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Abstract
We introduce and analyze a continuous time and state-space model of opinion cascades 
on networks of large numbers of agents that form opinions about two or more options. 
By leveraging our recent results on the emergence of agreement and disagreement states, 
we introduce novel tools to analyze and control agreement and disagreement opinion cas-
cades. New notions of agreement and disagreement centrality, which depend only on net-
work structure, are shown to be key to characterizing the nonlinear behavior of agreement 
and disagreement opinion formation and cascades. Our results are relevant for the analysis 
and control of opinion cascades in real-world networks, including biological, social, and 
artificial networks, and for the design of opinion-forming behaviors in robotic swarms. We 
illustrate an application of our model to a multi-robot task-allocation problem and discuss 
extensions and future directions opened by our modeling framework.
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1 Introduction

Network cascades are classically modeled as the spread of a binary transition from an inac-
tive (e.g., uninformed, not infected) to an active (e.g., informed, infected) state. Models 
have been used to examine a variety of phenomena, including the spread of fads (Glad-
well 2006; Bikhchandani et  al. 1992), competing technologies (Arthur 1989), diffusion 
of innovations (Valente 1995; Rosa and Giua 2013), and the spread of influence (Kempe 
et al. 2003). The linear threshold model (LTM), introduced in Granovetter (1978); Schell-
ing (2006), defines a basic modeling hypothesis for studying network cascades, namely 
discrete time and binary states of agents that update as a threshold function of the states of 
neighbors (Watts 2002; Lim et al. 2015; Garulli et al. 2015; Rossi et al. 2017). Recently, 
the LTM was extended to multi-layer interaction networks (Yağan and Gligor 2012; Salehi 
et al. 2015; Zhong et al. 2020).

In an opinion formation context, the situation is more general. When agents form opin-
ions about a set of options, the transition from an unopinionated to an opinionated state 
is not a binary process because the opinionated state can correspond to a variety of dis-
tinct opinion configurations. Even in the simplest case of two options, the opinionated state 
can evolve in two qualitatively distinct directions, that is, preferring option A or prefer-
ring option B. Thus, for opinion cascades, it not only does the active or inactive nature of 
an agent’s neighbors matter but also the opinion state of neighbors, i.e., their preferences 
among options. That is, the opinion state to which an agent will converge during an opin-
ion cascade depends not only on the agent’s susceptibility to forming an opinion (i.e., its 
activation threshold) but also the agent’s tendency to align with, or reject, its neighbors’ 
opinions. Further, the transition from being unopinionated to holding a strong opinion in 
favor or disfavor of one or more options can be more or less continuous, both in time and in 
strength, and the graded transition from one opinion state to another cannot be captured in 
binary models. A continuous time and state-space approach to threshold cascade behavior 
was explored in Zhong and Leonard (2019). A multi-option, agent-based approach to opin-
ion cascades was studied in Pilditch (2017). The approach followed in the present paper 
considers both the presence of multiple options and multiple possible opinion states and a 
process that is continuous both in time and in state.

In recent work (Bizyaeva et  al. 2020a), we developed a general model of continuous 
time and state-space opinion formation for an arbitrary number of agents exchanging infor-
mation over a communication network and forming opinions about an arbitrary number of 
options. Our model is both analytically tractable and general because it is motivated by a 
tractable and general model-independent theory of opinion formation (Franci et al. 2020). 
In particular, very general opinion-formation behaviors like consensus, dissensus, and vari-
ous intermediate forms of agreement and disagreement can all be realized and controlled in 
our model with only a handful of key parameters with clear real-world interpretations (e.g., 
parameters that represent the agents’ level of cooperativity or competitivity).

In our model, opinion formation happens through a bifurcation. While much can be 
investigated with linear models (see, e.g., Mateo et  al. (2019)), the nonlinearity of our 
model allows for richer possibilities. Notably, the resulting opinion-formation process 
can be continuous or switch-like, depending on the nature of the bifurcation and the way 
the model crosses it (Franci et al. 2020). Further, when options are close to equally valu-
able, there is multistability of either agreement or disagreement opinion configurations. 
In this case, the opinion-forming bifurcation breaks deadlock by pushing the state away 
from the neutral (deadlock) equilibrium and toward one of the stable opinion states. The 
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key (bifurcation) parameter of our model is the “attention” ui that agent i pays to its neigh-
bors in the communication network. This parameter can also be interpreted as the urgency 
to form an opinion that the agent perceives. When agents have low attention, they form 
opinions linearly according to the information-rich inputs they receive about the available 
options. Agents that receive no inputs (i.e., those that do not gather information about the 
options) remain neutral or unopinionated. Conversely, when agents have high attention, 
they form a robust opinion through nonlinear network interactions, independently of, but 
also influenced by, their inputs.

In this paper, we leverage the state-dependent attention dynamics introduced in Bizy-
aeva et al. (2020a) to show that a positive feedback coupling between attention and opinion 
strength at the single-agent level provides the basic mechanism underlying the emergence 
of tunable opinion cascades at the network level. The positive feedback makes single-agent 
opinion formation switch-like and provides it with a tunable threshold, like in binary mod-
els of opinion cascade, while also preserving the continuous-time, graded evolution of the 
opinion and attention states. We develop a detailed geometrical analysis of the single-agent 
attention-opinion dynamics for the case of three options, which extends the two-option 
geometrical analysis in Bizyaeva et al. (2020a). The two cases have similarities (i.e., hys-
teresis and switches between unopinionated and opinionated states) but also differences 
(i.e., the much richer menu of possible opinionated configurations for three options).

Because of the intrinsic multistability of opinion configurations, our model naturally 
captures “afterthoughts” during the opinion cascade process: an early opinionated agent 
can change its opinion under the influence of sufficiently strong signals from other agents. 
Binary threshold models do not exhibit the same degree of behavioral flexibility. Further, 
due to its continuous time and state-space nature, our model features both simple and com-
plex contagion (in the sense of Centola and Macy (2007)). That is, along the same opinion 
cascade process, contagion can be simple for some agents and complex for others.

To analyze and control the emergent behavior of the cascade model on undirected net-
work topologies, we introduce the notions of its agreement centrality, its disagreement 
centrality, and its signed disagreement centrality. Agreement centrality coincides with the 
classical notion of eigenvector centrality (Bonacich 1972, 2007). Disagreement and signed 
disagreement centralities are new. Our definitions are motivated by the tight connections 
existing between the patterns of opinion formation emerging at an opinion-forming bifur-
cation and the spectral properties of the underlying adjacency matrix (Bizyaeva et  al. 
2020b). We show that our definitions provide powerful tools to analyze and control opinion 
cascades and their sensitivity to cascade seed inputs.

Our opinion-formation and opinion-cascade modeling, analysis, and control tools are 
naturally suited for engineering, biological, and sociopolitical applications. For example, 
biological and artificial swarms in motion can make both agreement decisions, such as to 
move in the same direction like schooling fish (Couzin et al. 2005, 2011; Leonard et al. 
2012), and disagreement decisions, such as to go in different directions during search and 
foraging (Traniello 1989; Zedadra et al. 2017). Sociopolitical networks, both at the citizen 
and political elite level, are made of agents that can more or less rapidly change between 
agreement and disagreement behaviors, depending on the topic, time, and context (McCa-
rty 2019; Macy et al. 2019).

Two main types of collective decision making, across applications, can broadly be clas-
sified as “best-of-n” and “task allocation” (Valentini et al. 2017; Gerkey and Matarić 2004; 
Brambilla et al. 2013; Schranz et al. 2020). In the former, agents must reach a consensus 
about the best-of-n options, while in the latter, agents must allocate across the n options. 
Thus, solving a best-of-n problem requires a specific type of agreement opinion formation. 
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Indeed, an earlier special case of our model was originally inspired by best-of-n collective 
decision making in house hunting honeybees (Gray et al. 2018).

Alternatively, solving a task-allocation problem requires a specific type of disagreement 
opinion formation. In this paper, we illustrate this fact with an original example describ-
ing distributed allocation over three tasks by a swarm of robots. With this example, we 
highlight the importance of task-allocation cascades. The result is a dynamical task-allo-
cation algorithm controlled by just a few parameters. Given its continuous time and state-
space nature, the algorithm is naturally suited to implementation in low-level (e.g., analog) 
hardware, making it relevant for any multi-robot application with restricted computational 
power.

The paper is structured as follows. In Sect. 2, we introduce the general opinion dynam-
ics model of Bizyaeva et al. (2020a) and we rigorously analyze its opinion-forming behav-
ior. In Sect. 3, we frame a multi-robot task-allocation problem using our opinion formation 
dynamics. In Sect. 4, we show how an attention positive feedback mechanism at the agent 
and network scales engenders opinion cascade with tunable sensitivity in our opinion for-
mation dynamics. To analyze and control opinion cascades, in Sect. 5 we introduce new 
notions of centrality and illustrate their power mechanistically in low-dimensional agree-
ment and disagreement opinion cascade examples. In Sect. 6, we show how introducing 
a cascade mechanism makes the multi-robot task-allocation model introduced in Sect.  3 
reactive to changes in task urgency and more robust to initial conditions and parameter 
uncertainties. Application to large scale complex networks is presented in Sect.  7. Sec-
tion 8 provides a discussion of results, our notion of agreement and disagreement centrali-
ties, and the connection between our notion of opinion cascade and complex contagion. 
Section 8 also describes extensions and future research directions opened up by our mod-
eling framework, including time-varying network topologies and communication losses, 
and applications beyond multi-robot task allocation.

2  A general model of agreement and disagreement opinion formation

We consider a network of Na agents forming opinions about No options. Let zij ∈ ℝ denote 
the opinion of agent i about option j. The greater zij is, the stronger is the preference of 
agent i for option j. We assume that

This assumption means that we are only interested in modeling an agent’s relative prefer-
ence for the various options. Indeed, to determine if agent i prefers option j over option l, 
l ≠ j , only the value of zij relative to zil matters. Condition (1) can also be interpreted as a 
linearized simplex condition, as detailed in Franci et al. (2020).

Let Zi = (zi1,… , ziNo
) be the opinion state of agent i and Z = (Z1,… ,ZNa

) the opinion 
state of the agent network. We recall some useful definitions from Franci et al. (2020); 
Bizyaeva et al. (2020a). Agent i is neutral if Zi = � . The origin Z = � is called the net-
work’s neutral state. Agent i is unopinionated if its opinion state is small, i.e., ‖Zi‖ ≤ � , 
for a fixed threshold � ≥ 0 . Agent i is opinionated if ‖Zi‖ ≥ � . If zij ≥ zil − � for all l ≠ j , 
then agent i is said to favor option j. If zij < zil − 𝜗 for all l ≠ j , then agent i is said to 
disfavor option j. An agent is conflicted about a set of options if it has near equal and 
favorable opinions of them all. Agents can agree and disagree. Two agents agree when 
they are opinionated and have the same qualitative opinion state (e.g., they both favor 

(1)zi1 +⋯ + ziNo
= 0.
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the same option). They disagree when they have qualitatively different opinion states. 
We refer the reader to Franci et  al. (2020) for a geometric illustration of these defini-
tions. The network is in an agreement state when all agents are opinionated and agree 
and in a disagreement state when at least two agents disagree.

Agents’ opinions are assumed to evolve in continuous time. The networked opinion 
dynamics (Bizyaeva et al. 2020a) are the following: 

 where żij is the rate of change, with respect to time t, of the opinion of agent i about option 
j. Observe that, by (2a), żi1 +⋯ + żiNo

= 0 , which ensures that zi1(t) +⋯ + ziNo
(t) = 0 for 

all t > 0 , provided zi1(0) +⋯ + ziNo
(0) = 0 . The parameter dij > 0 models the resistance of 

agent i to form an opinion about option j. Exogenous inputs (e.g., prior biases or incoming 
information) influencing the opinion formation of agent i about option j are captured in the 
affine parameter bij . Network interactions are modeled in the adjacency tensor A. There 
are four types of network interactions represented by elements of the adjacency tensor as 
follows: 

1. Intra-agent, same-option (with weights Ajj

ii
 ), modeling the influence of agent i’s opinion 

about option j on itself;
2. Intra-agent, inter-option (with weights Ajl

ii
 ), modeling the influence of agent i’s opinion 

about option l on the same agent’s opinion about option j;
3. Inter-agent, same-option (with weights Ajj

ik
 ), modeling the influence of agent k’s opinion 

about option j on agent i’s opinion about the same option;
4. Inter-agent, inter-option (with weights Ajl

ik
 ), modeling the influence of agent k’s opinion 

about option l on agent i’s opinion about option j.

Network interactions can be excitatory, if the associated weight is positive, or inhibi-
tory, if the associated weight is negative. Sq ∶ ℝ → [−kq1, kq2] with kq1, kq2 ∈ ℝ

>0 for 
q ∈ {1, 2} is a generic sigmoidal saturating function satisfying constraints Sq(0) = 0 , 
S�
q
(0) = 1 , S��

q
(0) ≠ 0 , S���

q
(0) ≠ 0 . The two sigmoids S1 and S2 saturate same-option inter-

actions and inter-option interactions, respectively. They are the only nonlinearity of the 
model.

The attention parameter ui tunes how strongly nonlinear network interactions affect 
agent i (Fig. 1):

– For small ui , agent i’s opinion formation is dominated by a linear behavior deter-
mined by dij and bij;

– For large ui , agent i’s opinion formation is dominated by a nonlinear behavior deter-
mined by network interactions.

(2a)żij = Fij(Z) −
1

No

No∑
l=1

Fil(Z)

(2b)Fij(Z) = −dijzij + ui

⎛
⎜⎜⎜⎜⎜⎝

S1

⎛⎜⎜⎜⎝

Na�
k = 1

A
jj

ik
zkj

⎞⎟⎟⎟⎠
+

No�
l ≠ j

l = 1

S2

�
Na�
k=1

A
jl

ik
zkl

�⎞
⎟⎟⎟⎟⎟⎠

+ bij,
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In the linear regime, an agent develops an opinion proportional to the ratio of its inputs and 
its resistance, much like a classical leaky evidence integrator (Bogacz 2007). In the nonlinear 
regime, much richer network opinion formation behaviors can be expected. Model (2) was 
inspired by and specializes to the honeybee-inspired model in Gray et  al. (2018). See also 
Bizyaeva et al. (2020a) for a discussion of the similarities and difference between model (2) 
and previous opinion formation models in the literature.

2.1  Agreement and disagreement opinion formations are determined by network 
spectral properties

Model (2) contains hundreds of intrinsic and interaction parameters when Na and/or No are 
sufficiently large. As such, it is intractable in general. However, the model-independent theory 
in Franci et al. (2020) shows that even in the simplest case in which all four types of network 
interaction are all-to-all and homogeneous, inputs are zero, attention is uniform across the 
agents, and the resistance is the same for all the agents, a plethora of rich prototypical opinion 
formations are still possible in model (2).

To study the role of complex inter-agent network interactions, while preserving analytical 
tractability, we consider the homogeneous regime of model (2), defined by imposing the fol-
lowing restrictions on the model parameters:

where �, �, � , � ∈ ℝ and ãik ∈ {0, 1} , for all i, k = 1,… ,Na , i ≠ k , and for all 
j, l = 1,… ,No , j ≠ l . The resulting dynamics are 

(3)
dij = d > 0, ui = u, A

jj

ii
= 𝛼 ∈ ℝ

A
jl

ii
= 𝛽 ∈ ℝ, A

jj

ik
= 𝛾 ãik, A

jl

ik
= 𝛿ãik

(4a)żij = Fij(Z) −
1

No

No∑
l=1

Fil(Z)

Fig. 1  Schematic model description.
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 In this regime, the intra-agent network is all-to-all and homogeneous, with weight � for 
same-option interactions and weight � for inter-option interactions. The topology of the 
inter-agent network is encoded in the adjacency matrix Ã = [ãik] ∈ ℝ

Na ×ℝ
Na . For all 

existing inter-agent links, i.e., those satisfying ãik = 1 , the inter-agent same-option weight 
is � and the inter-agent inter-option weight is � . It is natural to assume that

which means that opinions are self-reinforcing ( � ≥ 0 ) and mutually exclusive ( 𝛽 < 0 ). 
The two remaining parameters, � and � , determine whether agents cooperate or compete 
in forming opinions. More precisely, if 𝛾 > 𝛿 , agents cooperate in forming opinions, since 
the opinion of any agent i about any option j is more strongly excited by the opinions of its 
neighbors about the same option j than by their opinions about all the other options l ≠ j . 
Conversely, if 𝛾 < 𝛿 , agents compete in forming opinions, since the opinion of any agent 
i about any option j is more strongly excited by the opinions of its neighbors about all the 
other options l ≠ j than by their opinions about the same option j.

Remark 1 Because intra-agent coupling is all-to-all and homogeneous in model (4), options 
are indistinguishable from a network topology perspective. A natural extension of model 
(4) would be to consider a topologically richer intra-agent network. This generalization is 
natural in the presence of distinguished options or “issues,” i.e., subgroups of more tightly 
related options.

For homogeneous networks, the cooperative or competitive nature of agent interactions 
is the key determinant of the opinion formation behavior. The proof of the following theo-
rem follows by linearizing the opinion dynamics (4) at the neutral equilibrium and by stud-
ying the kernel of the resulting Jacobian matrix (see (Bizyaeva et al. 2020b, Theorem 1) for 
details). Let ℝ{v1,… , vk} be the span of vectors v1,… , vk ∈ ℝ

n and �⟂
n
 be the orthogonal 

complement to the vector of ones in ℝn.

Theorem 1 Suppose that bij = 0 for all i = 1,… ,Na and all j = 1,… ,No.

• If 𝛾 > 𝛿 , then in model (4) opinion formation emerges as a bifurcation from the neutral 
state for 

 where �max is the maximum eigenvalue of Ã . All bifurcation branches are tangent to 
the (No − 1)-dimensional kernel ℝ{vmax}⊗ �

⟂

No

 , where vmax is the positive (Perron–
Frobenius) eigenvector associated with �max . More precisely, each bifurcation branch is 
tangent to a one-dimensional subspace ℝ{vmax ⊗ vax} of ℝ{vmax}⊗ �

⟂

No

 , for some 

(4b)

Fij(Z) = −dzij + u

⎛
⎜⎜⎜⎜⎜⎝

S1

⎛
⎜⎜⎜⎜⎜⎝

𝛼zij +

Na�
k ≠ i

k = 1

𝛾 ãikzkj

⎞
⎟⎟⎟⎟⎟⎠

+

No�
l ≠ j

l = 1

S2

⎛
⎜⎜⎜⎜⎜⎝

𝛽zil +

Na�
k ≠ i

k = 1

𝛿ãikzkl

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

+ bij.

(5)𝛼 ≥ 0, and 𝛽 < 0,

(6)u = ua ∶=
d

� − � + �max(� − �)
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vax ∈ �
⟂

No

 . In particular, because every agent’s opinion state is directly proportional 
(according to the entries of vmax ) to the same opinion configuration vector vax , all the 
opinion formation bifurcation branches are of agreement type.

• If 𝛾 < 𝛿 and the minimum eigenvalue of Ã is simple1, then in model (4) opinion forma-
tion emerges as a bifurcation from the neutral state for 

 where �min is the minimum eigenvalue of Ã . All bifurcation branches are tangent to the 
(No − 1)-dimensional kernel ℝ{vmin}⊗ �

⟂

No

 , where vmin is the eigenvector associated 
with �min . Each bifurcation branch is tangent to a one-dimensional subspace 
ℝ{vmin ⊗ vax} of ℝ{vmin}⊗ �

⟂

No

 , for some vax ∈ �
⟂

No

 . Because the vector vmin is orthogo-
nal to vmax , it has mixed-sign entries. In particular, some agents have opinion state 
directly proportional to the opinion configuration vector vax , whereas some agents have 
opinion state inversely proportional to it, and so all the opinion formation bifurcation 
branches are of disagreement type.

Proof Equations (6) and (7) were derived in Bizyaeva et  al. (2020a) [Theorem  4.1] and 
Bizyaeva et  al. (2020b) [Theorem 1]. The form of the one-dimensional subspaces along 
which agreement and disagreement bifurcations occur, in particular, the vectors vax , can be 
constructed using equivariant bifurcation theory methods (Golubitsky et al. 1988; Golubit-
sky and Stewart 2002). Because the intra-agent opinion network is all-to-all and homoge-
neous, model (4) is symmetric with respect to arbitrary option permutations, i.e., it is �No

-equivariant, where �No
 is the symmetric group of order No . It follows from the Equivariant 

Branching Lemma (Golubitsky et al. 1988, Theorem XIII.3.3) that, generically, vax is the 
generator of the fixed point subspace of one of the axial subgroups of the action of �No

 on 
�
⟂

No

 . There is, of course, only one (modulo multiplication by a nonzero scalar) such vector 
for No = 2 , i.e., vax = (1,−1) . Modulo multiplication by a nonzero scalar, there are three 
such vectors for No = 3 , i.e., vax = (1, 1,−2) , vax = (1,−2, 1) , vax = (−2, 1, 1) . The form of 
vax for No > 3 can be similarly derived.   ◻

Although derived for the simplified homogeneous dynamics (4), Theorem 1 is predic-
tive of the model behavior in the presence of small heterogeneities in the coupling param-
eter, i.e., when the homogeneous regime is weakly violated. Also, the same bifurcation 
techniques used to prove this theorem generalize to the case in which large heterogenei-
ties are present. See, e.g., (Bizyaeva et al. 2020a, Sect. 3.C) for a general clustering result 
in the presence of large difference in the coupling parameter between two or more agent 
subpopulations.

Remark 2 In (4), we can bring the sums appearing inside S1 and S2 outside of the sigmoids 
without changing the qualitative behavior of the model. In particular, because the model 
Jacobian does not change if sums and sigmoids are swapped, Theorem 1 remains true.

(7)u = ud ∶=
d

� − � + �min(� − �)

1 The assumption that the minimum eigenvalue of Ã has algebraic multiplicity one is usually true for all 
sufficiently large complex networks. The case in which this multiplicity is larger can also be analyzed, but 
for simplicity we do not address it here.
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In Figs. 2 and 3, we illustrate the prediction of Theorem 1 for two types of (undirected) 
complex networks: a Watts–Strogatz “small-world” network (Watts and Strogatz 1998) and 
a Barabasi–Albert “scale-free” network (Albert and Barabasi 2002), respectively. Panel A 
of both figures corresponds to No = 2 and panel B to No = 3 . In the left plots of each panel, 
agents are cooperative, whereas in the right plots, agents are competitive. In all the simu-
lations Na = 100 and small Gaussian-distributed random perturbations were added to all 
inputs bij to verify the robustness of the theory. Theorem 1 is indeed valid for bij = 0 but, 
by normal hyperbolicity of the predicted bifurcation branches of agreement and disagree-
ment equilibria, its predictions remain valid in the case where the bij are not exactly zero 
or other types of perturbations (e.g., coupling weights perturbations that weakly violate the 
homogeneous regime assumption) are present. Precise robustness bounds can be computed 
using the methods introduced in Wang and Michel (1994). This observation makes Theo-
rem 1 relevant for real-world applications.

Each plot in Figs.  2 and 3 shows the temporal evolution of zi1 , i.e., agent i’s opin-
ion about the first option, as the attention parameter is slowly increased from below 
to above the agreement and disagreement opinion-formation critical values ua and ud 
defined in (6) and (7), respectively. The critical value is reached at half of the simula-
tion time. The insets show the distribution of agent opinions about all the options at one 
third of the simulation time (i.e., before the opinion-forming bifurcation), two thirds 

Fig. 2  Agreement (left) and disagreement (right) opinion formation in Watts–Strogatz networks with 
Na = 100 agent nodes and a No = 2 and b No = 3 options. The Watts–Strogatz rewiring probability is 0.9. 
Other parameters: � = 0.2 , � = −0.5 , � = −� = 0.1 (agreement), � = −� = −0.1 (disagreement). Initial con-
ditions and inputs are drawn from a normal distribution with zero mean and variance 10−3 . In all the simula-
tions, S1(x) = tanh(x + 0.5 tanh(x2)) and S2(x) = 0.5 tanh(2x + tanh(x2)).
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of the simulation time (i.e., right after the opinion-forming bifurcation), and at the end 
of the simulation time. The first (second, third) line shows the distribution of the agent 
opinions about the first (second, third) option. Colors indicate the strength of favor/dis-
favor for a given option, with light blue (resp., red) indicating weak favor (resp. dis-
favor) and dark blue (resp., red) indicating strong favor (resp., disfavor). Asymmetric 
distributions on the right (left) indicate that agents agree in favoring (disfavoring) the 
option. A roughly symmetric distribution indicates disagreement about an option, with 
some agents favoring it and other agents disfavoring it. A sharply bimodal distribution 
corresponds to polarization of opinions about the option.

The model behavior follows our theoretical predictions. When agents cooperate, the 
neutral equilibrium bifurcates at u = ua into an agreement branch where all the agents 
share the same qualitative opinion. The larger is u relative to ua , the stronger are the 
emerging opinions. In Figs.  2a and 3a, left, all the agents favor Option 1 and disfa-
vor Option 2. In Fig. 2b, left, all agents disfavor Option 2 and are conflicted between 
Options 1 and 3. In Fig. 3b, left, all agents favor Option 1 and are conflicted between 
Options 2 and 3. Conversely, when agents compete, the bifurcation branches emerg-
ing from the neutral equilibrium are of disagreement type and again opinion strength 
increases as u increases above ud . In Figs. 2a and 3a, right, roughly half of the agents 
favor Option 1, while the other half favor Option 2. In Figs. 2b and 3b, right, for each of 

Fig. 3  Agreement (left) and disagreement (right) opinion formation in Barabasi–Albert networks with 
Na = 100 agent nodes and a No = 2 options and b No = 3 options. The Watts–Strogatz rewiring probability 
is 0.9. Other parameters: � = 0.2 , � = −0.5 , � = −� = 0.1 (agreement), � = −� = −0.1 (disagreement). Ini-
tial conditions and inputs are drawn from a normal distribution with zero mean and variance 10−3.
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the three options the group is roughly split into agents that favor the option and agents 
that disfavor it.

Remark 3 The precise effect of the inputs bij on the bifurcation and steady-state behavior 
can be computed using Lyapunov–Schmidt reduction techniques (Golubitsky and Schaef-
fer 1985). More precisely, the projection of the input vector onto the bifurcation kernel 
predicts, to first order, in which direction along the one-dimensional kernel’s subspaces, 
ℝ{vmax ⊗ vax} (agreement case) or ℝ{vmin ⊗ vax} (disagreement case) defined in Theo-
rem  1, the agreement or disagreement bifurcation unfolds (see (Gray et  al. 2018, Theo-
rem 1) for the agreement, two-option case). At bifurcation, the unfolding direction deter-
mines which options are favored or disfavored by the inputs (see, e.g., (Gray et al. 2018, 
Fig. 2)). Here we generalize (Gray et al. 2018, Theorem 1) to the disagreement and three-
option cases.

3  Multi‑robot task allocation as disagreement opinion formation

We illustrate using a detailed example how our opinion dynamics (4) can be applied in robot 
swarm coordination and control, in particular, to a distributed task-allocation problem. Given 
its dynamical nature and the small number of parameters, the proposed distributed control 
algorithm can be implemented in analog circuits and is thus a good candidate for low-compu-
tational-power robot swarms that require dynamic task allocation. A single-agent motivation 
dynamics framework was also recently proposed and applied to a task coordination problem 
for a mobile robot (Reverdy and Koditschek 2018; Reverdy et al. 2021). Honeybee-inspired 
Gray et  al. (2018); Reina et  al. (2017) cross-inhibitory interactions were recently proposed 
Talamali et al. (2019) to improve decision accuracy in a multi-robot best-of-n decision prob-
lem. In the spirit of these works, the distributed opinion dynamics of Bizyaeva et al. (2020a) 
allows us to move beyond a single robotic unit and consider distributed task coordination in a 
robotic swarm.

Consider that a robot swarm is given No tasks to complete, in which each task has a dis-
tinct priority level and each robot may have its own preference to work on certain tasks. To 
formalize, we denote by a positive constant �j ∈ [0, 1] , j = 1,… ,No , satisfying 

∑No

j=1
�j = 1 , 

the priority of each task j. The main objective in this example is to design a simple distributed 
decision-making algorithm that assigns robots to each task. The algorithm should be designed 
to respect task priority, i.e., the larger the task priority �j , the larger the number of robots 
assigned to that task by the algorithm.

Given an undirected communication network between the robots, with adjacency matrix 
[ãik]

Na

i,k=1
 , let Ni be set of neighbors of robot i. We adapt opinion dynamics (4) to the task-

allocation problem as follows. The preference that robot i gives to performing task j evolves 
accordingly to vector field 

(8a)żij = Fij(�) −
1

No

No∑
l=1

Fil(�)

(8b)Fij(�) = −zij + u

(
𝜇j (|Ni| + 𝜈ij) −

1

2

∑
k∈Ni

S
(
2�̃�zkj

))
.
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 The positive parameter �ij is the intrinsic zealousness of robot i to perform task j. As we 
will see, the zealousness parameter can be used as control input to the robot swarm to trig-
ger the distributed task allocation. Opinion dynamics (4) specialize to model (8) by letting 
bij = u�j(|Ni| + �ij) , � = � = � = 0 , �̃� = −𝛾 > 0 , and by swapping the inter-agent interac-
tion sum with the sigmoid S1 (as discussed in Remark 2, this choice does not affect the 
qualitative behavior of the model).

The rationale behind the derivation of model (8) is the following. Let Nj

i
 be the number 

of robots in Ni that express preference for task j, i.e., such that zkj > 0 . Because generically 
zkj ≠ 0 and if the upper and lower limits of S are ±1 , respectively, for sufficiently large � the 
term 1

2

∑
k∈Ni

S
�
2�zkj

�
≈

1

2

�
N

j

i
−
�
�Ni� − N

j

i

��
= N

j

i
−

�Ni�
2

 . Imposing the simplex condi-
tion by subtracting the average opinion drift as in (8a), the constant |Ni|

2
 disappears from the 

opinion dynamics on the simplex and, for �ij = 0 the effective interaction term reduces to

In other words, in our task-allocation model, each robot updates its preference for task 
j roughly proportionally to the priority of task j, scaled by the number of its neighbors, 
minus the number of its neighbors that already show a preference for the same task. A 
nonzero zealousness �ij increases the tendency of robot i to choose task j.

Observe that the condition −�̃� = 𝛾 < 0 and � = 0 imposes that the model is in the disa-
greement regime for u > ud > 0 . Thus, in our model, the robots naturally develop different 
opinions about the tasks, i.e., they self-allocate across the task in a distributed fashion. Fur-
thermore, robot task-allocation will reflect task priorities, which, from a bifurcation view-
point, breaks the symmetry between the tasks.

We illustrate the performance of our task-allocation algorithm for a swarm of Na = 12 
robots allocating themselves across No = 3 tasks. We assume that the inter-agent commu-
nication graph is the Frucht graph (Frucht 1939) (see Fig. 4a), which is 3-regular ( |Ni| = 3 
for all i = 1,… ,Na ) but possesses no non-trivial symmetries, i.e., all robots can be distin-
guished by their position in the graph. Our algorithm is particularly suited in a priori dead-
locked situations, i.e., those in which two or more tasks have the same objective priority. In 

(9)�j |Ni| − 1

2

∑
k∈Ni

S
(
�zkj

)
≈ �j |Ni| − N

j

i
.

Fig. 4  a The Frucht graph. b Average (large bar) and standard deviation (short bar) of the number of agents 
allocated to Tasks 1,2,3 over one-hundred instances of our task-allocation algorithm. Details in the main 
text.
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our example, we set �1 = �2 = 0.3 and �3 = 0.4 . We also set �̃� = 1.0 and u = 2ud . For the 
sigmoid function we use S(x) = tanh(x + 0.5 tanh(x2)) , where the tanh(x2) ensure genericity 
(i.e., nonvanishing even partial derivatives) of the S at the origin. We run one hundred rep-
etitions of our example with small random zealousness parameters �ij (modeling parametric 
uncertainties) and small random initial conditions, and computed the resulting average and 
standard deviation of the number of robots allocated to each option.

Robot i is considered allocated to task j if at the end of the simulation ‖Zi‖ ≥ � and 
zij > zil for all l ≠ j , where � is a control threshold parameter that determines whether a 
robot became opinionated (in the simulations, � = 0.1 ). The final simulation time can be 
considered as a tunable decision deadline for the task-allocation decision. Figure 4b shows 
the results of our analysis. On average, a larger number of agents are allocated to the 
highest-priority task. A roughly equal number of agents is allocated on average to the less 
urgent tasks. The standard deviation of the allocation number is also smaller for the high-
est-priority task, which indicates that our algorithm consistently allocates the largest num-
ber of robots to the highest-priority task. Of course, there is a lot of room for improving the 
simple algorithm proposed in this section, in particular, in order to drastically reduce varia-
bility in the number of agents allocated to the various tasks, and thus increase robustness to 
initial conditions and parameter uncertainties. In some instances of our example, depend-
ing on initial conditions or the intrinsic zealousness parameters, no robots were allocated to 
either Task 1 or Task 2, which is clearly an undesirable situation in practice. We suggest a 
strategy to overcome these limitations in Sect. 6.

4  Opinion cascades with tunable sensitivity from feedback attention 
dynamics

In this section, we couple the opinion dynamics (4) with the attention dynamics intro-
duced in Bizyaeva et al. (2020a). Using a detailed geometrical analysis for the case No = 3 
(the case No = 2 is studied in Bizyaeva et  al. (2020a)), we show that the resulting posi-
tive feedback between attention and opinion strength allows an agent to transition from 
being in a stable unopinionated state to a stable opinionated state in response to an input 
bi = (bi1,… , biNo

) sufficiently large in magnitude. The associated activation threshold is 
implicitly defined by the geometric properties of the dynamics and is explicitly tunable 
with the model parameters. The threshold effect mediated by the positive feedback between 
attention and opinion strength scales up to networks of interconnected agents under the 
influence of inputs on a small number of “seed nodes.” At the network level, the cou-
pling between opinion and attention dynamics creates a threshold for the input magnitude 
below which the network remains close to neutral and above which an opinion cascade is 
triggered.

4.1  Feedback attention dynamics and tunable sensitivity of opinion formation 
at the single agent level

To understand the effect of coupled opinion and attention dynamics, we first consider 
an agent without any neighbors. Even without an inter-agent communication network, 
the dynamics of each agent’s opinions are organized by a bifurcation at which the agent 
develops preferences for the available options. When ãik = 0 for all i, k = 1,… ,Na , the 
Fij(Z) function in (4b) becomes
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When bij = 0 , for all j = 1,… ,No , and ui <
d

𝛼−𝛽
 , the neutral opinion state Zi = � of agent i 

is stable. At u∗
i
=

d

�−�
 branches of opinionated solutions emerge in an SNo

-equivariant bifur-
cation, which is studied in detail in Elmhirst (2004). We omit the formal details of this 
bifurcation analysis here and simply note that for ui < u∗

i
 the agent’s opinion converges to 

the neutral equilibrium with ‖Z∗
i
‖ = 0 , whereas for ui > u∗

i
 it converges to some nonzero 

magnitude equilibrium ‖Z∗
i
‖ > 0 , whose norm grows monotonically with ui . The stable 

opinionated equilibria that appear as primary bifurcation branches correspond either to 
agent i choosing one option and rejecting all others, or to it being conflicted between a sub-
set of the available options (Fig. 5a, left).

The dynamics of an agent i’s opinion with nonzero input bi directly follow from the 
bifurcation behavior of its opinion dynamics with bi = � . As discussed in Sect. 2, when 
ui is small, the input bi and resistance d define the linear opinion formation behavior of 
agent i. For large ui , the nonlinear behavior dominates and agent i’s opinion can become 
much larger in magnitude than its input bi . Generically, when bi ≠ 0 , for values of ui 
near u∗

i
 , a single branch of stable opinionated solutions is selected accordingly to bi , 

while all other solutions are removed (Fig. 5a, right).
How the opinion bifurcation diagram changes in response to inputs motivates the 

design of an attention feedback dynamic that increases an agent’s attention from below 
to above its bifurcation point when sufficiently large inputs are present. We define the 
closed-loop attention dynamics as

where �u is an integration timescale and Su ∶ ℝ≥0 → [0 1] is a smooth saturating function, 
satisfying Su(0) = 0 , Su(y) → 1 as y → ∞ , S�

u
(y) > 0 for all y ∈ ℝ≥0 , S��u (y) > 0 for all 

0 ≤ y < uth and S��
u
(y) < 0 for all y > uth , with uth > 0 . For the sake of numerical illustra-

tions we use Su(y) =
yn

un
th
+yn

 . The larger the n, the steeper the sigmoid around its threshold 
uth . We assume umin < u∗

i
< umax and n sufficiently large so that the saturation is sufficiently 

steep.
The closed-loop attention dynamics (11) create a localized positive feedback between 

an agent’s attention and its opinion strength, as illustrated in Fig. 5b. We use the chain 
rule to compute partial derivatives at Zi = 0 of the time-derivative of z2

ij
 with respect to 

attention ui of an agent whose dynamics are defined by (11) and, conversely, the time-
derivative of ui (11) with respect to z2

ij
 . The sign of the product of these two partial 

derivatives gives the sign of the feedback between attention and opinion strength at the 
neutral equilibrium. Computing, we get

(10)Fij(Z) = −dzij + ui

⎛
⎜⎜⎜⎜⎜⎝

S1
�
�zij

�
+

No�
l ≠ j

l = 1

S2
�
�zil

�
⎞
⎟⎟⎟⎟⎟⎠

+ bij.

(11)𝜏uu̇i = −u + umin + (umax − umin)Su(‖Zi‖)
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Fig. 5  a Bifurcation diagram of the single agent dynamics with respect to the attention parameter. Left: 
b
i
= 0 . Right: b

i
≠ 0 . b Schematic of the relationship between an agent’s opinion strength, attention, and 

input. c Representative intersections of the attention nullclines (green surface) and opinion nullclines (red 
and blue lines) for the three parameter regimes with N

o
= 3 . d Bifurcation diagram of the coupled sys-

tem (10),(11) with N
o
= 3 , projected to the b

i1 , zi1 plane. In d blue (red) lines correspond to stable (unsta-
ble) equilibria of the coupled system. In a, c blue (red) lines correspond to stable (unstable) equilibria 
of the opinion dynamics (10) with a static attention parameter. Additional branches of unstable equilib-
ria are not shown in a, c–i for diagram clarity. Black (red) spheres mark the stable (unstable) equilibria 
of the coupled system. Parameters: d = 1 , � = 0.4 , � = −0.4 , umin = 1.05 , umax = 1.45 , n = 3 , u

th
= 0.15 . 

B: b
i2 = 0.005, b

i3 = −0.002 , b
i1 varied as illustrated. A (left) and CI: �

i
= 0 ; A (right) and CII : 

�
i
= (0.05,−0.01, 0.02) ; CIII: �

i
= (0.1,−0.01, 0.02) . Diagrams in A,C,D are generated with help of Mat-

Cont numerical continuation package (Dhooge et al. 2008).
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Near the neutral equilibrium Zi = 0 we can approximate S1(�zil) − S2(�zil) ≈ (� − �)zil , 
and using the simplex constraint on the opinions we find that for small Zi and any 
j = 1,… ,No , 

𝜕 ̇(z2
ij
)

𝜕ui
≈ 2(𝛼 − 𝛽)z2

ij
 . Therefore

The right-hand side of (12) is positive whenever zij ≠ 0 . Thus, a positive feedback loop 
between an agent’s opinion strength and its attention is triggered as soon as its opinion 
deviates from zero.

The localized positive feedback between attention and opinion strength creates multi-
stability and threshold behavior in the closed-loop opinion dynamics. Figures 5c and d 
illustrate the three-dimensional phase portrait and the steady-state behavior (bifurcation 
diagram) of the closed-loop opinion-attention dynamics for No = 3 , respectively. The 
bifurcation diagram in Fig. 5d is projected onto the zi1,bi1 plane. Note that the bifurca-
tion diagram characterizes the input-output relationship, where the input is �i and the 
output is the steady-state opinion.

We can distinguish three regimes (labels as in Fig. 5d): 

1. Multistability ‖b⟂
i
‖ < 𝜀1 . For small ‖�⟂

i
‖ , the opinion and attention nullclines intersect 

in many locations and a number of these intersections are stable equilibria. One of the 
intersections is near to ui = umin and Zi = � and is stable. The other stable equilibria 
correspond to intersections of opinionated solution branches with attention nullcline 
near ui = umax . For small initial conditions, agent i’s opinion and attention remain small, 
attracted by the stable equilibrium near to ui = umin . For large initial conditions, they 
approach one of the opinionated equilibria. In this parameter regime, the initial condi-
tions determine whether agent i becomes opinionated, and also which opinion it forms.

2. Bistability 𝜀1 < ‖b⟂
i
‖ < 𝜀2 . For intermediate ‖b⟂

i
‖ , the coupled dynamics admit only 

two stable equilibria: one is the unopinionated equilibrium near ui = umin and the other 
is an opinionated equilibrium on the solution branch favored by the input bi . For small 
initial conditions, agent i’s opinion and attention remain small, whereas for large initial 
conditions they approach the stable equilibrium picked out by the input. In this regime, 
initial conditions determine whether or not an agent becomes opinionated, but the input 
governs the opinion formation outcome.

3. Cascade ‖b⟂
i
‖ > 𝜀2 . For sufficiently large ‖b⟂

i
‖ , the coupled system has a unique stable 

equilibrium point which corresponds to an opinionated state favoring the opinion picked 
out by the input bi . From any initial condition, an agent will reliably become opinionated 
in the direction informed by the input.

𝜕 ̇(z2
ij
)

𝜕ui
= 2zij

⎛
⎜⎜⎜⎜⎜⎝

No − 1

No

�
S1(𝛼zij) − S2(𝛽zij)

�
−

1

No

No�
l ≠ j

l = 1

�
S1(𝛼zil) − S2(𝛽zil)

�
⎞
⎟⎟⎟⎟⎟⎠

,

𝜕u̇i

𝜕(z2
ij
)
=

1

𝜏u
(umax − umin)S

�
u
(‖Z‖).

(12)
𝜕 ̇(z2

ij
)

𝜕ui

𝜕u̇i

𝜕(z2
ij
)
≈

2

𝜏u
(𝛼 − 𝛽)(umax − umin)z

2

ij
S�
u
(‖Z‖).
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The boundaries �1 , �2 between these three regimes can be tuned by the parameters of the 
saturation function Su in (11). In other words, the sensitivity of the closed-loop dynamics to 
forming opinions in response to inputs is tunable.

4.2  Network opinion cascades with tunable sensitivity

In the presence of symmetric network interactions, the intra-agent positive feedback loop 
between attention and opinion strength scales up to the network level, as illustrated in 
Fig. 6. Independent of their excitatory or inhibitory nature, network interactions create a 
positive feedback loop between the opinion strengths of any pair of interconnected agents, 
at least close to the neutral equilibrium where the interaction nonlinearities are steeper 
and thus the opinion interaction is stronger. To show this statement, we use the chain rule 
to compute partial derivatives at the neutral equilibrium of the time-derivative of z2

ij
 with 

respect to z2
kl

 for two agents i and k interacting according to (4) and for symmetric network 
coupling. Computing, we get

Thus, if ãik = 1 , by symmetry,

which yields an element-wise positive feedback loop between the opinion strengths of 
agent i and agent k. As a consequence, when Eqs. (2) and (11) are coupled, the attention 
variables of agents i and k are also interconnected in an (indirect) positive feedback loop. 
This can easily be seen by computing the overall sign of the interconnection loop from ui 
to uk and back, passing through ||Zi|| and ||Zk|| (see Fig. 6). The existence of a networked 
positive feedback between the agents’ attention variables and opinion strengths suggests 
the existence of a network threshold for the trigger of opinion cascades.

𝜕 ̇(z2
ij
)

𝜕z2
kl

||||||Z=0
=

1

No

zij

zkl
uiãik(𝛿 − 𝛾), if l ≠ j,

𝜕 ̇(z2
ij
)

𝜕z2
kj

||||||Z=0
=

No − 1

No

zij

zkj
uiãik(𝛾 − 𝛿)

(13)

𝜕 ̇(z2
ij
)

𝜕z2
kl

𝜕 ̇(z2
kl
)

𝜕z2
ij

||||||Z=0
=

1

No
2
uiuk(𝛾 − 𝛿)2, if l ≠ j,

𝜕 ̇(z2
ij
)

𝜕z2
kj

𝜕 ̇(z2
kj
)

𝜕z2
ij

||||||Z=0
=

(
No − 1

No

)2

uiuk(𝛾 − 𝛿)2,

Fig. 6  Intra- and inter-agent 
positive feedback loops between 
the agents’ opinion strengths and 
their attention.
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An opinion cascade refers to the situation in which only a small number Nseeds ≪ Na 
of agents, called seeds, receive nonzero inputs b1,… , bNseeds

 and yet a large part of the net-
work develops a markedly nonzero opinion. In the network example of Fig. 7a, the cascade 
seeds are indicated with blue and red arrows depending on the options favored or disfa-
vored by the input (see the figure caption for details). When the inputs to the seeds are 
small, only the seeds develop clear opinions aligned with their respective inputs, while the 
other agents remain weakly opinionated or unopinionated in such a way that the network 

Fig. 7  Agreement and disagreement opinion cascades. a Schematic of the network structure. In a large net-
work, only a small number of agents receive inputs, indicated by arrows. Inputs have the same strength, 
i.e., the same norm, but they can differ in the information they bring, i.e., which option they favor. In the 
numerical simulations, inputs are in favor (blue arrows) or in disfavor (red arrows) of Option 1. b Net-
work response to inputs for cooperative (left) and competitive (right) agents. b1 Small inputs (no cascade). 
b2 Large inputs (cascade). c Cascade threshold analysis. The plots show how the average network opinion 
strength changes as a function of the seed input amplitude (in logarithmic scale) over ten network instances 
with random seed placement. No = 2 in c1 and No = 3 in c2 Left plots: Watts–Strogatz network. Right 
plots: Barabasi–Albert network. Full lines: cooperative agents, u

th
= 0.05 . Dashed line: competitive agents, 

u
th
= 0.05 . Dotted lines: cooperative agents, u

th
= 0.1 . Dashed-dotted lines: competitive agents, u

th
= 0.1 . 

Other parameters as in Figs.  2 (Watts–Strogatz case) and 3 (Barabasi–Albert case). In all simulations, 
�
u
= 0.2.
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average opinion strength remains small (Fig. 7b1). When the inputs to the seeds are suffi-
ciently strong, the seeds develop opinions that are sufficiently strong to engage the positive 
feedback of the network attention, which spreads to some or all of the rest of the agents 
with some variable delay. This yields an opinion cascade such that the network average 
opinion strength grows large (Fig. 7b2). Whether the cascade is toward agreement or disa-
greement depends on the cooperative (left plots) or competitive (right plots) nature of the 
agents. Observe that in both agreement and disagreement cases, a number of agents have 
afterthoughts: they develop an early opinion about Option 1 but either exhibit the opposite 
opinion or become neutral by the end of the cascade process.

In the following, we fix the number Nseeds and let all inputs b1,… , bNseeds
 have the same 

norm b̄ but still allow each to bring information either in favor or in disfavor of Option 
1. In the attention dynamics (11), we use umin = ua − �u and umax = ua + �u , where ua is 
defined in (6), in the agreement (cooperative agents) regime, and umin = ud − �u and 
umax = ud + �u , where ud is defined in (7), in the disagreement (competitive agents) regime. 
This choice makes the opinion cascade behavior independent of the network-specific opin-
ion-formation bifurcation point. The network topology, seed placement, seed input ampli-
tude, and the attention threshold ym are thus the only determinants of the observed opinion 
cascade behavior.

To verify the existence of a network threshold for the trigger of opinion cascades, in 
Fig. 7 we systematically vary network topology, attention threshold, and seed input ampli-
tude, for randomly placed seeds. Figures 7c1 and 7c2 correspond to the case No = 2 and 
No = 3 , respectively. All plots show the steady-state average network opinion strength 
1

Na

∑Na

i=1
��Z∗

i
�� as a function of the seed input amplitude in the coupled (4)–(11) system. 

Right plots are the average results for ten instances of a Watts–Strogatz network with ran-
domly placed seeds and left plots are the average results for ten instances of a Bara-
basi–Albert network with randomly placed seeds ( Nseeds = 5 for both types of network). 
For each network and each value of No , we consider four different regimes: cooperative 
agents, ym = 0.05 (full lines); competitive agents, ym = 0.05 (dashed lines); cooperative 
agents, ym = 0.1 (dotted lines); competitive agents, ym = 0.1 (dashed-dotted lines). In all 
cases, one can detect a threshold value above which distinctively nonzero average opinions 
emerge, indicating a cascade as in Fig. 7b1 and b2.

The cascade threshold increases monotonically with uth . The parameter uth tunes cas-
cade sensitivity at the single agent level, in the sense that smaller (larger) values of uth 
decrease (increase) the minimum input strength necessary to trigger a cascade at the single 
agent level (Bizyaeva et al. 2020a, Theorem 4.6). In the presence of networked interaction, 
the tunable cascade sensitivity of the single agent level scales up to the network level: for 
large uth , large seed input strengths are necessary to trigger a cascade; for small uth , small 
seed input strengths are sufficient to trigger a cascade.

Observe that in our model, cascades can be partial or complete. For instance, the 
agreement cascade is complete in Fig.  7b2 left because all agents develop a markedly 
nonzero opinion. Conversely, the disagreement cascade is only partial in Fig.  7b2 right 
because some of the agents, including one of the seeds, possess a roughly neutral opinion 
at the post-cascade steady state. We further observe that, generically, when the bifurca-
tion parameter is the seeds’ input strength, as considered here, cascades happen through a 
simple saddle-node bifurcation. It follows that for supra-threshold inputs the time to reach 
the post-cascade steady state is inversely proportional to the input strength, a phenome-
non known in the dynamical system literature as “traversing the ghost of the saddle-node 
bifurcation” (Izhikevich 2007, Sect. 3.3.5). A detailed analysis of both the transition from 
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partial to complete cascades and the time to the post-cascade steady state is left for future 
developments.

5  Control of agreement and disagreement opinion cascade by input 
centrality assignment

This section explores how the sensitivity of an opinion-forming network to trigger an 
agreement or disagreement cascade in response to a small number of inputs can be con-
trolled by exploiting the emergent properties of the network. We introduce notions of 
agreement and disagreement centrality. These centrality indices can be used to guide the 
cascade seed placement toward maximizing or minimizing the network response to inputs, 
independent of the intrinsic node properties like, e.g., the attention threshold parameter 
uth . In other words, our cascade model can be controlled independently and simultaneously 
in two ways: intrinsically at the agent level, by tuning the attention dynamic parameters, 
and extrinsically at the network level, by exploiting the network topology for efficient 
seed placement. We consider extrinsic control that enhances or diminishes sensitivity to 
inputs for agreement (disagreement) cascades by selecting as seeds the most or least cen-
tral agents as defined by the agreement (disagreement) centrality index. The selected set of 
agents is optimal in the case centrality is modular; otherwise, it provides only an approxi-
mation to the optimal set of agents (see, for example, (Clark et al. 2014; Fitch and Leonard 
2016)). We save the investigation of optimality for future work.

5.1  Agreement and disagreement centrality

A key prediction of Theorem 1 is that the absolute value of the entries of the adjacency 
matrix’s eigenvectors vmax and vmin predict (up to linear order) the opinion strength (and 
sign) of each agent along agreement and disagreement bifurcation branches, respectively. 
This result suggests the following notion of centrality for agreement and disagreement 
opinion formation.

Let Ã be the unweighted adjacency matrix of an undirected, connected network. Let vmax 
be the normalized positive eigenvector associated with the unique maximal eigenvalue of 
Ã . Assume that the minimal eigenvalue is also unique and let vmin be the associated nor-
malized eigenvector.

Definition 1 We define agreement centrality of agent i as [vmax]i , disagreement centrality 
of agent i as |[vmin]i| , and signed disagreement centrality of agent i as [vmin]i

The proposed notion of agreement centrality is the same notion of eigenvector cen-
trality introduced in Bonacich (1972). The proposed notion of disagreement centrality is 
new. Both notions of centrality will be key to analyzing and controlling opinion cascades 
over networks. It makes sense to talk about a signed disagreement centrality because the 
eigenvector vmin has mixed sign entries (whereas vmax can always be chosen to be positive). 
We will show that signed disagreement centrality is instrumental to controlling disagree-
ment opinion cascades. For directed networks, one could use the eigenvectors of Ã + ÃT to 
define suitable centrality indices. We leave these ideas for future investigations.
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5.2  Control of agreement opinion cascades by centrality assignment

Suppose that we can choose Nseeds agents to receive input, and suppose that each input has 
the same norm b̄ , but brings potentially different information (i.e., favoring or disfavoring) 
about, say, Option 12.

• Toward maximization of agreement cascade sensitivity. Let the control objective be to 
maximize the sensitivity of agreement opinion cascades to the Nseeds inputs. Then, an 
effective approach is to select the cascade seeds to be the Nseeds most central agents, 
according to the agreement centrality.

• Toward minimization of agreement cascade sensitivity. Let the control objective be to 
minimize the sensitivity of agreement opinion cascades to the Nseeds inputs. Then, an 
effective approach is to select the cascade seeds to be the Nseeds least central agents, 
according to the agreement centrality.

The rationale behind the proposed control strategy is the following. Maximally cen-
tral agents are those that tend to develop stronger opinions at an agreement bifurcation. 
Triggering the network attention/opinion-strength positive feedback at maximally central 
agents therefore enhances the network response toward crossing the agreement cascade 
threshold. Likewise, minimally central agents tend to develop small opinions at an agree-
ment bifurcation. Triggering the network attention/opinion-strength positive feedback at 
minimally central agents therefore diminishes the network response and keeps it away from 
crossing the agreement cascade threshold.

We illustrate the effectiveness of our agreement cascade control strategy in an eleven-
agent network with Nseeds = 2 and No = 3 . Figure 8a1 shows the network topology and the 
resulting node agreement centralities (visualized as the node sizes). The two black arrows 
point to the two most central agents. The two gray arrows point to the two less central 
agents. All agents have an intrinsic attention threshold uth = 0.1 . When the two inputs 
affect the two most central agents following our sensitivity-maximization algorithm, inputs 
with amplitudes as small as 0.1 are sufficient to trigger a full network cascade with large 
average opinion strength (Fig.  8b1—black curve) and in which all agents become opin-
ionated (Fig. 8c1, top). Conversely, when the two inputs affect the two less central agents 
following our sensitivity-minimization algorithm, the network is still resisting to trigger a 
full cascade even for input amplitude as large as 1.0 (Fig. 8b1—gray curve). Only the two 
agents receiving an input are opinionated, while the rest of the agents remain close to neu-
tral (Fig. 8c1, bottom).

5.3  Control of disagreement opinion cascades by centrality assignment

The control strategy described in the previous section to control the sensitivity of agree-
ment opinion cascade can be generalized to the disagreement case. In this case, we exploit 
the notion of signed disagreement centrality introduced in Definition 1. Suppose again that 
we can choose Nseeds agents to receive input, and suppose that each input has the same 

2 The proposed agreement cascade control algorithm naturally generalizes to the case in which inputs bring 
mixed information about the various options.
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Fig. 8  Control of agreement and disagreement opinion cascade by centrality assignment. a1 network topol-
ogy and agreement centrality. The node size is proportional to its agreement centrality. a2 network topology 
and signed disagreement centrality. The node size is proportional to its (absolute) disagreement central-
ity. Blue nodes have positive signed disagreement centrality. Red nodes have negative signed disagreement 
centrality. b1 Average opinion strength as a function of the seed input amplitude under agreement cascade 
sensitivity maximization (black curve) and agreement cascade sensitivity minimization (gray curve). The 
network is in an agreement/cooperative regime. b2 Average opinion strength as a function of the seed input 
amplitude under disagreement cascade sensitivity maximization (black curve) and disagreement cascade 
sensitivity minimization (gray curve). The network is in a disagreement/competitive regime. c1 Evolu-
tion of agents’ opinion about Option 1 in the agreement regime for the seed input amplitude indicated by 
the stars in b1 Top: under sensitivity maximization. Bottom: under sensitivity minimization. c2 Evolution 
of agents’ opinion about Option 1 in the disagreement regime for the seed input amplitude indicated by 
the stars in b2. Top: under sensitivity maximization. Bottom: under sensitivity minimization. Parameters: 
� = 0.2 , � = −0.5 , � = −� = 0.1 (agreement case), � = −� = −0.1 (disagreement case), u

th
= 0.1 , n = 5 , 

�
u
= 0.2.
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norm b̄ , but brings potentially different information (i.e., favoring or disfavoring) about 
Option 13. The proposed control strategy is the following.

• Toward maximization of disagreement cascade sensitivity. Let the control objective be 
to maximize the sensitivity of disagreement opinion cascades to the Nseeds inputs. Then, 
an effective approach is to select the cascade seeds as follows. Assign inputs bringing 
information in favor of Option 1 to the agents with the largest signed disagreement cen-
trality. Assign inputs bringing information in disfavor of Option 1 to the agents with the 
smallest signed disagreement centrality.

• Toward minimization of disagreement cascade sensitivity. Let the control objective be 
to minimize the sensitivity of disagreement opinion cascades to the Nseeds inputs. Then, 
an effective approach is to select cascade seeds to be the Nseeds least central agents, 
according to the (absolute) disagreement centrality index.

The rationale behind the proposed control strategy is the following. Two agents with large 
positive and large negative signed disagreement centrality, respectively, naturally tend to 
develop strongly disagreeing opinions at a disagreement bifurcation. Injecting two dis-
cordant inputs at two such agents, on the one hand, will contribute to the triggering of the 
network attention/opinion-strength positive feedback and, on the other hand, will amplify 
the disagreeing nature of the two agents. Taken together, these two effects greatly enhance 
the network response toward crossing the disagreement cascade threshold. Likewise, mini-
mally central agents tend to develop small opinions at a disagreement bifurcation. Trigger-
ing the network attention/opinion-strength positive feedback at minimally central agents 
therefore great diminishes the network response and keeps it away from crossing the disa-
greement cascade threshold.

We illustrate the effectiveness of our disagreement cascade control strategy on the same 
eleven-agent network used for the agreement case. Figure 8a2 shows the resulting signed 
disagreement centralities, where red (blue) corresponds to negative (positive) signed disa-
greement centrality and the node size is proportional to the (absolute) disagreement cen-
trality. As for the agreement case, our control strategy maximizes network sensitivity when 
inputs are placed on the most central agents (indicated by black arrows) according to our 
disagreement sensitivity-maximization algorithm, resulting in large disagreement cascades, 
with large average opinion strength (Fig. 8b2—black curve) and all agents exhibiting strong 
opinions (Fig. 8c2, top), for inputs with amplitude as small as 10−1.4 ≃ 0.04 . Conversely, 
when inputs are placed on the less central agents (indicated by gray arrows) according to 
our disagreement sensitivity-minimization algorithm, the network is still resisting to trigger 
a full disagreement cascade even for input amplitude as large as 10−0.5 ≃ 0.3 (Fig. 8b2—
gray curve). All but four agents remain close neutral (Fig. 8c2, bottom).

3 The proposed disagreement cascade control algorithm naturally generalizes to the case in which inputs 
bring mixed information about the various options as long as b

i
= ±b0 , i = 1,… ,Na.
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6  Multi‑robot task‑allocation disagreement cascades

We now introduce attention dynamics (11) into the distributed multi-robot task-allocation 
dynamics (11) introduced in Sect. 3. The benefit of introducing attention dynamics in the 
task-allocation algorithm is to let the robot engage in task allocation only in the presence of 
a sufficiently large urgency to accomplish the tasks. We assume that only a limited number 
of robots (e.g., those equipped with suitable sensors, or those located in suitable positions) 
can sense real-time changes in task urgency above or below the basal urgency levels �j . We 
call urgency-sensing robots zealous. Zealous robots act as the seeds, or leaders, of task-
allocation cascades.

An interesting property of the Frucht graph is that, despite all agents having the same 
degree, node disagreement centralities are highly heterogeneous, as illustrated in Fig. 9a. In 
such a situation, our cascade-control strategy becomes crucial for efficient network place-
ment of zealous robots.

Fig. 9  Distributed allocation over three tasks by robot swarm with attention dynamics, one zealous robot, 
and communication defined by the Frucht graph. The zealous robot perceives an increase in task urgency 
defined by �3 . a The Frucht graph and its node signed disagreement centralities graphically represented 
as the node size and color (the larger the node, the larger its disagreement centrality; blue means positive 
signed disagreement centrality and red means negative signed disagreement centrality). The black (gray) 
arrow indicates the most (least) central node. b Average (large bar) and standard deviation (short bar) of the 
number of agents allocated to Tasks 1,2,3 over one-hundred instances of our task-allocation cascade algo-
rithm. Black: zealous robot is most central node. Gray: zealous robot is least central node. See main text for 
details. b1 �3 = 10−0.9 . B2: �3 = 10−0.6 . B3: �3 = 10−0.3 . Basal task urgency: �1 = �2 = 0.3 and �3 = 0.4 . 
Other parameters as Fig. 4.
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To illustrate this fact, we consider a robot swarm as described by Fig. 9a and suppose 
that only one zealous robot is available, which detects an increase in the urgency of Task 
3 of magnitude �3 . More precisely, if iz is the index of the zealous robot, then �iz3 = 3�3 , 
and, by (8), the effective urgency of Task 3 perceived by the zealous robot is �3 + �3 . 
Furthermore, all robots are equipped with the attention dynamics (11), with umin = ud∕2 , 
umax = 2ud , uth = 0.1 , n = 5.

Figure 9b reproduces the model behavior in two cases: when the zealous robot is the 
least central node (according to disagreement centrality) and when the zealous robot is the 
most central node (according to signed disagreement centrality). As in Fig. 4b, we run one-
hundred simulations with random initial conditions and small random zealousness param-
eter perturbations for three different values of �3 , i.e., the urgency increase of Task 3 as 
perceived by the zealous robot. For small �3 (Fig. 9b1), the zealous robot does not trigger 
a task-allocation cascade when it is in the least central or most central location in the net-
work. All robots remain neutral (i.e., not allocated).

For intermediate values of �3 (Fig.  9b2), only when the zealous robot is in the most 
central location does the task-allocation cascade get triggered. Observe that the standard 
deviation of the number of agents allocated to Task 3 drops to zero and that the standard 
deviations of the number of agents allocated to Tasks 1 and 2 also drop drastically as com-
pared to the model behavior without attention (Fig. 4b). Furthermore, the ratio between the 
average number of robots allocated to Task 3 and the average number of robots allocated 
to Task 1 or Task 2 is closer to the ratio of the tasks’ basal urgency �3∕�1 = �3∕�2 as 
compared to the model behavior without attention. We will analytically investigate these 
observations in future works.

Finally, for large values of �3 (Fig. 9b3), a task-allocation cascade is triggered when the 
zealous robot is in the most central or least central location. However, only when the zeal-
ous robot is the most central node, do the robots allocate according to the task urgencies. 
When the zealous robot is the least central node, a disproportionate number of robots is 
allocated to Task 3. The allocation is not efficient. To summarize, disagreement centrality 
is key in placing urgency-sensing robots in a distributed task-allocation setting.

7  Application to large‑scale complex networks

In this section, we provide numerical evidence that the analysis and control strategies intro-
duced in this work scale up naturally to large networks with complex interactions. For com-
parison purposes, we focus on two types of complex networks: Watts–Strogatz with large 
rewiring probability and Barabasi–Albert. For the sake of illustration, we fix Na = 100 and 
No = 2 or No = 3.

7.1  Centrality index predicts complex networks opinion formation behavior

The agreement and disagreement opinion formation behavior in Watts–Strogatz net-
works (Fig. 2) exhibits quantitative differences as compared to Barabasi–Albert networks 
(Fig. 3). Despite possessing the same average degree and for the same set of parameters, 
in the Barabasi–Albert network (Fig. 3) agents tend to develop weaker opinions as com-
pared to the Watts–Strogatz network (Fig. 2). Also, in the disagreement regime, only in the 
Watts–Strogatz network do the group opinions organize into markedly bimodal (polarized) 
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distributions. These two observations can be explained and predicted in terms of the differ-
ent centrality distributions in the two networks.

As predicted by Theorem 1, at an opinion-forming bifurcation, the agent states are dis-
tributed along a one-dimensional kernel subspace according to the entries of the adjacency 
matrix’s eigenvectors vmax and vmin , corresponding to its maximum (agreement) and mini-
mum (disagreement) eigenvalues, respectively. The opinion strength of agent i along an 
agreement (resp. disagreement) branch is thus expected to be roughly (i.e., modulo nonlin-
ear terms in the center manifold expansion) proportional to the absolute value of the i-th 
entry of vmax (resp. vmin ). Figure 10 illustrates this fact by plotting |[vmax]i| (resp. |[vmin]i| ) 
against ||Z∗

i
|| , i.e., the opinion strength of agent i at the agreement (resp. disagreement) 

equilibrium reached for u slightly above the agreement (resp. disagreement) bifurcation 
point (6) (resp. (7)). In all cases, one can observe a monotone relationship between the two 
quantities, and the relationship is basically linear for the largest entries/opinion strengths. 
However, for such large networks ( Na = 100 in the numerical examples), the high-dimen-
sionality of the state space makes nonlinear effects noticeable in some cases, particularly at 
small entries/opinion strengths.

Fig. 10  First and second column: Scatter plots of agent opinion strengths ||Z∗
i
|| (vertical axes) at agreement 

steady-states against the absolute value of the entries of the adjacency matrix’s eigenvector vmax (horizontal 
axes). Third and fourth columns: Scatter plots of agent opinion strengths ||Z∗

i
|| (vertical axes) at disagree-

ment steady-states against the absolute value of the entries of the adjacency matrix’s eigenvector vmin (hori-
zontal axes) Plot titles indicate the network type, if the bifurcation was of agreement or disagreement type, 
and the number of options.

Fig. 11  Empirical distributions of the absolute values of the entries of vmax (left) and vmin (right) for Watts–
Strogatz (black curves) and Barabasi–Albert (gray curves) networks.
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The quantitative difference between agreement and disagreement opinion formation 
on Watts–Strogatz and Barabasi–Albert networks can thus be understood (and predicted) 
by looking at the distribution of the absolute values of the entries of vmax and vmin . Fig-
ure 11 shows the empirical distributions f

(||[vmax]i
||
)
 and f

(||[vmin]i
||
)
 of |[vmax]i| and |[vmin]i| 

obtained from one thousand realizations of Watts–Strogatz and Barabasi–Albert networks 
with the same size and parameters as those used in the simulation in Figs. 2 and 3. Both 
for vmax and vmin , the distributions are heavier at smaller values and lighter at larger val-
ues for the Barabasi–Albert case than for the Watts–Strogatz case. Both the median and 
expected value are larger in Watts–Strogatz networks than in Barabasi–Albert networks. 
In other words, both agreement and disagreement opinion formation in Barabasi–Albert 
networks tend to be characterized by a larger (resp. smaller) number of agents develop-
ing weak (resp. strong) opinions than in Watts–Strogatz networks. For the disagreement 
case, this translates into the fact that disagreeing agents tend to polarize more easily over a 
Watts–Strogatz topology than over a Barabasi–Albert topology.

7.2  Centrality index predicts complex networks opinion cascade behavior

Figure  7 highlights another quantitative difference between Watts–Strogatz and Bara-
basi–Albert networks. Only in Watts–Strogatz networks does the threshold behavior 
exhibit a marked all-or-none characteristic, in the sense that only for this kind of network 
does the average opinion switch from close to zero to a relatively constant nonzero value. 
This indicates that Watts–Strogatz networks are able to robustly trigger an opinion cascade 
as soon as the seed amplitude is above threshold, roughly independently of seed placement 
(which is random in the ten repetitions over which the results were averaged). Conversely, 
in Barabasi–Albert networks, random seed placement is incapable of robustly triggering a 
cascade. The averaged data does not exhibit a sharp threshold because different seed place-
ments lead to sharply different cascade thresholds. As a consequence, the average opinion 
strength exhibits a strong linear dependence on the seed amplitude, reflecting the increas-
ing fraction of cases in which even highly inefficient seed placements are able to trigger a 
cascade.

The quantitative differences between Watts–Strogatz and Barabasi–Albert networks can 
again be interpreted in simple algebraic terms from their agreement and disagreement cen-
trality distributions (Fig. 11). Because Barabasi–Albert networks tend to have smaller cen-
trality values than Watts–Strogatz networks, random agents used as seeds tend to develop 
weaker opinions in the former than in the latter. As a consequence, it is harder to spread the 
attention threshold-crossing behavior in Barabasi–Albert networks than in Watts–Strogatz 
networks because, on average, the attention-opinion positive feedback loop is less active in 
the former than in the latter.

Qualitatively, one could have predicted the same result by looking at more classical net-
work properties, like the global clustering coefficient or the network diameter, which are 
both smaller in WS than BA networks. However, such statistical indices do not predict 
the patterns of opinion formation as our centrality indices do. In particular, they cannot 
distinguish between agreement and disagreement opinion formation and cascades. The cru-
cial point of Theorem 1 is indeed that the bifurcation behavior at an agreement or a disa-
greement bifurcation is fully determined by the agreement and disagreement centralities, 
respectively. Local indices of clustering or shortest path length, like eccentricity, are also 
unsuitable to predict agreement and disagreement opinion formation and cascade behavior 
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because (to the best of our knowledge) there are no general or simple connections between 
our notion of agreement and disagreement centrality and other local network properties.

7.3  Control of opinion cascade in complex networks

We finally illustrate the effectiveness of the control strategy introduced in Sects. 5.2 and 
5.3 to maximize or minimize the sensitivity of agreement and disagreement opinion cas-
cades to inputs on a large scale complex network. We use a Watts–Strogatz network in the 
case No = 2 and No = 3 and for two values of the intrinsic threshold uth , which is assumed 
to be equal for all agents. Recall from Sect.  4.2 and Fig.  7 that the effect of increasing 
(resp., decreasing) uth is to decrease (resp., increase) the global sensitivity of the network 
cascade to inputs.

Figures 12 top left (agreement, No = 2 ) and 12 bottom left (agreement No = 3 ) show 
that an agreement opinion network with a global small sensitivity ( uth = 0.1 ) can be made 
as sensitive as (or even more sensitive than) a network with relatively large global sensitiv-
ity ( uth = 0.05 ) by using our control strategy to maximize the agreement cascade sensitiv-
ity of the former (dashed-dotted lines) and minimize the agreement cascade sensitivity of 
the latter (full lines). For all cases, there is roughly an order of magnitude between the seed 
amplitudes required to trigger a cascade in the same network controlled toward maximizing 
versus minimizing its sensitivity.

Figures 12 top right (disagreement, No = 2 ) and 12 bottom right (disagreement No = 3 ) 
show that also in the disagreement case a network with a global small sensitivity ( uth = 0.1 ) 

Fig. 12  Control of agreement (left plots) and disagreement (right plots) opinion cascades for No = 2 (top) 
and No = 3 (bottom) in a Watts–Strogatz network with Na = 100 agents. Full and dashed lines correspond 
to uth = 0.05 (i.e., relatively large global sensitivity) with minimizing and maximizing sensitivity control, 
respectively. Dotted and dashed-dotted lines correspond to uth = 0.1 (i.e., relatively small global sensitivity) 
with minimizing and maximizing sensitivity control, respectively.
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can be made as sensitive as (or even more sensitive than) a network with relatively large 
global sensitivity ( uth = 0.05 ) by using our sensitivity control strategy. As in the agreement 
case, for a fixed network topology, the seed amplitude required to trigger a cascade under 
sensitivity-maximizing control is much small (roughly half of an order of magnitude) than 
the seed amplitude required to trigger a cascade under sensitivity-minimizing control. As 
discussed at the end of Sect. 7.2, we are not aware of local network properties other than 
our agreement and disagreement centrality indices that could provide such an efficient 
agreement and disagreement opinion-cascade control.

8  Discussion and future directions

8.1  Summary of results

The possibility of forming an opinion in favor or disfavor of different options makes opin-
ion cascades intrinsically different from binary network cascades (e.g., spread of fads or 
information) usually analyzed and modeled in the literature. Motivated by these differ-
ences, we introduced two types of centrality for opinion cascades: agreement centrality and 
disagreement centrality. The former predicts the pattern of opinion formation when agents 
cooperate in the opinion formation process (i.e., when they tend to align their opinion to 
that of other agents) and provide an efficient, although heuristic and possibly sub-optimal, 
way to control the sensitivity of agreement opinion cascades by seed placement. The lat-
ter predicts the pattern of opinion formation when agents compete in the opinion forma-
tion process (i.e., when they tend to reject other agents’ opinions) and provide an efficient, 
although heuristic and possibly sub-optimal, way to control the sensitivity of disagreement 
opinion cascades by seed placement. We illustrated the practical validity of our theoreti-
cal predictions through an original example of distributed task allocation in multi-robot 
swarms and through numerical simulations in large random networks. Our centrality indi-
ces are grounded in the bifurcation behavior from a neutral to an opinionated state. To the 
best of our knowledge, this is the first time that centrality indices arise from intrinsically 
nonlinear bifurcation phenomena.

8.2  Agreement vs disagreement centrality

Our notion of agreement centrality is the same notion of eigenvector centrality introduced 
in (Bonacich 1972). Our notions of disagreement centrality are new. Crucially, the two 
indices of centrality can be sharply different for the same graph. The Frucht graph used 
for the task-allocation example in Sect. 3 reveals a key difference between agreement and 
disagreement centrality: whereas the former cannot distinguish nodes in a regular graph 
(eigenvector centrality is the same for all nodes in a regular graph), the latter can. We thus 
suggest that disagreement centrality might turn out to be a key to understanding complex 
networks where disagreement opinion formation is the norm, e.g., sociopolitical networks.

8.3  Simple and complex contagion

The seminal work (Centola and Macy 2007) revealed that the same network topology, 
in particular, in the presence of the bridges typical of small-world networks, can behave 
very differently during “simple” versus “complex” contagion. A simple contagion is one 
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in which a single active neighbor is sufficient to spread the contagion to a node. A com-
plex contagion is one in which multiple active neighbors are necessary to spread the con-
tagion to a node. Because time and state-space are continuous in our model, the difference 
between simple and complex contagions becomes nuanced, i.e., contagions can simultane-
ously be simple and complex. In the presence of neighbors with sufficiently strong opin-
ions, the contagion is simple, because a single, strongly opinionated neighbor can be suf-
ficient to let a given agent cross the cascade threshold. Conversely, if neighbors’ opinions 
are weak the contagion is complex, because multiple opinionated neighbors are necessary 
to let a given agent cross the cascade threshold. The weaker the neighbors’ opinions, the 
more complex the contagion. The results of this paper show that our notion of agreement 
and disagreement centrality are naturally suited to analysis and control of mixed, i.e., both 
simple and complex, contagions.

8.4  Extensions and future directions

8.4.1  Joint centrality and connection with other centrality indices

The proposed centralities exactly (up to nonlinear order in the center manifold expansion) 
characterize the pattern of agreement and disagreement opinion formation for open-loop 
changes of the attention parameter in the homogeneous system (4) without inputs. As such, 
they have been shown to provide a powerful heuristic for cascade seed placement. How-
ever, whether the resulting seed-placement algorithm is optimal remains an open ques-
tion. A number of other centrality indices (e.g., information centrality (Stephenson and 
Zelen 1989), diffusion centrality (Banerjee et al. 2013)) are available for comparison. Most 
importantly, the results presented in Clark et al. (2014); Fitch and Leonard (2016) show 
that agent selection based on centrality becomes subtle if more than one agent must be 
selected. In the case of two agents, simply selecting the first and second most central agent 
generically does not provide the optimal solution, at least in highly regular networks. In 
particular, the notion of joint centrality introduced in Fitch and Leonard (2016) provides 
the tool to more rigorously tackle the multi-agent selection problem with respect to a given 
centrality index. We will explore how the notion of joint centrality applies to the proposed 
centralities in future works.

8.4.2  Heterogeneous agent thresholds

As in classical work on network cascades (Granovetter 1978; Schelling 2006; Watts 2002; 
Lim et al. 2015; Garulli et al. 2015; Rossi et al. 2017), the parameters of the closed-loop 
attention dynamics, and thus the resulting single-agent cascade threshold, can be assumed 
to be heterogeneous and drawn from some random distribution. By the intrinsic robust-
ness of hyperbolic dynamical systems organized by bifurcations (Golubitsky and Schaeffer 
1985), for small heterogeneity, we expect the result derived in this paper to remain robustly 
true. How large random heterogeneity interacts with the underlying network structure is an 
open question.

8.4.3  Non all‑to‑all intra‑agent coupling

Another important extension will be to consider other than all-to-all intra-agent coupling 
topologies in the homogeneous regime (4). All-to-all intra-agent coupling models the case 
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in which options are a priori equivalent, with no hierarchies or clustering among them. 
Introducing more structured intra-agent coupling allows to group and order options into 
different issues, with or without hierarchies among them. This modeling option is particu-
larly relevant when the opinion developed over an issue (e.g., at which restaurant to have 
dinner) influences and is influenced by opinion formation over another issue (e.g., which 
type of dish to eat). We will extend our modeling and analysis work to other than all-to-all 
intra-agent coupling in future work.

8.4.4  Time‑varying network topologies and communication loss

We remark that, although not yet addressed by our theory, our modeling framework natu-
rally allows to model and exploit time-varying network topologies. For instance, the net-
work topology can change dynamically as a function of the agents’ opinion state (as in 
classical bounded-confidence opinion-formation models Li et al. (2013)), which can natu-
rally lead to clustered networks with clusters of agents having similar opinions, e.g., clus-
ters of robots accomplishing similar tasks (see (Bizyaeva et  al. 2020a, Theorem 3.5) for 
a static topology clustering result). Time-varying network topologies can also arise from 
communication loss between the agents, e.g., due to faults or when robots move too far 
away from each other. Crucially, as detailed in Sect. 4.1, our attention dynamics realizes 
a local multi-stable memory of the opinion developed during a cascade. This distributed 
memory might naturally be suited to make the opinion formation behavior robust to tempo-
rary loss of communication between two or more agent subpopulations.

8.4.5  Reversal to a neutral state through excitable attention‑opinion dynamics

In some occasions, it might be useful for the swarm to revert from an opinionated state 
back to a neutral state, e.g., when a set of tasks or a foraging mission has been accom-
plished. This can be achieved by making the attention-opinion dynamics excitable, i.e., 
the transition to an excited (opinionated) state from the neutral state in response to inputs 
is only transient. Mimicking neural excitable dynamics (FitzHugh 1961; Hodgkin and 
Huxley 1952), the multi-stable attention-opinion dynamics present in each agent can be 
transformed into excitable dynamics by adding a slow adaptation variable, providing slow 
negative feedback on the attention-opinion dynamics. Fast positive feedback acting in con-
junction with slow negative feedback constitutes the basic motif of excitability (Franci 
et  al. 2018). Depending on the timescale of the slow adaptation variable, a transition to 
opinion through a cascade is returned to neutral after a tunable delay, allowing the swarm 
to become again reactive to new circumstances. The implementation of such an excitable 
attention-opinion dynamics will be the subject of future work.

8.5  Applications beyond multi‑robot task‑allocation

8.5.1  A flexible best‑of‑n and task‑allocation model

Our model can rapidly and reliably switch between agreement and disagreement behav-
ior. As such, it constitutes a dynamical opinion formation model that, when applied to 
robot swarms, can rapidly and reliably switch between best-of-n and task allocation. 
This flexibility can be key for adaptive behavior in robot swarms. For instance, during 
a foraging task (Zedadra et al. 2017; Pitonakova et al. 2018) the possibility to switch 
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between exploration, when the robots use the opinion dynamics in the disagreement 
regime to allocate them to explore different directions, and exploitation, when the 
robots use the opinion dynamics in the agreement regime to reach a consensus about 
the richest source location, is key to adaptive capabilities for the swarm. The param-
eters � and � , which determine the agreement ( 𝛾 > 𝛿 ) or disagreement ( 𝛾 < 𝛿 ) regime, 
can be equipped with input and state-dependent dynamics as in (Bizyaeva et al. 2020a, 
Sect.  6D), which allows for flexible transitions between exploration and exploitation 
as a function of the information collected about the environment and the state of each 
robot.

Opinion cascades, in both a best-of-n and a task-allocation setting, are useful when 
only a limited number of information-gathering agents are available. The information-
gathering agents work as the seeds of an opinion cascade in the robot swarm. Through 
our threshold mechanism, a robot swarm can decide to remain in a neutral state (i.e., 
“do nothing” or “stay charging at the dock”) until a sufficiently large amount of infor-
mation has been gathered by the seeds. Past this threshold, opinion formation spreads 
through the network. The resulting opinion (i.e., task allocation) state depends on the 
network topology, on the seed opinion states, and on possibly small (i.e., sub-thresh-
old) biases of non-information gathering agents. Importantly, the seed-placement algo-
rithm developed in Sect. 5 can be used to tune the swarm sensitivity to engage in the 
multi-task activity. When the sensitivity is small, the swarm behaves “lazily,” with rel-
atively large inputs needed to trigger the transition to an active (i.e., opinionated) state. 
When the sensitivity is large, the swarm behaves “hyperactively,” with only relatively 
small inputs needed to trigger the beginning of the multi-task activity.

8.5.2  Biological and artificial swarms in motion

In both animal and robot swarms in motion, the decision to be made is about when and 
where to move. As discussed in Franci et  al. (2020), our modeling framework natu-
rally accommodates this situation, too, by letting the attention/bifurcation parameter 
be related to the geometry of the motion space, e.g., the group distance and relative 
position with respect to relevant objects like food sources, prey or predators, resources, 
or searched items. A number of works showed the relevance of similar approaches for 
biological systems (Couzin et al. 2005; Nabet et al. 2009; Couzin et al. 2011; Leonard 
et al. 2012; Pinkoviezky et al. 2018). Collision avoidance (Wang et al. 2017; Berg et al. 
2011) can also be modeled and tackled in our opinion formation framework. A neutral 
opinion means in this setting moving straight, favoring Option 1 means turn right and 
favoring Option 2 means turn left. If in agreement regime, two colliding robots will 
either both turn right or turn left and collision will be avoided. In this simple setting, 
the attention parameter dynamics can be a function of the robots’ relative positions.

Similarly to the multi-task setting, the introduction of opinion cascades allows to 
model and design agent swarms in motion in which only a small number of agents 
(i.e., those that can sense objects and items in the environment) gather information 
about the geometry of the motion space. The same emergent behaviors described in the 
multi-task setting (e.g., tunable sensitivity of the swarm to informative inputs) are to 
be expected in the motion setting.
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8.5.3  Sociopolitical networks and political polarization

The notion of “opinion” most naturally applies to networks of people discussing, express-
ing, and forming ideas (and opinions) about sociopolitical issues (e.g., governance, eco-
nomics). Models of opinion dynamics have a long history (DeGroot 1974; Friedkin and 
Johnsen 1999; Cisneros-Velarde et al. 2019; Olfati-Saber and Murray 2004; Altafini 2013). 
Many modeling efforts focus on understanding the origin of polarized political views 
(McCarty 2019; Galam and Moscovici 1991; Macy et  al. 2003; Robert 1997; Dandekar 
et al. 2013). Our modeling approach generalizes many existing opinion-formation models 
(Bizyaeva et al. 2020a) and provides the means toward a unified theoretical viewpoint on 
political polarization (Franci et al. 2020, Sec. 3.3).

Results from a recent experiment (Macy et al. 2019) support a ground-breaking hypoth-
esis about the origin of polarized political views. Namely, in a network of initially neutral 
agents with heterogeneous political predispositions, political polarization arises from opin-
ion cascades triggered by early movers (i.e., the cascade seeds) with the final opinion state 
unpredictable from the original political predispositions. Our model provides a rigorous 
explanation of these observations. The pattern of opinion formation reached at the end of a 
disagreement cascade is largely determined by the complex network topology and the seed 
placement, more than the intrinsic biases (i.e., political predispositions) of the agents. For 
fixed agent biases, different random distribution of seeds or changes in the random network 
topology can lead to completely different opinion formation patterns at the end of the cas-
cade in our model. We are currently working on interdisciplinary sociopolitical research 
exploring these and other ideas.
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