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Abstract: An actively controlled Susceptible-Infected-Susceptible (actSIS) contagion model is presented
for studying epidemic dynamics with continuous-time feedback control of infection rates. Our work
is inspired by the observation that epidemics can be controlled through decentralized disease-control
strategies such as quarantining, sheltering in place, social distancing, etc., where individuals can actively
modify their contact rates in response to observations of the infection levels in the population. Accounting
for a time lag in observations and categorizing individuals into distinct sub-populations based on their risk
profiles, we show that the actSIS model manifests qualitatively different features as compared with the SIS
model. In a homogeneous population of risk-averters, the endemic equilibrium is always reduced, although
the transient infection level can overshoot or undershoot. In a homogeneous population of risk-tolerating
individuals, the system exhibits bistability, which can also lead to reduced infection. For a heterogeneous
population comprised of risk-tolerators and risk-averters, we prove conditions on model parameters for
the existence of a Hopf bifurcation and sustained oscillations in the infected population.
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1. INTRODUCTION

Deterministic compartmental models in epidemiology have pro-
vided valuable insights for the understanding of evolutionary
dynamics of infectious disease spread in a host population
(Kermack and McKendrick (1927)). These models have also
been widely applied to study various other spreading dynamics,
including but not limited to information dissemination in social
networks (Jin et al. (2013)), sentiment contagion in human soci-
ety (Zhao et al. (2014)) and the propagation of systemic risks in
financial market (Demiris et al. (2014)). Although these models
omit elements such as stochasticity, individual heterogeneity and
network structure, they are proven to be powerful in capturing
the qualitative features of the spreading dynamics, including
transient system behavior and stability of solutions.The models
have also been shown to be close approximations of certain
Markov chain models of the underlying stochastic dynamics, see
e.g., Sahneh et al. (2013). The classical Susceptible-Infected-
Susceptible (SIS) model has been widely studied and applied in
epidemiological context. While its assumption that individuals
acquire no immunity after recovery may not be suitable for
certain diseases, SIS is a worst case scenario that offers valuable
insight for a large class of contagious diseases in general.

The SIS model in its simplest form assumes a constant infection
rate. However, it is well acknowledged that in reality the rate
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varies over time, for example, due to the different control
strategies taken by individuals. Understanding how adaptive
infection rates affect the contagion dynamics provides insight
for decentralized disease-control policy designs. See Nowzari
et al. (2016) for a review of analysis and control of epidemics.

In this paper, we propose a model with feedback controlled
infection rates to account for active control strategies. We are
motivated in part by the model and study of change in suscepti-
bility after first infection as presented in Pagliara and Leonard
(2020). Our proposal of the actively controlled Susceptible-
Infected-Susceptible (actSIS) model is based on the following
observations. Individuals modify their contact rates with others
based on information acquired about the infected population level.
Such information, however, often involves estimations that are
delayed and unavoidably omits details in the finer time scale. 1

We distinguish individuals as risk-averters, risk-tolerators, and
risk-ignorers. Risk-averters represent those who change their
contact rate with others in the opposite direction as the change in
the observed infected population level, e.g., those who could and
did stay at home and practiced increased social distancing during
the COVID-19 pandemic as they saw the infected population
grow. Risk-tolerators represent those whose contact rate with
others change in the same direction as the change in the observed
infected population level, e.g., health care workers, delivery
workers, and other essential workers, who were obliged to work
during the COVID-19 pandemic. Risk-ignorers represent those
who do not actively modify their contact rates.
1 For example, infected population level is often estimated from reporting of
test results, which can take weeks after the tests were conducted.
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insight for a large class of contagious diseases in general.
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varies over time, for example, due to the different control
strategies taken by individuals. Understanding how adaptive
infection rates affect the contagion dynamics provides insight
for decentralized disease-control policy designs. See Nowzari
et al. (2016) for a review of analysis and control of epidemics.

In this paper, we propose a model with feedback controlled
infection rates to account for active control strategies. We are
motivated in part by the model and study of change in suscepti-
bility after first infection as presented in Pagliara and Leonard
(2020). Our proposal of the actively controlled Susceptible-
Infected-Susceptible (actSIS) model is based on the following
observations. Individuals modify their contact rates with others
based on information acquired about the infected population level.
Such information, however, often involves estimations that are
delayed and unavoidably omits details in the finer time scale. 1

We distinguish individuals as risk-averters, risk-tolerators, and
risk-ignorers. Risk-averters represent those who change their
contact rate with others in the opposite direction as the change in
the observed infected population level, e.g., those who could and
did stay at home and practiced increased social distancing during
the COVID-19 pandemic as they saw the infected population
grow. Risk-tolerators represent those whose contact rate with
others change in the same direction as the change in the observed
infected population level, e.g., health care workers, delivery
workers, and other essential workers, who were obliged to work
during the COVID-19 pandemic. Risk-ignorers represent those
who do not actively modify their contact rates.
1 For example, infected population level is often estimated from reporting of
test results, which can take weeks after the tests were conducted.
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Our work contributes to the literature in the following ways.
First, while active and passive spreading were distinguished in
the social economics literature (see Hartmann et al. (2008)),
our model rigorously demonstrates the differences between
them, and we prove new results on the dynamics of contagion
with active control. Further, our model serves as one form of
the state-dependent approaches discussed in Rands (2010) that
offer evolutionarily grounded ways to study social contagion
in collective processes. Second, our feedback model uses a
low-pass filter of the measured infected population level. This
models the observation delay and introduces an important ro-
bustness to uncertainty. This is in contrast to contagion models
which feed back infected population level directly, as in Baker
(2020); Franco (2020). Third, we prove a new and relatively
simple scenario under which sustained oscillations appear within
epidemiological frameworks without external forcing. Under-
standing mechanisms that can lead to oscillations is critically
important in the context of infectious disease spread (Lin et al.
(1999); Dushoff et al. (2004); Camacho et al. (2011), Xu et al.
(2020)). It is likewise of great interest in many other socio-
economic processes, e,g., the rise and fall of business cycles
(Mishchenko (2014)) and fluctuation of behavioral preferences
in social networks (Pais et al. (2012)). Fourth, in contrast to
control strategies that require global knowledge about the exact
underlying spreading dynamics, e.g., Nowzari et al. (2016), our
work provides evidence for the promise of tunable decentralized
active control strategies to manage the dynamics of epidemics.

The paper is organized as follows. In Section 2, we review the
Susceptible-Infected-Susceptible (SIS) model. We introduce
the actively controlled Susceptible-Infected-Susceptible (act-
SIS) model in homogeneous populations of risk-tolerators and
risk-averters respectively in Section 3, where we analyze the
equilibrium solutions and stability conditions and show their
qualitatively different features as compared with the SIS model.
We examine the actSIS model in a heterogeneous population
comprised of risk-tolerators and risk-averters in Section 4, and
prove conditions for a Hopf bifurcation with a stable limit cycle.
We conclude in Section 5.

2. BACKGROUND

2.1 SIS in a well-mixed population

Consider a disease spreading in a large, randomly-mixed popula-
tion where individuals are divided into either susceptible (S) or
infected (I) classes. Susceptible individuals get infected through
the interaction with infected individuals at rate β while infected
individuals recover at rate δ. Let p(t) and s(t) be the fraction of
infected and susceptible individuals, respectively, at time t. The
SIS model is

ṡ = −βsp+ δp, ṗ = βsp− δp. (1)

Since s(t) = 1− p(t), (1) can be rewritten as
ṗ = β (1− p) p− δp. (2)

The steady-state behavior of solutions to this well-mixed SIS
model (2) is characterized by the basic reproduction number
R0 = β/δ, a key concept in epidemiology that defines the
epidemic threshold of a particular infection (Diekmann et al.
(1990)). If R0 > 1, the system reaches the endemic equilibrium
(EE): p(t) → 1 − δ/β as t → ∞. The disease persists and a
nonzero fraction of the population is infected at steady state. If
R0 ≤ 1, the disease dies out as the system goes to the infection

free equilibrium (IFE): p(t) → 0 as t → ∞. A transcritical
bifurcation exists at R0 = 1.

2.2 Network SIS model

A natural extension of the homogeneous population setting is the
introduction of heterogeneities of various kinds. Characterizing
population heterogeneity in terms of infection and/or recovery
rates has been discussed both in population subgroups (Anderson
and May (1992)) and in networks (Hethcote and Yorke (1984),
Pagliara and Leonard (2020)). In the following, we review the
network SIS model that was originally introduced as the multi-
group SIS model in Lajmanovich and Yorke (1976).

Consider a heterogeneous population of n sub-populations, each
large, well-mixed and homogeneous. Let susceptible individuals
in sub-population i get infected through contact with infected
individuals in sub-population j at rate βij ≥ 0 and infected
individuals in sub-population i recover at rate δi ≥ 0. The rate βij
can be decomposed as βij = β̄×αij where β̄ is the transmission
rate and αij represents the effective contact rate between sub-
populations i and j. The network SIS model is

ṗi = (1− pi)

n∑
i=1

βijpj − δipi, (3)

where pi(t) denotes the fraction of infected individuals in sub-
population i, or equivalently, the probability that a typical
individual in sub-population i is infected at time t. Let B =
{βjk} and Γ = diag (δ1, . . . , δn) be the infection matrix and the
recovery matrix, respectively.

For the network SIS model (3), the basic reproduction number
is R0 = ρ

(
BΓ−1

)
, where ρ denotes the spectral radius. For

R0 ≤ 1, solutions converge to the IFE as t → ∞ while for
R0 > 1, solutions converge to the EE. See Lajmanovich and
Yorke (1976), Fall et al. (2007), Mei et al. (2017) for details.

3. HOMOGENEOUS POPULATION

We present the actSIS model for studying epidemic dynamics
with continuous-time feedback control of infection rates. We let
the infection rate β be the product of the intrinsic transmission
rate β̄ of the disease and an effective contact rate α(·) that is
actively modified by individuals based on their observations of
the system state. To account for the uncertainty and delay in
measurements of the infection level in the population, we let the
feedback responses depend on the filtered state ps of the infected
fraction p, where ps tracks p and possibly some external stimulus
r(t) with a time constant τs. Then the actSIS model is

ṗ = β(1− p)p− δp,

τsṗs = −ps + p+ r,

β = β̄α(ps).

(4)

Acknowledging that people conduct social-behavioral changes
in a soft-threshold manner (Smaldino et al. (2018)), we consider
sigmoidal-shaped functions for the feedback response α(·).
Similar feedback mechanisms in neuronal dynamics have been
shown to yield both ultra-sensitivity and robustness to inputs and
variability (Sepulchre et al. (2019)). Let φ : [0, 1] → [0, 1] be a
monotonically increasing saturating function:

φ(p;µ, ν) =

(
1 +

(
p · (1− µ)

µ · (1− p)

)−ν
)−1

,

with location parameter µ ∈ (0, 1) and slope parameter ν ∈
(0, 1). 2 For risk-tolerators we define α to vary directly with ps:

α (ps) = φ (ps;µT , γT ) =: φT (ps) . (5)
For risk-averters we define α to vary inversely with ps:

α (ps) = 1− φ (ps;µA, γA) =: 1− φA (ps) . (6)

It is not surprising to find that the EE of the actSIS model for both
risk-tolerators and risk-averters is upper bounded by that of the
SIS model, since the incorporation of feedback responses α(·) ∈
[0, 1] always reduces the effective infection rates. However, the
underlying structure of the reduced endemic solution is different
for risk-tolerators as compared to risk-averters. In addition, the
actSIS model shows qualitatively different dynamical features
as compared to the SIS model. For homogeneous risk-tolerators,
dynamics (4) undergo a saddle node bifurcation and exhibit
bistability as illustrated in Fig. 1 and Fig. 2(a). The saddle node
bifurcation point is greater than the transcritical bifurcation point
in the SIS model, which can be useful for control design since
it implies that it is more difficult for the disease to spread in a
population of risk-averters than in a population of risk-ignorers.
For homogeneous risk-averters, (4) undergoes a transcritical
bifurcation as in the SIS model, but with a reduced EE, as
illustrated in Fig. 2(b). Further, the EE becomes a stable focus
under certain conditions, resulting in large overshoot and/or
undershoot in the transient dynamics, as illustrated in Fig. 3.

We devote the rest of this section to the detailed description and
proof of these rich dynamics. For simplicity of exposition, we
set δ = 1, τs = 10 throughout the rest of this paper. 3
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Fig. 1. Bi-stability of risk-tolerators. The IFE and EE are
both stable solutions for β̄ > β̄c in the actSIS model for
risk-tolerators. a) For p(0) = 0.1, the solution (green) of
actSIS (risk-tolerators) converges to the IFE, whereas the
solution (grey) of SIS (risk-ignorers) converges to the EE.
b) For p(0) = 0.4, the solution (green) of actSIS and the
solution (grey) of SIS converge to the EE. Parameters for
all simulations are β̄ = 2.4, µT = 0.35, νT = 8. For these
parameters, β̄c = 1.87 < β̄.

Theorem 3.1 (Steady-state behavior of the actSIS model with
homogeneous risk-tolerators). Consider the actSIS dynamics for
a homogeneous population of risk-tolerators given by (4) with
r(t) = 0 and α(·) = φT (·). Then the following hold:

(i) There are two types of equilibrium solutions:
2 This particular form of a sigmoidal function over the unit interval was proposed
by Antweiler (2018). µ controls the value of p at which Φ(p) = 1/2 and ν
controls how gradually or sharply the function grows.
3 In the epidemiology literature, it is often the case that, without loss of generality,
δ = 1 is used. We take τs to be an order of magnitude greater than the time
constant of the epidemic dynamics. An investigation of the parameter region
near τs = 10 yields qualitatively similar results.

(a) Risk-tolerators

1

0

1

(b) Risk-averters

Fig. 2. Bifurcation diagrams of the actSIS model. a) For
homogeneous risk-tolerators, the actSIS model undergoes a
saddle-node bifurcation at bifurcation point β̄c > 1. b) For
homogeneous risk-averters, the actSIS model undergoes a
transcritical bifurcation at β̄ = 1 as in the SIS model. The
negative y-axis is plotted to illustrate the transcritical bifur-
cation. The EE for the actSIS models are upper-bounded
by that of the SIS model in both cases. The bifurcation
diagrams of the actSIS models are drawn in blue and
the SIS in grey. Solid curves denote stable solutions and
dashed curves denote unstable solutions. Parameters for
these plots are µT = 0.35, νT = 8, µA = 0.25, νA = 8.
The bifurcation diagrams: Fig. 2 and Fig. 4 (a), are produced
with the MATLAB package matcont (Dhooge et al. (2003)).

(a) IFE: p = ps = 0 is always stable;
(b) EE: p = ps = p∗ satisfying φT (p

∗)(1 − p∗) = δ
β̄

.
There are zero, one, or two such solutions. A solution
is stable if φ′

T (p
∗) · (1− p∗)2 < δ

β̄
.

(ii) The system undergoes a saddle node bifurcation at the
bifurcation point (β̄c, p∗) with stable upper branch (stable
EE) and unstable lower branch (unstable EE). The epidemic
threshold β̄c/δ is always larger than that of the SIS model,
i.e., β̄c/δ > 1.

(iii) For β̄ > β̄c the system exhibits bistability of the IFE and
the EE. For β̄ ≤ β̄c the IFE is the only stable equilibrium.

(iv) As β̄c < β̄ → ∞, p∗ → 1− δ/β̄, the EE of SIS.

Proof. (i) The equilibrium solutions are straightforward to
compute. For stability, we compute the Jacobian as

JT =

[
β̄φT (ps)(1− 2p)− δ β̄(1− p)pφT

′(ps)
1
τs

− 1
τs

]
. (7)

For the IFE, (7) reduces to

JT
∣∣
IFE =

[
−δ 0
1
τs

− 1
τs

]
, (8)

implying that the IFE is always stable. For the EE,

JT
∣∣
EE =

[
−δ p∗

1−p∗ β̄(1− p∗)p∗φT
′(p∗)

1
τs

− 1
τs

]
. (9)

Stability requires the equilibrium solution to satisfy δ
1−p∗ −

β̄(1− p∗)φT
′(p∗) > 0. Since p∗ ∈ (0, 1) , it is equivalent

to requiring that φT ′(p
∗) · (1− p∗)2 < δ

β̄
.

(ii) We start by computing the critical value β̄c. Since φT (·) is
a monotonically increasing function taking values between
0 and 1, g(p) := φT (p)(1− p) takes value between 0 and
1 and it first increases from 0 (since g(0) = 0) and then
decreases to 0 (g(1) = 0). Depending on parameter values
(µT , νT , β̄, δ), the EE has either zero, one or two solutions.
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with location parameter µ ∈ (0, 1) and slope parameter ν ∈
(0, 1). 2 For risk-tolerators we define α to vary directly with ps:

α (ps) = φ (ps;µT , γT ) =: φT (ps) . (5)
For risk-averters we define α to vary inversely with ps:

α (ps) = 1− φ (ps;µA, γA) =: 1− φA (ps) . (6)

It is not surprising to find that the EE of the actSIS model for both
risk-tolerators and risk-averters is upper bounded by that of the
SIS model, since the incorporation of feedback responses α(·) ∈
[0, 1] always reduces the effective infection rates. However, the
underlying structure of the reduced endemic solution is different
for risk-tolerators as compared to risk-averters. In addition, the
actSIS model shows qualitatively different dynamical features
as compared to the SIS model. For homogeneous risk-tolerators,
dynamics (4) undergo a saddle node bifurcation and exhibit
bistability as illustrated in Fig. 1 and Fig. 2(a). The saddle node
bifurcation point is greater than the transcritical bifurcation point
in the SIS model, which can be useful for control design since
it implies that it is more difficult for the disease to spread in a
population of risk-averters than in a population of risk-ignorers.
For homogeneous risk-averters, (4) undergoes a transcritical
bifurcation as in the SIS model, but with a reduced EE, as
illustrated in Fig. 2(b). Further, the EE becomes a stable focus
under certain conditions, resulting in large overshoot and/or
undershoot in the transient dynamics, as illustrated in Fig. 3.

We devote the rest of this section to the detailed description and
proof of these rich dynamics. For simplicity of exposition, we
set δ = 1, τs = 10 throughout the rest of this paper. 3
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Fig. 1. Bi-stability of risk-tolerators. The IFE and EE are
both stable solutions for β̄ > β̄c in the actSIS model for
risk-tolerators. a) For p(0) = 0.1, the solution (green) of
actSIS (risk-tolerators) converges to the IFE, whereas the
solution (grey) of SIS (risk-ignorers) converges to the EE.
b) For p(0) = 0.4, the solution (green) of actSIS and the
solution (grey) of SIS converge to the EE. Parameters for
all simulations are β̄ = 2.4, µT = 0.35, νT = 8. For these
parameters, β̄c = 1.87 < β̄.

Theorem 3.1 (Steady-state behavior of the actSIS model with
homogeneous risk-tolerators). Consider the actSIS dynamics for
a homogeneous population of risk-tolerators given by (4) with
r(t) = 0 and α(·) = φT (·). Then the following hold:

(i) There are two types of equilibrium solutions:
2 This particular form of a sigmoidal function over the unit interval was proposed
by Antweiler (2018). µ controls the value of p at which Φ(p) = 1/2 and ν
controls how gradually or sharply the function grows.
3 In the epidemiology literature, it is often the case that, without loss of generality,
δ = 1 is used. We take τs to be an order of magnitude greater than the time
constant of the epidemic dynamics. An investigation of the parameter region
near τs = 10 yields qualitatively similar results.
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Fig. 2. Bifurcation diagrams of the actSIS model. a) For
homogeneous risk-tolerators, the actSIS model undergoes a
saddle-node bifurcation at bifurcation point β̄c > 1. b) For
homogeneous risk-averters, the actSIS model undergoes a
transcritical bifurcation at β̄ = 1 as in the SIS model. The
negative y-axis is plotted to illustrate the transcritical bifur-
cation. The EE for the actSIS models are upper-bounded
by that of the SIS model in both cases. The bifurcation
diagrams of the actSIS models are drawn in blue and
the SIS in grey. Solid curves denote stable solutions and
dashed curves denote unstable solutions. Parameters for
these plots are µT = 0.35, νT = 8, µA = 0.25, νA = 8.
The bifurcation diagrams: Fig. 2 and Fig. 4 (a), are produced
with the MATLAB package matcont (Dhooge et al. (2003)).
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β̄
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There are zero, one, or two such solutions. A solution
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.
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bifurcation point (β̄c, p∗) with stable upper branch (stable
EE) and unstable lower branch (unstable EE). The epidemic
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the EE. For β̄ ≤ β̄c the IFE is the only stable equilibrium.

(iv) As β̄c < β̄ → ∞, p∗ → 1− δ/β̄, the EE of SIS.
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compute. For stability, we compute the Jacobian as

JT =

[
β̄φT (ps)(1− 2p)− δ β̄(1− p)pφT

′(ps)
1
τs

− 1
τs

]
. (7)

For the IFE, (7) reduces to

JT
∣∣
IFE =

[
−δ 0
1
τs

− 1
τs

]
, (8)

implying that the IFE is always stable. For the EE,

JT
∣∣
EE =

[
−δ p∗

1−p∗ β̄(1− p∗)p∗φT
′(p∗)

1
τs

− 1
τs

]
. (9)

Stability requires the equilibrium solution to satisfy δ
1−p∗ −

β̄(1− p∗)φT
′(p∗) > 0. Since p∗ ∈ (0, 1) , it is equivalent

to requiring that φT ′(p
∗) · (1− p∗)2 < δ

β̄
.

(ii) We start by computing the critical value β̄c. Since φT (·) is
a monotonically increasing function taking values between
0 and 1, g(p) := φT (p)(1− p) takes value between 0 and
1 and it first increases from 0 (since g(0) = 0) and then
decreases to 0 (g(1) = 0). Depending on parameter values
(µT , νT , β̄, δ), the EE has either zero, one or two solutions.
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Let h(p) := φT ′(p) · (1 − p)2. It first increases and then
decreases for p ∈ [0, 1]. Denoting p̂ := argmax

p
g(p), one

can check that h(p) intersects with g(p) at three points: 0, p̂
and 1. This implies that when the EE has two solutions
(when δ/β < g(p̂)), the smaller solution is unstable and
the larger one is stable. β̄c can be solved analytically by
solving β̄c = δ/g(p̂). To prove the existence of a saddle-
node bifurcation, we use the classification of equilibria
for a two-dimensional system presented in Section 4.2.5
in Izhikevich (2007). Specifically, we show that one of
the eigenvalues of the Jacobian at (β̄c, p∗) becomes zero.
Using equations β̄c = δ/g(p̂) and g′(p̂) = 0, one can
easily verify the determinant of the Jacobian at (β̄c, p∗)
equals zero thus the existence of a saddle node bifurcation.
Since g(p̂) ∈ (0, 1), we have β̄c/δ is always larger than the
epidemic threshold in the SIS model.

(iii) This follows directly from (i) and (ii).
(iv) Comparing the equations satisfied by the EE solutions for

the SIS and the homogeneous actSIS (risk-tolerators) model,
we observe that φT (p

∗) and p∗ increase with β̄. As φT (p
∗)

approaches 1, p∗ approaches 1− δ/β̄.

0 1
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1

(a) Phase Portrait

0 60

Time (t)

0

0.9

1

(b) Undershoot and overshoot

Fig. 3. The EE as a stable focus. (a) Phase portrait of the actSIS
model for a homogeneous population of risk-averters. Grey
arrows depict the vector fields. The initial conditions and
end points of the simulations are plotted as circles and
squares respectively. Starting from low initial values, p
exhibits a rapid increase followed by a decrease to the
EE. Starting from high initial values, p exhibits a rapid
decrease to nearly zero before an increase to the equilibrium
state. (b) For p(0) = ps(0) = 0.9, the transient state p
undershoots to near zero for a long time and then overshoots.
The parameters are β̄ = 2.4, µA = 0.25, νA = 8.

Theorem 3.2 (Steady-state behavior of the actSIS model with
homogeneous risk-averters). Consider the actSIS dynamics for
a homogeneous population of risk-averters given by (4) with
r(t) = 0 and α(·) = 1− φA(·). Then the following hold:

(i) There are two equilibrium solutions:
(a) IFE: ps = p = 0 is stable if β̄ < δ;
(b) EE: ps = p = p∗ satisfying (1 − φA(p

∗))(1 −
p∗) = δ/β̄. It is always stable if it exists, which is
when β̄ > δ.

(ii) The EE is a stable focus if b > (a − c)2/(4ac), where
a = δp∗

1−p∗ , b =
1−p∗

1−φA(p∗)φA′(p
∗), c = 1

τs
.

(iii) The EE is always upper bounded by 1− δ/β̄, the SIS EE.

Proof. (i) Since 1−φA(·) is monotone decreasing, there exists
at most one EE solution when δ/β̄ < 1. The Jacobian of
(4) is

J =

[
β̄(1− φA(ps))(1− 2p)− δ −β̄(1− p)pφA′(ps)

1
τs

− 1
τs

]
,

(10)
which simplifies to

J |IFE =

[
β̄ − δ 0

1
τs

− 1
τs

]
, (11)

for the IFE, and

J |EE =

[
− δp∗

1−p∗ −β̄(1− p∗)p∗φA′(p
∗)

1
τs

− 1
τs

]
(12)

for the EE. Therefore, the IFE is stable when β̄ < δ. For
the EE, stability requires δp∗

1−p∗ + β̄(1 − p∗)p∗φA′(p
∗) >

0. Since φA
′(p∗) is always non-negative, the stability

conditions always holds when such a solution exists.
(ii) The EE is a stable focus when (12) has a pair of complex-

conjugate eigenvalues with negative real part. We prove
this by using the classification of equilibria for a two-
dimensional system according to the trace and determinant
of the Jacobian (Izhikevich (2007)). Denoting A := J |EE
and using the definitions of a, b and c, we have Tr(A) =
−(a + c) and det(A) = ac(1 + b). Therefore since
Tr(A) < 0, and the condition b > (a−c)2

4ac guarantees that
Tr(A)2 − 4 det(A) < 0, the EE is a stable focus.

(iii) As β̄ increases, the right hand side of (1 − φA(p
∗))(1 −

p∗) = δ/β̄ decreases. As a result, p∗ increases with β̄. On
the other hand, 1− φA(p

∗) decreases away from 1 thus the
EE are always bounded above by 1− δ/β̄.

4. HETEROGENEOUS POPULATION

We introduce the heterogeneous network actSIS model. In princi-
ple, the transmission rates, recovery rates and feedback responses
can all be distinct. However, we restrict to the following set up as a
first step in exploring the role of heterogeneity. Let the population
comprise two homogeneous sub-populations, risk-tolerators and
risk-averters, which differ only in their feedback responses to
the infection. We assume the disease transmission occurs across
sub-populations but not within. 4 For the generalization of the
network SIS model (3) to the network actSIS model, this trans-
lates as n = 2, β̄i = β̄, δi = δ, βii = 0, α(·) = α1(·) for all risk-
tolerators and α(·) = α2(·) for all risk-averters. Denote p1(t) and
p2(t) as the fraction of risk-tolerators and risk-averters that are
infected at time t respectively. Let β12 = β̄α1(ps2) = β̄φT (ps2)
be the effective infection rate from risk-averters to risk-tolerators,
and β21 = β̄α2(ps1) = β̄ (1− φA (ps1)) from risk-tolerators to
risk-averters. The heterogeneous network actSIS model in the
case of these two subpopulations is

ṗ1 = (1− p1)β12 · p2 − δp1,

ṗ2 = (1− p2)β21 · p1 − δp2,

τsṗs1 = −ps1 + p1,

τsṗs2 = −ps2 + p2.

(13)

4 This setting corresponds to the realistic situations in which health care
providers mainly have contact only with their patients while people staying
at home mainly have contact only with delivery workers.

The equilibrium solutions to (13) satisfy p∗1 = p∗s1 , p
∗
2 = p∗s2 and

p∗1
1− p∗1

· 1

α1 (p∗2) p
∗
2

=
p∗2

1− p∗2
· 1

α1 (p∗2) p
∗
1

=
δ

β̄
. (14)

As shown in Fig. 4(a), there are model parameters for which
system (13) undergoes a Hopf bifurcation with a stable limit
cycle. As β̄ increases from zero, system (13) undergoes a saddle-
node bifurcation from a single stable IFE to bistability of the EE
and the IFE. As β̄ increases further across the Hopf bifurcation
point β̄∗, the system exhibits a stable limit cycle about the EE.
For completeness, we present the following theorem (Theorem
3.4.2 in Guckenheimer and Holmes (1983)), which we use to
prove the existence of stable limit cycles for (13).

0 2.2 7.8 12

0

(a) Hopf bifurcation

1 7.8 10β
1

1
λ

(b) Verification of H2

Fig. 4. Hopf bifurcation. (a) Bifurcation diagram for p1 with
bifurcation parameter β̄ of system (13). For small positive
values of β̄, the IFE is the only stable solution. As β̄
increases a saddle-node bifurcation (large red dot) leads
to bistability of the IFE and EE. As β̄ continues to increase
there is a Hopf bifurcation (small red dot) and stable
oscillations about the EE. The blue solid curves depict stable
solutions, while dashed curves depict unstable solutions.
(b) The real and imaginary parts of the eigenvalues of the
Jacobian Dpf at (p∗, β̄∗) are plotted in solid and dashed
lines. At around β̄∗ = 7.8, a pair of complex eigenvalues
crosses the real line (x-axis) with a nonzero derivative,
verifying (H2). Parameters are δ = 1, τs = 10, µT =
0.45, νT = 0.8, µA = 0.45, νA = 20.

Theorem 4.1 (Guckenheimer and Holmes). Suppose that the
heterogeneous actSIS model (13) expressed as ṗ = f(p, β̄),
p = (p1, p2, ps1 , ps2), β̄ ∈ R, has an equilibrium at

(
p∗, β̄∗)

and the following properties are satisfied:

• (H1) The Jacobian Dpf |(p∗,β̄∗) has a simple pair of pure

imaginary eigenvalues λ
(
β̄∗) and λ

(
β̄∗

)
and no other

eigenvalues with zero real parts,
• (H2) d

dβ̄
(Reλ(β̄))

∣∣∣
(β̄=β̄∗)

�= 0.

Then the dynamics undergo a Hopf bifurcation at
(
p∗, β̄∗)

resulting in periodic solutions. The stability of the periodic
solutions is given by the sign of the first Lyapunov coefficient
of the dynamics �1|(p∗,β̄∗) . If �1 < 0, then these solutions are
stable limit cycles and the Hopf bifurcation is supercritical, while
if �1 > 0, the periodic solutions are repelling.

We show in Proposition 4.2 conditions on the model param-
eters that guarantee the non-hyperbolicity condition (H1) for
the heterogeneous actSIS model (13). A proof of conditions
guaranteeing (H2) of Theorem 4.1 is the subject of ongoing

work. Fig 4(b) shows numerically that (H2) is satisfied for the
parameters selected. We also checked that �1 < 0. An illustration
of the sustained oscillations corresponding to the stable limit
cycle of (13) is depicted in Fig 5.
Proposition 4.2. Denote m = (1− p∗1)(1− p∗2), q = p∗1β

∗
21/p

∗
2,

s = p∗2β
∗
12/p

∗
1, v = p∗1β

′∗
21/p

∗
2, w = p∗2β

′∗
12/p

∗
1, β∗

12 = β̄α1 (p
∗
2) ,

β∗
21 = β̄α2 (p

∗
1)). Then, for system (13), the non-hyperbolicity

condition (H1) in Theorem 4.1 is satisfied if
c > 0, a �= 0,

where

a := s+ q +
2

τs
,

ac :=
2

τs
(1−m)sq +

1

τ2s
(s+ q)−m(vβ∗

12 + wβ∗
21).

Proof. For a four-dimensional system to satisfy (H1)
the eigenvalues of the Jacobian Dpf |(p∗,β̄∗) must satisfy

(
λ2 + c

) (
λ2 + aλ + b

)
= 0, (15)

for some a �= 0,b ∈ R,and c > 0. We compute the Jacobian as

−β∗

12p
∗
2 − δ (1− p∗1)β

∗
12 0 (1− p∗1)p

∗
2β

′∗
12

(1− p∗2)β
∗
21 −β∗

21p
∗
1 − δ (1− p∗2)p

∗
1β

′∗
21 0

1
τs

0 − 1
τs

0

0 1
τs

0 − 1
τs




which has eigenvalues that satisfy(
1

τs
+ λ

)2

(s+ λ) (q + λ)−m

(
1

τs
+ λ

)2

sq

−m

(
1

τs
+ λ

)
vβ∗

12 −m

(
1

τs
+ λ

)
wβ∗

21 −mvw = 0.

(16)

Matching coefficients of (15) and (16), we derive the ex-
pressions for a, b, and c, in terms of the model parameters
(β̄, µT , γT , µA, γA) for (13) to satisfy the first part of (H1).
We have λ

(
β̄∗) =

√
ci, a pure imaginary eigenvalue. a �= 0

guarantees there are no other eigenvalues with zero real part.

5. FINAL REMARKS

The actSIS model incorporates two novel mechanisms as com-
pared with the SIS model: a feedback mechanism for the effective
infection rates and a time scale separation between the state of
the system and the state used in the feedback law. The qualitative
differences we have shown for the actSIS model are due to both
of the mechanisms. We have observed sustained oscillations even
when some of the individuals are risk-ignorers and under relaxed
assumptions on interconnections. We will examine the broader
set of possibilities in future work and consider applications in
other biological and socio-ecological processes.
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As shown in Fig. 4(a), there are model parameters for which
system (13) undergoes a Hopf bifurcation with a stable limit
cycle. As β̄ increases from zero, system (13) undergoes a saddle-
node bifurcation from a single stable IFE to bistability of the EE
and the IFE. As β̄ increases further across the Hopf bifurcation
point β̄∗, the system exhibits a stable limit cycle about the EE.
For completeness, we present the following theorem (Theorem
3.4.2 in Guckenheimer and Holmes (1983)), which we use to
prove the existence of stable limit cycles for (13).
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p = (p1, p2, ps1 , ps2), β̄ ∈ R, has an equilibrium at

(
p∗, β̄∗)

and the following properties are satisfied:

• (H1) The Jacobian Dpf |(p∗,β̄∗) has a simple pair of pure
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and no other

eigenvalues with zero real parts,
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solutions is given by the sign of the first Lyapunov coefficient
of the dynamics �1|(p∗,β̄∗) . If �1 < 0, then these solutions are
stable limit cycles and the Hopf bifurcation is supercritical, while
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eters that guarantee the non-hyperbolicity condition (H1) for
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work. Fig 4(b) shows numerically that (H2) is satisfied for the
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of the sustained oscillations corresponding to the stable limit
cycle of (13) is depicted in Fig 5.
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pressions for a, b, and c, in terms of the model parameters
(β̄, µT , γT , µA, γA) for (13) to satisfy the first part of (H1).
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Fig. 5. Stable limit cycles of the heterogeneous actSIS model.
a) When β̄ > β̄∗, system (13) exhibits stable oscillations. States
p1 and p2 initially decrease quickly due to different mechanisms:
p1 decreases because ps2(0) < µT , which drives β12 down and
p2 decreases because ps1(0) > µA, which drives β21 down. The
low p1 leads to a decrease in ps1 , which in turn drives up β21,
thus increasing p2. The increase in p2 leads to an increase in
ps2 , which in turn drives up p1. The process repeats resulting in
sustained oscillations. b-c): The time evolution of the effective
infection rates. Parameters used for the simulation: β̄ = 10,
µT = 0.45, νT = 0.8, µA = 0.3, νA = 20. Initial conditions:
p1(0) = 0.55, p2(0) = 0.45, ps1(0) = 0.45, ps2(0) = 0.66.
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