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Abstract— We propose a game-theoretic multi-robot task
allocation framework that enables a large team of robots to op-
timally allocate tasks in dynamically changing environments. As
our main contribution, we design a decision-making algorithm
that defines how the robots select tasks to perform and how they
repeatedly revise their task selections in response to changes
in the environment. Our convergence analysis establishes that
the algorithm enables the robots to learn and asymptotically
achieve the optimal stationary task allocation. Through experi-
ments with a multi-robot trash collection application, we assess
the algorithm’s responsiveness to changing environments and
resilience to failure of individual robots.

I. INTRODUCTION

We envision a team of autonomous robots strategically
interacting with one another to carry out large-scale missions
in extensive and unstructured environments. Team members
should coordinate with one another to optimally allocate and
perform a set of given tasks. In this work, we propose a
game-theoretic framework that models decision making in
multi-robot task allocation, and we provide analysis to show
that our framework enables multi-robot systems to learn and
self-organize so that they achieve optimal task allocation in
dynamically changing environments.

We consider that each robot in a team of mobile robots
selects a task to perform, and, when it is given an oppor-
tunity, the robot can revise its current task selection. Such
revision of task selection is a crucial capability for multi-
robot systems as it allows the team to adapt its allocation of
tasks to accommodate dynamically changing environments.
We examine a class of task allocation problems for a finite
number of tasks, i = 1, . . . ,M , where each task i requires
the “consumption” of resource qi, which grows with time t.
Our proposed decision-making algorithm prescribes how the
robots repeatedly revise their task selections to achieve the
optimal stationary allocation of tasks.

This class of problems includes scenarios in which qi is
the number of services to be provided in fleet management
at location i, qi is the uncertainty to be managed in environ-
mental surveillance of area i, and qi is the available resource
to be collected in search and retrieval in patch i. In this work,
we use multi-robot trash collection, as illustrated in Fig. 1,
to demonstrate how our framework can be applied in multi-
robot system applications and also to design experiments to
evaluate the performance of our framework.
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Fig. 1. Multi-robot trash collection application: Each mobile manipulator
is tasked with collecting trash qi, rendered as red objects, in a patch i.

Our primary goal is to design a multi-robot decision-
making algorithm that prescribes how each robot selects
a task over time, i.e., which qi to consume over time, so
that the team ultimately minimizes the unconsumed resource
(q1, . . . , qM ). We design the algorithm based on a game
theory formalism that was originally conceived to model and
assess long-term strategic interactions in a large population
of decision-making agents. Using stability analysis methods
proposed in [1]–[3], we establish a convergence guarantee of
our algorithm, which we also validate through experiments
designed in the multi-robot trash collection application.

In the multi-robot research community, our formulation
can be categorized as a single-task robot, multi-robot task
problem according to the taxonomy articulated in [4]. Ex-
isting solutions to this problem class such as market-based
approaches [5]–[7], which require strong coordination among
the robots to implement auction mechanisms, provide or-
chestrated ways to allocate tasks to multiple robots. Fully
decentralized threshold-based task allocation schemes [8],
[9], which are simpler to implement, allow self-interested
robots to select tasks based only on information available to
individual robots. Closely related to our game-theoretic and
population-level formalism, hedonic game approaches [10]–
[12] propose distributed task allocation for a large population
of agents, where each agent interacts with its neighboring
agents to select a utility-maximizing task. The work of [13]
establishes a population-level model to analyze and identify
emerging collective behavior in multi-robot task allocation.
Other important works in the literature include a behavior-
based approach [14] and a distributed algorithm for coalition
formation for multi-robot task allocation [15].

The following are benefits of our approach. Our decision-
making framework builds on the game theory formalism in
which each robot independently makes a decision on task
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selection based on the information on the distribution of
the robots’ task selections and the environmental resource
variables qi. Hence, unlike market-based approaches [5]–
[7], [12], the framework potentially reduces the complexity
in orchestrating coordination among multiple robots in their
decision making.

Our decision-making algorithm allows the robots to re-
peatedly revise their task selections in accordance with
dynamics of the environment. Therefore, in contrast to some
existing approaches [8]–[11], [13]–[15], which are more
suitable for task allocation in static environments or lack per-
formance guarantees in dynamically changing environments,
our framework ensures multiple self-interested robots to
adapt and self-organize to achieve the optimal task allocation
in such dynamic environments.

We summarize the highlights of our work as follows:
• Game-Theoretic Framework for Task Allocation in

Dynamically Changing Environments: We propose
a multi-robot task allocation framework that consists
of an aggregate model describing underlying dynamics
of the environment and a decision-making algorithm
prescribing how the robots can effectively revise their
task selections.

• Convergence Analysis and Validation through Ex-
periments: By leveraging analytical tools recently de-
veloped in game theory [1]–[3], we establish that the
decision-making algorithm guarantees convergence to
efficient task allocation at which the environmental
resource variables are minimized. We implement the
proposed algorithm in the multi-robot trash collection
application to assess its performance in large-scale
experiments.

The paper is organized as follows. In §II, we formalize
the multi-robot task allocation problem. In §III, we propose
a decision-making algorithm as a solution to the problem and
provide mathematical analysis that establishes convergence
properties of the algorithm. In §IV, we present experimental
results to evaluate the effectiveness of our framework in
the multi-robot trash collection application. We conclude the
paper with a summary and future plans in §V.

II. MULTI-ROBOT TASK ALLOCATION

Consider a team of N robots, each selecting and executing
one task at a time among M tasks. Each task i is associated
with a resource variable qi, which grows according to an
underlying dynamic model of the environment. When a robot
selects task i, it contributes to consuming qi. In this work, we
investigate the design of a decision-making algorithm that
prescribes how each robot can strategically switch its task
selection to allow the robotic team to achieve the optimal
task allocation, which minimizes the variables (q1, · · · , qM )
associated with all the tasks.

Let qi(t) denote the resource associated with task i at time
instant t and let xi(t) denote the portion of robots selecting
task i at time instant t, defined as

xi(t) =
# of robots selecting task i at t

total number of robots N
. (1)
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Fig. 2. A comparison of trajectories qi(t), t ≥ 0 derived from (2) with
Ri = 3.44, αi = 0.036, and βi = 0.91 with the experimental data with
40 robots. The thick dashed lines denote the trajectories of (2) and the thin
solid lines represent the experiment data.

We adopt the following dynamic model to describe how qi(t)
changes over time. This model will play an important role
in designing the decision-making algorithm:

q̇i(t) = −Fi (qi(t), xi(t))︸ ︷︷ ︸
consumption rate

+ wi︸︷︷︸
growth rate

. (2)

Growth rate wi ≥ 0, which is constant, specifies the rate
of increase of qi(t) in the environment. The consumption
rate Fi (qi(t), xi(t)) specifies how fast the robots performing
task i reduce the value of qi(t) over time as a feedback
function of current resource qi(t) and portion of robots xi(t).

The model (2) describes, for each task i, how the associ-
ated qi(t) evolves based on aggregate information xi(t) on
the robots’ task selections. This use of aggregate information
makes it possible to study (2) as a population game [16] from
game theory. By following the same naming convention as
in population games, we refer to x(t) = (x1(t), · · · , xM (t))
as the population state of the multi-robot system, which
describes the distribution of the robots’ task selections.

We view (2) as an aggregate model that approxi-
mates the dynamics of individual robots’ consumption of
(q1(t), · · · , qM (t)). Such an aggregate model is beneficial in
designing scalable task allocation algorithms for large multi-
robot systems, which we discuss more in detail in §III. The
following example is a concrete instance of (2), which we
use to design a decision-making algorithm for multi-robot
trash collection experiments in §IV.

Example 1: Consider a team of mobile manipulators
tasked with collecting trash across multiple patches, as
illustrated in Fig. 1. Task i is defined as trash collection in
patch i. So qi(t) denotes the trash volume in patch i at t, and
xi(t) denotes the portion of robots collecting trash in patch i
at t. In this scenario, we let consumption rate Fi (qi, xi) be

Fi (qi, xi) = Ri
eαiqi − 1

eαiqi + 1
xβi

i , (3)

where Ri, αi, and βi are positive constants. The parameter
Ri represents the maximum consumption rate of the robots
in patch i, and αi and βi determine how the consumption
rate varies with respect to qi and xi. Fig. 2 illustrates, for
N = 40, wi = 0, and for different constant values of xi,
the comparison between trajectories qi(t), t ≥ 0 derived
by (2) and data obtained using the simulator described in
§IV, where the parameters Ri, αi, βi are selected to minimize



the error between the experimental data and the trajectories
qi(t), t ≥ 0 computed according to (2) with the consumption
rate defined by (3).

We impose the following two assumptions on Fi.
Assumption 1: Fi is a bounded function.
Assumption 2: Fi is an increasing function of qi and xi.
Assumption 2 has the following interpretations in our trash

collection example. When there is more trash to remove, it
becomes easier for the robots to spot and collect it. Also as
more robots are assigned to the same patch i, it will take
less time to finish the task.

The primary goal of this work is to design a decision-
making algorithm that specifies when each robot can revise
its task selection and to which task it switches. We describe
the decision-making algorithm as the pair T and µ where(

task selection
)
= µ (q(t), x(t)) , t ∈ T. (4)

T is the set of time instants when a robot can revise its task
selection and µ is the protocol that assigns one task from the
set of available tasks {1, · · · ,M} to the robot. We formalize
the multi-robot task allocation problem as follows.

Problem 1 (Multi-Robot Task Allocation): Design a
decision-making algorithm (4), i.e., design T and µ, that
solves the optimization problem defined by

minimize γ (5)
subject to lim sup

t→∞
qi(t) ≤ γ, ∀i ∈ {1, · · · ,M}

dynamic model (2) for q(t)
decision-making algorithm (4) governing x(t).

A. Generalizations

Our approach can be extended to complex task allocation
where there are inter-dependent tasks. For instance, if tasks i
and j are inter-dependent, we can express the dynamic
models associated with the tasks by

q̇i(t) = −Fi (qi(t), qj(t), xi(t)) + wi

q̇j(t) = −Fj (qi(t), qj(t), xj(t)) + wj .

In addition, our framework can be generalized to task
allocation for heterogeneous robotic teams by expanding
the population state to (xi(t), yi(t)), which describes the
portions of two different robotic groups selecting task i. In
this case, the dynamic model expands to

q̇i(t) = −Fi (qi(t), xi(t), yi(t)) + wi.

We leave in-depth investigations as future work.

III. DECISION-MAKING ALGORITHM AND
CONVERGENCE ANALYSIS

Our decision-making algorithm consists of a payoff (re-
ward) mechanism, Poisson clock, and task revision protocol,
which we describe in §III-A. Convergence analysis, provided
in §III-B, establishes that the algorithm converges to its
unique equilibrium state at which (q1(t), · · · , qM (t)) attain
the minimum of the optimization problem (5).

A. Decision-Making Algorithm

Payoff (Reward) Mechanism: In our algorithm, the
robots tend to select tasks returning higher payoffs. A payoff
mechanism specifies how the payoffs are determined from
the variables relevant to the robots’ decision making. We
consider the following payoff mechanism, which defines the
payoff pi associated with task i:

pi(t) = qi(t) + ν
(
−Fi(γ∗, xi(t)) + wi

)
, (6)

where ν is a nonnegative constant and γ∗ is the minimum
of (5) satisfying Fi(γ∗, x∗i ) = wi, ∀i ∈ {1, · · · ,M} at the
stationary population state x∗ = (x∗1, · · · , x∗M ).

In the case ν = 0, the payoff mechanism (6) allows
the robots to switch their task selections based only on the
instantaneous values of (q1(t), · · · , qM (t)). Such model-free
mechanism design is useful for the scenario where the robots
do not have access to the dynamic model (2).

When ν > 0, the payoff mechanism (6) generates rewards
that prompt the robots to balance being responsive to the
change in qi(t) and selecting the task allocation correspond-
ing to the stationary population state x∗. However, this
requires the robots to know the consumption rate Fi and the
growth rate wi for every task. Interestingly, such a selection
of ν for (6) enables the robots’ task selection to be robust
against perturbation in the dynamic model (2) and their
decision making. We demonstrate this using experimental
results in §IV.

Poisson Clock: Each robot is allowed to switch its task
selection at every tick of the Poisson clock. Formally, the
Poisson clock is defined as a set Tλ = {t1, t2, · · · } of time
ticks, where each tk in Tλ is defined as the k-th jump time of
the Poisson process with parameter λ. Equivalently, the time
difference between the two consecutive ticks tk and tk+1

is drawn according to the exponential distribution: tk+1 −
tk ∼ exp (λ). In our algorithm, the robots’ Poisson clocks
are defined by identical and independent Poisson processes,
each has the same parameter λ, and each robot can assess
the payoff (p1(tk), · · · , pM (tk)) at every tk in Tλ.1

Task Revision Protocol: At every tk of its own Poisson
clock Tλ, each robot switches its task selection according to
the probabilistic task revision protocol defined by

P
(

robot switches current task i to task j
)

= % [pj(tk)− pi(tk)]+ (7a)

P
(

robot stays with current task i
)

= 1− %
M∑
j=1

[pj(tk)− pi(tk)]+ , (7b)

where pi(tk) is the payoff assigned to task i according to (6),
[r]+ is the positive part of r, i.e., [r]+ = max (0, r), and %

1For simplicity, in this paper, we assume the robots are able to evaluate
q(t), x(t), each time they revise their task selections. We leave it as a future
work to extend our framework to the scenario where each robot maintains its
own estimates of q(t), x(t) and computes the payoffs for the task revision.



is a positive constant satisfying %
∑M
j=1 [pj(tk)− pi(tk)]+ ≤

1, for all tk ∈ Tλ and for all i ∈ {1, · · · ,M}.
Under the protocol (7), each robot tends to switch its

task selection to another one incurring a higher reward than
its current task, and the tendency to switch to another task
increases as the task returns a higher reward.

B. Convergence Guarantee

Large population approximation in game theory [17] sug-
gests that as the number N of robots tends to infinity, the
variable q(t) and the population state x(t) can be approxi-
mated, with high accuracy, by the solution of the differential
equations given by

q̇i(t) = −Fi (qi(t), xi(t)) + wi (8a)

ẋi(t) =
%

λ

M∑
j=1

xj(t)
[
pi(t)− pj(t)

]
+

− %

λ
xi(t)

M∑
j=1

[
pj(t)− pi(t)

]
+
, (8b)

where the payoff pi(t) is determined by the payoff mecha-
nism (6). Note that the protocol (7) is embedded in (8b) and
λ is the parameter of the Poisson clock.

We establish convergence of our decision-making algo-
rithm by examining stability of the equilibrium state of (8).
Our analysis hinges on analytical tools developed for higher-
order learning in multi-agent games [1]–[3]. Although the
same results hold for any ν ≥ 0, to simplify the presentation,
we consider the case where ν = 0 for (6) in which case the
payoff is determined as pi(t) = qi(t), ∀i ∈ {1, · · · ,M}.

We begin by identifying that the equilibrium state (q∗, x∗)
of (8) satisfies

Fi (q∗i , x∗i ) = wi, ∀i ∈ {1, · · · ,M} (9a)
γ∗ = q∗1 = · · · = q∗M (9b)

where γ∗ is the minimum of the optimization (5). We adopt
the following definition for the neighborhood set of (q∗, x∗).

Definition 1 (Neighborhood Set of (q∗, x∗)): Given a
positive constant δ, the neighborhood set Sδ of (q∗, x∗) is
defined as

Sδ =
{
(q, x) ∈ RM × X

∣∣∣ ‖(q, x)− (q∗, x∗)‖2 < δ
}
.

In other words, Sδ is a set of points that are within δ-radius
from the equilibrium state (q∗, x∗).

To examine convergence properties of our decision-
making algorithm, we adopt the standard stability notions
from nonlinear system theory [18].

Definition 2 (Global Attractiveness): The equilibrium
state (q∗, x∗) of (8) is globally attractive if for any initial
condition (q(0), x(0)) in RM × X, the solution (q(t), x(t))
of (8) converges to (q∗, x∗).

Definition 3 (Lyapunov Stability): The equilibrium state
(q∗, x∗) of (8) is Lyapunov stable if for any neighborhood set
Sε of (q∗, x∗), there is another neighborhood set Sδ for which
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Fig. 3. Multi-robot trash collection application. (a) The environment. (b)
The finite state machine that defines how each robot operates.

the solution (q(t), x(t)) of (8) satisfying (q(0), x(0)) ∈ Sδ
stays in Sε for all t ≥ 0.

Definition 4 (Global Asymptotic Stability): The equilib-
rium state (q∗, x∗) is globally asymptotically stable if it is
globally attractive and Lyapunov stable.

Both notions of global attractiveness and Lyapunov sta-
bility are important. The former guarantees the robots to
asymptotically achieve the optimal task allocation. The latter
ensures that if the robots have already selected nearly optimal
task allocation, then our decision-making algorithm main-
tains the robots’ task selections near the optimal allocation.
Using the stability definitions, we state our main results.

Theorem 1: Under the decision-making algorithm, de-
scribed in §III-A, the equilibrium state of (8) is globally
asymptotically stable.

IV. APPLICATION TO MULTI-ROBOT TRASH
COLLECTION

We demonstrate the effectiveness of our decision-making
algorithm in a multi-robot trash collection application. As ex-
plained in Example 1 and illustrated in Fig. 1, the robots are
tasked with collecting trash from designated patches, where
the variable qi(t) represents the volume of trash in patch i
and xi(t) denotes the portion of robots assigned to patch i
at t. The decision-making algorithm is used to determine
when and how each robot revises its patch selection. We
examine, under the proposed algorithm, the robots’ abilities
to adapt in changing environments and tolerate failure of
individual robots. We also investigate how the performance
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Fig. 4. Experiment outcomes with changing growth rates and failure of individual robots. The initial conditions of the experiments are set to q(0) =
(0, 0, 0, 0), x(0) = (0.25, 0.25, 0.25, 0.25), and w = (0.5, 0.5, 0.5, 0.5).
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Fig. 5. Experiment outcomes with different selections of the parameter ν in the payoff mechanism (6). The initial conditions of the experiments are set
to q(0) = (100, 200, 300, 400), x(0) = (0.25, 0.25, 0.25, 0.25), and w = (1.0, 0.5, 0.33, 0.25).

of our algorithm depends on the selection of the parameter
ν in the payoff mechanism (6).

A. Experiment Settings

As depicted in Fig. 3(a), the environment has 4 patches
and there are 4 dumpster areas where the robots can empty
their trash collection baskets. We deploy 40 robots and use
a cubic object to represent the unit volume of trash. New
objects arrive at each patch i according to a Poisson process
with parameter wi, equal to the growth rate in (2), and are
placed uniformly randomly within the patch.

As shown in Fig. 1, every robot is equipped with 4-wheel
differential drive and a single manipulator to pick up the
cubic objects from the ground. Individual robots can hold
up to 10 objects at a time in their trash collection baskets.
Once the basket is full, the robot should travel to the nearest
dumpster area to empty the basket.

We implement a finite state machine, as depicted in
Fig. 3(b), to define how each robot operates in the appli-
cation. In the foraging state, inside its assigned patch, each
robot moves toward a randomly selected location where trash

is spotted, and when the robot detects a cubic object located
within a 0.5 m radius, it uses visual servoing to approach
and pick up the object. The robot uses the artificial potential
field scheme [19] to avoid collision with other robots. For
the revision of the robots’ patch selections, we implement
our decision-making algorithm described in §III.

We select the parameter λ of the Poisson clock to ensure
that each robot does not change its patch selection while
it is transitioning between patches. To this end, we assign
λ = 8 since it takes approximately 8 s for each robot to
transition between two patches and get ready to pick up trash.
The parameter % of the task revision protocol is selected to
ensure the probabilistic protocol (7) is well-defined in every
scenario of the experiments. The initial condition q(0) =
(100, 200, 300, 400) used in the third experiment scenario
incurred the smallest value % = 1/600 and we adopt this
parameter selection for all experiment scenarios.

B. Experimental Results

We consider the following 3 experiment scenarios.



a) Changing growth rate wi: We assess the respon-
siveness of the proposed algorithm in the environments
where the growth rate wi of the dynamic model (2) changes.
We select ν = 0 for the payoff mechanism (6) for which the
robots revise their patch selections without the knowledge of
the dynamic model. We run experiments for the following
two cases. In the first case, we let all the patches initially
have the same Poisson growth rate with the parameter w1 =
· · · = w4 = 0.5. Then, between t = 500 s and t = 600 s,
the growth rate at patch 1 surges to w1 = 5.0 and comes
back to the initial rate w1 = 0.5 afterwards. This case is
used to evaluate whether the algorithm reacts to the sudden
increase of the trash volume in patch 1 and relocates the
robots accordingly. In the second case, all the patches have
the same initial growth rate as in the first case, but the growth
rate at patch 1 switches to w1 = 1.0 at t = 500 s and remains
at the new rate. We design this experiment to assess whether
the algorithm can redistribute the robots corresponding to
switching growth rates.

Figs. 4(a) and 4(b), respectively, depict the outcomes of
the two cases. As we can observe from the figures, under the
proposed algorithm, the robots switch their patch selections
in response to the changes in the trash volume. In particular,
in the first case, upon detection of the increase of the trash
volume at patch 1, the robots start to move to patch 1 and
collect trash there. As the trash volume in patch 1 decreases,
the robots return to the other patches. In the second case,
interestingly, despite the fact that they are not aware of
the growth rates, the robots revise their patch selections
according to the new growth rates. Noticeably, both the trash
volume and population state exhibit fluctuations around the
equilibrium state, especially after the growth rates change.
We recognize that such fluctuations result from the per-
turbations due to the finite size of the multi-robot system,
stochasticity in the Poisson growth rate of the trash volume,
and the transition time between the patches.

b) Failure of individual robots: To assess whether
the algorithm has tolerance to failure of individual robots,
we carry out an experiment in which 15 robots (out of the
total 40 robots) break down at t = 500 s and discontinue
their operations until t = 1500 s. As in the first scenario, we
select ν = 0 for (6) and fix the parameters of the Poisson
growth rates to w1 = · · · = w4 = 0.5. Fig. 4(c) depicts
the experiment outcomes from which we can observe that,
despite the failure, the proposed algorithm allows the rest
of the team members to reorganize their patch allocation
and continue to carry out the trash collection. Notably,
even though the multi-robot system has reduced capability
in collecting trash between t = 500 s and t = 1500 s,
the remaining 25 robots continue to maintain the optimal
uniform distribution of their patch allocation to keep the trash
volumes minimized.

c) Effect of the weight ν in payoff mechanism (6):
We examine how the robots’ patch selection pattern depends
on the selection of ν in (6). For this purpose, we adopt (3) to
specify the consumption rate Fi of the payoff mechanism (6),
where we select the same parameters Ri, αi, βi as described

in Example 1 and Fig. 2.
Fig. 5 depicts outcomes of the experiments with 3 different

values of ν (ν = 0, 40, 800). First of all, as we have discussed
in Theorem 1, in all 3 cases, the trash volume and population
state in every patch converge to the equilibrium state. For the
model-free case (ν = 0) depicted in Fig. 5(a), the trajectories
of q(t) and x(t) oscillate before reaching the equilibrium
state, whereas when ν = 40, as observed in Fig. 5(b), such
oscillation becomes less significant. When ν is substantially
large (ν = 800), as seen in Fig. 5(c), the population state
tends to immediately converge to its stationary value and
the trash volume trajectories have the slowest convergence
among the three cases.

The experiment outcomes suggest that when the robots
do not know the dynamic model and revise their patch
selections based only on the instantaneous trash volume q(t),
they tend to go back and forth between different patches
until the trash volumes converge; we previously observed a
similar phenomenon in Fig. 3. However, when the robots take
the dynamic model into account in their decision making,
they implicitly coordinate to allow a smaller portion of the
robots to react to the changes in the trash volume and the
rest to move to the patch locations corresponding to the
stationary population state. Hence, the parameter ν for the
payoff mechanism (6) can be used to determine the trade-off
between the responsiveness of our algorithm to changes in
the environment and robustness against perturbation in the
robots’ decision making. However, when ν is too large, the
robots’ patch revision becomes insensitive to the changes in
the trash volume which results in the slowest convergence to
the equilibrium state.

V. CONCLUSIONS

In this paper, we proposed a new decision-making algo-
rithm for multi-robot task allocation in dynamically changing
environments. Our main results established the convergence
guarantee that, under the proposed algorithm, the robots are
able to learn and achieve the optimal task allocation and
are robust against perturbation in their decision making. We
evaluated the performance of the algorithm in the multi-robot
trash collection application.

From the experimental results, we learned that proper
design of the payoff mechanism ensures the robots to
be responsive to changes in the environment and, at the
same time, to be robust against perturbation inherent in
the environment and their decision making. However, this
requires the robots to be aware of the dynamic model
of the environment. As a future plan, we will investigate
online learning approaches to estimate the dynamic model
(2), and further examine how we can adaptively select the
weight parameter ν of the payoff mechanism to find the
optimal trade-off between responsiveness to environmental
changes and robustness against perturbations. We will also
investigate the complex task allocation and heterogeneous
robotic system scenarios which we discussed in §II-A.
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