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Abstract— This paper investigates a multi-agent decision
making model in large population games. We consider a
population of agents that select strategies of interaction with one
another. Agents repeatedly revise their strategy choices using
revisions defined by the decision-making model. We examine the
scenario in which the agents’ strategy revision is subject to time
delay. This is specified in the problem formulation by requiring
the decision-making model to depend on delayed information
of the agents’ strategy choices. The main goal of this work
is to find a multi-agent decision-making model under which
the agents’ strategy revision converges to equilibrium states,
which in our population game formalism coincide with the
Nash equilibrium set of underlying games. As key contributions,
we propose a new decision-making model called the Kullback-
Leibler (KL) divergence regularized learning model, and we
establish stability of the Nash equilibrium set under the new
model. Using a numerical example and simulations, we illustrate
strong convergence properties of our new model.

I. INTRODUCTION

Consider a multi-agent decision problem in large pop-
ulation games as follows. Given a finite set of strategies,
each agent in the population makes a decision on which
strategy to select for strategic interactions with other agents.
We adopt the population game formalism [1, Chapter 2] in
which a payoff function assigns payoffs to agents based
on their strategy profile – the distribution of the agents’
strategy choices – and a decision-making model prescribes
how the agents revise and improve their strategy choices. In
engineering research communities, such multi-agent decision
problems are prevalent and some of existing works focus
on seeking decision-making models that enable a large
population of agents to learn and self-organize to an effective
strategy profile [2]–[9].

The main purpose of this paper is to develop and analyze
a new decision-making model that ensures convergence of
the strategy profile to an equilibrium state when the payoff
function is subject to time delay. Population games with time
delay can be used to formulate real-world multi-agent deci-
sion problems in which there is delay, in, e.g., propagation of
traffic congestion in congestion games [9], communication
between the electric power utility and demand response
agents in demand response games [6], and information
transmission between agents in network games [10].
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Prior works in the game theory literature suggest that when
population games are subject to time delay, the strategy pro-
file will exhibit oscillations when existing decision-making
models are used [11]–[21]. Such oscillations in multi-agent
decision making would prevent agents from selecting an
effective strategy profile.

The key contribution of this paper is the proposal of a
new class of decision-making models called the Kullback-
Leibler (KL) divergence regularized learning model. Under
this model, the agents’ strategy revision is insensitive to
small fluctuations in the payoffs, which prevents the strategy
profile from exhibiting oscillations, and is effective in succes-
sively improving agent strategy choices. As a consequence,
despite time delay in the payoff function, the proposed
model enables the agents’ strategy profile to converge to an
equilibrium state, which, in our context, coincides with the
Nash equilibrium of the underlying population games.

The proposed KL divergence regularized model can be
viewed as a generalization of the logit model [22], [23].
As explained in [24], [25], the logit model attains stability
in a larger class of population games, including games
with time delay, than do other classes of decision-making
models. However, the equilibrium state of the logit model
is a perturbed version of the Nash equilibrium. This forces
the agents to select a sub-optimal strategy profile in certain
population games such as potential games [26], [27]. This
downside motivated the present investigation of a new model.

Many works reported in the game theory literature fo-
cus on investigating the effect of time delay on stability
of equilibrium states of existing models and establishing
conditions on the time delay that guarantee convergence
of the strategy profile. Instead, in our work using the KL
divergence regularized model, we establish stability of the
Nash equilibrium set in an important class of population
games subject to any fixed time delay. We summarize the
main contributions of this paper as follows:
• We propose a new class of decision-making models

in large population games – KL divergence regular-
ized model – and provide an algorithm that iteratively
updates the model’s parameters. Leveraging stability
results from a recent work on higher-order learning in
large population games [24], we establish, under the
KL divergence regularized model, the convergence of
the strategy profile to the Nash equilibrium set in an
important class of population games, widely known as
contractive population games [28].

• We simulate a congestion game in which the payoff
function is subject to time delay. Using the results, we
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Fig. 1. Diagram of the framework defined as a feedback interconnection
of an evolutionary dynamics model and a population game with time delay.

compare the performance of existing decision-making
models with that of the KL divergence regularized
model to highlight its stronger convergence property.

The paper is organized as follows. In §II, we explain
preliminaries and the multi-agent decision problem. In §III,
we introduce the KL divergence regularized model that
describes how the agents can improve their strategy choices
in population games with time delay. We present the main
results of the paper, which establish the convergence of the
strategy profile to the set of Nash equilibria in contractive
population games. To illustrate the key contribution of this
work, in §IV, we present simulations using an example to
demonstrate the effectiveness of the KL divergence regu-
larized model compared to other existing decision-making
models. We conclude and discuss future directions in §V.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

Consider a large population of agents where each agent
selects a strategy to engage in a strategic interaction with
other agents. We denote by {1, · · · , n} the set of n strategies
available to the agents. Given that each agent can select
one strategy at a time, let x = (x1, · · · , xn) be an n-
dimensional nonnegative real-valued vector with i-th entry
xi denoting the portion of the population adopting strategy
i. The vector x specifies the strategy profile of the population.
Following well-established convention [1], we refer to x as
the population state. The set of feasible population states is
defined as

X =

{
z ∈ Rn+

∣∣∣∣∣
n∑
i=1

zi = 1

}
. (1)

In this section we present the framework we adopt to
formulate the multi-agent decision problem investigated. The
framework is illustrated in Fig. 1.

A. Population Games with Time Delay

In our framework, agents can revise their strategy choices
in response to an n-dimensional real-valued vector p =
(p1, · · · , pn), where each pi represents the payoff assigned
to the agents selecting strategy i. In the population game
formalism [1, Chapter 2], given the population state x ∈ X,
the payoff vector p is defined by a continuously differentiable
function F : X → Rn as p = F(x). We refer to F as the
payoff function.
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Fig. 2. Congestion Game: Agents traverse from the origin O to the
destination D using one of the following three routes: O → A → D
(Route 1), O → B → D (Route 2), and O → A → B → D (Route 3).
Each zi denotes the portion of the population using Route i and the weight
on each edge denotes the level of congestion on the edge.

Throughout the paper, we identify population games with
their associated payoff functions F and adopt the following
definition of the Nash equilibrium.

Definition 1 (Nash Equilibrium of Population Game F):
An element zNE in X is called the Nash equilibrium of the
population game F if it satisfies the following condition:(

zNE − z
)T F (zNE) ≥ 0, ∀z ∈ X. (2)

Population games can have multiple Nash equilibria. De-
note NE(F) as the set of Nash equilibria of F .

We adopt the following definition of a norm for the
differential map DF of F : For ‖ · ‖2 the Euclidean norm
in Rn and TX the tangent space of X,

‖DF(z)‖ = max
z̃∈TX

‖DF(z)z̃‖2
‖z̃‖2

. (3)

We make the following assumption on F .
Assumption 1: We assume the differential map DF of F

exists and is bounded: ‖DF(z)‖ ≤ BF , ∀z ∈ X. Positive
constant BF is the bound of DF .

A population game F is defined as contractive as follows.
Definition 2 (Contractive Population Game [28]): A

population game F is contractive if the following holds:

(w − z)T (F (w)−F (z)) ≤ 0, ∀w, z ∈ X. (4)
We present an example of the contractive population game,

which we adopt from [24]. We will use it to validate our main
results through simulations in §IV.

Example 1 (Congestion Game): Each agent in a popula-
tion traverses between pre-assigned origin and destination
using one of 3 available routes (see Fig. 2). Each strategy in
the game is defined as an agent taking one of the routes and
its associated payoff quantifies the level of congestion (such
as the time it takes to traverse the route), which depends on
the number of agents using the same or other overlapping
routes. The factor 2 on A → D reflects a narrow path. To
formalize, we adopt the payoff function FCongestion defined
as

FCongestion(z) = −

 3z1 + z3

2z2 + z3

z1 + z2 + 3z3

 , (5)

which represents (the negative of) the level of congestion on
all 3 routes. We note that (5) has the unique Nash equilibrium
(4/11, 6/11, 1/11) at which the average level of congestion
across the three routes is minimized. We can identify that
the congestion game (5) qualifies as contractive.



We consider the scenario, distinct from the standard pop-
ulation formalism, where the population game is subject to
time delay. Given a population state trajectory x(t), t ≥ −d,
the payoff vector p(t) at each time instant t ≥ 0 is

p(t) = F (x(t− d)) , (6)

where d is a positive constant denoting the time delay. We
assume that the time delay d is an unknown parameter but is
upper bounded by a constant Bd. Note that as in the standard
population game formalism, when the population state x(t)
converges to x∗, the payoff vector p(t) converges to F (x∗).

B. Strategy Revision Protocol and Evolutionary Dynamics
Model

In our framework, each agent repeatedly revises its strat-
egy choice based on the payoffs associated with the available
strategies. To formalize this, we adopt the evolutionary
dynamics model [1, Part II] in which the so-called strategy
revision protocol Tji(r, z) describes the probability that each
agent switches its strategy from j to i provided that the pay-
off vector and population state are assigned as r ∈ Rn and
z ∈ X, respectively. Following discussions in [1, Chapter 10],
when the population size is large and each agent is randomly
selected for the strategy revision based on an exponential
distribution, the population state x(t) = (x1(t), · · · , xn(t))
at each time instant t ≥ 0 can be approximated by a solution
of the following ordinary differential equation:

ẋi(t) =

n∑
j=1

xj(t)Tji (p(t), x(t))− xi(t)
n∑
j=1

Tij (p(t), x(t))

(7)
where the payoff vector p(t) is determined by the payoff
function of the underlying population game, e.g., (6). Fol-
lowing the same naming convention as in [24], we refer to
(7) as the evolutionary dynamics model (EDM).

Reference [1, Chapter 5] summarizes well-known proto-
cols proposed in the game theory literature. Among existing
strategy revision protocols, of relevance to our new model,
which we introduce in §III, is the logit protocol:

T Logit
i (r) =

exp
(
η−1ri

)∑n
l=1 exp (η−1rl)

, r ∈ Rn (8)

where η is a positive constant and r is the value assigned
to the payoff vector. Agents that adopt the logit protocol,
i.e., Tji (r, z) = T Logit

i (r), revise their strategy choices
depending only on the payoffs. As discussed in [23], the
logit protocol is regarded as a perturbed version of the
best response protocol where the level of perturbation is
quantified by constant η.

To explain the motivation behind proposing a new model,
we briefly discuss the limitation of some of the existing
strategy revision protocols including (8). Analysis presented
in [11]–[13], [17], [18], [20], [21] suggests that stability of
the Nash equilibrium set under existing models, such as best
response dynamics, replicator dynamics, and their variants,
is attained when the time delay term d in (6) is sufficiently
small. Also, Hopf bifurcation analysis from [20], [21] shows

e1
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Fig. 3. Population state trajectories under the logit protocol (8) with (a) η =
0.1 and (b) η = 3.0 in the congestion game (5) with unit time delay (d = 1).
The black circle represents the Nash equilibrium (4/11, 6/11, 1/11) of
the congestion game and the red triangle represents the limit point of the
population state trajectories.

that if d is large, the population state trajectory forms a limit
cycle and does not converge to the Nash equilibrium set.

And yet, according to stability results from [24, §VIII],
[25, Table II], the EDM (7) under the logit protocol (8)
attains stability in a larger class of population games com-
pared to other protocols. As we will show in §III-A, if the
constant η in (8) is sufficiently large, the resulting population
state trajectory converges to the stationary points of (7).
However, such stationary points do not coincide with the
Nash equilibria of the underlying population games. In fact,
as we explain in §III-A, the population state converges to a
perturbed version of the set of Nash equilibria.

To illustrate this, in Fig. 3, using the logit model (8) with
η = 0.1, 3.0 in the congestion game (5) with unit time delay
(d = 1), we show that when η is small (η = 0.1), the
resulting population state trajectories oscillate, whereas when
η is large (η = 3.0), the trajectories converge to a stationary
point, located away from the Nash equilibrium of (5).

C. Problem Formulation

Our main goal in this paper is to design a new class
of protocols Tji under which the population state x(t) of
(7) converges to the Nash equilibrium set NE (F) of the
underlying population game F subject to time delay. We
formally state the main problem as follows.

Problem 1: Design a strategy revision protocol Tji and
find conditions on the EDM (7) and the population game F
with time delay (6) under which the population state x(t)
asymptotically attains the Nash equilibrium set NE (F):

lim
t→∞

inf
z∈NE(F)

‖x(t)− z‖2 = 0 (9)

We emphasize that unlike the logit protocol (8), which
only ensures the convergence to a perturbed version of
the Nash equilibrium set, we seek a new strategy revision
protocol that guarantees the convergence of the population
state exactly to the Nash equilibrium set.

III. KL DIVERGENCE REGULARIZED PROTOCOL

Recall that each agent in the population revises its strategy
choice based on the protocol Tji. In this section, we begin
by proposing a new protocol called the KL divergence
regularized protocol, described as follows. Given an element



y = (y1, · · · , yn) in int(X), the interior of the population
state set X, each agent makes a revision to strategy i with
probability given by

T KLReg
i (r) =

yi exp
(
η−1ri

)∑n
l=1 yl exp (η−1rl)

(10)

where r ∈ Rn represents the value assigned to the payoff
vector and η is a positive constant. The parameter y can
be viewed as a bias imposed on the protocol (10) in the
sense that when the payoffs assigned to the strategies are
identical, i.e., r1 = · · · = rn, the agents favor strategy i
with probability proportional to yi. Also, we note that when
the parameter y satisfies y1 = · · · = yn, the protocol (10)
coincides with the logit protocol (8); hence, (10) qualifies as
a generalization of (8).

One key aspect of the KL divergence regularized protocol
is in having flexibility in selecting the parameter y. In §III-A,
we describe an algorithm that iteratively updates y and show
that, under the algorithm, the KL divergence regularized
protocol ensures the convergence of the population state x(t)
to the Nash equilibrium set of underlying population games.

From (7) and (10), by applying Tji (r, z) = T KLReg
i (r),

we define the KL divergence regularized EDM as follows:

ẋi(t) =
yi exp

(
η−1pi(t)

)∑n
l=1 yl exp (η−1pl(t))

− xi(t). (11)

Note that for a bounded payoff vector p(t), we can infer
that if the population state x(t) starts from the interior set
int (X), then it remains in int (X).

To explain our decision to name (10) the KL divergence
regularized protocol, note that (10) can be expressed as

T KLReg (r) =


T KLReg

1 (r)
...

T KLReg
n (r)


= arg max

z∈X

[
rT z − ηD (z ‖ y)

]
, (12)

where D (z ‖ y) is the Kullback-Leibler (KL) divergence
defined as D (z ‖ y) =

∑n
i=1 zi ln zi

yi
. The KL divergence

penalizes the difference between the variable z and the pa-
rameter y. By viewing the KL divergence as a regularization
in the maximization (12), we can observe that the protocol
(10) computes the maximizer of the regularized cost function
that combines the average payoff rT z and (the negative of)
the regularization term D (z ‖ y), weighted by η.

A. Convergence Properties

Consider the KL divergence regularized EDM (11) in
which the payoff vector p(t) is defined by a population
game with time delay (6), i.e., p(t) = F (x(t− d)). We
recall that such configuration can be defined as a feedback
interconnection of (6) and (11), as illustrated in Fig. 1. In
this section, we establish the convergence of the population
state x(t) from (11) to the Nash equilibrium set NE (F).

The central idea in establishing the convergence result is a
suitable selection of the parameter y of (11). To see this, as

in [23], we can infer that the stationary point of (11) is the
Nash equilibrium of the perturbed payoff function F̃ defined
by F̃(z) = F(z)− η∇zD (z ‖ y). Therefore, given that the
population state x(t) converges, if the parameter y coincides
with the Nash equilibrium of the original payoff function
F , then x(t) converges to the Nash equilibrium. In what
follows, we present an algorithmic scheme that iteratively
updates the parameter y and show that, under the algorithm,
the KL divergence regularized EDM ensures the convergence
of both y and x(t) to the Nash equilibrium set NE (F).

Our analysis hinges on a stability technique recently pro-
posed in evolutionary game contexts [24], [25], [29], where
the notion of passivity [30] from feedback control theory
plays a pivotal role. The key ideas behind the passivity-based
stability technique are defining proper notions of passivity
for (6) and (11), and then establishing stability of the Nash
equilibrium set by leveraging the well-established principle
in control theory that a feedback interconnection of two
passive dynamical systems results in stability.

We begin by briefly reviewing two notions of passivity
– weak δ-antipassivity and δ-passivity – adopted for (6)
and (11). We then proceed with establishing stability of
the feedback interconnection of (6) and (11). We refer
the interested reader to [24], [25], [29] for more in-depth
discussions on passivity in population games and also [31]
that investigates different notions of passivity in game theory.

Definition 3 (Weak δ-Antipassivity with Deficit [24]):
The population game with time delay (6) is weak δ-
antipassive with deficit ν∗ if there is α > 0 for which

α >

∫ t

t0

[
ẋT (τ)ṗ(τ)− νẋT (τ)ẋ(τ)

]
dτ, ∀t ≥ t0 ≥ 0

holds for every population state trajectory x(t), t ≥ 0 and
for every nonnegative constant ν > ν∗.

The constant ν∗ is used as a measure of passivity deficit
in (6). In the following lemma, we establish weak δ-
antipassivity of the population game with time delay (6).

Lemma 1: The population game with time delay (6) is
weak δ-antipassive with positive deficit ν∗ = BF , where
BF is the upper bound of DF as defined in Assumption 1.

Definition 4 (δ-Passivity with Surplus [24]): The EDM
(7) is δ-passive with surplus η∗ if there is a continuously
differentiable function S : X× Rn → R+ for which

S (x(t), p(t))− S (x(t0), p(t0)) ≤∫ t

t0

[
ẋT (τ)ṗ(τ)− η ẋT (τ)x(τ)

]
dτ, ∀t ≥ t0 ≥ 0 (13)

holds for every payoff vector trajectory p(t), t ≥ 0, and for
every nonnegative constant η < η∗. We refer to S as the
δ-storage function.

The constant η∗ is used as a measure of passivity surplus
in (11). Definition 4 states a stronger notion of passivity,
as compared to Definition 3, since it requires the existence
of the δ-storage function S. The following definition of
informative δ-storage functions will play an important role
in establishing the main convergence result.



Definition 5 (Informative δ-Storage Function [24]): Let
S be a δ-storage function of a given δ-passive EDM (7). S is
informative if the following three conditions are equivalent:

S (z, r) = 0 (14a)
V (z, r) = 0 (14b)

∇Tz S (z, r)V (z, r) = 0 (14c)

where each element Vi : X×Rn → R of V = (V1, · · · ,Vn)
is the vector field of (7), defined as

Vi(z, r) =

n∑
j=1

zjTji (r, z)− zi
n∑
j=1

Tij (r, z) .

The following lemma establishes the δ-passivity of the KL
divergence regularized EDM (11).

Lemma 2: Given η > 0 and y ∈ int(X), the KL diver-
gence regularized EDM (11) is δ-passive with surplus η and
has an informative δ-storage function S : X× Rn → R+,

S (z, r) = max
z̄∈X

(
z̄T r − ηD (z̄ ‖ y)

)
−
(
zT r − ηD (z ‖ y)

)
.

(15)
Using Lemmas 1 and 2, we proceed to establish our main

convergence result. As a preliminary step, the following
proposition, which is based on [24, Lemma 1], establishes
the convergence of the population state x(t) of (11) with
the parameter y fixed and the payoff vector p(t) determined
by the population game with time delay (6). To state the
proposition, we need the following definition of the perturbed
Nash equilibrium set of the population game F .

Definition 6: Given η > 0 and y ∈ int (X), let
PE (F , ηD) be the set of perturbed Nash equilibria of F :

PE (F , ηD)

=
{
zPE ∈ X

∣∣∣ (zPE − z
)T F̃ (zPE) ≥ 0, ∀z ∈ X

}
(16)

where F̃ (z) = F (z)−η∇zD (z ‖ y) is the perturbed payoff
function and D (z ‖ y) is the KL divergence.

Proposition 1: Consider the KL divergence regularized
EDM (11) for which the payoff vector p(t) is determined
by a population game F with time delay (6). Provided that
the parameter η of (11) satisfies η > BF , the population
state x(t) of (11) converges to PE (F , ηD):

lim
t→∞

inf
z∈PE(F,ηD)

‖x(t)− z‖2 = 0. (17)

The condition η > BF in Proposition 1 implies that the
convergence (17) holds if the lack of passivity in (6), quanti-
fied by BF , is compensated for by the surplus of passivity in
(11), measured by η. In the remainder of this section, using
Proposition 1, we propose and study Algorithm 1 that allows
the population to repeatedly update the parameter y of (11).
We show that the algorithm enables the convergence of the
population state to the Nash equilibrium set NE (F).

Algorithm 1: Given initial values of the parameter
y ∈ int (X) and a time instant variable t0 = 0, update y and
t0 as follows. At every time instant t1 at which the following
conditions (18) and (19) hold, assign y = x(t1) and t0 = t1:

t1 ≥ t0 +Bd (18)

e1

e2 e3

Fig. 4. Population state trajectories derived by the KL divergence
regularized model with η = 3.0. The black circle represents the Nash
equilibrium (4/11, 6/11, 1/11) of the congestion game.

max
z∈X

(z − x(t1))
T

(p(t1)− η∇D (x(t1) ‖x(t0)))

+BF max
τ∈[t1−2Bd,t1]

‖x(t1)− x(τ)‖2 ≤
η

2
D (x(t1) ‖x(t0))

(19)

where p(t) and x(t) are the payoff vector and population
state, respectively, of (6) and (11).

Time instant t1 satisfying (19) always exists since, according
to Proposition 1, the population state x(t) converges to the
set PE (F , ηD) and hence the left hand side of (19) vanishes
as t1 tends to infinity. Also, to realize Algorithm 1, the agents
only need to know the upper bounds Bd and BF of the time
delay d and the payoff function F , respectively, but not the
exact forms of d and F .

We remark that by the definition of the EDM (11), when
the population state x(t) starts from the interior set int (X),
it remains in int (X). Hence, we conclude that Algorithm 1
ensures the updated parameter y to satisfy y ∈ int (X).

When the parameter y of (11) is updated according to
Algorithm 1, we can establish the convergence of the popu-
lation state to the Nash equilibrium set NE(F) in contractive
population games (see Definition 2) The following theorem
states the convergence result.

Theorem 1: Let the KL divergence regularized EDM (11),
for which the payoff vector is p(t), be determined by a
contractive population game F with time delay (6). Suppose
that η > BF holds and the parameter y of (11) is repeatedly
updated according to Algorithm 1. The population state x(t)
of (11) converges to the Nash equilibrium set NE(F):

lim
t→∞

inf
z∈NE(F)

‖x(t)− z‖2 = 0. (20)

Note that since the population state x(t) remains in the
interior set int (X), if the population game F has a Nash
equilibrium in the boundary bd (X) of X, then x(t) would not
reach the equilibrium in finite time, but it will asymptotically
converge to it.

IV. SIMULATIONS WITH NUMERICAL EXAMPLE

We illustrate our main results using a numerical example
of the congestion population game FCongestion defined in (5).
We adopt the KL divergence regularized model (11) with
η = 3.0 where the parameter y in (11) is updated according
to Algorithm 1. We carry out simulations in the congestion
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Fig. 5. Comparison of average payoff xT (t)F(x(t)) for the logit with
η = 0.1, 3.0 and the KL divergence regularized with η = 3.0.

population game FCongestion subject to unit time delay (d =
1), where for simplicity we assign Bd = d.

As can be observed from simulation outcomes, depicted in
Fig. 4, the resulting population state trajectories converge to
the Nash equilibrium of FCongestion. Recall that for the logit
model case, depicted in Fig. 3, the population state trajecto-
ries either exhibit oscillations around the Nash equilibrium
(when η is small) or converge to a stationary point located
away from the Nash equilibrium (when η is large).

To assess the efficacy of the KL divergence regularized
model in attaining an effective strategy profile of the agents,
we compare the average payoff xT (t)F(x(t)), derived from
the logit (8) with η = 0.1, 3.0 and from the KL divergence
regularized protocol (10) with η = 3.0. As shown in Fig. 5
the population state determined by (10) asymptotically at-
tains the largest average payoff.

V. CONCLUSIONS

We proposed and analyzed the KL divergence regularized
model, conceived for a population of agents to attain an
effective strategy profile in large population games. Key
contributions of the paper include proposing the algorithmic
scheme that successively updates the parameter of the model,
and, by leveraging recent stability results in evolutionary
games, establishing that population state trajectories resulting
from the model converge to the Nash equilibrium set in
contractive population games that are subject to time delay.

In future work, we plan to extend the presented results
to other important scenarios where the payoffs are subject to
multiple time delays and are derived from dynamically mod-
ified payoff models. We also plan to analytically examine the
effects of disturbance in the payoffs and time delay on the
convergence rate of the KL divergence regularized model.
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