 + ż2) + mg cos θ. (4.49)

The magnitude of lift force on the underwater glider just depends on the speed of the

glider:

L = K(ẋ2 + ż2). (4.50)

It is not possible to interpret the motion of the phugoid-mode glider as being

analogous to a simple pendulum of varying length without recourse to infinite lengths

- a straight line motion of the phugoid-mode glider would require to be interpreted

as analogous to the motion of an infinite length pendulum.

On the other hand we could interpret the phugoid-mode motion as the motion of

a simple pendulum motion with respect to a base driven with a certain prescribed

acceleration. Equations (4.21)-(4.22), which represent the dynamics of a pendulum
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with respect to a fixed base may be rewritten as follows:

dẋ

dt
= −

(
mV 2

l
+ mg cos θ

)
sin θ (4.51)

dż

dt
= mg −

(
mV 2

l
+ mg cos θ

)
cos θ, (4.52)

where we have substituted the expression for tension T =
(

mV 2

l
+ mg cos θ

)
. We

recall that, by definition, x = l sin θ and z = l cos θ. We also have V cos θ = ẋ and

V sin θ = −ż. Using these relations we may rewrite the pendulum dynamics (for a

fixed base) as follows:

dẋ

dt
=

mV

l
ż −mg

xz

l2
(4.53)

dż

dt
= mg − mV

l
ẋ−mg

z2

l2
. (4.54)

Now, if the base is driven with the following acceleration,

dẋb

dt
= −mg

xz

l2
(4.55)

dżb

dt
= −mg

z2

l2
, (4.56)

the dynamics of the pendulum in the base-frame coordinates is identical to the

phugoid-mode dynamics:

dẋ

dt
=

mV

l
ż (4.57)

dż

dt
= mg − mV

l
ẋ, (4.58)

where x and z are (still) the position of the pendulum mass in base frame coordinates.

For an observer on such a base frame, the pendulum motion will appear identical to

the phugoid-mode glider motion observed by an observer who is travelling along the
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x−direction with a constant speed equal to the average speed of the glider.

4.3.5 Summary

The analogies between the underwater glider phugoid-mode model and the Hamilto-

nian structures of well studied, conservative, planar systems presented in this chap-

ter indicate avenues for further investigation of the dynamics of vehicles subject to

aero/hydrodynamic forcing in a geometric framework. For the application of tools

of the geometric framework it is critical to formulate and understand the implica-

tions of the dynamical structure of the system. The phugoid-mode dynamics can

be modelled by Hamilton’s equations as presented in §4.1, but it is not clear how

to usefully interpret the structure or the Hamiltonian function of this formulation.

Both the configuration variable and the corresponding conjugate momentum are ve-

locity components, and the Hamiltonian function is not the energy of the system. A

similar formulation appears in the context of point vortex models [85] and it will be

interesting to draw from insights developed in the related analytical fluid mechanics

literature.

As an alternative to the Hamiltonian model in §4.1, the Hamiltonian formulations

for the phugoid-mode dynamics presented in §4.3 use energy as the Hamiltonian

function and they are defined on a larger cotangent bundle (T ∗R2). In this case the

Hamiltonian function is invariant with respect to one of the configuration directions

(the x-position). This means that we can reduce these Hamiltonian systems, which is

a subject of future work. The Lagrangian formulation of §4.3.2 and the corresponding

canonical Hamiltonian formulation of §4.3.3 use the idea of a vector potential, drawn

from the analogy with the motion of a charged particle in a magnetic field. Such

analogies may be useful in developing interpretations of the dynamical structure due

to the lift force component.

The constructions presented in this chapter may be further extended to incor-
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porate added mass effects (which is straightforward for the formulations of §4.3) as

well as coupling with internal mass dynamics. This would get us closer to the real

underwater glider system. The next step would be to incorporate the effects of non-

conservative external forces and moment components, and control design to regulate

desirable motions. The results presented in this chapter and future work on the

analysis of underwater glider dynamics in a geometric framework are motivated by

the potential of emerging tools such as [23, 24] for the development of low-energy,

nonlinear control solutions.
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Chapter 5

Singular Perturbation Analysis

In this chapter we use singular perturbation theory for the study of longitudinal

dynamics of the underwater glider. Singular perturbation theory, which exploits

the multiple time-scale structure of a system, has been widely used in the aircraft

guidance and control literature. The survey paper [88] provides an exhaustive listing

of references on this subject.

There is a vast body of literature concerning flight path optimization using singu-

lar perturbation theory, starting with the works of Kelley and Edelbaum [89], Kelley

[90, 91, 92] (summarized in [93]), Ardema [94, 95], Calise [96, 97, 98, 99] and Break-

well [100, 101]. The above references consider planar or 3D point-mass models for

vehicle dynamics with different control configurations. They seek control solutions

that optimize objective functions encoding costs related to time-of-flight, fuel con-

sumption, or other performance metrics. The approach taken in calculating a (near)

optimal solution uses the multiple time-scale structure of the problem to reduce a

high-order, two-point boundary value problem to several lower order ones by the ap-

plication of singular perturbation theory. This reduction is motivated by the need

for computing onboard real-time feedback control solutions. Most of the above cited

references only postulate the existence of a multiple time-scale structure in the sys-
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tem, and introduce an artificial small parameter (ε) for stretching time scales related

to the postulated fast states so that a multiple time-scale structure is forced - hence

the term forced singularly perturbed system used in the literature. The actual vehicle

dynamics correspond to ε = 1 but the singular perturbation reduction is carried out

by considering ε to be much smaller than 1. The resulting solutions are checked for

multiple time-scale behavior to ensure consistency with the assumptions of the anal-

ysis. With the exception of [99, 101] (and some later references such as [102]), ε is not

defined in terms of vehicle parameters. The choice of slow and fast states for singular

perturbation analysis is usually made on the basis of user experience and insight.

Application of singular perturbation theory to flight path optimization problems

was further considered in the works of Calise and collaborators [103, 104, 102], Shinar

and collaborators [105, 106], van Buren, Kremer, and Mease [107, 108, 109, 110, 111]

(for aerospace planes), Vinh and collaborators [112, 113], and several others. These

latter references also considered point-mass vehicle models. Point-mass models were

sufficient because the focus was on computing solutions that optimized performance.

The focus in this thesis is on studying the stability of motion and designing stabi-

lizing control laws using singular perturbation theory. We consider rigid body models

and take into account the effects of rotational dynamics. This amounts to consid-

ering the angle of attack and pitch rate dynamics in the case of longitudinal plane

motion. We identify a multiple time-scale structure inherent in the vehicle dynamics

and compute the different time scales in terms of vehicle parameters for applying

singular perturbation theory. There has been a recent resurgence of interest in de-

termining slow and fast time scales of linearized longitudinal dynamics of aircraft,

and deriving new phugoid-mode approximations [114, 115, 116]. Stability analysis

and stabilizing control design for linear systems using singular perturbation theory

has been extensively studied in [117, 118, 119, 120, 121, 122, 123, 124, 35, 125] and

references therein. But there have been fewer results and case studies on nonlinear
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stability analysis and stabilizing control design using singular perturbation theory

[126, 127, 128, 35]. We consider nonlinear, longitudinal dynamics in this chapter.

We apply the method of constructing composite Lyapunov functions for singularly

perturbed systems originally presented in [127, 128] and summarized in [35] to a rigid

body model of an underwater glider, restricted to the longitudinal plane. The main

goals of the analysis presented here are to rigorously derive conditions under which

we can simplify glider dynamics, prove asymptotic stability of steady gliding motions

as a function of vehicle parameters, and derive estimates of the corresponding region

of attraction.

Slow and fast subsystems of the underwater glider are identified, and the glider

dynamics are reduced to the slow subsystem in §5.1. This reduced model is a gener-

alization of the phugoid-mode model of Chapter 4. We include drag in our analysis

in this chapter. The presence of drag is critical for singular perturbation theory to

be applicable for the glider model.

The Lyapunov functions derived to prove stability of equilibria of the slow and

fast subsystems are used to construct a composite Lyapunov function for the full

underwater glider dynamics. This construction and the proof of asymptotic stability

of relative equilibria are presented in §5.2. The composite Lyapunov function is also

used to derive estimates of the region of attraction in §5.3. The analysis in §5.1-§5.3

follows the presentation in [129, 130].

We noted in §2.3 that relative equilibria of the longitudinal dynamics of the un-

derwater glider correspond to steady, straight-line glides. This motion requires the

internal movable mass of the glider to be fixed with respect to the glider center of

mass. Furthermore, the buoyancy mass must be constant. In this chapter we keep

the internal movable mass fixed at the center of buoyancy of the vehicle such that the

centers of buoyancy and gravity are coincident. In the analysis presented in §5.1-§5.3

we also assume that the glider added mass along body-1 and body-3 axes are equal
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(corresponding to a spherically shaped vehicle). This assumption simplifies the anal-

ysis considerably and aids in the presentation of the methodology. We extend the

singular perturbation reduction result to the case of unequal added masses in §5.4.

We summarize the results of the chapter in §5.5

5.1 Singular Perturbation Reduction

In this section we present the singular perturbation reduction of underwater glider

dynamics. We make the following assumptions (that are relaxed in the later sections

or chapters) in order to simplify the analysis:

1. The internal moving mass m̄ is assumed to be fixed at the center of buoy-

ancy, thus making the center of buoyancy coincident with the center of gravity

(rP = 0).

2. The buoyancy mass is held constant at a nonzero value (m0 6= 0 = constant).

3. Added masses along body-1 and body-3 directions are taken to be equal. Thus,

m1 = m3. We note that we continue to assume that the added mass and inertia

contributions of the wings and tail are small because at low angles of attack

and angular rate, their contribution is dominated by lift, drag, and associated

moments.

We apply the above assumptions to equations (2.35)-(2.36) that describe the lon-

gitudinal dynamics of underwater glider. We also change the velocity coordinates

from body velocities (v1, v3) to (V, γ), and the orientation coordinate from θ to α,

where V is glider speed, γ is the flight path angle, and α is the angle of attack:

V =
√

v2
1 + v2

3 (5.1)
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α = tan−1

(
v3

v1

)
(5.2)

γ = θ − α. (5.3)

All states of equation (2.36), describing the evolution of (rP1, ṙP1, rP3, ṙP3,m0), remain

constant due to our assumptions. We do not explicitly consider the evolution of

position components (x, z) because the dynamics are invariant with respect to glider

position.

The equations describing the longitudinal dynamics of the underwater glider in

the new coordinates are

V̇ = − 1

m1

{m0g sin γ + D} (5.4)

γ̇ =
1

m1V
{L−m0g cos γ} (5.5)

α̇ = Ω2 − 1

m1V
{L−m0g cos γ} (5.6)

Ω̇2 =
MDL2

J2

, (5.7)

for V > 0, where L, D and MDL2 are the hydrodynamic lift, drag and pitching

moment respectively, whose functional dependence on the vehicle states is described

by equations (2.11), (2.9) and (2.13), respectively.

The relative equilibrium (steady glide) state values of the underwater glider model

may be computed to be

Ve =


 |m0|g√

K2
De

+ K2
Le




1
2

(5.8)

γe = tan−1 −KDe/m0

KLe/m0

(5.9)

αe = − KM0

KM

(5.10)

Ω2e = 0, (5.11)
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where KDe = KD0 +KDα2
e and KLe = KL0 +KLαe are equilibrium values of the drag

and lift coefficients respectively.

We take (V , γ) to be the states of the slow time-scale subsystem and (α, Ω2)

to be the states of the fast time-scale subsystem. We transform the state variables

(V, γ, α, Ω2) to nondimensional states (V̄ , γ̄, ᾱ, Ω̄2) such that the relative equilibrium

solution corresponds to the origin in the new coordinates:

V̄ =
V − Ve

Ve

(5.12)

γ̄ = γ − γe (5.13)

ᾱ = α− αe (5.14)

Ω̄2 =
Kq

KM

Ω2. (5.15)

We define two nondimensional parameters, ε1 and ε2 that quantify the degree of

time-scale separation:

ε1 =

(
Kq

KM

)
1

τs

(5.16)

ε2 = −
(

J2

KqV 2
e

)
1

τs

, (5.17)

where,

τs =
m1

KDeVe

. (5.18)

The reference time scale τs is of the same order of magnitude as the time periods

associated with the eigenvalues of the linearization of equations (5.4)-(5.5) about

(Ve, γe) (after setting α = αe, Ω2 = Ω2e = 0). In fact, the sum of the reciprocals

of eigenvalues of the linearization mentioned is exactly equal to 3τs. We note that

equations (5.4)-(5.5) with α = αe, Ω2 = Ω2e = 0 are the dimensional analog of the
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(nondimensional) reduced system defined in §5.1.2. Thus, the reference time scale is

of the same order of magnitude as the time-constants of the reduced system.

The parameters εi are small positive numbers for a typical underwater glider (such

as ROGUE [6], as will be shown in §5.3). Smaller values of εi imply a greater degree

of separation between the slow and fast time scales of the underwater glider. Physi-

cally this means that the rotational dynamics are much faster than the translational

dynamics.

We also define a nondimensional time variable tn using the reference time scale

τs:

tn =
t

τs

. (5.19)

We can rewrite the equations of motion of the underwater glider (5.4)-(5.7) in

terms of the new nondimensional variables as follows:

dV̄

dtn
= − 1

KDeV
2
e

(m0g sin(γ̄ + γe) + D) (5.20)

dγ̄

dtn
=

1

KDeV
2
e (1 + V̄ )

(−m0g cos(γ̄ + γe) + L) =: Ē2 (5.21)

ε1
dᾱ

dtn
= Ω̄2 − ε1Ē2 (5.22)

ε2
dΩ̄2

dtn
= − (

ᾱ + Ω̄2

) (
1 + V̄

)2
. (5.23)

In terms of the nondimensional variables, the expressions for lift and drag forces

are

D =
(
KD0 + KD(ᾱ + αe)

2
)
V 2

e

(
1 + V̄

)2
(5.24)

L = (KL0 + KL(ᾱ + αe)) V 2
e

(
1 + V̄

)2
. (5.25)
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The presence of two small parameters ε1 and ε2 indicates the presence of three

(possibly) different time scales in the above system: the slow time scale tn, and two

fast time scales ε1tn and ε2tn. Singular perturbation reduction of such a system may

be performed in stages: first, a reduction from the whole system to an intermediate

system containing dynamics in the slow time scale and the slower of the two fast time

scales and then a reduction from this intermediate system to a system containing only

the slow time scale. Such a reduction in stages would require sufficient separation

between the two fast time scales.

We adopt an alternative approach, presented in [128]. We do not make any as-

sumptions about the relative magnitudes of ε1 and ε2, i.e., we do not require any

separation between the two fast time scales. Instead we simply consider one fast

subsystem that contains both fast time scales. To do so we define

µ := max{ε1, ε2}, (5.26)

and assume that

r1 :=
µ

ε1

, r2 :=
µ

ε2

(5.27)

are O(1).1 We note that µ is a constant for an underwater glider with a constant set

of vehicle parameters.

We also restrict the domain of our system to a local neighborhood of the equilib-

rium. The size of this neighborhood, along with µ, affects the region of attraction

estimates that we compute in §5.3, but it does not change the result qualitatively.

In other words the singular perturbation reduction procedure presented here works

irrespective of the size of the domain for a correspondingly small value of µ. The

domain is given by (p, q) ∈ Bp × Bq, where p := (V̄ , γ̄) and q := (ᾱ, Ω̄2). Bp ∈ R2

1f1(δ) = O(f2(δ)) if ∃ positive constants k, c such that |f1(δ)| ≤ k |f2(δ)| ∀ |δ| < c. [13]
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is a neighborhood of the origin such that −1 < V̄min ≤ V̄ ≤ V̄max, −π ≤ γ̄ < π, and

Bq ∈ R2 is also a neighborhood of the origin such that −2π ≤ ᾱmin ≤ ᾱ ≤ ᾱmax ≤ 2π,

−Ω̄2,min ≤ Ω̄2 ≤ Ω̄2,max.

Multiplying equation (5.22) by µ
ε1

and equation (5.23) by µ
ε2

, and using our new

definitions we can rewrite equations (5.20)-(5.23) in a compact form as follows:

dp

dtn
= f(p, q) (5.28)

µ
dq

dtn
= A g (p, q, ε) (5.29)

where,

ε =




ε1

ε2


 , A =




µ
ε1

0

0 µ
ε2


 , f =




f1

f2


 , g =




g1

g2




f1 = − 1

KDeV
2
e

(m0g sin(γ̄ + γe) + D)

f2 =
1

KDeV
2
e (1 + V̄ )

(−m0g cos(γ̄ + γe) + L)

g1 = Ω̄2 − ε1

KDeV
2
e (1 + V̄ )

(−m0g cos(γ̄ + γe) + L)

g2 = − (
ᾱ + Ω̄2

) (
1 + V̄

)2
.

In the following two subsections, §5.1.1 and §5.1.2, we identify the boundary-layer

(fast) subsystem and the reduced (slow) subsystem, and also construct Lyapunov

functions to prove that their equilibria are exponentially stable. In §5.1.3 we reduce

the full system dynamics to the dynamics of the reduced subsystem.

5.1.1 Boundary-Layer Susbystem

The boundary-layer subsystem describes the fast time-scale dynamics that are re-

quired to be exponentially stable for singular perturbation reduction. The fast con-

vergence of these dynamics allows us to approximate the states of the fast subsystem
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by their equilibrium values in order to derive the reduced subsystem.

The fast dynamics of (5.28)-(5.29) are described by the latter equation. Singular

perturbation theory allows us to derive results by studying the limiting case of the

small parameter µ → 0. This limit is taken by first changing the time variable tn to

τ :=
tn
µ

,

which defines a stretched time scale. Then, we set µ = 0 in equation (5.29). This

leads to the following equation for the fast subsystem dynamics:

dq

dτ
= Ag(p, q,0). (5.30)

Furthermore, this limiting approximation allows us to consider the states of the slow

dynamics (described by equation (5.28)) to be constant in the analysis of the fast

subsystem.

We state a proposition that provides sufficient conditions for uniform (in p) ex-

ponential stability of the origin (q = 0) of the boundary-layer subsystem.

Proposition 1. [130] The origin is an exponentially stable equilibrium of the bound-

ary layer subsystem (5.30) if there is a Lyapunov function Ŵ that satisfies

1. k3‖q‖2 ≤ Ŵ (p, q) ≤ k4‖q‖2 for some k3, k4 > 0.

2. ∂Ŵ
∂q Ag(p, q) ≤ −a2σ

2(q) ≤ −b2‖q‖2 where σ(.) is a positive definite function

on R2, that vanishes only at q = 0, and a2, b2 are positive constants.

Proof This proposition is a result of the application of Theorem 4.10 of [13] to the

boundary-layer subsystem (5.30). 2

We propose a quadratic Lyapunov function candidate for the boundary layer sub-
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system:

Ŵ =
1

2
qT CW q =

1

2

[
ᾱ Ω̄2

]



c1 c3

c3 c2







ᾱ

Ω̄2


 . (5.31)

The matrix CW is a constant matrix with c1 = r1 + r1a + r2a, c2 = 1 + r1

r2a
and

c3 = 1, where a =
(
1 + V̄

)2
(recall that V̄ may be considered to be constant in the

boundary-layer system). The above choice of CW assures that Ŵ is a positive-definite

matrix. Condition (1) of Proposition 1 is satisfied with k3 and k4 equal to the smaller

and greater of the two eigenvalues of CW respectively. Furthermore, this choice of

CW ensures that the coefficient of the cross-term (ᾱΩ̄2) in the derivative of Ŵ with

respect to τ is zero.

We compute the derivative of Ŵ with respect to τ :

dŴ

dτ
=

∂Ŵ

∂q
Ag(p, q) = −r2a

(
ᾱ2 + Ω̄2

2

)
.

Thus, condition (2) of Proposition 1 is satisfied with a2 = r2, b2 = a2

(
1 + V̄min

)2
and

σ =
(
1 + V̄

) √
ᾱ2 + Ω̄2

2 . (5.32)

Proposition 1 provides the stability of the boundary-layer subsystem. Validity of

singular perturbation reduction for infinite time intervals requires the reduced (slow)

subsystem to exponentially converge to its equilibrium. This is proven in the following

subsection.

5.1.2 Reduced Subsytem

The reduced subsystem for the underwater glider is obtained by assuming that the

states of the boundary-layer subsystem have reached their equilibrium values. This
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amounts to setting q = 0 in equation (5.28)2:

dp

dtn
= f(p,0). (5.33)

The following proposition provides sufficient conditions for the exponential stabil-

ity of the origin for the reduced subsystem.

Proposition 2. [130] The origin is an exponentially stable equilibrium point of the

reduced model (5.33) if there is a Lyapunov function Φ that satisfies

1. k1‖p ‖2 < Φ(p) < k2‖p ‖2 for some k1, k2 > 0.

2. ∂Φ
∂pf(p,0) ≤ −a1ψ

2(p) ≤ −b1‖p ‖2 where ψ(.) is a scalar positive-definite func-

tion of p that vanishes only at p = 0, and a1, b1 are positive constants.

Proof This proposition is a result of the application of Theorem 4.10 of [13] to the

reduced subsystem (5.33). 2

In order to prove the exponential stability of the equilibrium p = 0 of (5.33),

we use a Lyapunov function candidate derived from the conserved quantity C of the

phugoid-mode model of the underwater glider, discussed in §4.1. In terms of the

nondimensional states we can rewrite C as follows:

C = (1 + V̄ ) cos (γ̄ + γe)− 1

3
(1 + V̄ )3. (5.34)

We modify C such that the modified function is positive definite and zero at the

origin. We consider the Lyapunov function candidate Φ:

Φ =
2

3
− (1 + V̄ ) cos γ̄ +

1

3

(
1 + V̄

)3
. (5.35)

2This is a generalization of the procedure of residualization used in linear systems (for example,
see chapter 4 of [42]) to the case of nonlinear systems with multiple time scales.
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In order to show that Φ satisfies condition (1) of Proposition 2 in any compact

domain Bp we employ the power series expansions. Using the expansion of cos γ̄ we

can write Φ as follows:

Φ =
2

3
− (1 + V̄ )

(
1− γ̄2

2!
+

γ̄4

4!
− γ̄6

6!
+

γ̄8

8!
+ . . .

)
+

1

3
+ V̄ + V̄ 2 +

V̄ 3

3

=

(
1 +

V̄

3

)
V̄ 2 +

(1 + V̄ )

2

[{
1− γ̄2

4× 3

}
+

2 γ̄4

6!

{
1− γ̄2

8× 7

}
+ . . .

]
γ̄2. (5.36)

We note that since −π ≤ γ̄ < π in our domain, every term within braces {.} in the

above expression is greater than 0. Furthermore, since V̄ > V̄min > −1,
(
1 + V̄

3

)
> 0.

Thus, we can conclude

Φ ≥
(

1 +
V̄

3

)
V̄ 2 +

(1 + V̄ )

2

{
1− γ̄2

4× 3

}
γ̄2

≥ k1

(
V̄ 2 + γ̄2

)
, (5.37)

where,

k1 = min

{
1 +

V̄min

3
,

(
1 + V̄min

2

)(
1− π2

12

)}
. (5.38)

We can rewrite the expansion for Φ as follows:

Φ =

(
1 +

V̄

3

)
V̄ 2 +

(1 + V̄ )

2
γ̄2

− (1 + V̄ )

4!

[{
1− γ̄2

6× 5

}
+

4! γ̄4

8!

{
1− γ̄2

10× 9

}
+ . . .

]
γ̄4 (5.39)

Once again since −π ≤ γ̄ < π in our domain, every term within braces {.} in the

above expression is greater than 0. Thus, we have

Φ ≤
(

1 +
V̄

3

)
V̄ 2 +

(1 + V̄ )

2
γ̄2

≤ k2

(
V̄ 2 + γ̄2

)
, (5.40)
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where,

k2 = max

{
1 +

V̄max

3
,
1 + V̄max

2

}
. (5.41)

Thus, condition (1) of Proposition 2 is satisfied.

We compute the derivative of Φ with respect to tn:

dΦ

dtn
=

(
− cos γ̄ +

(
1 + V̄

)2
) [
− 1

KDeV
2
e

(
m0g sin (γ̄ + γe) + KDeV

2
e

(
1 + V̄

)2
)]

+
(
1 + V̄

)
sin γ̄

(
−1

KDeV
2
e

(
1 + V̄

)
){

m0g cos (γ̄ + γe)−KLeV
2
e

(
1 + V̄

)2
}

=
−1

KDeV
2
e

[
m0g (sin γ̄ cos (γ̄ + γe)− cos γ̄ sin (γ̄ + γe))−KLeV

2
e

(
1 + V̄

)2
sin γ̄

−KDeV
2
e

(
1 + V̄

)2
cos γ̄ + m0g sin (γ̄ + γe)

(
1 + V̄

)2

+ KDeV
2
e

(
1 + V̄

)4
]

=
−1

KDeV
2
e

[
−m0g sin γe −KLeV

2
e

(
1 + V̄

)2
sin γ̄ −KDeV

2
e

(
1 + V̄

)2
cos γ̄

+ m0g sin (γ̄ + γe)
(
1 + V̄

)2
+ KDeV

2
e

(
1 + V̄

)4
]

(5.42)

We note that m0g sin γe = −KDeV
2
e and KLeV

2
e = m0g cos γe. Substituting these two

relations in the first two terms of the above equality we get

dΦ

dtn
=

−1

KDeV
2
e

[
KDeV

2
e −m0g cos γe

(
1 + V̄

)2
sin γ̄ −KDeV

2
e

(
1 + V̄

)2
cos γ̄

+ m0g sin (γ̄ + γe)
(
1 + V̄

)2
+ KDeV

2
e

(
1 + V̄

)4
]

=
−1

KDeV
2
e

[
KDeV

2
e −KDeV

2
e

(
1 + V̄

)2
cos γ̄

+ m0g sin γe cos γ̄
(
1 + V̄

)2
+ KDeV

2
e

(
1 + V̄

)4
]

(5.43)

Once again using the relation m0g sin γe = −KDeV
2
e - this time in the third term of
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the above equation - and also substituting 1− 2 sin2 γ̄
2

for cos γ̄ we compute

dΦ

dtn
=

−1

KDeV
2
e

[
KDeV

2
e − 2KDeV

2
e

(
1 + V̄

)2
(
1− 2 sin2 γ̄

2

)
+ KDeV

2
e

(
1 + V̄

)4
]

= −
[
1− 2

(
1 + V̄

)2
(
1− 2 sin2 γ̄

2

)
+

(
1 + V̄

)4
]

= −
[((

1 + V̄
)2 − 1

)2

+ 4
(
1 + V̄

)2
sin2 γ̄

2

]

= −
{(

V̄ (V̄ + 2)
)2

+ 4(1 + V̄ )2 sin2
( γ̄

2

)}
. (5.44)

Let us examine the above expression carefully. First, we note that sin2(γ̄/2) =

sin2(|γ̄|/2). The power series expansion of the sine function gives us

sin

( |γ̄|
2

)
=

|γ̄|
2
− 1

3!

( |γ̄|
2

)3

+
1

5!

( |γ̄|
2

)5 (
1− (|γ̄|/2)2

7× 6

)
+ . . .

≥ |γ̄|
2
− 1

3!

( |γ̄|
2

)3

because − π ≤ γ̄ < π

=
|γ̄|
2

(
1− |γ̄|2

24

)

≥ |γ̄|
2

e, (5.45)

where,

e =

(
1− π2

24

)
> 0. (5.46)

Thus, we have

− sin2
( γ̄

2

)
≤ −e2

( γ̄

2

)2

. (5.47)

Substituting relation (5.47) in equation (5.44) we can conclude that

dΦ

dtn
≤ −

{(
V̄ + 2

)2
V̄ 2 + (1 + V̄ )2e2γ̄2

}
. (5.48)
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This implies,

dΦ

dtn
≤ −min

((
V̄min + 2

)2
, (1 + V̄min)2e2

) (
V̄ 2 + γ̄2

)

= − (
1 + V̄min

)2
e2

(
V̄ 2 + γ̄2

)
. (5.49)

Thus, condition (2) of Proposition 2 is satisfied with a1 = 1, b1 = e2
(
1 + V̄min

)2
and

ψ =

√
(V̄ 2 + 2V̄ )2 + 4(1 + V̄ )2 sin2

( γ̄

2

)
. (5.50)

Proposition 2 provides the stability of the reduced (slow) subsystem. This result

is used along with the result of Proposition 1 to derive the singular perturbation

reduction of underwater glider dynamics in the following subsection. The result of

the following subsection is consistent with the phugoid-mode approximations based

on eigenvalues of linearized models, commonly used in aircraft control literature.

5.1.3 Reduction of Dynamics

Since the equilibria of both the boundary-layer and reduced subsystems are expo-

nentially stable, the reduced system dynamics approximate the dynamics of the full

system. More precisely we can state the following result:

Theorem 1. [130] Let RA
q ⊂ Bq be the region of attraction of (5.30) about q = 0

and Λq be a compact subset of RA
q . Let the set {‖p‖2 ≤ k5}, where k5 > 0, be a

compact subset of Bp. For each compact set Λp ⊂ {‖p‖2 ≤ ρk5, 0 < ρ < 1} there is a

positive constant µ∗ such that for all initial conditions (V̄0, γ̄0) ∈ Λp, (ᾱ0, Ω̄2,0) ∈ Λq,

0 < µ < µ∗ and tn ∈ [tn,0,∞),

p(tn, µ)− pr(tn) = O(µ) (5.51)

q(tn, µ)− q̂(tn/µ) = O(µ) (5.52)
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where pr(tn) and q̂(τ) are the solutions of the reduced (5.33) and boundary layer

(5.30) systems respectively.

Proof This theorem follows by applying Theorem 11.2 of [13] to the system described

by equations (5.28)-(5.29). 2

Figure 5.1 shows a simulation of the reduced system and the full system for an un-

derwater glider of a similar size as ROGUE [31]. This simulation provides an illustra-

tion of the result of Theorem 1. The parameters used in the simulation are as follows

(see §5.3 for more discussion on these parameters): m1 = m3 = 28 kg, m0 = 0.7 kg,

KL0 = 0 kg/m, KL = 75 kg/m/rad, KD0 = 2 kg/m, KD = 80 kg/m/rad2, KM0 = 1

kg, Kq = −2 kg.s/rad, KM = −50 kg/rad, J2 = 0.02 kg.m2. The initial condi-

tions for the full dynamics were V (0) = 1.730 m/s, γ(0) = −0.91 rad, α(0) = 0.03

rad and Ω2 = 2.50 rad/s. The initial conditions for the reduced subsystem were

V (0) = 1.765 m/s and γ(0) = −0.93 rad. The nondimensional small parameters are

ε1 = 4.784 exp(−3) and ε2 = 4.403 exp(−4). The eigenvalues of the linearization of

the nondimensional reduced system are -1.500±0.916i and those of the boundary-layer

system scaled to the time scale tn (i.e., equation (5.30) with the left-hand-side deriva-

tive with respect to tn instead of τ for the purpose of comparing with eigenvalues of

the reduced system) are -84.582 and -363.796. We observe that the solutions of the

two systems remain close to each other during the entire simulation, indicating that

the reduced system dynamics well approximate the full system dynamics. The con-

vergence of the two solutions starting at different initial conditions also demonstrates

the stability of the equilibrium of the reduced system.

The result of the above theorem also makes rigorous the justification for the

phugoid-mode approximation for underwater gliders and aircraft [34]. The justifica-

tion for the phugoid-mode approximation is usually argued on the basis of separation

of eigenvalues of the linearization of the vehicle model. The system matrix is some-

times approximated to a block triangular matrix [124] by neglecting parasitic terms.
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Figure 5.1: Singular Perturbation Reduction Simulation

The validity of the approximation is checked by comparing the eigenvalues of the slow

and fast subsystems to the eigenvalues of the original system. If the set of eigenvalues

of the original system is close to the union of the sets of eigenvalues of the slow and fast

subsystems, the latter subsystems are analyzed separately. Furthermore, if all eigen-

values are on the left half plane, the original system may be approximated by the slow

(reduced) subsystem. In contrast, our result is derived using the original nonlinear

model of the vehicle (equations (5.20)-(5.23)). We do not ignore any coupling terms

between the slow and fast subsystems. The statement of Theorem 1 provides precise

conditions in terms of vehicle parameters (εi’s are functions of vehicle parameters)

and system domain where phugoid-mode approximation is valid. The phugoid-mode

approximation holds in a compact set within a neighborhood around the equilibrium

(origin) of the longitudinal dynamics. This neighborhood may be specified as follows:

−1 < V̄min ≤ V̄ ≤ V̄max, −π ≤ γ̄ < π, −2π ≤ ᾱ < 2π, −Ω̄2,min ≤ Ω̄2 ≤ Ω̄2,max. The

size of the compact set within the above neighborhood is determined by the param-
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eters ε1 and ε2 defined by equations (5.16)-(5.17). Smaller values of εi imply a larger

separation between the fast and slow time scales of the system, which provides for a

larger compact set around the equilibrium where the phugoid-mode approximation is

valid, as illustrated in the numerical example presented in §5.3.1.

5.2 Composite Lyapunov Function

The stability of equilibria of boundary-layer and reduced subsystems guarantees sta-

bility of the equilibrium of the full system dynamics in a small enough region around

the equilibrium. An estimate of the size of this region may be calculated using a

Lyapunov function candidate for the full system. Such a Lyapunov function, which

proves the asymptotic stability of the full system equilibrium, is constructed in this

section by combining the Lyapunov functions for the boundary-layer and reduced sub-

systems. The composite Lyapunov function is used in §5.3 to compute (conservative)

estimates of the region of attraction of the equilibrium.

We first state a result derived from [127, 128]. This result, presented in [129, 130],

provides conditions under which a composite Lyapunov function candidate is valid.

Theorem 2. [130] Consider a singularly perturbed system of the form (5.28)-(5.29).

Assume the origin is the unique equilibrium in the neighborhood Bp ×Bq, and q = 0

is the unique equilibrium for the boundary layer system of the form (5.30) for p ∈ Bp.

Suppose the conditions of Propositions 1 and 2 hold as well as all other assumptions

of Theorem 11.2 of [13]. Suppose further the following interconnection conditions

hold for all (p, q, εi) ∈ Bp ×Bq × [0, ε∗i ], i = 1, 2;

1. ∂Φ
∂p [f(p, q)− f(p,0)] ≤ β1ψ(p)σ(q) + µγ1ψ

2(p)

2. ∂Ŵ
∂q A [g(p, q, ε)− g(p, q,0)] ≤ µ

(
γ
′
2σ

2(q) + β
′
2ψ(p)σ(q)

)

3.
∣∣∣∂Ŵ

∂p f(p, q)
∣∣∣ ≤ γ

′′
2 σ2(q) + β

′′
2 ψ(p)σ(q)
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where β1, β
′
2, β

′′
2 , γ1, γ

′
2, γ

′′
2 are nonnegative constants and ε∗i > 0, i = 1, 2. Then,

the origin is an asymptotically stable equilibrium of (5.28)-(5.29) for all 0 < εi <

min{µ∗, ε∗i }, i = 1, 2, where

µ∗ =
a1a2

a1γ2 + a2γ1 + β1β2

,

β2 = β
′
2 + β

′′
2 , γ2 = γ

′
2 + γ

′′
2 . Moreover, for every 0 < d < 1, the composite function

ν(p, q) = (1− d)Φ(p) + dŴ (p, q) (5.53)

is a Lyapunov function that proves the asymptotic stability of the origin of (5.28)-

(5.29) for all 0 < εi < min{µd, ε
∗
i }, i = 1, 2, where

µd =
a1a2

a1γ2 + a2γ1 + 1
4(1−d)d

[(1− d)β1 + dβ2]
2 . (5.54)

Furthermore,

dν

dtn
≤ −c

{‖p‖2 + ‖q‖2
}

, (5.55)

for some positive constant c.

Proof This theorem follows by applying Theorem 1 of [128] to the system described

by equations (5.28)-(5.29). The interconnection conditions are satisfied in a suffi-

ciently small enough neighborhood of the equilibrium of the full system and for suffi-

ciently small ε∗i . The computation of the constants appearing in the interconnection

conditions is given in §5.2.1-§5.2.3. 2

The first and third conditions of the above theorem ensure that the coupling

between the states of the fast and slow subsystems is small enough so that the stability

of the individual subsystems leads to the stability of the full system. They may also
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be interpreted as conditions that require f and g to be smooth enough. As noted in

[127], one way to grasp their meaning is to consider a special case when the partial

derivatives of V and Ŵ are bounded by ψ and σ, respectively, and f r(p) is bounded

by ψ. In this special case, inequalities 1 and 3 (of the above theorem) follow from the

Lipschitz-like condition

|f(p, q1)− f(p, q2)| ≤ Lσ(q1 − q2) (5.56)

which simply says that the rate of growth of f in q cannot be faster than the rate of

growth of σ(·). The second condition of the theorem monitors the dependence of g

on ε.

The freedom in choosing d in the composite Lyapunov function may be used to

optimize the region of attraction estimate for a given set of glider parameters. It can

also be used to optimize the estimates of the upper bound of small parameters ε1 and

ε2 to guarantee a certain specified region of attraction.

In the following subsections we show that the underwater glider system satisfies

the conditions of Theorem 2, and we derive the expressions for various coefficients

that appear in the theorem.

5.2.1 Interconnection Condition 1

Let us denote the left-hand-side of condition 1 of Theorem 2 by C1. We calculate

C1 =
1

KDe

{
KD

[
(ᾱ + αe)

2 − α2
e

] [(
1 + V̄

)2 − cos(γ̄)
]

+ KLᾱ sin γ̄

}
(
1 + V̄

)2
. (5.57)

We note that (ᾱ + αe)
2 − α2

e = (ᾱ + 2αe) ᾱ ≤ (|ᾱ|max + 2|αe|) |ᾱ|, where |ᾱ|max =

max{−ᾱmin, ᾱmax}. We further note that ᾱ sin γ̄ = ᾱ 2 sin γ̄
2
cos γ̄

2
≤ |ᾱ|

∣∣2 sin γ̄
2

∣∣.
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Substituting these results in equation (5.57), using the identities cos γ̄ = 1− 2 sin2 γ̄
2
,

sin γ̄ = 2 sin γ̄
2
cos γ̄

2
and using the fact that

(
1 + V̄

)
= |1 + V̄ | (since V̄ > −1) we get

C1 ≤ 1

KDe

{
KD

[
(|ᾱ|max + 2|αe|)

(
1 + V̄

) |ᾱ|
]

×
[(

1 + V̄
) ∣∣∣V̄ 2 + 2V̄ + 2 sin2(

γ̄

2
)
∣∣∣
]

+ KL

(
1 + V̄

) |ᾱ|
∣∣∣
(
1 + V̄

)
2 sin(

γ̄

2
)
∣∣∣
}

. (5.58)

In order to express the right-hand-side of the above expression in terms of σ

defined by equation (5.32) and ψ defined by equation (5.50) we make the following

observations:

• |ᾱ| ≤
√

ᾱ2 + Ω̄2
2. Thus,

(
1 + V̄

) |ᾱ| ≤ σ.

• ∣∣(1 + V̄
)
2 sin( γ̄

2
)
∣∣ =

√((
1 + V̄

)
2 sin( γ̄

2
)
)2 ≤ ψ.

•
∣∣V̄ 2 + 2V̄ + 2 sin2( γ̄

2
)
∣∣ =

∣∣V̄ 2 + 2V̄ + 2
(
1 + V̄

)
sin2( γ̄

2
)− 2 V̄ sin2( γ̄

2
)
∣∣

≤
∣∣V̄ 2 + 2V̄ + 2

(
1 + V̄

)
sin2( γ̄

2
)
∣∣+

∣∣2 V̄ sin2( γ̄
2
)
∣∣. For any two numbers x1 and x2,

|x1 + x2| ≤
√

2 (x2
1 + x2

2). Setting x1 =
(
V̄ 2 + 2V̄

)
and x2 = 2

(
1 + V̄

)
sin2( γ̄

2
),

we find

∣∣∣V̄ 2 + 2V̄ + 2
(
1 + V̄

)
sin2(

γ̄

2
)
∣∣∣ ≤

√
2

√(
V̄ 2 + 2V̄

)2
+ 4

(
1 + V̄

)2
sin4(

γ̄

2
)

≤
√

2

√(
V̄ 2 + 2V̄

)2
+ 4

(
1 + V̄

)2
sin2(

γ̄

2
)

=
√

2ψ (5.59)

The second inequality above follows from the fact that sin4(·) ≤ sin2(·). Fur-
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thermore, we can see that

(
1 + V̄

) ∣∣∣2 V̄ sin2(
γ̄

2
)
∣∣∣ ≤ V̄max

∣∣∣2
(
1 + V̄

)
sin2(

γ̄

2
)
∣∣∣

= V̄max

√
4

(
1 + V̄

)2
sin4(

γ̄

2
)

≤ V̄max

√
4

(
1 + V̄

)2
sin2(

γ̄

2
)

≤ V̄maxψ. (5.60)

Using the above observations in the inequality (5.58) we get

C1 ≤ 1

KDe

[
KD (|ᾱ|max + 2|αe|)

(√
2 + (

√
2 + 1)V̄max

)
+ KL

]
σψ. (5.61)

Thus, interconnection condition 1 is satisfied with

β1 =
1

KDe

[
KL + KD (|ᾱ|max + 2|αe|)

(√
2 + (

√
2 + 1)V̄max

)]
(5.62)

γ1 = 0. (5.63)

5.2.2 Interconnection Condition 2

Let us denote the left-hand-side of condition 2 of Theorem 2 by C2. We compute

C2 =
µ

(
c1ᾱ + c3Ω̄2

)

KDeV
2
e

(
1 + V̄

)
{

m0g cos(γ̄ + γe)

− (KL0 + KL(ᾱ + αe))V
2
e

(
1 + V̄

)2
}

. (5.64)

Using the equilibrium relation m0g cos γe = KLeV
2
e from equation (5.21) (where

KLe = KL0 + KLαe) and recalling that c3 = 1 we can rewrite C2 as follows:

C2 = −p1s1Ω̄2 − p2ᾱΩ̄2 − p3s1ᾱ− p4ᾱ
2, (5.65)
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where

p1 =
µ(

1 + V̄
)

(
KLe

KDe cos γe

)
,

p2 =
µKL

(
1 + V̄

)

KDe

> 0 (assuming KL > 0),

p3 = p1

{
r1 + (r1 + r2)

(
1 + V̄

)2
}

,

p4 =
p2p3

p1

= p2

{
r1 + (r1 + r2)

(
1 + V̄

)2
}

> 0,

s1 =
(
V̄ 2 + 2V̄

)
cos γe + 2 sin

γ̄

2
sin

(
γ + γe

2

)
.

Since p4ᾱ
2 ≥ 0, we have

C2 ≤ −p1s1Ω̄2 − p2ᾱΩ̄2 − p3s1ᾱ

≤ |p1||s1|
∣∣Ω̄2

∣∣ + p2

∣∣ᾱ Ω̄2

∣∣ + |p3||s1||ᾱ|. (5.66)

We closely examine the terms appearing on the right-hand-side of the last inequal-

ity.

• |s1|: Inspecting the expression for s1 we can conclude that

|s1| ≤
∣∣(V̄ 2 + 2V̄

)∣∣ + 2
∣∣∣sin γ̄

2

∣∣∣ = s1
1 + s2

1, (5.67)

where,

s1
1 =

∣∣(V̄ 2 + 2V̄
)∣∣ + 2

(
1 + V̄

) ∣∣∣sin γ̄

2

∣∣∣ ≤
√

2ψ,

s2
1 = −2V̄

∣∣∣sin γ̄

2

∣∣∣ .
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We can further calculate that

s2
1 ≤ 2

∣∣V̄ ∣∣
∣∣∣sin γ̄

2

∣∣∣

=
1(

1 + V̄
) |V̄ |

∣∣∣
(
1 + V̄

)
2 sin

γ̄

2

∣∣∣

≤ |V̄ |(
1 + V̄

)ψ. (5.68)

Thus,

|s1| ≤
√

2ψ +
|V̄ |(

1 + V̄
)ψ. (5.69)

•
∣∣ᾱ Ω̄2

∣∣: We start by multiplying and dividing by
(
1 + V̄

)
:

∣∣ᾱ Ω̄2

∣∣ =
1(

1 + V̄
) (

1 + V̄
) ∣∣ᾱ Ω̄2

∣∣ (5.70)

For any two numbers x1 and x2, |x1x2| ≤ 1
2
(x2

1 + x2
2). Setting x1 = ᾱ and

x2 = Ω̄2 we have

∣∣ᾱ Ω̄2

∣∣ ≤ 1

2

(
ᾱ2 + Ω̄2

2

)
. (5.71)

Multiplying and dividing the relation 5.71 by
(
1 + V̄

)2
we get

∣∣ᾱ Ω̄2

∣∣ ≤ 1

2
(
1 + V̄

)2

(
1 + V̄

)2 (
ᾱ2 + Ω̄2

2

)

=
1

2
(
1 + V̄

)2σ2. (5.72)
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• |ᾱ|,
∣∣Ω̄2

∣∣: Multiplying and dividing |ᾱ| =
√

ᾱ2 by
(
1 + V̄

)
we get

|ᾱ| =
1(

1 + V̄
) (

1 + V̄
)√

ᾱ2

≤ 1(
1 + V̄

) (
1 + V̄

) √
ᾱ2 + Ω̄2

2

=
1(

1 + V̄
) σ. (5.73)

Similarly,

∣∣Ω̄2

∣∣ ≤ 1(
1 + V̄

) σ. (5.74)

Using the above results as well as expressions for p1, p2 and p3 in inequality (5.66)

we calculate

C2 ≤ µ|KLe |
KDe | cos (γe) |

{√
2 +

|V̄ |(
1 + V̄

)
}{

(1 + r1)(
1 + V̄

)2 + r1 + r2

}
σψ

+
µKL

2KDe

(
1 + V̄

)σ2 (5.75)

≤ µβ
′
2ψσ + µγ

′
2σ

2, (5.76)

where,

β
′
2 =

|KLe |
KDe | cos (γe) |

{√
2 +

max{−V̄min, V̄max}(
1 + V̄min

)
}{

(1 + r1)(
1 + V̄min

)2 + r1 + r2

}
(5.77)

γ
′
2 =

KL

2KDe

(
1 + V̄min

) . (5.78)

Thus, condition 2 of Theorem 2 is satisfied.
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5.2.3 Interconnection Condition 3

Let us denote the left-hand-side of condition 3 of Theorem 2 by C3. We compute

C3 =
1

KDeV
2
e

∣∣∣∣∣
{

m0g (sin γ − sin γe)(
1 + V̄

)3 +
KD (ᾱ + 2αe) ᾱV 2

e(
1 + V̄

)

+
KDeV

2
e

(
V̄ 2 + 2V̄

)
(
1 + V̄

)3

}
r1Ω̄

2
2

r2

− (r1 + r2)

{
m0g (sin γ − sin γe) + KD (ᾱ + 2αe) ᾱV 2

e

(
1 + V̄

)2

+ KDeV
2
e

(
V̄ 2 + 2V̄

)} (
1 + V̄

)
ᾱ2

∣∣∣∣∣. (5.79)

In deriving equation (5.79) we have used the following computation:

f1 =
1

KDe

(
−m0g sin γ − (KD0 + KD (ᾱ + αe)

2 V 2
e

(
1 + V̄

)2
)
)

=
1

KDe

{
−m0g sin γe + m0g(sin γe − sin γ)− (KD0 + KDα2

e)V
2
e (1 + V̄ )2

−KD(ᾱ2 + 2ᾱαe)V
2
e

(
1 + V̄

)2

}

=
1

KDe

{
−m0g(sin γ − sin γe)− (KD0 + KDα2

e)V
2
e (V̄ 2 + 2V̄ )

−KD(ᾱ2 + 2ᾱαe)V
2
e

(
1 + V̄

)2

}
.

From equation (5.79) we can derive the following relation,

C3 ≤ γ
′′
2 σ2, (5.80)

where,

C3 = max{Ct1
3 , Ct2

3 }, (5.81)
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where

Ct1
3 =

2|m0|g(
1 + V̄min

)3 +
KD (ᾱ + 2αe)max ᾱmaxV

2
e(

1 + V̄min

) +
KDeV

2
e

(
V̄ 2 + 2V̄

)
max(

1 + V̄min

)3 ,

Ct2
3 =

{
2|m0|g + KD (ᾱ + 2αe)max ᾱmaxV

2
e

(
1 + V̄max

)2

+ KDeV
2
e

(
V̄ 2 + 2V̄

)
max

} (
1 + V̄max

)
.

The term (ᾱ2 + 2ᾱαe)max denotes the maximum value of (ᾱ2 + 2ᾱαe) in Bq. We note

that we have also used the fact that | sin γ − sin γe| ≤ 2 in the above computations.

Thus, we satisfy condition 3 of Theorem 2 with

β
′′
2 = 0, (5.82)

and γ
′′
2 given by equation (5.81).

By satisfying all conditions of Theorem 2 we have shown that the Lyapunov func-

tion,

ν =
d

2

{[
r1 +

(
1 + V̄

)2
(r1 + r2)

]
ᾱ2 +

[
1 +

r1

r2

(
1 + V̄

)2

]
Ω̄2

2 + 2ᾱΩ̄2

}

+ (1− d)

{
2

3
− (1 + V̄ ) cos(γ̄) +

1

3

(
1 + V̄

)3
}

, (5.83)

where 0 < d < 1, proves the asymptotic stability of the steady glides of the underwater

glider for all 0 < εi < min{µd, ε
∗
i }, where µd is given by equation (5.54) and ε∗i , i = 1, 2,

are bounds on the positive constants εi, as defined in Theorem 2.

5.3 Region of Attraction Estimates

In this section we use the results of [127] to compute estimates of the region of

attraction of the steady motions of the underwater glider. The material of this section
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follows the results presented in [129].

In §5.2 we noted that d, the weighting factor of the composite Lyapunov function

ν given by equation 5.53, can be chosen such that the size of the region of attraction

is optimized. The reference [127] calculates the optimal value of d for the largest

estimate of the region of attraction in terms of the bounds of Lyapunov functions of the

boundary-layer and reduced subsystems, Ŵ and Φ, in the domain Bp×Bq. According

to this calculation, if LR = {(V̄ , γ̄
) ∈ Bp | 0 ≤ Φ ≤ v0} is in the region of attraction

of the reduced subsystem and LB = {(V̄ , γ̄, ᾱ, Ω̄2

) ∈ Bp×Bq | 0 ≤ Ŵ ≤ w0} is in the

region of attraction of the boundary layer subsystem, the value of d that yields the

largest region of attraction estimate for the full system dynamics is

d =
v0

v0 + w0

. (5.84)

The corresponding region of attraction estimate L∗ is defined as follows:

L∗ =

{(
V̄ , γ̄, ᾱ, Ω̄2

) ∈ Bp ×Bq

∣∣∣∣ 0 ≤ ν ≤ v0w0

v0 + w0

}
. (5.85)

5.3.1 Numerical Example

In this subsection we compute region of attraction estimates for an underwater glider

and illustrate how changing certain design parameters will affect the stability guar-

antees provided by the composite Lyapunov function ν. We consider an underwater

glider of a similar hull mass and size as the ROGUE [31], but with a different hull

shape. ROGUE had an ellipsoidal shape whereas the glider under consideration here

has a spherical shape (since we consider the case of equal added masses). Further, we

consider a glider with significantly smaller wings (for lower lift) and moment of inertia

than ROGUE. The parameter values for this model are: m1 = m3 = 28 kg, m0 = 0.7

kg, KL0 = 0 kg/m, KL = 75 kg/m/rad, KD0 = 2 kg/m, KD = 80 kg/m/rad2,
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KM0 = 1 kg, Kq = −2 kg.s/rad, KM = −50 kg/rad, J2 = 0.02 kg.m2. We calculate

ε1 = 4.784 exp(−3), ε2 = 4.403 exp(−4). Thus, µ = max{ε1, ε2} = 4.784 exp(−3).

The reference time scale for the slow dynamics is τs = 8.361 s.

The above parameters lead to an equilibrium glide at speed Ve = 1.684 m/s

and flight path angle γe = −53.566 degrees. We consider a neighborhood of the

equilibrium, Bp × Bq, such that |V̄ | ≤ 0.4 and |ᾱ| ≤ 0.2. For this neighborhood

the corresponding µd = 3.635 exp(−3), with d = 0.4423. Since µ > µd, ν given

by equation (5.83) does not guarantee asymptotic stability of the equilibrium in the

chosen domain.

If we consider an alternative glider design such that KM = −100 kg/rad and/or

J2 = 0.01 kg.m2, with other parameters remaining unchanged, we find µ < µd, and ν

can be used to prove asymptotic stability of the equilibrium in the same domain. Note

that different values of KM yield different equilibria whereas changing the value of J2

does not affect the equilibrium. A higher value of KM may be realized by considering

a larger horizontal tail. A lower J2 would require a different mass distribution in the

spherical hull, with a larger concentration of mass near the center.

We consider KM = −100 kg/rad, J2 = 0.02 kg.m2, and plot projections of an

estimate of the region of attraction of the equilibrium of the glider, provided by

ν, onto (V̄ , ᾱ) space in Figure 5.2 [129]. The guaranteed region of attraction can

be increased by decreasing J2 or increasing KM . Decreasing J2 yields a lower ε2,

and increasing KM yields a lower ε1 (but changing KM also changes the equilibrium

speed and flight path angle). Both help towards increasing the separation between

the fast time scales and the slow time scale, decreasing the coupling between the

corresponding dynamics. This results in the composite Lyapunov function providing

a stability guarantee over a larger domain around the equilibrium point.

We note that the region of attraction estimate provided by the Lyapunov function

is rather conservative. For example, simulations suggest that for all (γ̄, Ω̄2) sections of
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the phase space shown in Figure 5.2, the projection of the region of attraction spans

the (V̄ , ᾱ) space. However, the Lyapunov function provides a stability guarantee as a

function of vehicle parameters, which is useful in control system design presented in

Chapter 6.
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Figure 5.2: Projections of an estimate of the region of attraction on the (V̄ , ᾱ) space.
The four plots represent projections given different ranges on the other two states.
(A) |γ̄| ≤ π

12
, |Ω̄2| ≤ 0.01, (B) |γ̄| ≤ π

8
, |Ω̄2| ≤ 0.01, (C) |γ̄| ≤ π

12
, |Ω̄2| ≤ 0.1, (D)

|γ̄| ≤ π
8
, |Ω̄2| ≤ 0.1. For the sake of reference we note that |V̄ | = 0.2 amounts to a

deviation of V from equilibrium speed by about 0.36 m/s. [129]

5.4 Extension of Results

In this section we extend singular perturbation reduction to the case of underwater

gliders with unequal added masses. This case presents additional technical difficulties

due to the stronger coupling between translational and rotational dynamics.

Denoting the difference in added masses m3−m1 by ∆m, the equations of motion
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of the underwater glider with unequal added masses may be written as follows for

V > 0, analogous to equations (5.4)-(5.7):

V̇ = −∆m cos α

m1m3

{
m0g sin θ − L sin α + D cos α + (m1 + m3) V Ω2 sin α

}

− 1

m3

(m0g sin γ + D) (5.86)

γ̇ = − ∆m

m1m3V

{
(m0g sin θ − L sin α + D cos α) sin α

+
(
m3 sin2 α−m1 cos2 α

)
V Ω2

}

+
1

m3V
(−m0g cos γ + L)

= : E
′
2 (5.87)

α̇ = Ω2 − E
′
2 (5.88)

Ω̇2 =
1

J2

{
(KM0 + KMα + KqΩ2) V 2 + ∆mV 2 sin α cos α

}
. (5.89)

The equilibrium pitch rate Ω2e = 0 and the equilibrium speed and flight path

angle, Ve and γe respectively, are given by the same expressions as for the case with

equal added masses: equations (5.8)-(5.9). However, the equilibrium angle of attack

αe is a function of ∆m. αe is computed as the solution of the following equilibrium

equation:

KM0 + KMαe + ∆m sin αe cos αe = 0. (5.90)

We define nondimensional state variables (V̄ , γ̄, ᾱ, Ω̄2), time variable tn and pa-

rameters ε1, ε2, µ exactly as in the case of equal added masses. Equations of motion

(5.86)-(5.89) may be expressed in the same compact form as equations (5.28)-(5.29),

but the expressions for f and g are correspondingly different.

The boundary-layer subsystem is given by equation (5.30). The component equa-
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tions contained in (5.30) are expanded for the sake of illustration:

dᾱ

dτ
= r1Ω̄2 (5.91)

dΩ̄2

dτ
= −r2

{
ᾱ +

∆m

KM

sin (ᾱ + 2αe) cos ᾱ + Ω̄2

}(
1 + V̄

)2
. (5.92)

We seek a Lyapunov function candidate of the form,

Ŵ =
h1

2r2

Ω̄2
2 +

h2

2r1

ᾱ2
(
1 + V̄

)2
+

h3√
r1r2

Ω̄2ᾱ
(
1 + V̄

)

− h1∆m

2KMr1

(
cos 2 (ᾱ + αe)

2
+ ᾱ sin 2αe

) (
1 + V̄

)2
, (5.93)

where h1, h2, h3 are positive constants that will be chosen later.

The gradient of Ŵ with respect to q =
(
ᾱ, Ω̄2

)T
is

∇Ŵ =




h2

r1
ᾱ + h3√

r1r2(1+V̄ )
Ω̄2 + h1∆m

2KMr1
(sin 2 (ᾱ + αe)− sin 2αe)

h1

r2(1+V̄ )
2 Ω̄2 + h3√

r1r2(1+V̄ )
ᾱ




(
1 + V̄

)2
.(5.94)

Evaluated at the equilibrium, the gradient is equal to the zero vector. The Hessian

matrix evaluated at the equilibrium is

∇2Ŵ
∣∣∣
(ᾱ=0, Ω̄2=0)

=




h2

r1
+ h1∆m

KMr1
cos 2αe

h3√
r1r2

h3√
r1r2

h1

r2


 . (5.95)

For the above Hessian matrix to be positive definite we require h1 > 0 and

h1

(
h2 +

h1∆m

KM

cos 2αe

)
− h2

3 > 0.

In that case we satisfy condition (1) of Proposition 1 in a sufficiently small neighbor-

hood Bq with k3 and k4 equal to the smaller and larger of the two eigenvalues of the

above Hessian matrix, respectively.
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The derivative of the Lyapunov function Ŵ with respect to τ is

dŴ

dτ
=

(
h2 − h1 − h3

√
r2

r1

(
1 + V̄

))
ᾱΩ̄2 − h3

√
r2

r1

(
1 + V̄

)3
ᾱ2

−
(

h1

(
1 + V̄

)− h3

√
r1

r2

) (
1 + V̄

)
Ω̄2

2

− h3

√
r2

r1

(
1 + V̄

)3 ∆m

KM

ᾱ sin (ᾱ + 2αe) cos ᾱ. (5.96)

We set

h2 = h1 + h3

√
r2

r1

(
1 + V̄

)
, (5.97)

and assume that |αe| ≤ π/4 and |ᾱ| ≤ αm, where αm is some positive number less

than or equal to
√

3. Then, it is possible to satisfy condition (2) of Proposition 1

with

σ =
(
1 + V̄

) √
ᾱ2 + Ω̄2

2 (5.98)

a2 = min{a21, a22} (5.99)

b2 = a2

(
1 + V̄min

)2
, (5.100)

where,

a21 = h3

(
1 + V̄min

) √
r2

r1

(
1−

∣∣∣∣
∆m

2KM

αm tan 2αe

∣∣∣∣
)

(5.101)

a22 = h1 − h3

√
r1

r2

1(
1 + V̄min

) . (5.102)

We omit the details of the above calculation for the sake of brevity. By picking a

large enough h1 we can ensure that a22 > 0. For a21 > 0, we require ∆m to be small

enough. Thus, we are able to prove local exponential stability of the equilibrium of

the boundary layer model for sufficiently small ∆m and |αe| ≤ π/4.
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The reduced subsystem is given by equation (5.33). The component equations

contained in (5.33) are:

dV̄

dtn
=

−τs

m3Ve

[
m0g sin (γ̄ + γe) + KDeV

2
e

(
1 + V̄

)2
+

∆m cos αe

m1

f

]
(5.103)

dγ̄

dtn
=

τs

m3Ve

(
1 + V̄

)
[
KLeV

2
e

(
1 + V̄

)2 −m0g cos (γ̄ + γe)

+
∆m sin αe

m1

f

]
, (5.104)

where,

f = m0g
{

sin θe

(
1 + V̄

)2 − sin (γ̄ + θe)
}

. (5.105)

We consider the same Lyapunov function candidate that we used for the case of

equal added masses:

Φ =
2

3
− (

1 + V̄
)
cos γ̄ +

1

3

(
1 + V̄

)3
. (5.106)

Condition (1) of Proposition 2 is satisfied as in §5.1.2.

We compute the derivative of Φ:

dΦ

dtn
= −

{(
V̄ + 2

)2
V̄ 2 + 4

(
1 + V̄

)2
sin2 γ̄

2

}
+ R, (5.107)

where,

R =
∆m

m1KDeV
2
e

(
2 sin

(
γ̄ + 2αe

2

)
sin

γ̄

2
+ cos αe

(
V̄ 2 + 2V̄

))
f. (5.108)
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It can be shown that

R ≤ 2∆m|m0g|
m1KDeV

2
e

(
1 + V̄min

)2

{(
V̄ + 2

)2
V̄ 2 + 4

(
1 + V̄

)2
sin2 γ̄

2

}
. (5.109)

We omit the details of the above calculation for the sake of brevity. For Φ to be a

valid Lyapunov function, we require

2|∆mm0g|
m1KDeV

2
e

(
1 + V̄min

)2 < 1, (5.110)

which can be satisfied with a small enough ∆m or a small enough domain Bp (so

that V̄min is large enough). Figure 5.3 shows a plot of allowable |∆m|/m1 and V̄min

combinations for which the Lyapunov function Φ given by equation (5.106) can be

used to prove the stability of the equilibrium for m0g
KDeV 2

e
= 1.243 (corresponding to

the equilibrium m0, KDe and Ve of the numerical example of §5.3.1).

Thus, the equilibrium of the reduced subsystem is locally exponentially stable.

This also means that the solutions of the reduced system described by equations

(5.103)-(5.104) approximate solutions of the full model of the underwater glider de-

scribed by equations (5.86)-(5.89) for an infinite time-interval, for all initial conditions

starting in the domain Bp×Bq. We can also in principle construct a composite Lya-

punov function for the case of equal added masses to prove local asymptotic stability

of the equilibrium of the full model.

5.5 Summary

In this chapter we use time-scale separation between the slow and fast subsystems of

the underwater glider to reduce the dynamics to the slow subsystem using singular

perturbation theory. The slow subsystem is a generalization of the phugoid-mode

model of Chapter 4. In fact, the Lyapunov function used to prove the stability
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Figure 5.3: Trade off between domain size (determined by V̄min) and |∆m|/m1 for
using Lyapunov function Φ to prove asymptotic stability of the equilibrium.

of the equilibrium of the slow subsystem is derived from the Hamiltonian function

presented in §4.1. The Lyapunov functions for the slow and fast subsystems are

used to construct a composite Lyapunov function for proving the stability of the

equilibrium of the full underwater glider system. The composite Lyapunov function

is used to derive equilibrium region-of-attraction guarantees.
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Chapter 6

Underwater Glider Control

In this chapter we use results of Chapter 5 to design control laws for stabilizing steady

gliding motions of underwater gliders. We consider the case of equal added masses

to better elucidate the steps of the design process. Using the results of §5.4, the

design procedure may be readily extended to the more general case of unequal added

masses, although this would involve significantly more algebra than for equal added

masses considered in this chapter. We present control designs for three different

underwater glider control configurations. In §6.1 control actuation is in the form

of a pure torque. Buoyancy control is considered in §6.2. Elevator-type control

configuration, commonly employed in aircraft, is presented in §6.3. The elevator,

used primarily to regulate the angle of attack, induces a moment-to-force coupling,

which makes the control problem challenging. We take this coupling into account in

our analysis. In all three configurations we design control laws using the composite

Lyapunov function constructed in the previous chapter. The results of this chapter

are based on the presentation in [130].
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6.1 Pure Torque Control

In this section we consider an underwater glider equipped with torque control, which is

used to regulate the equilibrium angle of attack. The torque control in an operational

underwater glider is realized by redistributing internal mass. With respect to the

model presented in Chapter 2, this amounts to controlling the position (rP ) of the

moving mass m̄. In the present section, we approximate the effect of this control

action by a pure torque.

The above simplification is partly motivated by the fact that a different position

of m̄ at equilibrium results in a different pure torque acting on the system. This may

be readily seen by inspecting equations (2.15)-(2.20). Since Ω2 = 0 at equilibrium

the terms rP1 and rP3 appear only in the torque balance equation (2.20).

We also note that torque control may be realized by using external moving sur-

faces, such as an elevator, on the underwater glider. Such a control mechanism

typically induces significant additional external forces, coupled to torque generation.

We consider elevator control action with moment-to-force coupling in §6.3.

The equations of motion of the underwater glider with a pure torque control

actuation are:

V̇ = − 1

m1

(m0g sin γ + D) (6.1)

γ̇ =
1

m1V
(−m0g cos γ + L) (6.2)

α̇ = Ω2 − 1

m1V
(−m0g cos γ + L) (6.3)

Ω̇2 =
1

J2

[
(KM0 + KMα + KqΩ2) V 2 + u

]
, (6.4)

where u represents the control torque.

Choosing u appropriately gives a desired equilibrium angle of attack αe. αe may

be determined on the basis of either a desired equilibrium speed Ve or a desired
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equilibrium flight path angle γe. We cannot design u to achieve both a desired Ve and

a desired γe but can achieve the desired value of one of these two states. Furthermore,

we can design u to improve the region of attraction estimate provided by the composite

Lyapunov function constructed in §5.2. We choose u to mimic the moment due to

lift:

u = (KM0u + KMuα + KquΩ2) V 2 (6.5)

The controlled dynamics look like the uncontrolled underwater glider dynamics, ex-

cept that the net moment coefficients are modified by KM0u, KMu, and Kqu to achieve

desired values. They may be chosen to increase the separation between the time scales

of the fast and slow subsystems of the closed-loop dynamics. As we noted in the previ-

ous chapter, greater separation implies weaker coupling between the two subsystems,

which leads to larger estimates of the region of attraction of the closed-loop equilib-

rium. We note that (6.5) and the other feedback control laws presented in this thesis

assume perfect, lag-free measurements of all system states. Practical implementations

of these control laws must take into consideration measurement errors as well as lag

between measurements and control actuation.

With feedback control, the closed-loop equilibrium angle of attack, αe is

αe = −
(

KM0 + KM0u

KM + KMu

)
,

and the closed-loop small parameters εi are,

ε1 =
KDeVe

m1

(Kq + Kqu)

(KM + KMu)

ε2 = −KDeV
3
e

m1

J2

(Kq + Kqu)
,

where Ve refers to the closed-loop equilibrium speed. We choose KMu and Kqu to
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ensure that ε1 > 0 and ε2 > 0. The constants KMu and Kqu may be chosen to set

small enough εi. After picking εi we may pick KM0u to obtain a desired αe. The

desired αe itself may be calculated using equations (5.8)-(5.9) such that we achieve a

specified Ve or γe.

6.1.1 Improving Region of Attraction Guarantee

In this subsection we further elaborate on how various factors determine the region of

attraction estimate, and how we can systematically pick the control constants KMu

and Kqu to obtain a larger guaranteed region of attraction.

The region of attraction guarantee is strongly influenced by µ = max{ε1, ε2}. This

can be seen by the following argument: for obtaining a larger region of attraction

guarantee we need to start by considering the system dynamics in a correspondingly

larger domain Bp×Bq. The domain must necessarily be larger than the desired region

of attraction guarantee. In fact, we must consider a domain which is a large enough

superset of the required guarantee, i.e., we need to consider large enough values of

V̄max and ᾱmax, and small enough values of V̄min and ᾱmin. These bounds influence

the constants β1, β
′
2, β

′′
2 , γ1, γ

′
2, γ

′′
2 of Theorem 2. Less conservative bounds lead to

larger values for the above constants, which imply a smaller µd, evident by inspecting

equation (5.54). Furthermore, Theorem 2 also requires µ < µd for the composite

Lyapunov function ν given by equation (5.53) to prove asymptotic stability of the

equilibrium. Consequently, a larger guarantee of region of attraction requires µ to be

smaller, i.e., εi to be smaller. In other words, we require a greater separation between

the fast and slow time scales.

We propose to pick KMu and Kqu that determine εi in a way that does not influence

a given choice of r1 = µ
ε1

and r1 = µ
ε2

. This is because r1 and r2 also influence β
′
2, γ

′
2,

and γ
′′
2 , which determine µd. By keeping the ri’s invariant we will have a simple way

of adjusting KMu and Kqu to improve the region of attraction estimate.
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Keeping ri’s constant amounts to keeping the ratio ε1/ε2 constant. Thus, we pick

KMu and Kqu such that the following constraint equation is satisfied,

J2
ε1

ε2

=
(Kq + Kqu)

2

(KM + KMu)
V 2

e =
K2

q

KM

V 2
e,ol, (6.6)

where Ve and Ve,ol are the closed-loop and the open-loop equilibrium speeds respec-

tively.

To summarize, given a desired size of the region of attraction we can pick KMu

and Kqu such that equation (6.6) is satisfied and µ < µd. This condition ensures

that the separation of time scales between the fast rotational dynamics and the slow

translational dynamics is large enough so that composite Lyapunov function ν proves

closed-loop stability. As in Chapter 5, ν gives us an analytical, nonlinear stability

result consistent with the standard phugoid-mode approximation based on sufficient

separation between (stable) eigenvalues of short-period and phugoid-modes. We note

that larger values of KMu and Kqu that give larger separation of time scales lead

to larger control signals. An upper bound on the control signal will determine the

largest possible region of attraction guarantee provided by the control law (6.5) and

the composite Lyapunov function ν.

6.2 Buoyancy Control

Underwater gliders use buoyancy control along with internal mass redistribution to

change their gliding speed and flight path angle. In this section we continue to keep

the center of mass fixed at the center of buoyancy and study the buoyancy control

action.

Changing buoyancy alone does not affect the equilibrium angle of attack αe, which

is determined entirely by pitching moment coefficients. Thus we cannot alter the

equilibrium flight path angle of the underwater glider using just buoyancy control.
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However, we may design a buoyancy control law that stably changes the equilibrium

gliding speed.

First, given a desired steady gliding speed Ve, we determine the corresponding

equilibrium value of the buoyancy mass m0e using equation (5.8):

m0e = ±
(

1

g

) √
K2

De
+ K2

Le
V 2

e , (6.7)

where the sign of m0e is determined by the sign of γe. m0e is positive for negative γe

and vice-versa.

Following [6], the buoyancy control action is simply modelled as follows:

dm̄0

dtn
= u, (6.8)

where m̄0 := m0−m0e

me
represents a nondimensional buoyancy mass. me is the total

equilibrium mass of the glider.

We pick the following proportional buoyancy control law to achieve the calculated

m0e:

u = −Kbm̄0. (6.9)

It remains to be shown that the above control law yields a stable closed-loop system.

This is done by modifying the composite Lyapunov function of §5.2.

Equations (5.20)-(5.23) appended with equation (6.8), along with the control law

(6.9), describe the dynamics of our closed-loop system. We note that we define the

nondimensional state variables using equilibrium values of the closed-loop system.

We propose the following Lyapunov function candidate to prove asymptotic stability
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of the equilibrium:

νb = ν +
1

2
m̄2

0, (6.10)

where ν is given by equation (5.83) from §5.2.

The derivative of νb is

dνb

dtn
=

dν

dtn
+

1

2

dm̄2
0

dtn

=
dν

dtn
−Kbm̄

2
0. (6.11)

We note that ν is independent of m̄0. So dν
dtn

is still given by equation (5.55) from

Theorem 2 (for constant buoyancy). Substituting equation (5.55) in equation (6.11)

we get

dνb

dtn
≤ −c

{
V̄ 2 + γ̄2 + ᾱ2 + Ω̄2

2

}−Kbm̄
2
0, (6.12)

for some c > 0. Thus, the closed-loop system is locally asymptotically stable.

The region of attraction of the closed-loop system is related to the region of

attraction of the open-loop system. If the set Bo = {(p, q) | ‖(p, q)‖ ≤ ro} is in the

region of attraction of the open-loop system, an estimate of the closed-loop region of

attraction is given by,

Bc =
{

(p, q, m̄0)
∣∣∣‖(p, q)‖2 + m̄2

0 ≤ r2
o

}
. (6.13)

6.3 Elevator Control

In this section we consider an underwater glider equipped with an external control

surface, an aft elevator, in addition to the buoyancy control of the previous section.
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Figure 6.1: All external forces and moments acting on the underwater glider equipped
with elevator and buoyancy controls. V is the velocity vector. Forces D and L are the
hydrodynamic lift and drag. MDL is the hydrodynamic pitching moment, KMu2V

2

is the pitching moment due to elevator control, δu2V
2 is the elevator induced force,

and m0g is the net force due to gravity.

We now denote the buoyancy control by u1. We model the elevator action as applica-

tion of an external torque KMu2V
2, quite like the control action considered in §6.1.

However, in this section we also consider a coupling force induced by the elevator

action. The magnitude of the coupling force is δu2V
2, where δ is a coupling factor.

It acts along the 3-axis of the underwater glider. Figure 6.1 shows all the forces and

torques acting on the underwater glider in this control scenario.

The nondimensional equations of motion of the underwater glider (with equal

added masses and coincident centers of buoyancy and gravity) equipped with elevator

and buoyancy controls are:

dV̄

dtn
= − 1

KDeV
2
e

{
m0g sin(γ̄ + γe) + D − h sin (ᾱ + αe)

}
(6.14)
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dγ̄

dtn
=

1

KDeV
2
e (1 + V̄ )

{
−m0g cos(γ̄ + γe) + L (6.15)

+ h cos (ᾱ + αe)
}

=: Ē2

dm̄0

dtn
= u1 (6.16)

ε1
dᾱ

dtn
= Ω̄2 − ε1Ē2 (6.17)

ε2
dΩ̄2

dtn
= − (

ᾱ + Ω̄2 − ū2

) (
1 + V̄

)2
, (6.18)

where h = δ(ū2 +u2e)V
2
e (1+ V̄ )2 and ū2 = u2−u2e. The term u2e is a reference value

of the control angle of attack u2. We take u2e to be the equilibrium value of u2.

The total closed-loop pitching moment acting on the glider is equal to

M
DL, closed loop = (KM0 + KMα + KqΩ2 + KMu2) V 2. (6.19)

At equilibrium Ω2 = 0. Thus, the closed-loop equilibrium angle of attack is

αe = −KM0

KM

+ u2e. (6.20)

Since we have two control inputs we can specify both desired steady speed Ve

and desired steady flight path angle γe. As before, control saturation limits restrict

the attainable range of steady glides. Given a desired Ve and γe we first determine

the corresponding equilibrium buoyancy mass m0e and angle of attack αe using the

equilibrium equations of translational dynamics - equations (6.14)-(6.15). Then the

equilibrium value of u2 may be determined using equation (6.20). We note that u2e

must necessarily be within the control saturation limits.

We pick the following control laws for u1 and u2:

u1 = −Km̄0 (K > 0) (6.21)

u2 = u2e. (6.22)
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Theorem 3. The closed-loop equilibrium of the underwater glider system with el-

evator and buoyancy controls, described by equations of motion (6.14)-(6.18) and

the control laws (6.21)-(6.22), is locally asymptotically stable provided the elevator

moment-to-force coupling factor δ is small enough such that

K
′
De

:= KD0 + KDα2
e − δu2eV

2
e sin αe > 0. (6.23)

Proof We outline the proof in two steps. First, we prove the stability of the

closed-loop system with m̄0 = 0. Then, we may use the same argument as that of

§6.2 to conclude local asymptotic stability of the equilibrium for the system including

buoyancy control.

For the first step we compare equations (6.14)-(6.15), (6.17)-(6.18), with m0 set

to m0e, to equations of the uncontrolled underwater glider system of Chapter 5,

represented by equations (5.28)-(5.29).

We note that the boundary-layer subsystem of the present model is identical in

form to the boundary-layer subsystem represented by equation (5.30). Thus, the

equilibrium of the boundary-layer subsystem is the origin, i.e., Ω̄ = ᾱ = 0. This also

implies that the reduced subsystem is of the form represented by equation (5.33).

However, the expression of f is slightly different in the present case. It includes the

elevator moment coupling force, and is given by the right-hand-side of the following

equations:

dV̄

dtn
= − 1

K
′
De

V 2
e

{
m0eg sin (γ̄ + γe) + K

′
De

V 2
e

(
1 + V̄

)2
}

(6.24)

dγ̄

dtn
=

1

K
′
De

V 2
e

(
1 + V̄

)2

{
−m0eg cos (γ̄ + γe) + K

′
Le

V 2
e

(
1 + V̄

)2
}

, (6.25)
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where K
′
De

is the effective equilibrium drag coefficient, given by equation (6.23) and

K
′
Le

= KL0 + KLαe + δu2e cos αe, (6.26)

is the effective equilibrium lift coefficient. We note that we have also redefined the

reference time variable tn in terms of K
′
De

:

tn =
t

τs

, with τs =
m1

K
′
De

Ve

. (6.27)

Thus, the exponential stability of the equilibrium of the reduced subsystem fol-

lows from Proposition 2 provided the effective drag constant K
′
De

> 0 so that the

nondimensional time variable tn has the same sense as t. This would also ensure

the exponential stability of the equilibrium of the boundary-layer subsystem through

Proposition 1. The interconnection conditions of Theorem 2 are also satisfied. Thus,

if K
′
De

> 0 we may use the Lyapunov function ν given by equation (5.83) to conclude

the local asymptotic stability of our system given by equations (6.14)-(6.18), with

u1 = 0 and m0 = m0e.

Now, we can use the same argument as in §6.2 to conclude that the appended

Lyapunov function,

νb = ν +
1

2
m̄2

0, (6.28)

proves local asymptotic stability of the equilibrium of the system with u1 = −Km̄0.

This completes the proof of Theorem 3. 2

Numerical Example

To illustrate the stability of the closed-loop system given by equations (6.14)-(6.18),

(6.21)-(6.22) we present a numerical simulation for an underwater glider with the

following parameters: m = m1−m0 = m3−m0 = 28 kg, KL0 = 0 N(s/m)2, KL = 300
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N(s/m)2, KD0 = 18 N(s/m)2, KD = 110 N(s/m)2, Kq = −5 Nms(s/m)2, KM0 = 1

Nm(s/m)2, KM = −40 Nm(s/m)2, δ = 0.3. We seek to stabilize the glider to an

equilibrium specified by a speed Ve = 1 m/s and flight path angle γe = −45o. The

corresponding equilibrium angle of attack is αe = 3.51o and buoyancy m0e = 2.657

kg. The time-scaling parameters are ε1 = 0.075 and ε2 = 0.012. Figure 6.2 shows

the motion of the glider in the longitudinal plane as well as the evolution of the five

system states for 10 s.
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Figure 6.2: Elevator Control Simulation

In the next chapter we use controlled steady gliding results similar to those pre-

sented in this chapter to design approximate trajectory tracking methods for the

Conventional Take-Off and Landing (CTOL) aircraft model introduced in [36]. One

of the difficulties of exact trajectory tracking for the underwater glider and the CTOL

aircraft is a consequence of the moment-to-force coupling of elevator control, which
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demands application of large control inputs. It may not be possible to realize such

inputs on underwater gliders, and in the case of both underwater gliders and aircraft,

it is desirable to use lower control inputs. An alternative trajectory tracking method

that uses steady gliding segments to approximate desired trajectories may demand

lower control actuation than methods that seek to track trajectories by inverting the

dynamics. The results of this chapter may be combined with the approximate track-

ing methodology presented in the following chapter to design low-energy trajectory

tracking and maneuver regulation solutions for underwater gliders.
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Chapter 7

Approximate Trajectory Tracking

In this chapter we present an application of gliding stability results for the position

tracking problem of a model of Conventional Take-Off and Landing (CTOL) aircraft.

The eventual goal of this work is to design trajectory tracking or maneuver regula-

tion controllers for underwater gliders. The CTOL aircraft, equipped with thrust and

elevator controls, is more maneuverable than the underwater glider and makes a sim-

pler, first application for the approximate trajectory tracking methodology presented

in this chapter. We note that there is a huge amount of literature on CTOL aircraft

control, many concerning more complex vehicle and actuation models than the one

presented here. For example, there have been several studies concerning design of

feedback control laws for optimally regulating aircraft motion through wind shear

[131, 132, 133, 134, 135]. The particular model considered in this chapter has also

been studied in the context of trajectory tracking and maneuver regulation in many

references including [36, 62, 136, 137]. The main feature of our approach is the use of

stabilizable, steady gliding motions for approximately tracking desired trajectories.

Use of steady gliding motions is motivated by the underwater glider application and

yields control laws that demand low actuation energy.

The CTOL aircraft model, considered in [36], is presented in §7.1. The CTOL
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model is a nonminimum phase system if the output is taken to be the position of

the aircraft. The nonminimum phase nature of the system makes trajectory tracking

by inversion of dynamics challenging, as described in §7.3.1. In §7.3.2 we propose a

methodology for approximate trajectory tracking by using control laws that exponen-

tially stabilize any desired steady glide of the CTOL aircraft, presented in §7.2. The

results in §7.2-§7.3 follow the presentation of [138].

7.1 Conventional Take-Off and Landing Aircraft

Model

The CTOL model, presented in [36], describes the longitudinal dynamics of a con-

ventional aircraft. The model includes the lift and drag forces acting on the aircraft.

The actuation is in the form of a thrust force control, u1, and an elevator moment

control, u2. The model also incorporates the moment-to-force coupling: the action

of an aft elevator control induces an external force on the aircraft that opposes the

ultimate response. This induced force causes the CTOL model to be nonminimum

phase for position tracking.

7.1.1 Equations of Motion

Let the position of the CTOL aircraft in the vertical plane be described by (x, y)

with respect to an inertial frame fixed on Earth. The orientation of the aircraft is

described by the aircraft pitch angle θ. The pitch angle is the angle made by the long

axis of the aircraft with the horizontal.

The inertial velocity of the aircraft is (ẋ, ẏ), which may also be represented in terms

of coordinates (V, γ), where V =
√

ẋ2 + ẏ2 is the aircraft speed and γ = tan−1 ẏ
ẋ
∈

(−π, π] is the aircraft flight path angle. The pitch angle of the aircraft is θ ∈ (−π, π]

and the angle of attack is α = θ − γ. The rate of change of pitch angle is Ω2 := θ̇.
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Figure 7.1: Aerodynamic forces and controls acting on the CTOL aircraft.

Figure 7.1 shows all the external forces and torques acting on the aircraft. The lift

force L acts perpendicular to the velocity vector V and the drag force D acts along

the direction opposite to V . The thrust control is modelled by the force u1, acting

along the long axis of the aircraft. The control moment u2 is due to the elevator

actuation. This moment induces the coupling force εu2, acting perpendicular to u1.

The factor ε describes the strength of moment-to-force coupling.

The aerodynamic lift and drag forces for the aircraft are modelled to be propor-

tional to the square of the aircraft speed, similar to lift and drag modelling for the

underwater glider in §2.2.4. However, the formulation of the aerodynamic coefficients

is slightly different. The model for the lift and drag forces for the CTOL aircraft are

given by the following equations:

L = aL(1 + cα)V 2 · ρAW

2
(7.1)

D = aD(1 + b(1 + cα)2)V 2 · ρAW

2
, (7.2)

where aL, aD, b and c are non-dimensional coefficients, ρ is the density of air, and AW

is the wing (reference) area. The model for the lift force is identical to that considered
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for the underwater glider in §2.2.4 with the following mapping between parameters:

aL =
2KL0

ρAW

(7.3)

c =
KL

KL0

. (7.4)

The coefficient of drag force in the CTOL model includes a dependence on α in

addition to a dependence on α2 and α0. The α dependence is not considered for the

drag model of the underwater glider presented in §2.2.4.

The dynamic equations of motion for the CTOL aircraft are:

mẍ = −D cos γ − L sin γ + u1 cos θ + εu2 sin θ (7.5)

mÿ = −D sin γ + L cos γ + u1 sin θ − εu2 cos θ −mg (7.6)

Jθ̈ = u2, (7.7)

where m is the aircraft mass, J is its moment of inertia and g is the acceleration due

to gravity. For the rest of this section and sections 7.2-7.3 we set ρAW

2
= 1 kg/m,

m = 1 kg, g = 1 kg/m2 and J = 1 kg-m2. This choice of parameters leads us to

the form of equations presented in [36] but does not affect the stability results or the

tracking methodology presented in this chapter.

In the following section we design control laws u1 and u2 in order to obtain ex-

ponentially stable, steady gliding motions with arbitrary steady gliding speed Ve and

steady flight path angle γe.

7.2 Stabilizing Steady Glides of Aircraft

In this section we derive control laws u1 and u2 for the CTOL aircraft model in

order to exponentially stabilize desired, steady gliding flights. We pick our control

laws independent of the aircraft position (x, y). This makes the closed-loop system
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invariant with respect to x and y. This allows the reduction of the CTOL aircraft

dynamics, represented by equations (7.5)-(7.7), defined on the phase space TR2×TS1,

to a system defined on (TR2 × TS1)/R2. The steady glides are fixed points of the

reduced system. The reduced system may be represented using just four states:

(V, γ, θ, Ω2). A fixed point of the reduced system corresponds to a set of constant

values of states, (Ve, γe, θe, Ω2e), with Ω2e = 0. From here onwards we simply refer

to the CTOL aircraft reduced system defined on (TR2×TS1)/R2 as “CTOL aircraft

dynamics” or just “CTOL dynamics”.

We define nondimensional state variables to describe CTOL aircraft dynamics,

analogous to those used for describing underwater glider dynamics in §5.1:

V̄ =
V − Ve

Ve

(7.8)

γ̄ = γ − γe (7.9)

θ̄ = θ − θe (7.10)

Ω̄2 = TΩ2, (7.11)

where T is a reference time interval. In terms of the nondimensional states the fixed

point of interest of the CTOL dynamics is the origin and the equations of motion are

˙̄V =
1

Ve

{
− sin(γ̄ + γe)−KDr(α)V 2

e (1 + V̄ )2

+ u1 cos α + εu2 sin α
}

(7.12)

˙̄γ =
1

Ve(1 + V̄ )

{
− cos(γ̄ + γe) + KLi(α)V 2

e (1 + V̄ )2

+ u1 sin α− εu2 cos α
}

(7.13)

˙̄θ = Ω̄2/T (7.14)

˙̄Ω2 = Tu2, (7.15)

where KDr(α) = aD(1+b(1+cα)2) and KLi(α) = aL(1+cα). Recall that α = θ−γ =
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θ̄ + θe − (γ̄ + γe).

We interpret the CTOL aircraft dynamics as an interconnected system containing

a rotational subsystem and a translation subsystem in §7.2.2. The control law design

preserves the decoupling of the rotational dynamics but injects useful terms, defined

in §7.2.4, into the translational subsystem in such a way that the two subsystems

have exponentially stable equilibria. The coupling between the two subsystems is

small enough for the interconnected system representing the CTOL aircraft dynamics

to have an exponentially stable, desired equilibrium. We note that the approach

presented here does not explicitly use singular perturbation theorems discussed in

Chapters 5 and 6. However, the coupling between the interconnected subsystems is

analogous to the time-scale separation in the underwater glider dynamics study: a

stronger coupling between the two subsystems of the interconnected CTOL system has

similar effects as a smaller time-scale separation between the slow and fast subsystems

of the underwater glider described in Chapter 5.

We propose the following control laws for stabilizing desired CTOL aircraft equi-

libria:

u1 = w11 (7.16)

u2 = w21 + w22, (7.17)

where,

w11 = −k1 sin(θ̄ + θe)− k2 cos(θ̄ + θe) (7.18)

w21 = (k1/ε) cos(θ̄ + θe)− (k2/ε) sin(θ̄ + θe) (7.19)

w22 = −(k3/ε) sin θ̄ − k4Ω̄2. (7.20)

In the above control design gains k1 and k2 determine the closed-loop equilibrium and
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also influence its stability. The positive control gains k3 and k4 ensure the stability

of the rotational dynamics.

In the rest of this section we choose the gains in the control law and prove the

exponential stability of the desired, closed-loop relative equilibrium. The calculation

of k1 and k2 is presented in §7.2.1. Lower bounds on control gains k3 and k4 are

computed in §7.2.3. The closed-loop system is interpreted as an interconnected system

in §7.2.2. The stability of equilibria of the rotational and translational subsystems

of this interconnected system is presented in §7.2.3 and §7.2.4 respectively. The

coupling between the two subsystems is examined and proof of exponential stability

of the CTOL aircraft relative equilibria is completed using a composite Lyapunov

function in §7.2.5.

7.2.1 Relative Equilibria

The CTOL aircraft relative equilibria are fixed points of the reduced dynamics and

correspond to steady gliding motions with a constant speed Ve and flight path angle

γe. Any desired closed-loop Ve and γe may be realized by appropriately selecting the

control gains k1 and k2. We compute k1 and k2 by solving the following equilibrium

equations, obtained by setting expressions on the right-hand-side of equations (7.12),

(7.13) and (7.15) evaluated at the origin to zero:

−(k1 + 1) sin γe − k2 cos γe −KDreV
2
e = 0 (7.21)

−(k1 + 1) cos γe + k2 sin γe + KLieV
2
e = 0 (7.22)

k1 cos(γe + αe)− k2 sin(γe + αe) = 0 (7.23)

In the above equations KDre = aD(1 + b(1 + cαe)
2) and KLie = aL(1 + cαe).

Theorem 4. For any given Ve and γe there exist control gains k1 and k2 such that

the equilibrium equations (7.21)-(7.23) are satisfied for all aircraft parameter values.
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Proof Given Ve and γe we need to solve for three unknowns k1, k2 and αe using the

equilibrium equations (7.21)-(7.23). We derive a solution to the equilibrium equations

by first solving for αe and then solving the linear equations (7.21)-(7.22) for k1 and

k2.

Let us add sin αe times equation (7.21) to (− cos αe) times equation (7.22) to get

(k1 + 1) cos(γe + αe)− k2 sin(γe + αe)− (KDre sin αe + KLie cos αe)V
2
e = 0. (7.24)

Using equation (7.23), equation (7.24) may be simplified to

cos(γe + αe)− (KDre sin αe + KLie cos αe)V
2
e = 0, (7.25)

which implies that

(cos γe −KLieV
2
e ) cos αe = (sin γe + KDreV

2
e ) sin αe. (7.26)

Let us say αe = α∗e is the unique solution of (cos γe −KLieV
2
e ) = 0. If α∗e = 0, then

αe = 0 is in fact the solution of equation (7.26). Next, let us consider the case when

α∗e > 0. Now, for αe ∈ [−π, 0] we have (cos γe −KLieV
2
e ) 6= 0. Thus, we can rewrite

equation (7.26) as

cot αe =
sin γe + KDreV

2
e

cos γe −KLieV
2
e

(7.27)

for αe ∈ [−π, 0]. The left-hand-side of the above equation has a range of (−∞,∞)

whereas the right-hand-side of the equation is bounded and continuous with respect

to αe. This implies that there exists some αe ∈ [−π, 0] that satisfies equation (7.26).

For the last case of α∗e < 0 we can use similar arguments to show that there exists

some αe ∈ [0, π] that satisfies equation (7.26). Once αe is computed we can substitute
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it in the first two equilibrium equations, rendered linear in the remaining unknowns

k1 and k2. Furthermore these equations are always independent, thus giving us a

unique set of control gains k1 and k2. 2

7.2.2 Interconnected System

We interpret the closed-loop CTOL aircraft dynamics, described by equations (7.12)-

(7.15) with u1 and u2 defined by equations (7.16)-(7.17), as an interconnected system.

The interconnected system has the following structure:

ẋi = fi(xi) + gi(x) i = 1, 2 (7.28)

where x = (xT
1 , xT

2 )T , x1 = (V̄ , γ̄)T , x2 = (θ̄, Ω̄2)
T , fi = (fi1, fi2)

T and gi = (gi1, gi2)
T .

The functions fij, gij are given by

f11 =
1

Ve

{−(k1 + 1) sin γ − k2 cos γ − (KDre + δDr1)V
2} (7.29)

f12 =
1

V
{−(k1 + 1) cos γ + k2 sin γ + (KLie + δLi1)V

2} (7.30)

g11 =
1

Ve

{−δDr2V
2 − k3 sin θ̄ sin α− εk4Ω̄2 sin α} (7.31)

g12 =
1

V
{δLi2V

2 + k3 sin θ̄ cos α + εk4Ω̄2 cos α} (7.32)

f21 = Ω̄2/T (7.33)

f22 = (T/ε){k1 cos θ − k2 sin θ − k3 sin θ̄ − k4εΩ̄2} (7.34)

g2j = 0, j = 1, 2, (7.35)
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where,

δDr1 = aDb(c2γ̄2 − 2c2γ̄αe − 2cγ̄) (7.36)

δDr2 = aDb(c2θ̄2 + 2c2θ̄αe − 2c2θ̄γ̄ + 2cθ̄) (7.37)

δLi1 = −aLc γ̄ (7.38)

δLi2 = aLc θ̄. (7.39)

Recall that V = Ve(1 + V̄ ), γ = γ̄ + γe, θ = θ̄ + θe and α = θ̄ + θe − (γ̄ + γe).

We prove the stability of the equilibrium of the above interconnected system by

employing the following result, derived from Theorem 9.2 of [13].

Theorem 5. [138, 13] Consider the interconnected system given by equation (7.28)

and suppose there are positive definite, decrescent Lyapunov functions Qi(xi) that

satisfy the following conditions for i = 1, 2,

ci1‖xi‖2 ≤ Qi ≤ ci2‖xi‖2 (7.40)

∂Qi

∂xi

fi(xi) ≤ −λi ‖xi‖2 (7.41)
∥∥∥∥
∂Qi

∂xi

∥∥∥∥ ≤ βi ‖xi‖, (7.42)

and the functions gi satisfy

‖gi(x)‖ ≤
2∑

j=1

γij ‖xj‖ (7.43)

for ‖x‖ ≤ r, for some nonnegative constants γij and positive constants cij, λi, βi and

r. Further suppose that the following coupling conditions,

λ1 − β1γ11 > 0 (7.44)

λ1λ2 + β1β2(γ11γ22 − γ12γ21)− λ1β2γ22 − λ2β1γ11 > 0, (7.45)
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hold. Then, there exist constants d1, d2 > 0 such that the derivative with respect to

time of the function Q = d1Q1 + d2Q2 along the trajectories of the interconnected

system (7.28) satisfies the inequality

Q̇ ≤ −λ

2
‖x‖2 (7.46)

for some λ > 0. Thus, Q is a Lyapunov function that proves exponential stability of

the origin of the interconnected system (7.28).

Proof This theorem follows by applying Theorem 9.2 of [128] to the interconnected

system described by equation (7.28). The coupling conditions (7.44)-(7.45) are equiv-

alent to necessary and sufficient conditions that make the matrix S of Theorem 9.2

in [13] an M−matrix. Condition (7.41) strengthens the result of Theorem 9.2 of [13]

to exponential stability of the origin of the interconnected system (7.28). 2

In the following two subsections, we present Lyapunov functions Qi that satisfy

conditions (7.40)-(7.42) for the rotational and translational subsystems and thus prove

exponential stability of their respective equilibria.

7.2.3 Stability of Rotational Subsystem

Because g2 = 0 (equation (7.35)) the rotational subsystem is simply

ẋ2 = f2(x2). (7.47)

We consider the Lyapunov function candidate Q2:

Q2 = (k3 + k
′′
)
2T 2

ε
sin2 θ̄

2
+

1

2
Ω̄2

2 + k
′
θ̄Ω̄2, (7.48)

where k
′
> 0 and k

′′
= k1 sin θe + k2 cos θe.

Proposition 3. The Lyapunov function candidate Q2 satisfies conditions (7.40)-
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(7.42), i.e., the origin is an exponentially stable equilibrium point of the rotational

subsystem of CTOL aircraft dynamics (7.47).

Proof First we note that

Q2 ≤ |Q2| ≤
∣∣∣k3 + k

′′
∣∣∣ 2T 2

ε
sin2 θ̄

2
+

1

2
Ω̄2

2 + k
′ ∣∣θ̄Ω̄2

∣∣ . (7.49)

We substitute the relations

|θ̄ Ω̄2| ≤ θ̄2 + Ω̄2
2

2
(7.50)

sin2 θ̄

2
≤ θ̄2

4
(7.51)

in equation (7.49) and conclude that

Q2 ≤ 1

2

( |k3 + k
′′ |T 2

ε
+ k

′
)

θ̄2 +
1

2

(
1 + k

′
)

Ω̄2
2. (7.52)

Thus, we have Q2 ≤ c22(θ̄
2 + Ω̄2

2), where

c22 =
1

2
max

{ |k3 + k
′′ |T 2

ε
+ k

′
, 1 + k

′
}

> 0. (7.53)

For any variable η ∈ (−π + δ, π − δ), where δ is a constant such that π > δ > 0, we

have

| sin η| ≥ sin(π − δ)

(π − δ)
η =

sin δ

(π − δ)
η. (7.54)

If η = θ̄/2, we may set δ = π/2 because θ̄/2 ∈ (−π/2, π/2] since θ ∈ (−π, π] as

defined in §7.1.1. Thus,

∣∣∣∣sin
θ

2

∣∣∣∣ ≥ 1

π
θ̄. (7.55)
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This implies

sin2 θ̄

2
≥ 1

π2
θ̄2. (7.56)

By substituting relation (7.56) and the following relation

θ̄ Ω̄2 ≥ − θ̄2 + Ω̄2
2

2
(7.57)

in equation (7.48), and by further choosing k3 > |k′′|, we can conclude that

Q2 ≥ 1

2

(
4(k3 + k

′′
)T 2

επ2
− k

′
)

θ̄2 +
1

2

(
1− k

′
)

Ω̄2
2. (7.58)

By choosing k
′
< 1 and k3 large enough we can ensure that Q2 ≥ c21(θ̄

2 + Ω̄2
2), where

c21 =
1

2
min

{
4(k3 + k

′′
)
T 2

επ2
− k

′
, 1− k

′
}

> 0. (7.59)

Thus, we satisfy condition (7.40) for Q2 and prove that Q2 is indeed a positive definite

function for sufficiently large k3.

Next, we compute

Q̇2 = −T

[
(k3 + k

′′
)k

′

ε
θ̄ sin θ̄ +

(
k4 − k

′

T 2

)
Ω̄2

2 + k4k
′
θ̄Ω̄2

]
(7.60)

using our choice of k1, k2 to satisfy equilibrium equations (7.21)-(7.23). We note that

θ̄ sin θ̄ ≥ 0. Thus, θ̄ sin θ̄ = |θ̄ sin θ̄| = |θ̄| sin |θ̄|. We restrict |θ̄| ≤ r i.e., θ̄ ∈ (−r, r) .

We pick r < π and use the inequality (7.54) with π − δ = r to get

sin |θ̄| ≥ sin r

r
|θ̄|. (7.61)
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Using the above relation and inequality (7.57) in the equation (7.60) for Q̇2 we get

Q̇2 ≤ −T

[(
(k3 + k

′′
) sin r

εr
− k4

2

)
k
′
θ̄2 +

(
k4

(
1− k

′

2

)
− k

′

T 2

)
Ω̄2

2

]
. (7.62)

Since we have already chosen k
′
< 1 we can find large enough k3 and k4 such that

the coefficients of θ̄2 and Ω̄2
2 in the above expression are positive. Thus we satisfy the

inequality (7.41) for Q2 with

λ2 = k
′
T min

{
(k3 + k

′′
) sin(1)

ε
− k4

2
, k4

( 1

k′
− 1

2

)− 1

T 2

}
. (7.63)

Lastly, we compute

∥∥∥∥
∂Q2

∂x2

∥∥∥∥ =

∥∥∥∥
(

(k3 + k
′′
)T 2

ε
sin θ̄ + k

′
Ω̄2, Ω̄2 + k

′
θ̄

)∥∥∥∥

=

{
(k3 + k

′′
)2T 4

ε2
sin2 θ̄ + k

′2θ̄2 + (1 + k
′2)Ω̄2

2

+ 2

(
(k3 + k

′′
)T 2

ε
k
′
sin θ̄Ω̄2 + k

′
θ̄Ω̄2

)} 1
2

≤
[{

(k3 + k
′′
)2T 4

ε2
+

(k3 + k
′′
)T 2

ε
k
′
+ k

′
+ k

′2
}

θ̄2

+

{
1 + k

′2 +
(k3 + k

′′
)T 2

ε
k
′
+ k

′
}

Ω̄2
2

] 1
2

(7.64)

For deriving the last inequality we have used the following relations:

2
(
sin θ̄

)
Ω̄2 ≤ 2

(
sin

∣∣θ̄
∣∣) ∣∣Ω̄2

∣∣ ≤ sin2 θ̄ + Ω̄2
2 ≤ θ̄2 + Ω̄2

2 (7.65)

2θ̄Ω̄2 ≤ θ̄2 + Ω̄2
2. (7.66)

Thus, condition (7.42) is satisfied for Q2 with

β2 =

[
k
′
(k3 + k

′′
)T 2

ε
+ k

′
+ max

{
(k3 + k

′′
)2T 4

ε2
+ k

′2
, 1 + k

′2
}] 1

2

. (7.67)
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Thus, the Lyapunov function candidate Q2 satisfies conditions (7.40)-(7.42) for

the rotational subsystem (7.47). Using Theorem 4.2 of [13] we can conclude that the

origin is an exponentially stable equilibrium of the rotational subsystem. 2

7.2.4 Stability of Translational Subsystem

The translational subsystem is

ẋ1 = f1(x1). (7.68)

To prove stability of the translational subsystem we consider the same Lyapunov

function candidate as we did for proving the stability of the reduced (slow) subsystem

of the underwater glider in §5.1.2:

Q1 =
1

3
(1 + V̄ )3 − (1 + V̄ ) cos γ̄ +

2

3
. (7.69)

We recall that the above Lyapunov function candidate is derived from the conserved

quantity C of the phugoid-mode model of the underwater glider, discussed in §4.1.

The CTOL aircraft phugoid-mode model is derived by using Lanchester’s assumptions

[34, 33]. The two phugoid-mode models have the identical structure and can be related

using a simple time scaling.

Proposition 4. The Lyapunov function candidate Q1 satisfies conditions (7.40)-

(7.42), i.e., the origin is an exponentially stable equilibrium point of the translational

subsystem of CTOL aircraft dynamics.

Proof We have already shown that Q1 satisfies condition (7.40) in §5.1.2. Constants

c11 and c12 are equal to k1 and k2 of §5.1.2 respectively.

In Appendix D we assume r < 1 in Theorem 5 and show that Q1 satisfies condi-
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tion (7.41) with

λ1 = min{s1, s2} > 0, (7.70)

for small enough b > 0, r > 0, where

s1 = KDre(2− r)2 − 2aDbc|cαe + 1|(1 + 3r + r2) (7.71)

s2 = KDre(1− r)2 sin2(r/2)

(r/2)2
+ aLc

sin r

r
(1− r)2 + adbc

2(r2 − 2r)

− aDbc|cαe + 1|((1 + r)2r + 2). (7.72)

Lastly, we compute

∥∥∥∥
∂Q1

∂x1

∥∥∥∥ =
{

(V̄ 2 + 2V̄ + 2 sin2 γ̄

2
)2 + (1 + V̄ )2 sin2 γ̄

} 1
2

=
{

(V̄ 2 + 2V̄ )2 + 4 sin4 γ̄

2
+ 4(V̄ 2 + 2V̄ ) sin2 γ̄

2
+ (1 + V̄ )2 sin2 γ̄

} 1
2

≤
{

2(V̄ 2 + 2V̄ )2 + 8 sin4 γ̄

2
+ (1 + V̄ )2 sin2 γ̄

} 1
2

. (7.73)

To arrive at the inequality in the above calculation we have used the fact that 2ab ≤
(a2 + b2) for any a, b ∈ R. We have set a = V̄ 2 + 2V̄ and b = 2 sin2 γ̄

2
. In Appendix

D we show that the above inequality can be reduced to condition (7.42) for Q1 with

β1 =
√

2(2 + r). (7.74)

Thus, the Lyapunov function candidate Q1 satisfies conditions (7.40)-(7.42) for

the translational subsystem (7.68). Using Theorem 4.2 of [13] we can conclude that

the origin is an exponentially stable equilibrium of the translational subsystem. 2
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7.2.5 Composite Lyapunov Function

In this subsection we show that the interconnected system satisfies the coupling con-

ditions (7.44)-(7.45) of Theorem 5 and complete the proof of exponential stability of

its relative equilibrium.

First we compute the constants γij. Since g2 = 0 we have γ2j = 0. We note that

all terms of g1 contain either sin θ̄, θ̄ or Ω̄2. This implies that we can write ‖g1‖ in

the following form:

‖g1‖ = (p1 sin2 θ̄ + p2θ̄
2 + p3Ω̄

2
2)

1
2 , (7.75)

where pi’s are some bounded (due to compactness of our domain) nonnegative num-

bers (not necessarily constant). Using the fact that sin2 θ̄ ≤ θ̄2 we can write

‖g1‖ ≤
(
(p1 + p2)θ̄

2 + p3Ω̄
2
2

) 1
2 ≤ (max{p1 + p2, p3})

1
2 ‖x2‖. (7.76)

Thus, we have γ11 = 0 and,

γ12 = (max{p1 + p2, p3})
1
2 . (7.77)

Because γ11 = γ21 = γ22 = 0 the coupling conditions (7.44)-(7.45) reduce to

λi > 0, i = 1, 2. (7.78)

λi’s are positive by derivation, as shown in the previous two subsections.

Since all conditions of Theorem 5 are satisfied we can conclude the existence of a

composite Lyapunov function

Q = d1Q1 + d2Q2 (7.79)
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for some d1, d2 > 0, that proves exponential stability of the steady glides of CTOL

aircraft model. The exponential stability of the relative equilibrium is guaranteed

within a region of attraction specified by ‖x‖ ≤ ra(d1, d2) ≤ r.

7.3 Approximate Trajectory Tracking of Aircraft

In this section we utilize the exponential stability result of the previous section to

design an approximate trajectory tracking methodology for the CTOL aircraft. First,

we briefly review some results from previous work on CTOL aircraft position tracking

in §7.3.1. The tracking problem is challenging due to the nonminimum phase nature of

the system. We describe our approximate tracking methodology based on stability of

steady gliding motions in §7.3.2 and illustrate the method with a numerical simulation

in §7.3.3.

7.3.1 Tracking by Feedback Linearization

A common approach for trajectory tracking involves feedback linearization techniques

[139]. In the case of CTOL aircraft dynamics, if the position of the aircraft (x, y) is

taken to be output of the system, we may use a feedback and control transformation

such that input-output dynamics is linear. This is done by picking

u1 = D cos α− L sin α + sin θ + w1 cos θ + w2 sin θ (7.80)

u2 =
1

ε
(D sin α + L cos α− cos θ − w2 cos θ + w1 sin θ) , (7.81)
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where w1 and w2 are new control inputs to be designed. Now, from equations (7.5)-

(7.6) the input-output dynamics are:

ẍ = w1 (7.82)

ÿ = w2. (7.83)

The above input-output dynamics along with the internal dynamics,

θ̈ = u2 =
1

ε
(D sin α + L cos α−mg cos θ − w2 cos θ + w1 sin θ) (7.84)

completely describe the motion of the CTOL aircraft.

The zero dynamics [139] of the CTOL aircraft are the internal dynamics corre-

sponding to a prescribed realization of the input-output dynamics. We note that

control law (u1, u2) renders the zero dynamics unobservable. The zero dynamics for

a prescribed constant altitude, constant speed motion of the CTOL aircraft are an-

alyzed in [36] and it is shown to have no exponentially stable fixed points. The

equilibrium at the origin is shown to be a saddle point. This makes the CTOL dy-

namics nonminimum phase. Simply choosing w1 and w2 to stabilize (x, y) along a

desired trajectory may cause inputs u1 and u2 to become unbounded.

Several approaches have been proposed to address the nonminimum phase nature

of CTOL dynamics. One approach is to find the control law (u1(t), u2(t)) such that

a prescribed trajectory is an exact solution of the equations of motion of the system

(7.5)-(7.7). An iterative scheme for finding exact tracking solutions to nonlinear

systems presented in [60] was applied to the CTOL problem in [36]. The resulting

required control inputs (u1, u2) are very large. In order to obtain lower pitching

control moment magnitude [36] also presents application of approximate linearization

techniques of [63] and [64] to the CTOL problem. The approximate linearization

techniques are based on a minimum phase approximation to the nonminimum phase
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system. These methods also result in large pitching control magnitudes, but they

are lower than the pitching control magnitude for exact tracking when averaged over

time. The tracking by these approximate methods is very accurate but not exact.

Tracking based on inversion of approximate input-output linearization has also been

applied to the Vertical Take Off and Landing (VTOL) aircraft model in [63].

In [62] the authors consider the zero dynamics to be singularly perturbed. They

further assume constant angle of attack of the aircraft. This assumption, although not

rigorously justified in [62], greatly simplifies the analysis of CTOL dynamics. The

authors present a general framework for describing nonlinear, nonminimum phase

systems with singularly perturbed zero dynamics. Using this framework and the

exact tracking methods of [60], further extended in [140, 61], a bounded tracking

control law for the CTOL aircraft is proposed. This control design is expected to

have a smaller pitching moment control than the methods presented in [36].

An alternative approach to CTOL trajectory tracking, presented in [141, 137],

utilizes a coordinate change to decompose the system into minimum phase and non-

minimum phase parts. The controller for the minimum phase part is designed based

on stable inversion of dynamics. The nonminimum phase part is interpreted as a

system perturbed from its linearization about a desired, steady trajectory. A Linear

Quadratic Regulator (LQR) controller designed for the nominal (linear) system is

used for the perturbed (nonlinear) system.

Reduction of control magnitude is also achieved by posing a maneuver regulation

problem instead of the trajectory tracking problem in [136]. The control design

attempts to regulate the position error transverse to the desired path and maintain the

desired velocity along the path. The controller ignores position error along the path.

Thus, the aircraft attempts to follow just the prescribed path instead of following a

prescribed trajectory.

All the approaches mentioned in this section employ inversion of dynamics de-
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manding large control inputs. In the following two subsections we present an alterna-

tive approach for approximately tracking a desired trajectory, utilizing exponentially

stabilizable relative equilibria of CTOL aircraft dynamics. We achieve similar track-

ing accuracy as the dynamic inversion based methods, but with significantly lower

control effort.

7.3.2 Approximate Trajectory Tracking Methodology

In this section we present a method for the CTOL aircraft model to track constant

velocity desired trajectories. In §7.3.3 we apply the method in simulation to a desired

trajectory that is not constant velocity and illustrate the potential for this method

beyond what is proven below. Our approach utilizes exponential stability of steady

gliding motions. We compute steady glides that regulate the aircraft motion to the de-

sired trajectory at small enough discrete time steps. These steady glides are achieved

by using appropriate control laws. Recall that CTOL aircraft dynamics may be ex-

ponentially stabilized to any desired steady glide using the control law presented in

§7.2.

Let (xd(t), yd(t)) describe a desired trajectory for the CTOL aircraft that has

constant velocity. Let us consider the following state vector for CTOL dynamics: z =

(ẋ, ẏ, θ, Ω2). The first two components of the state vector are the x and y components

of the aircraft velocity. The constant velocity desired trajectory corresponds to the

state vector z being equal to a constant zd with Ω2d = 0.

At the time instant t = tk we compute a steady glide that takes the aircraft from

its current position to the desired position of the aircraft at tk+1 := tk +∆tk, for some

∆tk > 0. This procedure is repeated at tk+1, where we calculate a desired steady glide

that takes the aircraft from its current position to the desired position of the aircraft

at tk+2, and so on. We refer this approach as “tracking based on steady gliding”.
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Theorem 6. Tracking of a desired constant velocity trajectory (xd(t), yd(t)) based on

steady gliding for the CTOL aircraft yields bounded position tracking error.

Proof Let the state vector corresponding to the computed desired steady glide

between tk and tk+1 be equal to the constant zg,k. We assume that we start close

enough to the desired trajectory zd in the state space. More precisely we assume that

r1(tk) := ‖z(tk)− zd‖ < rza for tk = t0 = 0, where rza is an estimate of the region of

attraction provided by the composite Lyapunov function of §7.2.5. We choose a large

enough ∆tk such that r2(k) := ‖zd − zg,k‖ < r1(tk) and r1(tk) + r2(k) ≤ rza. Then,

‖z(tk)− zg,k‖ = ‖z(tk)− zd + zd − zg,k‖

≤ ‖z(tk)− zd‖+ ‖zd − zg,k‖

= r1(tk) + r2(k)

≤ rza for k = 0. (7.85)

Since our control law for the time interval (tk, tk+1] exponentially stabilizes the

CTOL aircraft to the steady glide specified by zg,k, we have

‖z(tk+1)− zg,k‖ ≤ Mrza exp(−η∆tk), (7.86)

for some M, η > 0. This implies that

‖z(tk+1)− zd‖ = ‖z(tk+1)− zg,k + zg,k − zd‖

≤ ‖z(tk+1)− zg,k‖+ ‖zg,k − zd‖

≤ Mra exp(−η∆tk) + r2(k). (7.87)

Since we have chosen r2(k) < r1(tk) we can always choose a large enough ∆tk such

that r1(tk+1) = ‖z(tk+1)− zd‖ < r1(tk) < rza.
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The above procedure can be repeated for all values of k since r1(tk) will always

be less than rza. Since 0 ≤ r1(tk+1) < r1(tk) for all k, we can conclude that z remains

close to zd.

Now, let us see what happens to the position tracking error: let ex and ey be the

x and y components of the position tracking error. The magnitude of the position

tracking error is e =
√

e2
x + e2

y. We have

|ex(tk+1)| = |x(tk+1)− xd(tk+1)|

= |x(tk+1)− xg(tk+1)|, (7.88)

where xg(tk+1) is meant to denote the x−coordinate at tk+1 on the desired steady

glide computed at tk. The equality of xg(tk+1) and xd(tk+1) follows from our tracking

methodology - the desired steady glide between tk and tk+1 intersects the desired

trajectory at tk+1. We also note that the aircraft always starts with zero position

error with respect to the desired steady glide (not the prescribed desired trajectory)

when a new desired glide is computed, because the new desired glide joins the current

position of the aircraft to the position on the prescribed trajectory ∆tk seconds later.

Since the closed-loop steady glides are exponentially stable, using equation (7.88) we

can write,

|ex(tk+1)| ≤
∫ ∆tk

0

Mra exp(−ητ)dτ

=
Mra

η
(1− exp(−η∆tk)). (7.89)

The above argument may be applied to |ey(tk+1)| also. Thus,

‖e(tk+1)‖ ≤
√

2Mra

η
(1− exp(−η∆tk)) <

√
2Mra

η
, (7.90)

i.e., the position error remains bounded at all time instants when new desired steady
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glides are calculated. This also implies that the position tracking error is bounded at

all t. This completes the proof. 2

7.3.3 Aircraft Tracking Simulation

We demonstrate the performance of the methodology presented in the previous sub-

section by way of a numerical simulation of approximately tracking the trajectory

studied in [36]. We select the same nondimensional parameters for a DC-8 aircraft as

in [36]: aL = 30, aD = 2, b = 0.01, c = 6 and ε = 0.3. We use mass and inertia pa-

rameter values considered in [136] for the DC-8: m = 85000 kg and J2 = 4×106 kgm2.

The desired trajectory, shown in Figure 7.2, corresponds to constant speed motion of

the aircraft in the horizontal direction, xd(t) = 0.85√
aL

t, and a smooth altitude climb in

the vertical direction, determined by the solution of the differential equation

y
(5)
d (t) + 3.5y

(4)
d (t) + 4.9y

(3)
d (t) + 3.4y

(2)
d (t) + 1.2y

(1)
d (t) + 0.17yd(t)− 1.7 = 0, (7.91)

with zero initial conditions.
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Figure 7.2: Desired CTOL Trajectory
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We start the simulation with (x(0), y(0)) = (0, 0) and the other initial conditions

set to equilibrium values corresponding to the steady horizontal glide with a speed

of 0.85√
aL

. We set ∆tk = 0.1 s for all k. The control gains k1 and k2 are determined at

every tk by solving equations (7.21)-(7.23) for the calculated steady glide between tk

and tk+1. The remaining control gains are set to k3 = 7 exp(5) and k4 = 2.5 exp(2).

The position tracking error components are plotted in Figure 7.3 and the control

effort is plotted in Figure 7.4. The desired trajectory is tracked with good accuracy.

The trade-off between tracking error and control effort may be adjusted through

control gains k3 and k4. Our choice of k3 and k4 yields control effort lower than what

is required for tracking using the methods of [63, 64, 142], applied to tracking the

desired trajectory of Figure 7.2 in [36]. While the method of [142] finds an exact

solution by inverting the dynamics, the methods of [63, 64] are based on minimum

phase approximation of the non-minimum phase system. In the method of [63], the

coupling between the control input u2 and the vertical acceleration is neglected for

control design based on feedback linearization via dynamic extension, and in the

method of [64] an approximation to the Jacobian linearization of the original system

obtained by neglecting the right-half plane zeros is used.

The desired trajectory tracked in the simulation is not a constant velocity trajec-

tory, so our simulation illustrates the potential usefulness of the steady gliding based

tracking approach beyond what is proven in this chapter. The results of this chapter

are also very relevant to trajectory tracking for underwater gliders. Derivation of

tracking error boundedness results using the limited control actuation available for

underwater gliders is a subject of future work.

140



0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x 
−

 x
d (

m
)

Position Error

0 5 10 15 20 25
−10

−8

−6

−4

−2

0

2

4
x 10

−3

y 
−

 y
d (

m
)

Time (s)

Figure 7.3: CTOL Aircraft Position Tracking Error
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Chapter 8

Three-Dimensional Steady Motions

of Underwater Gliders

In this chapter we focus on studying motions of the underwater glider in the three

dimensional space, governed by equations (2.1)-(2.6) presented in Chapter 2. Recall

that the underwater glider equations of motion were derived from Kirchhoff’s equa-

tions, by introducing the gravity and viscous effects in the form of external forces and

moments, and by incorporating additional dynamics due to the motion of an internal

point mass. Kirchhoff’s equations and the dynamics of a constant-buoyancy, fixed

center of gravity underwater glider are examples of dynamics of systems defined on

the configuration manifold SE(3), whose elements are 4× 4 matrices of the form




R b

01×3 1


 ,

where R is a rotation matrix, b ∈ R3 and 01×3 is a 1 × 3 zero matrix. In §8.1,

we calculate all possible relative equilibria motions under the action of SE(3) on

itself. A subset of these relative equilibria motions are steady motions of underwater

glider dynamics. We focus on steady, circular helical motions of underwater gliders in
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§8.2. We discuss how a circular helix traced by the glider depends on the parameters

of the vehicle. We also present a numerical simulation of a circular helical motion

using model parameters reflecting a Slocum glider, and we compute different possible

circular helical motions by adjusting the buoyancy mass m0 and the position rP of

the internal point mass m̄. We note that some of the possible circular helical motions

may be unstable. For example, motions may diverge from steady circular helical

motions to unsteady or periodic motions. The stability of circular helical motions

depend on several parameters of the glider. In §8.3 we discuss how stability changes

with respect to a vehicle bottom-heaviness parameter. The results discussed in this

chapter follow the presentation in [143].

8.1 Rigid Body Relative Equilibria

We consider the motion of an underwater glider with a constant buoyancy mass

and fixed internal mass. This vehicle is essentially a rigid body in water, with non-

coincident centers of gravity and buoyancy. The configuration space used to describe

the motion of such a glider is SE(3), the space of all rigid body motions. In this

section we derive all possible relative equilibria corresponding to the left action of

SE(3) on itself.

An element of SE(3) may be represented as (b, R) where b ∈ R3 is a vector and

R ∈ SO(3) is a rotation matrix. We use inertial coordinates (x, y, z) to describe b(t)

and the yaw-pitch-roll Euler angle coordinates to describe R locally for writing the

equations of motion of the underwater glider in §8.2.

Curves in three-dimensional space may be uniquely determined (except for their

position in the space) by their curvature, κ, and torsion, τ . The curvature of the

curve is defined as the norm of the derivative of the tangent vector of the curve with

respect to its arc length (s), whereas torsion measures the deviation of the curve
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Figure 8.1: Frenet-Serret frames at two points on a three-dimensional curve.

from a plane, called the osculating plane. Reference [144] provides definitions of κ(s),

τ(s) for a general curve. We consider a time (t) parametrization of the curve in the

following section and describe how κ(t) and τ(t) are related to b(t). This relation

is defined through the Frenet-Serret equations, which are presented in the following

subsection.

8.1.1 Frenet-Serret Equations

The Frenet-Serret equations describe the motion of a triad of (unit) basis vectors as

shown in Figure 8.1, called the Frenet-Serret frame, along a curve in three-dimensional

space [144]. We can imagine a Frenet-Serret frame attached to the underwater glider.

The first of the three basis vectors, T , of the Frenet-Serret frame is chosen along the

tangent of the path traced by the frame. Thus,

T (t) =
ḃ(t)

‖ḃ(t)‖ . (8.1)
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The other two vectors of the Frenet-Serret frame are chosen as follows:

N(t) =
Ṫ (t)

‖Ṫ (t)‖ , (8.2)

B(t) = T (t)×N (t). (8.3)

The evolution of the Frenet-Serret frame with time may be described in terms of

τ(t) and κ(t) as follows:

dT

dt
= V κ(t)N (8.4)

dN

dt
= −V κ(t)T + V τ(t)B (8.5)

dB

dt
= −V τ(t)N , (8.6)

where V = ‖ḃ‖ is the speed of the frame.

Thus the path traced by the glider in the three-dimensional space may be described

by specifying τ(t) and κ(t). In the next subsection we compute all possible relative

equilibria paths in the three-dimensional space corresponding to dynamics on SE(3)

in terms of κ(t), τ(t).

8.1.2 Relative Equilibrium Solutions

The dynamics of rigid body motion are described on the phase space TSE(3), the

tangent bundle of SE(3). A point belonging to TSE(3) may be described by (g, ξ),

where g ∈ SE(3) and ξ ∈ se(3). se(3) is the Lie algebra corresponding to the Lie

group SE(3) (see Appendix B for a brief introduction to Lie groups and Lie algebras).

The Lie algebra element ξ may be written as a 4× 4 matrix:

ξ =




Ω̂ v

0 0


 ,
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where Ω ∈ R3 is the rigid body angular velocity in body-coordinates and v ∈ R3 is

the translational velocity in body coordinates.

The Lie algebra element determines the evolution of the Lie group element g,

ġ = gξ ∈ TSE(3).

Thus, the kinematics of rigid body motion are given by the following equations:

Ṙ = RΩ̂ (8.7)

ḃ = Rv. (8.8)

The conditions for relative equilibria of SE(3) are as follows [143]:

v̇ = 0 (8.9)

Ω̇ = 0. (8.10)

We note that the above conditions and the kinematics are a result of the system evolv-

ing on the SE(3) configuration space. They are valid irrespective of the exact forces

and moments acting on the rigid body. This remark also applies to the statement of

the following theorem, which lists all possible relative equilibria on SE(3).

Theorem 7. The following types of motion describe all possible SE(3) relative equi-

libria that satisfy conditions (8.9)-(8.10):

1. Motion along a straight line without any rotation.

2. Pure rotation.

3. Motion along a straight line with rotation about the direction of motion.

4. Motion along a circular helix.
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Proof: First, we derive a set of identities that we will later use to classify all

possible relative equilibria.

Constancy of speed: Since v is constant for a relative equilibrium we can conclude

from equation (8.8) that

‖ ḃ ‖ = constant. (8.11)

Constancy of acceleration magnitude: Differentiating equation (8.8) we get

b̈ = Ṙv + Rv̇

= RΩ̂v ∵ v̇ = 0 (8.12)

⇒ ‖ b̈ ‖ = constant. (8.13)

From equation (8.12) we can also calculate

b̈ = RΩ̂R−1Rv

= R̂ΩRv

= ω̂ḃ. (8.14)

Orthogonality of acceleration and angular velocity:

ω · b̈ = RΩ ·RΩ̂v

= RΩ · R̂ΩRv = 0. (8.15)

Equations (8.12)-(8.15) must be satisfied by all SE(3) relative equilibria. We

first consider relative equilibria without spin (ω = 0). Since Ω = R−1ω, ω = 0

implies Ω = 0. Thus, from equation (8.12) we have b̈ = 0, i.e., ḃ =constant, which

corresponds to motion along a straight line (case 1 of Theorem 7).

147



When ω 6= 0 we can consider two subcases: from equation (8.15) either b̈ = 0 or b̈

is perpendicular to ω. When b̈ = 0, ḃ = constant and we can employ equation (8.12)

to conclude that either v = 0 or Ω is parallel to v. The situation of v = 0 corresponds

to a pure rotation of the rigid body (case 2 of Theorem 7). The situation of Ω ‖ v is

rotation of the rigid body about the direction of translation (case 3 of Theorem 7).

In the rest of the proof we show that b̈ perpendicular to ω corresponds to the

motion of the rigid body along a circular helix by showing that the curvature κ and

the torsion τ are constant for this case.

Using the definition of N (equation (8.2)) and the first Frenet-Serret equation

(8.4) we have the following definition of κ(t):

κ(t) =
1

V

∥∥∥∥
dT

dt

∥∥∥∥ . (8.16)

Using equation (8.1) we calculate

κ(t) =
1

V

∥∥∥∥∥
d

dt

(
ḃ

V

)∥∥∥∥∥

=
‖b̈‖
V 2

∵ V is constant from equation (8.11)

= constant ∵ ‖b̈ ‖ is constant from equation (8.14). (8.17)

From equation (8.12) we have ‖b̈‖ = ‖Ω̂v‖ = ‖Ω‖V | sin ξ|, where ξ is the angle

between v and Ω. Thus,

κ(t) =
‖Ω‖
V
| sin ξ|. (8.18)

Furthermore, from the definition of N (equation (8.2))

N =
d/dt

(
ḃ/‖ḃ‖

)

‖d/dt
(
ḃ/‖ḃ‖

)
‖
. (8.19)
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Since ‖ḃ‖ is constant (from equation (8.14)) we have d/dt
(
ḃ/‖ḃ‖

)
= b̈/‖ḃ‖. Thus,

N =
b̈/‖ḃ‖
‖b̈/‖ḃ‖‖

=
b̈

‖b̈‖ . (8.20)

We evaluate τ(t) using the third Frenet-Serret equation (8.6). We have

dB

dt
= Ṫ ×N + T × Ṅ (according to the definition of B)

=
b̈

V
× b̈

‖b̈‖ +
ḃ

V
× d

dt

(
b̈

‖b̈‖

)

=
1

V ‖b̈‖

(
Rv × d

dt
(RΩ̂v)

)
( using equation (8.12))

=
1

V ‖b̈‖
(
Rv ×RΩ̂y

)
where y = Ω̂v

=
Rv̂Ω̂y

V ‖b̈‖ =
R

V ‖b̈‖((v · y)Ω− (v ·Ω)y) = −(v ·Ω)RΩ̂v

V ‖b̈‖

= −(v ·Ω)b̈

V ‖b̈‖ = −(v ·Ω)

V
N . (8.21)

Thus, we infer

τ(t) =
(v ·Ω)

V 2
= constant.

=
|Ω|
V

cos ξ. (8.22)

Since κ(t) and τ(t) are constants, the relative equilibrium motion is along a circular

helix (case 4 of Theorem 7).

Thus, we have shown that all possible relative equilibria motions belong to the

classes listed in the statement of Theorem 7. 2
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8.1.3 Relative Equilibria Realized by Underwater Glider Dy-

namics

The possible relative equilibrium motions corresponding to underwater glider dynam-

ics (with constant buoyancy and a fixed internal mass position) are a subset of the

motions listed in Theorem 7. We have already seen that motion along a straight line

with constant speed is a possible relative equilibrium motion of the glider. In the next

section we will show that circular helical motions are also steady solutions of under-

water glider dynamics. But the other two types of motions listed in Theorem 7 are

not steady motions of underwater glider dynamics. We note that all external forces

and moments acting on the glider except gravitational force and rotational damping

moment require some nonzero V . Gravitational force and rotational damping alone

cannot produce a steady, rotational motion. This accounts for pure rotation not be-

ing one of the relative equilibrium solutions. Steady rotation about the translational

direction of motion cannot be sustained due to the presence of damping. Although

the moment due to the offset of CB and CG could balance the damping torque in-

stantaneously, the magnitude of the CB-CG offset moment changes with rotation;

hence, a steady motion cannot be realized.

8.2 Circular Helical Motions

In this section we focus on the steady, circular helical motions of underwater glider

dynamics. First we write out equations (2.1)-(2.6) describing the three-dimensional

dynamics of the glider for the case of constant buoyancy mass and fixed internal mass

(m̄) in §8.2.1. We interpret the buoyancy mass m0 and position rP of m̄ as our control

parameters in the present discussion. We solve the equilibrium equations of glider

dynamics numerically for a number of control parameter sets in §8.2.2 to illustrate

how the resulting circular helix may be regulated by adjusting the control parameters.
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8.2.1 Three-Dimensional Equations of Motion

We presented the longitudinal plane equations of motion in §2.3 and discussed the

transformation from force to acceleration control (of the internal mass m̄) for longitu-

dinal dynamics in §2.3.2. The force to acceleration transformation may be extended

to the dynamics representing three-dimensional motion of the glider also [5]. Em-

ploying this transformation and assuming that the position rP of the internal mass

m̄ is constant (implying that acceleration control inputs are zero) and a constant

buoyancy mass, we arrive at the following equations of motion for SE(3) dynamics

of the underwater glider [5]:




v̇

Ω̇


 =




(M + m̄) −m̄r̂P

m̄r̂P J − m̄r̂P r̂P




−1 


F̄
′

T̄
′


 , (8.23)

where

F̄
′

=
[
Mv + m̄(v + Ω̂rP )

]
×Ω + m0gRT k + Fext (8.24)

T̄
′

=
[
JΩ + m̄r̂P (v + Ω̂rP )

]
×Ω− v̂Mv − m̄v̂Ω̂rP

+ m̄gr̂P (RT k) + Text. (8.25)

The external force Fext and moment Text include the hydrodynamic forces and mo-

ments described by equations (2.9)-(2.14). We note that equation (8.23) is a special-

ization of equations (2.4)-(2.6) presented in §2.2.

In addition to equation (8.23) we also need to consider equations (2.1)-(2.2), which

describe the kinematics of the underwater glider.

We use the Yaw-Pitch-Roll (YPR) Euler angle convention to describe the rotation

matrix R. In this convention the rotation from the inertial frame to the body-fixed

frame is performed by first rotating about the 3-axis of the body by an angle ψ (yaw),
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then rotating about the 2-axis of the body by an angle θ (pitch) and finally rotating

about the 1-axis of the body by an angle ϕ (roll), all in the counterclockwise direction.

The rotation matrix in terms of (ψ, θ, ϕ) is

R =




cos ψ cos θ − sin ψ cos ϕ + cos ψ sin θ sin ϕ sin ψ sin ϕ + cos ψ sin θ cos ϕ

sin ψ cos θ cos ψ cos ϕ + sin ψ sin θ sin ϕ − cos ψ sin ϕ + sin ψ sin θ cos ϕ

− sin θ cos θ sin ϕ cos θ cos ϕ




.(8.26)

We note that the above rotation matrix takes vectors described in body-frame coor-

dinates to inertial coordinates.

Let us closely observe the right-hand-side of equation (8.23). We know that for

relative equilibrium motion v̇ = Ω̇ = 0, i.e., v and Ω are constant. Since v is

constant, the angles α and β, which are defined entirely by the components of v, are

also constant. This implies that the external (hydrodynamic) force Fext and torque

Text are also constant. Thus, we see that all terms of F̄
′

and T̄
′

except possibly

those involving RT k are constant. But since we require F̄
′

= T̄
′

= 0 for relative

equilibrium, we can infer that RT k must be constant at relative equilibrium, i.e.,

RT k =




− sin θ

cos θ sin ϕ

cos θ cos ϕ




= constant. (8.27)

Thus, we can conclude that the pitch angle θ and roll angle ϕ are constants for relative

equilibrium motion.

We note the general relation between the body-coordinates angular velocity vector
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Ω and the YPR Euler angle rates:

Ω =




1 0 − sin θ

0 cos ϕ cos θ sin ϕ

0 − sin ϕ cos θ cos ϕ







ϕ̇

θ̇

ψ̇




. (8.28)

Since Ω, ϕ and θ are constant we require

ψ̇e = constant (8.29)

for equation (8.28) to be satisfied.

From equation (8.28) we can readily see that ψ̇e = 0 corresponds to Ωe = 0. Since

θe = constant and φe = are constant θ̇e = φ̇e = 0. Ωe = 0 corresponds to steady

gliding along a straight line. When ψ̇e 6= 0 we have Ωe 6= 0. This motion corresponds

to one of the last three cases of Theorem 7. ve = 0 would correspond to case 2 of

Theorem 7 and a v of the form

ve = ‖ve‖




− sin θe

cos θe sin φe

cos θe cos φe




(8.30)

so that Ωe is parallel to ve would correspond to case 3 of Theorem 7. However, as

noted in §8.1.3 ve = 0, Ωe 6= 0 or ve of the form in the above equation are not

solutions of the glider equilibrium equations. Thus, the only possible steady solutions

for the underwater glider are straight line motions and circular helix motions.

The axis of the circular helix traced by the relative equilibrium motion of the

glider is determined by the direction of gravity. To see this let us differentiate RT k.
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Since RT k is constant we have

d

dt

(
RT k

)
= 0

⇒
(
RΩ̂

)T

k = 0

⇒ −Ω̂RT k = 0

i.e., Ω× (RT k) = 0

⇒ RT RΩ× (RT k) = 0

⇒ RT (ω × k) = 0. (8.31)

The last equality implies that ω = 0 or ω must be parallel to k. The former is true

for straight line motion and the latter for circular helix motion. Thus, for equilibrium

motion along a circular helix, the axis of the helix must be aligned with the direction

of gravity.

We summarize our observations about the circular helical relative equilibrium of

underwater gliders:

1. The underwater glider moves with constant speed along a circular helix at rel-

ative equilibrium.

2. The pitch and roll angles are constant while the yaw changes at a constant rate.

3. The angle of attack and side-slip angle remain constant. This implies that the

total viscous forces and moments relative to vehicle are constant.

4. The axis of the circular helix is aligned with the direction of gravity.

In the following subsection we illustrate how the glider speed, the radius, time pe-

riod and pitch of the circular helix traced by the glider depend on vehicle parameters.

154



m 50 kg
mh 40 kg
m̄ 9 kg

mf1 5 kg
mf2 60 kg
mf3 70 kg
J1 4 kgm2

J2 12 kgm2

J3 11 kgm2

KL0 0 kg/m
KL 135 kg/m/rad
KD0 2 kg/m
KD 45 kg/m/rad2

Kβ 20 kg/m/rad
KM0 0 kg
KM -50 kg/rad
KMY 100 kg/rad
KMR -60 kg/rad
KΩ11 -20 kg.s/rad
KΩ12 -60 kg.s/rad
KΩ13 -20 kg.s/rad
KΩ21 0 kg.s/rad2

KΩ22 0 kg.s/rad2

KΩ23 0 kg.s/rad2

Table 8.1: Underwater glider parameters for study of dependence of circular helices
on control parameters rP and m0.

8.2.2 Parameter Dependence of Circular Helices

We consider the underwater glider model with parameters reflecting the Slocum glider

[14]. Some of the Slocum parameters were estimated using data from sea trials in [46]

and using wind tunnel experiments in [45]. Other Slocum parameters were chosen to

reflect observed qualitative behavior of the glider, as in [5]. The parameter mapping

presented here is meant to serve as a qualitative illustration of the effect of vehicle

parameters on resulting steady motions. Accurate prediction of glider motions would

require experiment-based estimation of all vehicle parameters.

For our example we pick vehicle parameters as indicated in Table 8.2.2. We
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interpret the buoyancy mass m0 and the position rP of the internal mass m̄ as control

parameters. By varying the control parameters we can influence the steady circular

helical motion of the underwater glider. Before presenting the influence of varying

control parameters we present a simulation of 3D glider dynamics with a nominal set

of control parameters for the purpose of illustration. We set the control parameters to

be rP1 = 2 cm, rP2 = 2 cm, rP3 = 4 cm and m0 = 0.25 kg. The initial conditions for

the simulation are x(0) = 0 m, y(0) = 0 m, z(0) = 0 m, ψ(0) = 0o, θ(0) = −26.654o,

φ(0) = 14.419o, v1 = 0.802 m/s, v2 = 0.014 m/s, v3 = 0.025 m/s, Ω1(0) = 0.0046

rad/s, Ω2(0) = 0.0025 rad/s and Ω3(0) = 0.0077 rad/s. The simulation is run for

2000 s. Figure 8.2 shows the trajectory followed by the underwater glider in 3D

space. The glider converges to the equilibrium circular helical motion, indicating

that the equilibrium is stable. The steady circular helix has a radius of 66.60 m and

the equilibrium speed of the glider is 0.729 m/s. The pitch of the circular helix is

206.2 m and the time period of motion is 639.6 s. Figures 8.3 and 8.4 shows plots of

all states of the glider dynamics for the first 300 s of the simulation.

We compute the equilibrium circular helical motion for different positions rP of

the internal mass m̄ and different values of m0. The parameters of a steady helix

(radius, speed, pitch, period) depend on the equilibrium values of the glider velocity,

angular velocity, angle of attack and side-slip angle. Figures 8.5 and 8.6 show the

variation of the circular helix parameters with respect to rP1. In Figure 8.5 we consider

positive values of rP1 and negative buoyancy (heavy glider, m0 > 0) with rP2 = 2

cm, rP3 = 4 cm and m0 = 0.25 kg and in Figure 8.6 we consider negative values of

rP1 and positive buoyancy (light glider, m0 < 0) with rP2 = 2 cm, rP3 = 4 cm and

m0 = −0.25 kg. We could not find any equilibrium solutions for a combination of

negative buoyancy (m0 > 0) and aft center of gravity (rP1 < 0) or for a combination

of positive buoyancy (m0 < 0) and fore center of gravity (rP1 > 0). For m0 > 0

as rP1 increases the equilibrium pitch angle as well as the flight path angle become
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Figure 8.2: Simulation of underwater glider dynamics showing the motion converging
to a steady circular helix in 3D space.

more negative, as expected. The equilibrium angle of attack αe and side-slip angle

βe become lower (both are positive). The smaller αe causes a lower drag force, which

leads to a greater equilibrium speed Ve. On the other hand, increasing rP1 also leads

to smaller angular speed ‖Ωe‖. Smaller ‖Ωe‖ and greater Ve both contribute towards

greater helical radius, as well as greater pitch and period of the helix. For m0 < 0

both αe and βe are negative. For small |rP1|, as rP1 is decreased, αe initially decreases

(i.e., more negative) causing greater equilibrium drag, and consequently smaller Ve.

Beyond a critical value decreasing rP1 leads to greater αe (i.e., less negative) and

greater Ve.

Figures 8.7 and 8.8 show variation of helix parameters for different positions of

m̄ along the body 2-direction. Figure 8.7 corresponds to negative buoyancy with
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Figure 8.3: Underwater glider simulation: position and orientation states.

rP1 = 2 cm, rP3 = 4 cm and m0 = 0.25 kg, and Figure 8.8 corresponds to positive

buoyancy with rP1 = −2 cm, rP3 = 4 cm and m0 = −0.25 kg. The radius of the

helix tends to ∞ as rP2 approaches 0. An infinite radius is a result of the equilibrium

angular velocity being equal to the zero vector. This corresponds to steady gliding

along a straight line in the longitudinal plane of the glider (the equilibrium side-slip

angle tends to zero as rP2 tends to zero). For nonzero rP2 the range of variation of

the equilibrium roll angle is smaller for m0 = 0.25 kg than for m0 = −0.25 kg. The

sign of βe depends on the signs of both m0 and rP2. βe is positive when m0 and rP2

have opposite signs and negative otherwise. For example a positive βe is realized for

a heavy vehicle (m0 > 0) rolled to the left or for a light vehicle (m0 < 0) rolled to the
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Figure 8.4: Underwater glider simulation: velocity and angular velocity states.

right. Thus, we get different equilibrium solutions for the same rP2 for different signs

of m0. But for a given m0 the equilibrium solutions are symmetric about rP2 = 0.

Figures 8.9 and 8.10 show the variation of helix parameters for varying rP3. Fig-

ure 8.9 corresponds to negative buoyancy with rP1 = 2 cm, rP2 = 2 cm and m0 = 0.25

kg, and Figure 8.10 corresponds to positive buoyancy with rP1 = −2 cm, rP2 = 2 cm

and m0 = −0.25 kg. For the latter case the helix parameters vary smoothly with rP3

while for the former case there is a critical value of rP3 that corresponds to steady,

straight-line gliding motion due to zero equilibrium angular velocity. However, this

straight line motion is not in the longitudinal plane of glider (the equilibrium side-slip

angle is not zero).
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Figure 8.5: Variation of Helix Parameters With Respect to rP1 for m0 > 0.

Figures 8.11 and 8.12 show the variation of helix parameters with respect to m0

for negative and positive buoyancies, respectively. m0 does not directly influence the

moment balance. For force balance, greater |m0| implies greater net gravitational

force that can balance larger magnitudes of other forces due to greater equilibrium

translational and angular speeds. The variation of translational speed versus |m0|
is almost linear. The equilibrium angular speed grows at a faster rate than the

equilibrium translational speed, causing the radius of the circular helix to decrease

with |m0|.
The parametric study presented here reveals some interesting trends in the depen-

dence of the equilibrium circular helical motion on control adjustments. It shows that

a wide range of circular helices may be obtained by small variations of rP and m0 for

the vehicle parameters considered in the study. This is very encouraging from a con-

trol standpoint. The complex dependence of the equilibrium circular helical motion
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Figure 8.6: Variation of Helix Parameters With Respect to rP1 for m0 < 0.

needs to be further investigated using analytical results from equilibrium equations

(F
′
= 0, T

′
= 0), which is a subject of future work. Another future work direction is

to consider linear dependencies of equilibrium states on control parameter (rP ,m0)

variation about nominal circular helix motions. The latter type of work, which has

been done for aircraft flying in constant circles, would aid in developing further insight

for designing control laws for regulating more complex maneuvers of the underwater

glider.

8.3 Stability of Circular Helix Motion

In this section we present a numerical example that illustrates how the stability

of circular helical steady motions of the glider is affected by the vehicle bottom-
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Figure 8.7: Variation of Helix Parameters With Respect to rP2 for m0 > 0.

heaviness, parameterized by rbh, defined as follows:

rbh := rP ·RT k,

where rP is the position of m̄ with respect to the CB, in body coordinates. Thus, rbh

is the component of rP in the direction of gravity.

We note that the bottom-heaviness parameter does not affect the relative equilib-

rium solution of glider dynamics. This is because the moment due to m̄ in equilibrium

depends only on the component of rP perpendicular to the direction of gravity. But

rbh does affect the stability of the relative equilibrium, quite like in the case of an

underwater rigid body without viscous forces and moments studied in [47].

We consider an underwater glider example with the same vehicle parameters as

in the previous section. We fix m0 = 0.25 kg. We start with a nominal case of rP1 =
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Figure 8.8: Variation of Helix Parameters With Respect to rP2 for m0 < 0.

0.02 m, rP2 = -0.02 m and rP3 = 0.04 m. This corresponds to rbh = 0.0481 m. We

then vary rbh and study the eigenvalues of the linearization of the dynamics about the

relative equilibrium solution over a range of rbh. Figures 8.13 and 8.14 show plots of

real part of the eigenvalues of the linearized system versus rbh. Near rbh = -0.004 m

(indicated by letter A in Figure 8.14) one of the purely real eigenvalues crosses over

the imaginary axis, and the circular helix steady motion becomes unstable. Near this

bifurcation value of rbh, the glider dynamics is structurally unstable [145], i.e., the

nature of glider dynamics changes drastically for small changes in a system parameter

(rbh). This structural instability was also reflected in the instability of numerical

computations for parameter values around the bifurcation value of rbh.

Near parameter values indicated by letters B and D, in Figure 8.14 two purely

real eigenvalues come together to form a complex conjugate pair as rbh increases. On

the other hand, near the parameter value indicated by C a complex conjugate pair
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Figure 8.9: Variation of Helix Parameters With Respect to rP3 for m0 > 0.

of eigenvalues breaks into two purely real eigenvalues. Thus, B and D correspond to

break-away points and C corresponds to a break-in point on the root locus plot [146]

of the linearization of glider dynamics with respect to rbh.

From this numerical example we note that the circular helix motion is stable

provided m̄ is placed such that rbh is large enough, or in other words if the underwater

glider is sufficiently bottom-heavy. Furthermore we see that the stability properties

of the circular helix vary smoothly with respect to rbh.

The numerical study presented in this chapter indicates that a wide range of

steady circular helices can be realized by adjusting the control parameters rP and

m0. We have also seen that the stability of the circular helix may be regulated by the

parameter rbh without changing other specifications of the helix. A subject of future

work is to support the numerical results of this chapter by analytical computations.

Analytical computations of circular helix steady motions are much harder than com-
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Figure 8.10: Variation of Helix Parameters With Respect to rP3 for m0 < 0.

puting steady straight line glides. However, analytical results will aid in exploring

the 3D operating envelope of a given underwater glider and in glider design studies

for particular applications that use 3D steady motions.
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Figure 8.11: Variation of Helix Parameters With Respect to m0 for m0 > 0.
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Figure 8.12: Variation of Helix Parameters With Respect to m0 for m0 < 0.
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Chapter 9

Conclusions and Future Directions

We have adopted a nonlinear systems approach to the study of dynamics and design

of control laws for vehicles subject to aerodynamic forcing. The work presented in

this thesis was motivated by the underwater glider application. Many of the results

derived were specialized to underwater gliders but, in principle, analogous results can

be obtained for vehicles with similar dynamics such as airships, aircraft, and other

autonomous underwater vehicles. In this chapter, we present a brief summary of

the approach, results, and conclusions presented in this thesis, as well as possible

directions for future work.

9.1 Conclusions

Our approach in this thesis is based on determining the stability of steady motions

associated with vehicle dynamics and then choosing control actions to regulate vehicle

motion to these steady motions, or track desired trajectories using steady motions.

As a result, the control laws we present do not require large magnitude actuation.

They attempt to beneficially use the natural dynamics of the vehicle to achieve a

desired motion. Our stability analysis method classifies different subsystems of ve-

hicle dynamics. The subsystems are shown to be stable using individual Lyapunov
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functions, which are combined together to construct a composite Lyapunov function

for proving the stability of steady motion of the full vehicle dynamics.

Using linear analysis, we initially show that a typical underwater glider design

is an open-loop stable system if we consider the control inputs to be internal mass

acceleration and buoyancy rate. We review linear controllability and observability

results for underwater glider longitudinal dynamics.

We study the phugoid-mode approximation of underwater glider dynamics with

a view of developing further insight into the geometric structure induced by the hy-

drodynamic lift force. We present multiple Hamiltonian formulations of the phugoid-

mode model. The Hamiltonian function of a 2-dimensional Hamiltonian formulation

provides us with a Lyapunov function candidate for proving the stability of the trans-

lational subsystem of the underwater glider, and eventually the stability of steady

glides.

Using singular perturbation theory, we reduce the dynamics of an underwater

glider to a 2-dimensional system describing the phugoid mode of the vehicle. We

derive conditions under which such a reduction is valid. For applying singular per-

turbation theory, we prove exponential stability of the boundary-layer and reduced

system equilibria using separate Lyapunov functions. These functions are later com-

bined in a composite Lyapunov function, used for proving the stability of steady

glides as well as for computing region of attraction guarantees. This Lyapunov-based

stability result is useful for developing control methods that employ steady gliding

motions. We consider different control configurations of an underwater glider, and

design specific control laws for stabilizing desired steady glides.

We present a trajectory tracking methodology based on exponential stability of

steady gliding motions, and apply this methodology to a CTOL aircraft model. We

prove exponential stability of desired steady glides for a CTOL aircraft using an

interconnected system framework. Lyapunov functions for the individual subsystems
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of the aircraft are combined to construct a composite Lyapunov function that proves

the stability of all closed-loop steady glides. Adjustable control gains in our tracking

formulation allow us determine a suitable compromise between position tracking error

and control effort. The use of steady gliding motions makes this tracking method

attractive for the underwater glider application.

We present results pertaining to steady motions of underwater gliders in three

dimensions. We show that the only possible relative equilibrium motions for the

glider are the straight-line motion and the motion along a circular helix. We study

the dependence of circular helix properties on vehicle control parameters for a model

reflecting one of the commercially available underwater gliders. We show that small

changes in control parameters lead to significant changes in the circular helix prop-

erties, which is encouraging from a control standpoint. We also demonstrate how

the bottom-heaviness of the underwater glider, which does not determine the circular

helix solution, but influences its stability.

The work presented in this thesis may be extended in several directions to further

analysis of underwater and aerospace vehicle dynamics, and to design control laws

that can be implemented on such vehicles. We list some directions for future work in

the following section.

9.2 Future Directions

The singular perturbation results of Chapter 5 were derived for the case of an under-

water glider with coincident centers of gravity and buoyancy. Although most results

are expected to hold for the general case of noncoincident CB and CG, verification of

Theorem 2 for this case presents additional technical difficulties. We may conclude

stability of steady glides for slightly noncoincident CB and CG by continuous depen-

dence of eigenvalues on vector field parameters [145]. A more systematic procedure
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may involve the application of regular perturbation theory to calculate a bound on

rP within which the stability of steady glides may be guaranteed by a composite

Lyapunov function of the form presented in Chapter 5.

The effect of noncoincidence of CB and CG was modelled as a torque control in

Chapter 6. This was an approximation to the coupling between dynamics of m̄ and

the rigid body dynamics, fully represented by equations (2.18)-(2.24). Extension of

stability results to the case of noncoincident centers would let us consider alternative

models of actuation for nonlinear control design.

The approximate tracking result presented in Chapter 7 is derived for the case of

a straight line desired trajectory. It may be extended to more general trajectories. A

general desired trajectory may be first approximated by a set of straight line segments.

Each of these individual segments may be tracked approximately as in Chapter 7.

However, further calculations are required to compute the maximal upper bound on

the position tracking error for tracking general trajectories. This bound will depend

on the highest curvature of the desired trajectory. A simulation demonstration of the

CTOL aircraft approximately tracking a curvy trajectory was presented in §7.3.3.

The calculation of position error bounds is the subject of a future publication.

The tracking result of Chapter 7 assumed an ability to stabilize to any desired

steady glide. Any steady glide may be realized by a CTOL aircraft equipped with

(unlimited) thrust and torque controls. Presence of control saturation limits the set

of steady glides that can be achieved. However, a wide range of desired trajectories

may be approximately tracked with very low thrust and torque control actuation.

On the other hand an underwater gilder is not equipped with thrust control. The

size of the glider limits the maximum buoyancy control magnitude and the maximum

control torque due to m̄. These limits determine the range of steady glides that may

be realized by an underwater glider. With a limited set of steady glides possible the

underwater glider will only be able to track a restricted class of desired trajectories.
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Such a class may be characterized by bounds on speed, curvature and slope of the

desired trajectory. A useful calculation will provide a mapping between these bounds

and glider control saturation limits.

An alternative to trajectory tracking is path following, which has been considered

for aircraft. Trajectory tracking requires the vehicle to be at a certain position at

a certain time whereas the path following problem only concerns following a desired

path. The vehicle is allowed to track the path at any speed in the latter problem.

This easing of requirements may be highly justified in many surveying/data gathering

applications where underwater gliders are employed. Dependence of the set of paths

that can be approximately tracked on glider parameters and the associated position

error bounds need to be calculated.

In Chapter 8 we considered the influence of the position rP of the internal mass

and the buoyancy m0 on the resulting steady state circular helix for an underwater

glider example. It appears intractable to solve the mapping symbolically for a general

underwater glider, but further simulations and analysis are required to better under-

stand how best we can regulate three-dimensional steady motions using our control

parameters rp and m0.

Many results presented in this thesis depend on the estimates of the hydrody-

namic moment and force coefficients. Small uncertainties in these parameters do not

adversely affect vehicle stability determination. But accurate calculation of relative

equilibria requires accurate estimates of moment and force coefficients. Parameter

identification experiments presented in [46] were based on steady gliding data and

only provided estimates of parameters pertaining to longitudinal-plane dynamics.

Dynamic system identification that incorporate adequate excitation of glider dynam-

ics would provide a more accurate and comprehensive estimate of glider parameters.

Methods such as those used in [147, 148] for system identification of aircraft may be

applied to identify hydrodynamic parameters of the underwater glider.
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One of the motivating problems for nonlinear systems analysis of underwater glider

dynamics is coordination of multiple vehicles. Coordination problems have been posed

and successful solutions have been implemented at a high level in the Autonomous

Ocean Sampling Network (AOSN) and Adaptive Sampling And Prediction (ASAP)

projects. The spatial and time scales of importance for these projects were much larger

than those of underwater glider dynamics to allow for a high level consideration of

glider motion. For applications involving multiple gliders required to coordinate at

similar spatial and time scales as the vehicle dynamics we would need to consider

both transient and steady motions. For example, we may coordinate multiple gliders

to converge to a synchronized relative equilibrium motion by regulating the relative

positions of their internal masses [50]. In the context of multi-vehicle coordination it

may be useful to consider natural motions of the glider to switch between different

relative equilibria motion.
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Appendix A

Geometric Mechanics Definitions

In this appendix we briefly introduce some topics from geometric mechanics that have

been used in this thesis. The definitions we provide are based on [22, 149], and we

refer the reader to these references for more details. We start with the notion of

a manifold. A manifold is essentially any space that locally looks like a Euclidean

space. The precise definition follows.

Definition [149]: A manifold M of dimension n is a topological space (i.e., a set

endowed with a means of defining neighborhoods for its elements) having the following

three properties:

1. M is Hausdorff, i.e., it is possible to find disjoint neighborhoods for any two

distinct points of the space.

2. M is locally Euclidean of dimension n, i.e., it is possible to find an invertible

transformation from any open neighborhood of P to an open set in Rn such

that the transformation is a bijection, continuous, and has a continuous inverse

(in other words, the transformation is homeomorphic).

3. M has a countable basis of open sets, i.e., any open subset of M may be specified

as a union of a countable number of (basis) open sets. 2
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Our next goal is to strengthen the definition of a manifold to that of a differentiable

manifold. This requires introduction of the notion of a chart and the property of C∞

compatibility between different charts of a manifold. Let us consider a neighborhood

U ∈ M and a homeomorphic map f from U to Rn. Together they form a chart

(U, f) of M . Let us also consider another neighborhood V ∈ M and an associated

homeomorphic map g. The images of both U and V , through transformations f and

g respectively, are open sets in Rn. Now, we wish to consider the mappings that take

us between the intersection of these images. For instance, the mapping that takes us

from the image of U to that of V is g◦f−1. The domain of this mapping is non-empty

if the intersection of the images of U and V is non-empty. If this mapping is C∞ for

a non-empty domain we say that U and V are C∞-compatible. Now, we are ready to

give a definition of a differentiable manifold.

Definition [149]: A differentiable manifold is a manifold equipped with a family

of charts U = (Uα, fα) such that

1. The Uα cover M .

2. For any α, β, the charts (Uα, fα) and (Uβ, fβ) are C∞-compatible.

3. Any chart (V, g) that is C∞-compatible with every (Uα, fα) is itself in U . 2

Before proceeding to the definition of a Lie group, we provide the familiar defini-

tion of a general group.

Definition: A group is a non-empty set G, endowed with a binary operation ∗ :

G×G → G, called the group operation, such that

1. ∗ is associative, i.e., ∀ a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. G has an identity element, i.e., ∃ e ∈ G such that a ∗ e = e ∗ a = a, ∀ a ∈ G.

3. For every a ∈ G, ∃ a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e. 2
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A Lie group is a special type of a group, as described by the following definition.

Definition: A Lie group is a group which is also a manifold such that the group

operation is smooth (i.e., C∞). 2

The Euclidean space Rn is an example of a Lie group. Other examples of Lie

groups are SO(3) and SE(3)1 that are defined below.

Definition: The group SO(3) is the set of 3 × 3 matrices such that RT R = I3 and

det(R) = 1, where R is any element of the group and I3 is the 3× 3 identity matrix.

The group SE(3) is the set of all 4× 4 matrices of the form




R b

01×3 1


 ,

where R ∈ SO(3), b ∈ R3 and 01×3 is the 1 × 3 zero matrix. For both SO(3) and

SE(3), the group binary operation is the usual matrix multiplication. 2

In order to talk about dynamics on a manifold, we need to use the notion of a

tangent vector. The tangent vector may be defined in many equivalent ways. Here,

we provide a definition based only on parameterized curves on manifolds. Consider

a manifold M and two curves c1(t) and c2(t) in M . The two curves are considered

equivalent at m if

1. c1(0) = c2(0) = m ∈ M .

2. (f ◦ c1)
′
(0) = (f ◦ c2)

′
(0),

where f denotes the mapping of a local chart and ()
′
is the derivative with respect to

the parameter t. Now, we are ready to define a tangent vector.

Definition: A tangent vector at m ∈ M is an equivalence class of curves [c]m, i.e.,

it denotes the set of all curves equivalent to c(t) at m. 2

1The acronyms SO and SE stand for ‘Special Orthogonal’ and ‘Special Euclidean’ respectively.
Generally speaking SO(n) is a group consisting of n×n orthogonal matrices having a special property,
that their determinant is equal to 1. SE(n) is a matrix group constructed using elements of SO(n)
and Rn.
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Next, we define the tangent space, the tangent bundle, and vector fields.

Definition: The tangent space at m is the collection of all tangent vectors that can

be defined at m. It is denoted as TmM . 2

Definition: We call TM =
⋃

m∈M (TmM) the tangent bundle of M . 2

According the above definition the tangent bundle is a disjointed union of tangent

spaces along with the corresponding base points. For example, we could consider the

manifold M = S1, which contains the points on a circle. The tangent space at any

point m on the circle is essentially the infinitely-long tangent line at that point. This

tangent line is the tangent space TmM . Any subset of the tangent line represents a

tangent vector at m. The tangent bundle TM is essentially the collection of all points

m with their attached tangent lines TmM . Sometimes the manifold M is called the

“base manifold”, point m a “base point” and the tangent space at m is called a

“fiber”. So the tangent bundle is the collection of base points and its attached fibers.

Definition: A vector field X on a manifold M is a map X: M → TM that assigns

a vector X(m) at the point m ∈ M . 2

We note that the tangent space is a vector space. We can consider a dual space of

this vector space. The dual space of the tangent space is called the cotangent space

and its elements are called cotangent vectors, or simply covectors. The cotangent

space at m is denoted by T ∗
mM . The space T ∗M =

⋃
m∈M (T ∗

mM) is the cotangent

bundle of M .

Before concluding this chapter we introduce some differential forms that are used

in the following appendix chapter, and present definitions of related operations.

Definition: A 0-form on a manifold M maps m ∈ M to a real number.

0-form: M → R 2

An example of 0-forms is a function f that maps m ∈ M to f(m) ∈ R.

178



Definition: A 1-form on a manifold M maps every tangent vector in TmM for

every m ∈ M to a real number.

1-form: TmM → R 2

An example of 1-forms is the differential df of a function f on M that maps v ∈ TM

to df(v) =< df(m), vm >∈ R.

Definition: A 2-form on a manifold M is a map Ω(m): TmM × TmM → R that

assigns to each m ∈ M a skew symmetric, bilinear form on TmM , i.e.,

Ω(m): TmM × TmM → R

such that

Ω(m)(v1, v2) = −Ω(m)(v2, v1) [skew symmetry]

Ω(m)(αv1 + βv2, v3) = αΩ(v1, v3) + βΩ(v2, v3) [bilinearity]

for all v1, v2, v3 ∈ TmM . 2

The 2-form may be considered as a skew symmetric, bilinear matrix that may vary

over the manifold M . The definition of the 2-form may be further generalized to

k-forms [22].

The wedge product (denoted by the symbol ∧) is an operation that can be used

to obtain a (k + l)-form from a k−form and an l−form. Below we define only the

wedge product of two 1-forms.

Definition: The wedge product, α ∧ β, of two 1-forms α and β is a 2-form defined

as follows:

(α ∧ β) (v1, v2) = α(v1)β(v2)− α(v2)β(v1) 2
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For example, if we consider 1-forms α = [1 0] and β = [0 1] that map every tangent

vector v1 = [v11 v12]
T in TmR2 for all m ∈ R2 to the real numbers v11 and v12

respectively, the wedge product α ∧ β is the 2-form

α ∧ β =




0 1

−1 0


 .

The above 2-form takes two vectors v1 = [v11 v12]
T , v2 = [v21 v22]

T and yields the real

number v11v22 − v12v21.

The interior product operation yields (k − 1) forms from k−forms (k > 0). We

define the interior product of a 2-form below.

Definition: The interior product of a 2-form Ω with respect to a vector field X

defined on the manifold M is a 1-form iXΩ such that

iXΩ(v) = Ω(X(m), v),

for all v ∈ TmM and all m ∈ M . 2
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Appendix B

Hamiltonian Systems

The familiar form of Hamilton’s equations are

q =
∂H

∂p
(B.1)

p = −∂H

∂p
, (B.2)

where p, q ∈ Rn are the configuration and conjugate momentum vectors respectively.

The function H(p, q) : R2n → R is called the Hamiltonian function. A dynamical

system whose equations have the above form is called a (canonical) Hamiltonian

system. In the rest of this chapter we present a generalization of the Hamiltonian

system to include systems with a more general structure, as well as systems defined

on sets other than R2n.

First, we define a special type of manifold (see Appendix A for the definitions of

a manifold and a 2-form) called the Symplectic manifold.

Definition: A symplectic manifold is a manifold P together with a closed, non-

degenerate, 2-form Ω. A symplectic manifold is represented as (P, Ω). 2

The 2-form Ω essentially determines a bilinear map Ωz at each point z on the

manifold. The bilinear map Ωz takes two elements from the tangent space of P at z
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and yields a real number:

Ωz : TzP × TzP → R

(vz, wz) 7→ Ωz(vz, wz).

We note that the bilinear map Ωz does not have to be constant over the manifold.

Next, we provide a definition of a symplectic Hamiltonian system.

Definition: Let (P, Ω) be a symplectic manifold. A vector field X on P describes a

symplectic Hamiltonian system if there exists a function H : P → R such that

∀v ∈ TzP

Ωz(X(z), v) = dH(z) · v.

Equivalently, using the notion of the interior product, a vector field X is Hamiltonian

if

iXΩ = dH

for some H : P → R. 2

The equations (B.1)-(B.2) are a special case of the symplectic Hamiltonian system

defined above. They correspond to a Hamiltonian system defined on a vector space

(a special case of a manifold) P = R2n, with a constant symplectic form

Ωb =




0n×n −In×n

In×n 0n×n


 ,

where 0n×n and In×n are the n×n zero matrix and the n×n identity matrix, respec-

tively.

The concept of a Hamiltonian system can be further generalized using Poisson
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brackets and Poisson manifolds, defined below.

Definition: A Poisson bracket, denoted {, } : F(P )×F(P ) → F(P ), is a map that

takes two differentiable functions defined on the manifold P and yields a function

defined on P , and satisfies the following properties -

1. Bilinearity: ∀F, K, L ∈ F(P ) and α, β ∈ R, {αF + βK, L} = α{F,L} +

β{K, L}.

2. Skew Symmetry: ∀F,K ∈ F(P ) , {F,K} = −{K,F}.

3. Jacobi’s Identity: ∀F,K, L ∈ F(P ), {F, {K,L}}+{K, {L, F}}+{L, {F, K}} =

0.

4. Derivation: ∀F, K, L ∈ F(P ), {FK, L} = F{K,L}+ K{F, L}. 2

Definition: A Poisson manifold is a manifold P along with a Poisson bracket op-

eration {, } for differentiable functions defined on P . A Poisson manifold is denoted

by (P, {, }). 2

Now, we are ready to define a Hamiltonian system on a Poisson manifold.

Definition: A vector field X on a Poisson manifold (P, {, }) is Hamiltonian if

there is a function H : P → R such that for all differentiable functions G ∈ F(P )

dG ·X = {G, H}. 2

We note that a symplectic manifold is also a Poisson manifold. This is true

because it is always possible to define a Poisson bracket operation using the symplectic

form. Given differentiable functions F, G ∈ F(P ) the Poisson bracket operation

corresponding to the symplectic form Ω is

{F, G}(z) = Ω(z)(XF (z), XG(z)),
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for all z ∈ P , where XF (z) and XG(z) are the symplectic Hamiltonian vector fields

corresponding to Hamiltonian functions F and G, respectively. On the other hand, all

Poisson manifolds are not symplectic manifolds. The key difference is with regard to

the degeneracy property of the corresponding structures. Recall from the definition

of a symplectic manifold that the symplectic 2-form Ω must be non-degenerate. The

Poisson bracket is allowed to be degenerate in general (although Poisson brackets

derived from symplectic forms will be non-degenerate).

Hamiltonian systems have been widely studied and many tools have been devel-

oped that make use of geometric structures summarized in this chapter. The inter-

ested reader is referred to [22, 150, 151] for a number of analysis and design tools for

Hamiltonian systems.
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Appendix C

Theorem 5 Calculations

In this appendix we present details of the calculations related to the Lyapunov func-

tion for the translational subsystem of the CTOL aircraft model presented in Chapter

7. In §7.2.4 we present the Lyapunov function candidate

Q1 =
1

3
(1 + V̄ )3 − (1 + V̄ ) cos γ̄ +

2

3

for proving the stability of the translational subsystem, defined by equation (7.68).

In this appendix we show that Q1 satisfies conditions (7.41)-(7.42) of Theorem 5 for

the translational subsystem (7.68).

First, we compute Q̇1 = ∂Q1

∂x1
f(x1):

Q̇1 = Ve

[
−KDre

(
(V̄ 2 + 2V̄ )2 + 4(1 + V̄ )2 sin2 γ̄

2

)
− aLc(1 + V̄ )2γ̄ sin γ̄

− aDbc2γ̄2
(
V̄ 2 + 2V̄

)2 − 2aDbc2γ̄2
(
1 + V̄

)2
sin2 γ̄

2

− 2aDbc2γ̄2
(
V̄ 2 + 2V̄

)
+ 2aDbc (cαe + 1) γ̄

(
V̄ 2 + 2V̄

)2

+ 4aDbc(cαe + 1)
(
1 + V̄

)2
γ̄ sin2 γ̄

2
+ 2aDbc (cαe + 1) γ̄

(
V̄ 2 + 2V̄

)]

Let us consider ‖x‖ ≤ r < 1. Since aL, c > 0 we can deduce the following inequalities
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for the terms of the above equation within the square parentheses -

−KDre

(
V̄ 2 + 2V̄

)2
= −KDre(2 + V̄ )2V̄ 2

≤ −KDre(2− r)2V̄ 2.

−4KDre(1 + V̄ )2 sin2 γ̄

2
≤ −4KDre(1− r)2 sin2 γ̄

2

≤ −4KDre(1− r)2 sin2(r/2)

(r/2)2

γ̄2

4

= −KDre(1− r)2 sin2(r/2)

(r/2)2
γ̄2

−aLc(1 + V̄ )2γ̄ sin γ̄ = −aLc(1 + V̄ )2|γ̄ sin γ̄|

≤ −aLc(1 + V̄ )2

∣∣∣∣γ̄
sin r

r
γ̄

∣∣∣∣

≤ −aLc
sin r

r
γ̄2(1− r)2 ∵ |V̄ | ≤ r.

−aDbc2γ̄2
(
V̄ 2 + 2V̄

)2 ≤ 0.

−2aDbc2γ̄2
(
1 + V̄

)2
sin2 γ̄

2
≤ 0.

−2aDbc2γ̄2
(
V̄ 2 + 2V̄

)
= −aDbc2

(
1 + V̄

)2
γ̄2 + aDbc2γ̄2

≤ −aDbc2
(
(1− r)2 − 1

)
γ̄2

= −adbc
2(r2 − 2r)γ̄2.

2aDbc (cαe + 1) γ̄
(
V̄ 2 + 2V̄

)2 ≤ 2aDbc|cαe + 1|r(2 + r)V̄ 2.

4aDbc(cαe + 1)
(
1 + V̄

)2
γ̄ sin2 γ̄

2
≤ 4aDbc|cαe + 1|(1 + r)2r

γ̄2

4

≤ aDbc|cαe + 1|(1 + r)2rγ̄2.

2aDbc (cαe + 1) γ̄
(
V̄ 2 + 2V̄

) ≤ 2aDbc| (cαe + 1) |rV̄ 2 + 4aDbc (cαe + 1) γ̄V̄

≤ 2aDbc| (cαe + 1) |rV̄ 2 + 2aDbc| (cαe + 1) |(V̄ 2 + γ̄2)

= 2aDbc| (cαe + 1) | ((1 + r)V̄ 2 + γ̄2
)
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Substituting the above inequalities in the expression for Q̇1 we get

Q̇1 ≤ −
(

KDre(2− r)2 − 2aDbc|cαe + 1|(1 + 3r + r2)

)
V̄ 2

−
(

KDre(1− r)2 sin2(r/2)

(r/2)2
+ aLc

sin r

r
(1− r)2 + adbc

2(r2 − 2r)

− aDbc|cαe + 1|((1 + r)2r + 2)

)
γ̄2.

Thus, the Lyapunov function candidate Q1 for the translational subsystem (7.68)

satisfies condition (7.41) of Theorem 5 with λ1 given by equation (7.70).

Next, we simplify the inequality (7.73):

∥∥∥∥
∂Q1

∂x1

∥∥∥∥ ≤
{

2(V̄ 2 + 2V̄ )2 + 8 sin4 γ̄

2
+ (1 + V̄ )2 sin2 γ̄

} 1
2

. (C.1)

We examine the terms within the flower parentheses of the above inequality separately

for ‖x‖ ≤ r < 1:

2(V̄ 2 + 2V̄ )2 = 2(2 + V̄ )2V̄ 2

≤ 2(2 + r)2V̄ 2

8 sin4 γ̄

2
≤ 8

( γ̄

2

)2

sin2 γ̄

2

= 8
(r

2

)2

sin2 γ̄

2

≤ 2r2
( γ̄

2

)2

=
r2γ̄2

2
.

(1 + V̄ )2 sin2 γ̄ ≤ (1 + r)2γ̄2.

Substituting the above relations in (C.1) we have

∥∥∥∥
∂Q1

∂x1

∥∥∥∥ ≤
{

2(2 + r)2V̄ 2 +

(
r2

2
+ (1 + r)2

)
γ̄2

} 1
2

≤ max

{
2(2 + r)2,

(
r2

2
+ (1 + r)2

)} 1
2 (

V̄ 2 + γ̄2
) 1

2
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For r < 1, we have

max

{
2(2 + r)2,

(
r2

2
+ (1 + r)2

)}
= 2(2 + r)2.

Thus,

∥∥∥∥
∂Q1

∂x1

∥∥∥∥ ≤
√

2(2 + r)
(
V̄ 2 + γ̄2

) 1
2

,

i.e., Q1 satisfies condition (7.42) of Theorem 5 for the boundary layer subsystem

(7.68) with

β1 =
√

2(2 + r).
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