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Abstract—The linear threshold model (LTM) has been used to
study spread on single-layer networks defined by one inter-agent
sensing modality and agents homogeneous in protocol. We define
and analyze the heterogeneous multiplex LTM to study spread
on multi-layer networks with each layer representing a different
sensing modality and agents heterogeneous in protocol. Protocols
are designed to distinguish signals from different layers: an agent
becomes active if a sufficient number of its neighbors in each of
any a of the m layers is active. We focus on Protocol OR, when
a = 1, and Protocol AND, when a = m, which model agents that
are most and least readily activated, respectively. We develop
theory and algorithms to compute the size of the spread at steady
state for any set of initially active agents and to analyze the
role of distinguished sensing modalities, network structure, and
heterogeneity. We show how heterogeneity manages the tension in
spreading dynamics between sensitivity to inputs and robustness
to disturbances.

Index Terms—Cascade dynamics, heterogeneity, multi-agent
systems, multi-layer networks, social networks, contagion

I. INTRODUCTION

HE spread of an activity or innovation across a population

of agents that sense or communicate over a network has
critical consequences for a wide range of systems from biology
to engineering. The adoption of a strategy, such as wearing
a face mask during a pandemic, can spread across a social
network even when there are only a few early adopters. The
observation and response to a threat by one or more vigilant
animals can spread through a social animal group. A robot
that detects a change in the environment and takes action can
spread its behavior across a networked robot team.

To predict and control spread, we present and analyze
a new model that captures the realities of multiple inter-
agent sensing modalities and heterogeneity in responsiveness
of agents to others. We develop and prove the validity of new
algorithms that provide the means to systematically determine
the spreading influence of a set of agents as a function of
multi-layer network structure and agent heterogeneity.

The linear threshold model (LTM), from Granovetter [1] and
Schelling [2], describes the spread of an activity as discrete-
time, discrete-valued state dynamics where an agent adopts or
rejects an activity by comparing the fraction of its neighbors
that have adopted the activity to its individual threshold.
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Kempe et al. [3] used the LTM with random thresholds to
investigate spread of an activity over a population on a single-
layer network. Lim et al. [4] introduced and analyzed the
notion of cascade and contagion centralities in the model
of [3]. The LTM on single-layer networks has also been
studied in [5]-[9] and generalized to continuous-time, real-
valued dynamics in [10].

The single-layer network in the LTM represents a single
sensing modality or a projection of multiple sensing modal-
ities. Yet, in real-world systems, agents may distinguish the
different sensing modalities, rather than project them, in ways
that impact spread. For example, someone deciding whether
or not to wear a mask may consider as separate signals what
they see others doing in the neighborhood and what they hear
over social media that others are doing. And, how they act on
the signals may differ from person to person. A more readily
activated person starts wearing a mask when they observe
enough of the first or second group wearing a mask. A less
readily activated person starts wearing a mask only when they
observe enough of the first and second groups wearing a mask.

The LTM has been used to study social and economic
phenomena, ranging from spread of rioting to adoption of a
convention (see [11] and references therein). Especially when
time and resource are limited such that optimal decision-
making is not feasible, agents tend to exhibit a threshold phe-
nomenon: they adopt an alternative once sufficient neighbors
have adopted the alternative [11]. Rosenthal et al. [12] have
used the LTM to explain fast, coordinated collective response
exhibited in group-living organisms. They also discuss how
multiple sensing networks such as visual contact, metric
distance, angular position, etc., aid the collective behavioral
response. We are thus motivated to use the LTM to enable
the rapid, adaptive behavior of social system in the design of
technological systems, such as swarms of very small robots,
where limits on computational resources prevent sophisticated
fusion of information from multiple sensing networks.

We are further motivated to use multiplex (multi-layer) net-
works to model spread in a population of heterogeneous agents
that interact through, and distinguish, multiple sensing modal-
ities. Multiplex networks have been used to study consensus
dynamics [13]-[17]. Yagan and Gligor [18] studied a multiplex
LTM where an agent gets activated if a weighted average of
active neighbors across layers is greater than its threshold.
Other models of spread, such as epidemic models and game-
theoretic models, in the case of multiple sensing modalities are
reviewed in [19], but most restrict to homogeneous agents.

In a preliminary version of this work [20], we introduced the
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LTM on multiplex networks with homogeneous agents, where
the graph for each layer is associated with a different sensing
modality, and Protocols OR and AND distinguish signals
from different layers to model more and less readily activated
agents, respectively. We analyzed the duplex (two-layer) LTM
with agents that are homogeneous in protocol and showed
how to compute cascade centrality, an agent’s influence on the
steady-state size of the cascade. Yang et al. [21] studied the
influence minimization problem for the homogeneous model
of [20]. In the present paper, the model and analysis from [20]
are generalized to any finite number of network layers, and to
heterogeneous agents. These generalizations have important
implications in design, notably the opportunity to leverage
individual differences in responsiveness and multiple sensing
modalities to balance group-level flexibility and robustness.
Additionally, we present a novel Bayesian network perspective
on computation of influence spread, which reduces computa-
tional complexity.

Our contributions in the present paper are multifold. First,
we define the heterogeneous multiplex LTM to analyze spread-
ing dynamics on an arbitrary number of network layers with
agents that employ protocols heterogeneously. Second, we
define the heterogeneous multiplex live-edge model (LEM),
which generalizes [3], and we introduce the live-edge tree to
define reachability on this LEM. We prove a key result on
equivalence of probabilities for the LTM and LEM.

Third, we derive Algorithms 1 and 2 to compute influence
spread for the heterogeneous multiplex LTM. Algorithm 1 is
provably correct and useful for small networks. Algorithm 2
maps the influence spread calculation to an inference problem
in a Bayesian network and is efficient for large networks. We
prove that calculating influence spread is #P-complete.

Fourth, we derive analytical expressions for influence
spread in classes of multiplex networks. We show how ORs
enhance and ANDs diminish spreading relative to the projected
network. Fifth, we investigate heterogeneity in spreading and
show how it can be used to manage the tradeoff between
sensitivity to a reliable input and robustness to an unreliable
signal.

The paper is organized as follows. Section II describes
multiplex networks. Section III reviews the monoplex LTM
and LEM. Sections IV and V introduce the heterogeneous
multiplex LTM and LEM, respectively. We prove their equiv-
alence in Section VI. Section VII defines multiplex influence
spread and presents an algorithm to calculate it. Section VIII
presents a Bayesian network approach to calculate multiplex
influence spread. Heterogeneity is studied in Section IX. We
conclude in Section X.

II. MONOPLEX AND MULTIPLEX NETWORKS

A multiplex network G is a family of m € N directed
weighted graphs G1,...,G,,. Each graph G), = (V,EF),
k=1,...,m,is a layer of the multiplex network. The agent
set V' =1{1,2,3,...,n} is the same in all layers. The edge set
of layer k is E¥ C V x V and can be different in different
layers. Each edge e} ; € E*, pointing from i to j in layer k,
is assigned a weight wf ; € RT. Here we adopt the “sensing"
convention for edges: edge ef’ ; exists if agent ¢ can sense agent
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7 in layer k. If edge e,’Z ; exists, agent j is an out-neighbor
of agent ¢ in layer k. We denote the set of out-neighbors
of i in layer k as NF. We say that the weight of agent i’s
out-neighbor j in layer k is the weight wf ;- We assume the
weights of all out-neighbors for every agent sum up to 1, i.e.,
Zje NF wf ; = 1 for every agent i. A monoplex network is a
multiplex network with m = 1, i.e., with only a single layer.

We call a graph equal-neighbor if every edge eéﬁ ; is assigned
a weight wf; = 1/df, where d is the out-degree of node
¢ in layer k and equal to the number of out-neighbors of
node ¢ in layer k. A projection network of G is the graph
proj(G) = (V, E) where E = U E*, i.e., the projection of
all layers onto a single graph. The weight of an edge e; ;
in E is defined to be w;; = ¥(w;;)/ ZjEUkN,ik Y(Wij),
where w; ; = {w};|Vk,wf; > 0}. Examples of function 1)(-)
include summation, maximization, etc. In our examples, we
choose #(-) as min(-).

III. THE MONOPLEX LTM AND LEM

We consider the linear threshold model (LTM) and analysis
presented in [3] for monoplex networks. As in [3], we assume
the LTM is progressive, i.e., once an agent is active it stays
active, and thresholds are random. The LTM is described by
a discrete-time dynamical system in which the state z;(t) €
{0, 1} of each agent 7 at iteration ¢ is inactive with z;(t) = 0 or
active with x;(t) = 1. The LTM protocol determines how the
active state spreads through the network. Our focus is on which
agents will be active at steady state as a function of which
agents are active initially. We define Z; = lim;_, o x;(¢).

In Section III-A and Section III-B, we review the LTM
and live-edge model (LEM) for monoplex networks. In Sec-
tion III-C, we recall the equivalence between LTM and LEM.

A. Monoplex LTM

Let S; be the set of agents that are active by the end of
iteration ¢. Once active, an agent remains active so that S;_; C
Si. At t = 0, all agents are inactive except the initially active
set Sp. Every agent in .S is called a seed. The LTM protocol
determines when inactive agents at iteration ¢ — 1 become
active at iteration ¢. A steady state is reached when S;_1 = S;.

The LTM protocol on a monoplex network is defined as
follows (e.g., [3]). Each agent? = 1, ..., n chooses a threshold
1; randomly and independently from a uniform distribution
U(0,1). An inactive agent ¢ at iteration ¢ — 1 becomes active
at iteration t if the sum of weights of its active out-neighbors
at t — 1 exceeds p;, that is, if pu; <> ;cnqs, , Wiy Forn
agents, steady state is reached by t < n.

B. Monoplex LEM and Reachability

The LEM for a monoplex network is defined as follows [3].
Let Sy be the set of seeds. Each unseeded agent randomly
selects one of its outgoing edges with probability given by the
edge weight. The selected edge is labeled as “live", while the
unselected edges are labeled as “blocked". The seeds block
all of their outgoing edges. Every directed edge will thus be
either live or blocked. The choice of edges that are live is
called a selection of live edges.
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Let L be the set of all possible selections of live edges. The
probability ¢; of selection [ € L is the product of the weights
of the live edges in selection [. Because the selection of live
edges can be done at the same time for every node, the LEM
can be viewed as a static model. The LEM can alternatively
be viewed as an iterative process in the case the live edges are
selected sequentially.

A live-edge path [3] is a directed path that consists only
of live edges. Let £;; be the set of all possible distinct live-
edge paths from agent ¢ ¢ Sy to j € Sy. The probability r,
of live-edge path o € £;; is the product of the edge weights
along the path. We say i ¢ Sy is reachable from j € Sy by
live-edge path « with probability r., and i ¢ Sy is reachable
from j € Sy with probability r;;, where r;; = Zaez” To-

Alternatively, we can compute 7;; in terms of selections of
live-edges. Let L;; C L be the set of all selections of live
edges that contain a live-edge path from i ¢ Sy to j € Sp.
Then, r;; = ZleL,;j qi- Likewise, let L;5, C L be the set of
all selections of live edges that contain a live-edge path from
1 ¢ Sp to at least one node j € Sy. Then, i ¢ Sy is reachable
from Sy with probability r;s,, where r;s, = ZZGLiSO q-

C. Equivalence for Monoplex Networks

The monoplex LTM and LEM were proved to be equivalent
in the following sense.

Lemma 1 ( [3]). For a given monoplex network G with
seed set Sy, the probabilities of the following two events for
arbitrary agent ¢ ¢ Sy are the same:

1) ¢ is active at steady state for the LTM with random
thresholds and initial active set Sg;

2) 1 is reachable from set Sy under the random selection
of live edges in the LEM.

IV. THE HETEROGENEOUS MULTIPLEX LTM

We introduce the LTM on a multiplex network with m
layers by defining a family of protocols as follows. Each agent
i chooses a threshold p¥ in each layer k for i = 1,...,n
and k = 1,...,m. Bach p¥ is randomly and independently
drawn from the uniform distribution U (0, 1). In general, each
agent has different neighbors in different layers. If the sum
of weights of active out-neighbors of agent 7 in layer k£ at
t — 1 exceeds ,ui?, that is, ﬂf < ZjeanS,,_l wf,j, we say
agent i receives a positive input y¥(¢) = 1 from layer k at ¢.
Otherwise, agent 7 receives a neutral input y¥(¢) = 0.

The protocols that determine whether or not an inactive
agent at ¢t — 1 becomes active at ¢ account for the possibility
that the inputs it receives at ¢ from the different layers may
be conflicting. Let the average input agent ¢ receives at ¢ be

yi(t) = 221:1 yf(t)/m

Definition 1 (Multiplex LTM Protocol). Given multiplex
network G with seed set Sy, the multiplex LTM protocol for
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agent i is parametrized by §; € [1/m, 1] as follows:

z;(0)=1, Vie S, 0
z;(0) =0, ViéSy o
0, otherwise.

We identify two protocols for the limiting values of §;:
Protocol OR: §; = 1/m. Inactive agent 7 at iteration ¢ — 1
becomes active at iteration ¢ if it receives a positive input
from any layer at t;

Protocol AND: §; = 1. Inactive agent 7 at iteration ¢ — 1
becomes active at iteration ¢ if it receives positive inputs from
all layers at t. [

Let a; € {1,...,m} refer to the number of layers that
agent ¢ needs to register as active in order to switch its
own state from inactive to active. If §; is chosen such that
(a; —1)/m < &; < a;/m, then the multiplex LTM protocol
specifies exactly this condition on the state of agent ¢, i.e., that
inactive agent ¢ at iteration ¢ — 1 becomes active at iteration
t if it receives a positive input from any a; of the m layers.
Asymmetric sensitivity to layers can be modelled with y; a
convex combination of y¥.

In this paper, we examine the two limiting cases: Protocol
OR, where a; = 1, and Protocol AND, where a; = m. Analy-
sis in these cases is sufficient for understanding heterogeneity
and spreading dynamics on multi-layer networks.

Remark 1. For clarity of exposition, we restrict the subse-
quent discussion to OR and AND protocols; however, the
results and ideas extend, with appropriate modification of
definitions and probability computation rules, to more general
protocols discussed in Definition 1 as well as to other logical
rules such as exclusive OR, etc.

Remark 2. Protocol OR models agents that are readily
activated: there only needs to be sufficient activity among
neighbors in one layer at ¢ — 1 in order for agents to become
active at t. Protocol AND models agents that are conserva-
tively activated: there needs to be sufficient activity among
neighbors in every layer at ¢ —1 in order for agents to become
active at £. Thus, agents with Protocol OR enhance spreading
and agents with Protocol AND diminish spreading.

We study heterogeneous networks in which some agents use
Protocol OR while the others use Protocol AND.

Definition 2 (Sequence of Protocols). Let u; € {OR, AND}
be the protocol used by agent :. We define the sequence of
protocols U = (uq,us, ..., uy,) to be the protocols used by the
n agents ordered from agent 1 to agent n.

Lemma 2. For a multiplex network G with n agents, the
multiplex LTM converges in at most n iterations.

Proof. Assume the multiplex LTM converges in more than n
iterations. Then at least one agent switches from inactive to
active in each of the first n iterations and these agents are
distinct. There is at least one agent in the initial active set that
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Fig. 1. An example of a three-layer multiplex network with five agents. Agent

1 is the seed, which is denoted by the black circle.

is not one of those n agents. This implies at least n+ 1 agents
in the network, which is a contradiction. O

V. THE HETEROGENEOUS MULTIPLEX LEM

Our approach to analyzing the multiplex LTM generalizes
the approach in [3], which uses the live-edge model (LEM)
for monoplex networks to analyze the monoplex LTM. In Sec-
tion V-A, we generalize the LEM to multiplex networks and
introduce the notion of U/-reachability on the multiplex LEM.
Unlike in our earlier work [20], the reachability we propose
here allows for heterogeneous protocols among agents.

A. Multiplex LEM and Reachability

We introduce the LEM on a multiplex network as follows.

Definition 3 (Multiplex LEM). Consider a multiplex network
G with seed set Sp. In each layer k, each unseeded agent
1 randomly selects one of its outgoing edges ef]k with
probability w¥ i i~ The selected edges are labeled as “live",

while the unselected edges are labeled as “blocked". The seeds
block all of their outgoing edges in every layer. The choice
of edges that are live is a multiplex selection of live edges.
Let L be the set of all possible multiplex selections of live
edges. The probability ¢; of selection [ € L is the product of

the weights of all live edges in selection [.

The challenge in generalizing the LEM to multiplex net-
works is in properly defining reachability. Here we introduce
the live-edge tree, which we use to define reachability.

Definition 4 (Live-edge Tree). ' Given a set of seeds Sy and
a multiplex selection of live edges | € L, the live-edge tree
T} associated with agent i ¢ SO is constructed as follows with
agent i as the root node. Let ¥ i.j, be the live edge of agent ¢ in
layer k, k = 1,..., m. Then the children of the root node are
agents ji,ja2, ..., Jm, and the root node is connected to each
child with the live edge in the corresponding layer. The tree
is constructed recursively in this way for each child that itself
has at least one child. Any agent in the network may appear
multiple times as a node in the tree.

Fig. 1 provides an example of a three-layer multiplex
network with five agents. The network has only one possible
multiplex selection of live edges, given in Fig. 2. Fig. 3 shows
the corresponding live-edge tree associated with agent 5.

To highlight key differences between multiplex and monoplex networks,
we assume each ¢ ¢ So has at least one neighbor in each layer. If not, with a
slight modification of Defs. 4 - 5, the theory and computation are still valid.
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Layer 1 Layer 2

Fig. 2. The unique multiplex selection of live edges for the network in Fig. 1.

Fig. 3. The live-edge tree associated with agent 5 for the example three-layer
multiplex network of Fig. 1 and the unique selection of live edges of Fig. 2.
Bs = {Bi, Ba, ..., Bi2} is the set of distinct branches that end with a seed.

We next define reachability from Sy of an unseeded agent
in a multiplex network under a sequence of protocols I/, and
then illustrate for the example in Fig. 3.

Definition 5 (/-Reachability). Consider a multiplex network
G with a seed set Sy and a multiplex selection of live edges [ €
L. Let T! be the live-edge tree associated with agent i ¢ Sj.
Suppose there are b distinct branches in 7! indexed by 8 =
1,...,b and of the form: Bg = (i,eﬁ‘%l,il,efll’iz,ig,...,is),
where i; € V, j = 1,...,5, i, € Sp, and each agent in
V' appears at most once in Bg. We call each Bg a distinct
branch that ends in a seed. Denote the set of these branches
as Bl = {B1, Ba, ..., By}. For any subset B C B, let the set
of agents in B be f/ and the set of edges in Bbe E.

Given a sequence of protocols U, we say that branch subset
B C Bl is U-feasible for i if B + & and for every i € V' \ So
for which u; = AND, all of ¢ 7’s live edges belong to E. Then,
11s U- reachable from Sy by the selection of live edges | with
probability q; if there exists at least one 5 C Bl that is U-
feasible for 7. Let Ll 5, © L be the set of all selections of
live edges by which ¢ is U-reachable from Sg. Then, i is U-
reachable from Sy in G with probability Tigé?, where rlgslj =
ZleLfﬁso q. U

Remark 3. The condition for ¢/-feasibility for ¢ of a branch
subset B C B! does not make explicit a condition on any
i € V\ Sy for which u; = OR. This follows since for any
such agent 7, the condition is that at least one of its live edges
must be in F and this is always true by definition.

To illustrate {{/-reachability, consider the live-edge tree as-
sociated with agent 5 in Fig. 3 for the unique selection of live
edges in Fig. 2 for the multiplex network of Fig. 1 with seed
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set So = {1}. Because the selection of live edges in Fig. 2 is
unique, it is chosen with probability ¢ = 1. Therefore, agent
1 ¢ Sy is U-reachable from S, with probability 1 if there exists
at least one B C B; that is U-feasible for ¢. For agent 5, there
are 12 distinct branches that end in a seed, as shown in Fig. 3;
thus, Bs = {Bi, Ba, ..., Bi2}. For example, Bg = (5, €3 ;,1).

We compute U-reachability from Sy for agent 5 for each
of the following three sequences of protocols used by the five
agents in the three-layer multiplex network:

U, = (OR, AND, AND, AND, OR) 4)
U, = (OR, OR, AND, AND, AND) (5)
Us = (OR, AND, AND, AND, AND). (6)

1) Let & = U,. Consider B = {Bs} C Bs. Then, V=
{1,5} and E = {e?,}. Since 5 is the only unseeded
node in V and us = OR, B is U-feasible for 5. Thus,
agent 5 is U-reachable from Sy with probability 1.

2) Let U = U,. Consider B = Bs. Then, V =
{1,2,3,4,5}. The unseeded nodes j € V for which
u; = AND are j = 3,4,5. From Fig. 3, observe that
all the live edges of nodes 3, 4, and 5, belong to E the
edge set of B = Bs. Thus, B is U-feasible for 5, and
agent 5 is U-reachable from Sy with probability 1.

3) Let U = Us. In this case there is no U-feasible subset
B C Bs, since up = AND and agent 2 has a live edge
6%75, which is not in the edge set of any branch in Bs.
Thus, agent 5 is not /-reachable from Sj.

In the next section we prove the equivalence of the multiplex
LTM and multiplex LEM. This implies that under i/, or Us,
agent 5 will become active at steady state with probability 1
and under U3, agent 5 will remain inactive at steady state.

VI. EQUIVALENCE OF MULTIPLEX LTM AND LEM

We generalize the equivalence of LTM and LEM to multi-
plex networks in this section. Computing probabilities for the
multiplex LTM is challenging because it requires solving over
temporal iterations. However, leveraging the equivalence, the
probability distributions can be computed without temporal
iteration using the multiplex LEM as a static model, as was
done in the monoplex case (see Section III-C and [3]).

First, we prove the following lemma that infers an agent’s
U-reachability from the U/-reachability of its children in the
live-edge tree. We then leverage this lemma to prove the
equivalence in Theorem 1.

Lemma 3. Given a multiplex network G with seed set Sy,
multiplex selection of live edges [ € L and sequence of
protocols U, consider agent ¢ ¢ Sy and its associated live-
edge tree T!. Assume i’s live edge in layer k connects to
agent i¥, k = 1,...,m. Then the U-reachability of i from
Sy by selection [ can be inferred from the reachability of its
children i¥ and its protocol u; as follows:

1) Let u; = OR. Then, ¢ is U-reachable from S; by
selection of live edges [ if and only if at least one child
i¥ is U-reachable from Sy by selection of live edges [.

2) Let u; = AND. Then, ¢ is U-reachable from Sy by
selection of live edges [ if and only if every child i¥
is U-reachable from Sy by selection of live edges .
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Proof. Let Tl be the corresponding live-edge tree associated

with agent i’s chrld i for k=1,.
1) Let u; = OR and suppose zl is Z/{ reachable from Sy by
selection [ for some k. By Definition 5, the set Bik of distinct
1

branches that end with a seed in Tilk. is nonempty and there
R 1
exists a subset 5 C Blk that is U-feasible for i¥ such that

for every i€ Vk \ So for which u; = AND, all of i’s live
edges belong to Ek, where Vk and Ek are the sets of agents
and edges in By, respectively.

For every branch B = (i¥, ek,

17 7i2,7
exists a branch B = (i, e’c k,i’f,ekk i2,i2, wyis) in T}. Let
Bko C Bl be the set of all branches in T; ! that correspond to
branches in Bk Then, Vio = Vi U{i} is the set of agents in Bro

and Fo = ELU {ei ik} is the set of edges in Bio. Thus, since
»27

u; = OR and By, is U-feasible for i¥, by Definition 5, Byo
must be U/-feasible for ¢. Agent i is therefore {/-reachable from
Sy by selection [. This proves the “if” part of the statement.
If no child ¥ is U-reachable from Sy by selection I, then
there exists no nonempty By, in Tl that is U-feasible for i¥.
This implies there is no nonempty Bko in T! that is U-feasible
for i. Therefore, agent ¢ cannot be U/-reachable from S, by
selection . This proves the “only if”” part of the statement.
2) Let u; = AND and suppose i¥ is U-reachable from Sy by
selection [, for every k = 1,..., m. By Definition 5, for every
k, there exists a subset Bj, C Bﬁ,f in Til,f that is U-feasible for

i%. For every k let Byo C B! be the set of all branches in T/
that correspond to branches in By, as defined in the proof of
1). Let By = U Bro C B! with agent set V; and edge set
Ey. By construction, ¢ € Vo and all of agent ¢’s live edges
belong to Fy. It follows that By is U-feasible for i and thus
agent ¢ is U-reachable from Sy by selection [. This proves the
“if” part of the statement.

If there is one child i¥ that is not ¢/-reachable from S; by
selection [, then there exists no set By, in Tll that is {/-feasible
for i¥. Suppose there is a set By C Bl in T! that is U-feasible
for i. Since u; = AND, by Deﬁnrtron 5, it follows that edge

"“ i S EO For every branch in BO that starts with ¢ and edge

19y .y ls) € By, there

ek e ie., BM = (4, ek k,z’f, efk i2i27 ..., s), we denote the set
of all corresponding branches BF = (i’f,efll 12,2'2, .y is) as
B, C B i It follows that By, is U-feasible for i¥ in le and

ik is reachable from Sp. This is a contradiction. Thus, there

is no set By that is U-feasible for i and agent ¢ cannot be
U-reachable from Sy by selection . This proves the “only if”
part of the statement. O

We state the equivalence of multiplex LTM and multiplex
LEM in the following theorem.

Theorem 1. For a multiplex network G with a seed set Sp,
a multiplex selection of live edges | € L and a sequence
of protocols U, the probabilities of the following two events
regarding an arbitrary agent i ¢ S are the same:
1) < is active at steady state for the multiplex LTM under
U with random thresholds and initial active set Sy;
2) i is U-reachable from the set Sy under random selection
of live edges in the multiplex LEM.
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Proof. We prove by mathematical induction.
i) Probability in the first statement (multiplex LTM)

We first define some LTM-related events and probabilities.
Let X¥ and ZF, respectively, be the events that the sum of
weights of active out-neighbors of ¢ in layer k£ does and does
not exceed p1f at t: X = {uf <X, nrng, Wi} and ZF =
{uk > > jentns, wf ;}. Let Y be the event that the sum of
weights of active out-neighbors of ¢ in layer k does not exceed
ukatt—1,ie, YF = {uF > ZjeNfﬂStfl wf ;}. For agent i
that is inactive at ¢, we define the probability that ¢ becomes
active at t + 1 as IP’ZFOlR) (]P’Z&ND)
(AND).

If ¢ uses Protocol OR, ¢ being inactive at ¢ means none
of ¢’s thresholds is exceeded at ¢ — 1 and ¢ being active at
t + 1 means ¢’s thresholds in at least one layer is exceeded
at t. In this case, the probability that ;¥ is exceeded at
tis P¥ = P(XFIYL, V2 .., Y™) = P(XF|Y}F). The last
equality holds because random variables pl, p?, ..., u™ are
independent. Then P!/ is the complement of the probability
that its threshold in none of the layers are exceeded, i.e.,
Py = 1~ T, (1 - ).

If ¢ uses Protocol AND, ¢ being inactive at ¢ means at least
one of its thresholds is not exceeded at ¢ — 1 and being active
at t + 1 means all of ¢’s thresholds are exceeded at ¢. In
this case, there are 2" — 1 possible events, with probabilities
denoted as P,,11,...,Pomip—1. We have that ]P’lm'*'1
P(X}, X2, ..., X™Y;} Y2, ...,Y;™). The other probabilities
have a similar form but with one or more, but not all, of the YZk
replaced by ZF. Since Y;* and ZF are mutually exclusive for

all k, we have P:&ND) = Z?:;_Tfl IP’é. Since the thresholds

are independent of one another, IPﬁ can be separated into the
product of m terms, each of which involves events associated
to one layer only: P = T[]/, P%, where PJ* is either
P(XF,YF)/B(YF) = P(XF|YF) or P(XF, Z}) /P(Z}) = 1.
ii) Probability in the second statement (multiplex LEM)

While the multiplex LEM and U-reachability is defined
in a static way, it also describes U-reachability of agents
as an iterative process over time [3] as follows. First, using
Lemma 3, determine the {/-reachability of the agents with at
least one edge coming from initial set S, = Sp. If an agent
is determined to be U-reachable from S, add it to Sj, to get
a new reachable set S7. In the next iteration, follow the same
procedure and get a sequence of reachable sets S|, S, S5, ...
The process ends at iteration ¢ if S} = S;_;, where S is the
set of agents that are U-reachable from Sj.

We next define some LEM-related events and probabilities.
Let X;k and Z;k , respectively, be the events that agent ¢’s live
edge in layer k£ does and does not connect to the reachable set
S; at t. We define Yi/k to be the event that agent ¢’s live edge
in layer k does not connect to the reachable set S;_; at ¢t — 1.
Consider the LEM as an iterative process. If agent i ¢ S}, then
we define the probability that i € S7,, as Pi(5k (P L) if
¢ uses Protocol OR (AND).

If ¢ uses Protocol OR, by Lemma 3, ¢ ¢ S} means all of
i’s live edges are not connected to S;_; and i € Sj,; means
at least one live edge of 4 is connected to S;. In this case,
the probability that i’s live edge in layer k connects to S} is

) if 4 uses Protocol OR
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Pl =P(XFY Y2, Y ™) = BOXGHY)E). Then PAEL
is the complement of the probability that none of ¢’s live edges
connects to Sy, i.e., IP’;.’EJOF%{) =1, (1 —Pk).

If i uses Protocol AND, by Lemma 3, ¢ ¢ S; means at
least one of i’s live edges are not connected to S;_; and
i € S}, means all of i’s live edges are connected to Sj. In
this case, there are 2" — 1 possible events, with probabilities
denoted as P, +! ... P2"+™=1 We have that P,"t! =
P(X;', X2, ..., X;"Y; 1, Y;2,...,Y;"™). The other probabili-
ties have similar form but with one or more, but not all, of the
Y, * replaced by Z,*. Since Y;* and Z,* are mutually exclu-
sive for all k, we have IP’;’EX}\ID) =Yt P Since the
live edges that each agent uses are independent of one another
Pl = [17, P, where P,% is either P(X;*, Y} ¥)/P(Y; *) =
P(X |V, F) or P(X[F, Z%) /P(Z}F) = 1.

iii) Equivalence

> A w:‘,cj
Similar to [3], we have P(XF|Y}t) = —2ENinsesen

and
1_21‘5mest,1 w

J
Z k I\ g/ wk
’ /1. JENFNSI\S; _ 2V
]P’(Xi’“\Y,- k) = tt-1__— . We also observe
’ 72]‘6N7{“ﬁ52_1 Wi j

and ]P’EjAlND) only depend on P(XF|Y¥),Vk, and IP’;?J(S%{)

]P’;’(SX%\ID) only depends on P(X,*|Y;*), Vk. Thus, by induction

over iterations, we have ]P)Zé_olR) = Pizg%{),w and IP’E&ND) =
]P;'t—i-l

i{(AND) Vt, which concludes the proof. O

t+1
Pilor)

and

The proof of Theorem 1 follows the spirit of the monoplex
case [3], but it does not make direct use of previous results.

Theorem 1 generalizes the equivalence of LTM and LEM to
multiplex networks, and thus provides the means to calculate
an agent’s influence, in terms of spreading information through
the network, without needing to simulate the multiplex LTM.

VII. MULTIPLEX INFLUENCE SPREAD

In this section we define multiplex influence spread and
multiplex cascade centrality for the LTM. We derive and
prove the validity of an algorithm to compute them using the
equivalence of Theorem 1. We prove analytical expressions for
influence spread in some special cases of multiplex networks;
these expressions provide a systematic way to evaluate spread.

A. Monoplex Influence Spread and Cascade Centrality

The monoplex influence spread of agents in Sy, denoted agfo ,
is defined as the expected number of active agents at steady
state for the monoplex LTM given the network G and initial
active set Sy [3]. The monoplex cascade centrality of agent j,
denoted CJG, is the influence spread of agent j defined in [4]
& the expected number of active agents at steady

as CjG =07,
state for the monoplex LTM given G and Sy = {j}.

B. Multiplex Influence Spread and Cascade Centrality
Influence spread and cascade centrality are naturally gener-

alized to the multiplex setting as follows.

Definition 6 (Multiplex influence spread). The multiplex in-
fluence spread of agents in Sy, denoted agf’)u, is defined as
the expected number of active agents at steady state for the
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multiplex LTM given the network G, sequence of protocols I/,
and initial active set Sy. Let ]Eguu and ]P’g(’f’{ be expected value
and probability, respectively, conditioned on G,U, Sy. Then

—Eg(Yom) = ZP ™

i=1

g.u
0s,

Definition 7 (Multiplex cascade centrality). The multiplex
cascade centrality of agent j, denoted ng,u’ is defined as

Y =o7H. ®)

When U = (u,

For example, when u = OR, we write ]P’S
Cg OR

,u), we replace U with u 1n the superscript.
R(z; = 1) and
. When G is understood we drop it from the superscript.

C. Computing Multiplex Influence Spread and Centrality

We can directly compute multiplex influence spread and
multiplex cascade centrality by computing probabilities of -
reachability for the LEM, which is much easier than comput-
ing probabilities of agents being active at steady state for the
LTM. We summarize in a corollary to Theorem 1.

Corollary 1. Given multiplex network G and sequence of
protocols ¢/, multiplex influence spread of agents in Sy and
multiplex cascade centrality of agent j can be determined as

n
GU _ N\~ .GU
og! ZTZSU cit=> ©
=1

Proof. By Definition 5, Tzs is the probability that ¢ is U-
reachable from So in the multlplex LEM of Definition 3. By

Theorem 1, TzSo ]P’Zg/{ou( 1). Thus, by Definition 6,
Sr it = IP’g (%:1)*05“ In case Sy = {;},
b Q U GU _ -~ Gu

y Definition 7, C;"" = 0" =3 _,_ 17", O

Algorithm 1 uses (9) to compute multiplex influence spread
and can be specialized to compute cascade centrality.

Algorithm 1 (Compute multiplex influence spread O'g M).

Given multiplex network G and sequence of protocols Z/{

1) Find the set L of all possible selections of live edges for
multiplex network G and initially active set Sy. Calculate
the probability ¢; of each | € L.

2) For each agent ¢ find LIMSO C L, thesetofalll € L such
that ¢ is U- reachable from Sy by selection [.

3) Calculate 77, S ZlEL“ q-

4) Calculate og = =3 ngsg{

We can compute the computational complexity of Algo-
rithm 1 as follows. Denote the geometric mean of the out-
degree of all agents in a multiplex network as d. Then
|L| = d™". Determining the reachability of agents has a time
cost of O(n). Thus, Algorithm 1 has a time cost of O(nd™").

Computing crg(;u using the multiplex LTM requires perform-
ing simulation of each combination of thresholds and also
has a time cost of O(nd™"). Although Algorithm 1 does
not improve efficiency, it does provide the means to derive
analytical expressions for networks with certain structure, and
thus insights into the role of multiple sensing modalities.
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D. Computing Multiplex Influence Spread Analytically

We derive analytical expressions for multiplex cascade
centrality for two illustrative classes of the LTM with a two-
layer (duplex) network and N agents. In Section VII-D1, each
of the layers is the same path network. This means that each
agent has the same neighbors for each sensing modality; for
example, each agent can see and hear its neighbors. Our results
reveal how the cascade is affected when agents distinguish
between signals rather than project them. If we view the path
network as a cycle network with one link missing, then the
duplex permutation network we study in Section VII-D2 has
one layer missing the link between agents 1 and N and the
other layer missing the link between agents N — 1 and N.

1) Duplex Repeated Path Network: Let Gg be the duplex
repeated path network of Fig. 4, which has the monoplex
equal-neighbor path network G p, = proj(Gr) on each of its
two layers. For any N and any agent j, monoplex cascade
centrality CJGP ¢ and multiplex cascade centralities ngR OR and

C?R"AND can be expressed analytically as follows.

Fig. 4. Duplex repeated path network Gr has equal-neighbor path graph
Gp, as each layer.

Proposition 1 (Multiplex cascade centrality for Gr). Consider
the monoplex equal-neighbor path network Gp, and duplex
repeated path network Gr for N agents with u; = u €
{OR, AND}. Then

CEre = hy(.5), CImOR = n;(.75), CIVANP = h;(.25),
Yt ph 4y Je{1,N}
hj(po) = 1"'2;\[0317%)"'175)\7 S je{2N-1}
S0 phph S T by T 0w
Moreover,
CjnON > ¢fire > 7 AND,
Proof. The result can be derived from Algorithm 1. O

Proposition 1 provides a systematic way to evaluate spread
for any number of agents N in the multiplex LTM on Gg.
Because the expression is a geometric series, the multiplex
cascade centralities converge exponentially to fixed values as
N increases. The inequality is consistent with the intuition in
Remark 2: when agents can distinguish signals from different
sensing modalities and use Protocol OR (AND), they are more
(less) easily activated, and the cascade is enhanced (dimin-
ished) relative to when agents cannot distinguish signals.

2) Duplex Permutation Networks: Let Gp be the duplex
permutation network of Fig. 5. Then proj(Gp) = G, the
monoplex equal-neighbor cycle network. We derive analytical
expressions for IP’?P’ (Z; = 1), u € {OR, AND}, as follows.

Proposition 2 (Probabilities for multiplex cascade centrality
for Gp). Consider the duplex permutation network Gp for NV
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Fig. 5. Duplex permutation network Gp.

agents with u; = u € {OR, AND} and the monoplex equal-
neighbor cycle network G¢ = proj(Gp). Then

PIOR (3, =1) = (.75) 7+ 5(.75) N1 — 5(75) N
PIPAND (7, =1) = (.25)11 ! (10)
PSe (2 =1)=(5)1"7 + (5)N -l
where 3< i< N—-3and j=2,....i—2,i+2,..,N—2.

Moreover,
cyr Ot > ¢ffe > cgrAND

PIrAND (7, =1) =P{mANP (7;,=1) = (0.25) "]

PJP O (2, =1) > PY* O (3, =1).

Proof. The probabilities derive from Algorithm 1. The first

inequality follows since ]P’gP’OR( T, =1) > IP’GC (z, =1) >
]P)gp,AND(

=1). The rest follows from Proposmon 1. O

As in Proposition 1, the first inequality in Proposition 2 is
consistent with the intuition in Remark 2.

When ux = AND, the activity can only spread in Gp from
j to i along the path between j and i on G that does not
contain V. This explains the equality of probabilities for Gp
and Gr. However, when u; = u = OR, the activity can spread
in Gp from j to 7 along either path between j and 7 on G¢.
This explains the last inequality, i.e., that the cascade is greater
in Gp than in Gg. This is an interesting result as it says that
cascade size can be increased merely by designing the graph
in one layer to be a permutation of the graph in the other.

Remark 4. The multiplex influence spread is said to be
submodular if

gu

g.u Gu
‘75u{}*Us

> O'Tu{l.} —orp,

(1)

for all agents ¢ and all pairs of agent sets S C 7. The
submodularity property ensures that a greedy selection of seed
set will achieve a near-optimal influence spread [3].

1 (2)

Fig. 6. Multiplex network G, with two equal-neighbor layers and six agents.
Red (blue) arrows represent edges in layer 1 (layer 2). So = {1}.

If all the agents use Procotol OR, the multiplex influence
spread can be shown to be submodular. However, we use
the duplex network in Fig. 6 to show that if one or more
agents use Protocol AND, the multiplex influence spread is
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not submodular. In particular, the multiplex influence spread
is not submodular with agents 5 and 6 using Protocol AND.
Note that the protocols of other agents do not affect influence
spread since agents 1 and 2 have no out-neighbors, and agents
3 and 4 only have out-neighbors in one layer. In Table I, we
show the influence spread of four seed sets and a breakdown
of the probabilities of each agent being active in each case.

TABLE I
INFLUENCE SPREAD OF FOUR DIFFERENT SEED SETS OF MULTIPLEX
NETWORK IN FIG. 6 WITH AGENTS 5 AND 6 USING PROTOCOL AND.

}71<14375—0

Seed Set 3,1} | {3.4} | {3,4,1}

Probabilities of agent 1 becoming active
Probabilities of agent 2 becoming active
Probabilities of agent 3 becoming active
Probabilities of agent 4 becoming active
Probabilities of agent 5 becoming active
Probabilities of agent 6 becoming active

0 1
0 0
1 1
1 1

1/4 172
7/16 518

| 26875 | 4.125

NI oo —~O—

Influence Spread

We observe that
JQ,Z/I Q,Z/{
(Bro{1y ~ (3 {3, 4}U{1} T34
which violates the submodularity condition.

VIII. A BAYESIAN NETWORK APPROACH

In this section, we map the problem of computing multiplex
influence spread into a problem of probabilistic inference
in Bayesian networks (BN). This means we can compute
multiplex influence spread by using an appropriate algorithm
for inference in BNs, such as the loopy belief propagation
algorithm. We first define directed acyclic graphs.

Definition 8 (Directed acyclic graph). A directed acyclic
graph (DAG) is a directed graph with no directed cycles.

Let the undirected graph of a DAG be obtained by replacing
each directed edge with an undirected edge. If this undirected
graph is a tree, the DAG is called a polytree. If this undirected
graph contains cycles, the DAG is called a DAG with loops.
A DAG with loops is not the same as a cyclic graph.

Definition 9 (Bayesian network and CPTs). Let G = (V, E),
where V =1,2,...nand E C V x V, be a directed acyclic
graph (DAG). Each node 7 € V is associated with a random
variable z; € X/. Denote the set of out- neighbors ofi e V
as N/. Let P(«! |x N,) be the probability of 2 conditioned on
the states of nodes in N/. Then G is a Bayesian network if
the joint distribution of the random variables is factorized into
conditional probabilities: P(z}, 25, ..., x),) = [[i—, P(«}|2/y,).
When every « has finite support, then IP(x}|2',) can be listed
in a table, called a conditional probability table (CPT), for
each realization of 'y,.

Probabilistic inference in a Bayesian network refers to
calculating the marginal probability of the state of each unob-
served node, conditioned on the states of the observed nodes.
The belief propagation (BP) algorithm was first proposed by
Pearl [22] to solve probabilistic inference in Bayesian net-
works. Pearl [22] showed that the algorithm is exact on DAGs
without loops, i.e., trees and polytrees [22]. It is not guaranteed
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to converge when applied to DAGs with loops. However,
Murphy et al. [23] showed that loopy belief propagation (LBP)
- the application of Pearl’s algorithm to DAGs with loops -
provides a good approximation when it converges.

In Algorithm 2, we show that if the projection network
proj(G) is a DAG (where proj(G) projects all the layers onto
a single graph as defined in Section II), the joint distribution of
the probability of activation of agents for the multiplex LTM
admits the graphical structure of a Bayesian network.

Algorithm 2 (Bayesian network from multiplex LTM). Given
multiplex network G for which proj(G) is a DAG and sequence
of protocols U:

1) Let G =

proj(G) be the underlying DAG for the
Bayesian network. Then N} = N; = U NF.

2) Let the random variable x} of node 7 in the Bayesian
network be Z;, the steady-state value of agent ¢ for the
multiplex LTM on G. Then z} € X! = {0,1}. The
observed nodes include the nodes j in the seed set Sy
(for which a:; = 1) and the nodes h not in the seed set
that have no out-neighbors (for which z}, = 0).

3) Construct CPTs for unobserved nodes from conditional
probabilities for the multiplex LTM: P(z|z)y,) =
PY-%i(z;|Z,), where l
P e 1 e )
P (xi:1|xNz’):Hk:1(1_ZjGNikﬁ{:iNi:1} Wi ;)
P9-OR(z, = 0|zy,) = 1 — P9OR(z; = 1|zy,), and
PYAND (3, =0|zy,) = 1 — P9AND (7, =1|zy,).

We use the example of Fig. 6 to show how to construct
CPTs. For agent 6, Ng = {3,4,5}, Ty, = {T3,%4,T5} and
its CPT has 2/V¢| = 8 rows. Table II shows CPTs for agent
6 using Protocol OR and Protocol AND.

TABLE 11
CPT OF AGENT 6 IN FIG. 6, THE CONDITIONAL PROBABILITIES ARE
]P’ER = P9:OR (36 =0|Z3,54,75), PPR = PYOR (36 =1|T3,74,75),
PAND = PIAND (75 =0|25,74,75), PAND = P9-AND (75 =1|%5,74,75).

T3 Ta 5 | PPR PPR | PAND  pAND
0 0 0| 100 000 | 100 000
0 0 1025 075 | 075 025
0 1 0|05 05 | 1.00 000
0 1 1 |000 100 | 05 050
I 0 0 |05 05 | 1.00 000
10 1 [000 100 | 050 050
I 1 0 [025 075 | 075 025
I 1 1 [000 100 | 000 100

We focus on the case when proj(G) is a DAG. The case
when proj(G) is cyclic can be handled by combining the
junction tree algorithm [24] and belief propagation. The cyclic
graph is first transformed into a junction tree by adding
additional edges. In a junction tree, nodes are grouped into
junction nodes and marginalization (BP) is performed on the
junction node level. After marginal probabilities of junction
nodes are obtained, a subsequent marginalization within the
junction node of interest is required to obtain the desired
marginal probability.
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Theorem 2. Given a multiplex network G for which proj(G)
is a DAG, with seed set Sy and sequence of protocols U, the
following two probabilities are the same:

1) ]P’g(’]u(ii = 1), the probability that agent i is active at
steady state for the multiplex LTM.

2) ]P(:I,‘; = 1‘.’1,‘; = 1,%‘% =0,7 € Sy, h ¢ So, Ny, = @),
the marginal probability of node i in the corresponding
Bayesian network of Algorithm 2, conditioned on ob-
served nodes in the seed set and those not in the seed
set that have no out-neighbors.

Proof. The activation of node ¢ in the multiplex LTM, con-
ditioned on the state of node ¢’s out-neighbors in proj(G), is
independent of the state of all other nodes. Thus, the joint
probability of activation of each node 7 factors into compo-
nents based on the graphical structure of the Bayesian network
constructed in Algorithm 2. The probability of activation of
node %, conditioned on the state of each of node ¢’s out-
neighbors in proj(G), is precisely the corresponding probability
constructed in the CPT for node 7 associated with the multiplex
LTM. Nodes in the seed set and those not in the seed set
that have no out-neighbors are encoded as observed nodes in
Algorithm 2. Thus, the probability that agent 7 is active at
steady state for the multiplex LTM (probability in the first
statement) can be computed by probabilistic inference on the
corresponding Bayesian network (the marginal probability in
the second statement). O]

The equivalence in Theorem 2 implies that we can compute
multiplex influence spread using probabilistic inference in
BN, which can be solved with BP algorithms.

Corollary 2. Given a multiplex network G for which proj(g)
is a DAG, with seed set Sy and sequence of protocols U,
multiplex influence spread Ug(,)u can be computed as

> B(a} = 1|z} = 1,2, = 0,5 € So,h & So, N = 2).
i=1
Proof. This follows from Theorem 2 and Definition 6. O

Remark 5. The computational complexity of Corollary 2 is
dominated by the LBP algorithm, which has a complexity of
O(nZd). As 2 < d < mn, the time cost of our Bayesian
network approach is lower than that of Algorithm 1, which is
O(nd™™).

Remark 6. Here, we provide an alternative proof of Propo-
sition 1 based on probabilistic inference in BNs. Table III
shows the CPT of agent i € {2,..., N — 1} for Gp, and for
Gr with v = OR and v = AND. With one initially active

TABLE IIT
CPT OF AGENT ¢ € {2,3,..., N — 1}. FOR Gp,, po = .5; FOR G WITH
u = OR, po = .75; FOR Gg AND u = AND, pg = .25.

Tic1  ZTip1 | P9NZ =0\, Tipn)  PO(@i=1|Ti1,Tip1)
0 0 1 0
0 1 1—po Po
1 0 1—po Po
1 1 0 1
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agent j, the activity can only spread from an agent closer to
j to an agent farther from j. Assume 1 < j < ¢ < N, for all
three networks, the probability that agent ¢ is active at steady
state for the multiplex LTM can be factorized as follows:
Pjg’u(.fl = 1) = Pg’u(fi = 1‘531'_1 =1,Z;41=0)
X Pg’u(fi_l = 1|fi_2 = 17 T; :O) X

% Pg’u(fﬁrl zl‘sﬁj 21,.’Ej+2:0) = ng_j

12)

The last equality holds since each agent uses the same protocol
and so each conditional probability is py. The cascade central-
ities follow by Definitions 6 and 7. Cases 4, j € {1 N} are
calculated similarly. The inequality follows since IP’ " OR(:EZ

1) > P§Pe(z;=1) > P§ AP (3, =1). O

Nguyen and Zheng [25] showed that computing influence
spread in a monoplex DAG with the Independent Cascade
Model (ICM) is #P-complete. Here, we prove a similar result
for computing influence spread for the multiplex LTM. The
implication is that approximating influence spread for the
multiplex LTM is the best we can do for large networks.

Theorem 3. Consider a multiplex network G for which
proj(G) is a DAG wzth seed set Sy and sequence of protocols
U. Computing O’S for the multiplex LTM is #P-complete.

Proof. The multiplex LTM problem, i.e., computing O’S(’)M for
the multiplex LTM, is #P-complete if (i) it is #P-hard and
(ii) it is in #P. We first prove (ii). By Corollary 2, every
instance of the multiplex LTM problem can be reduced to a
marginalization problem. Since the marginalization problem is
#P-complete, the multiplex LTM problem is in #P.

We prove (i) by showing that the multiplex LTM problem is
a reduction from the ICM problem, which has been shown to
be #P-complete (Theorem 1 of [25]). The ICM problem refers
to computing the influence spread cr?o"ICM for the ICM on a
monoplex DAG G = (V, E) with seed set Sy and probability
w;j,; assigned to each edge ¢e;; € F.

Let m be the largest number of out-neighbors over all nodes
in V. Consider a multiplex network with m layers G, ..., G,
where G}, = (V, E¥). To define edge sets E*, assign all edges
in G and to the multiplex network such that for each node there
is at most one outgoing edge in each layer k. Let w;; be the
weight of edge from ¢ to j in the multiplex network. Define
a set V'’ with a node i’ € V' for each node i € V. For each i
and k, compute the sum of weights of ¢’s outgoing edges in
layer k. If the sum is not 1, create an edge efyi, € E'* from
¢ to ¢/ and assign to the edge a weight that makes the sum
equal 1. Let multiplex network G’ have m layers G}, ...,G.,
where G} = (V UV’ E* U E'F). Then proj(G’) is a DAG.
Further, every node i’ € V' has no out-neighbors and i’ ¢ S.
So in the multiplex LTM 4’ € V' remains inactive. Let U =
{OR, ...OR}. By construction, og M JgO’ICM. O

IX. HETEROGENEITY IN PROTOCOL
A. Small Heterogeneous Multiplex Networks

We compute multiplex cascade centrality to evaluate for
the LTM the role of heterogeneity in the tradeoff between
sensitivity of the cascade to a reliable input and robustness of
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the cascade to an unreliable signal. We consider a signal to
be reliable if at least one agent can observe it in all sensing
modalities; otherwise it is unreliable. For example, if the signal
is only observed by means of a camera, it might be an optical
illusion, whereas if the signal is also observed with a laser
scanner it is likely real. Consider a team of small robots
involved in collective transport that cascade to form a bridge
when one robot observes a gap in the terrain. Forming the
bridge may require the robots to abandon their current task,
which could be counterproductive if the gap isn’t really there.

Knowing that agents that use Protocol OR enhance the
cascade and agents that use AND diminish the cascade,
we examine how to leverage heterogeneity in protocol to
advantage. Parametrizing the tradeoff by c, we solve as a
function of c for the optimal heterogeneous distribution of
agents using OR and agents using AND.

We investigate with the duplex network of Fig. 7, which
is small enough that we can compute cascade centrality with
Algorithm 1. There are six agents (nodes 1 to 6) and a seventh
node that represents an external signal. When node 7 appears
in both layers, as in Fig. 7, we interpret it as reliable. When
node 7 appears in only one layer, we interpret it as unreliable.
We assume that only one agent (e.g., agent 1 in Fig. 7) senses
node 7, whether or not it is reliable, and that it is equally
likely to be any of the six agents that sense it. We assume the
edge pointing to the signal has a weight of 1.

The graph in layer 1 (red edges) in Fig. 7 represents a
directed sensing modality, e.g., a team of robots with front and
side facing cameras or a school of fish that see poorly to their
rear. The graph in layer 2 (blue edges) represents a proximity
sensing modality, e.g., robots that receive local broadcasts or
fish that detect local movement with their lateral line.

0@
OO
-
®—®

Proximity Sensing

Directed Sensing

Fig. 7. Duplex network with agents 1 to 6, layer 1 (red), and layer 2 (blue).
Node 7, the external signal, is reliable since it appears in both layers.

As each agent can use either protocol, there are 26 = 64
different possible sequences of protocols U/ in total. We define
the utility function @ as a function of ¢ and ¢ > 0 to measure
the benefit of cascades that result from reliable signals less the
cost of cascades that result from unreliable signals:

16
)= g2

=1

Cgul U _’_Cgu27u)>. (13)

Superscript [ indexes the agent sensing node 7. Subscripts
“r”, “ul” and “u2” index the networks where node 7 appears
in both layers, layer 1 only, and layer 2 only, respectively.
Increasing c increases cost of response to unreliable signals
relative to benefit of response to reliable signals. Given c, the
optimal sequence of protocols is U¢ = argmax,,Q(U, c).



This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3088782

ZHONG et al.: INFLUENCE SPREAD IN THE HETEROGENEOUS MULTIPLEX LINEAR THRESHOLD MODEL 11

Fig. 8 illustrates &/¢ (with symmetry implied) on a plot of
the optimal fraction of agents using AND as a function of c. A
white (gray) circle represents an agent using OR (AND). When
c is 0 or small, responding to reliable signals dominates and
all agents use OR. When c is increased towards 3 and beyond,
avoiding unreliable signals dominates and all agents use AND.
For ¢ in between, the optimal solution is heterogeneous with
more agents using AND as c increases: first agent 1 or 2,
then agents 1 and 2, then {1,2,5} or {1,2,6}, then {1,2,3,6}
or {1,2,4,5}, and then {1,2,3,5,6} or {1,2,4,5,6}.

It is intuitive that as the cost ¢ of responding to unreliable
signals grows, the ratio of the number of agents using AND
(i.e., less readily activated agents) to the number of agents
using OR (i.e., more readily activated agents) should grow.
What this example shows beyond that intuition is how our
methodology provides the systematic means to compute, and
develop insight on, how many and where in the multiplex
network it is optimal, as a function of c, to locate agents using
AND versus agents using OR. We can observe in Fig. 8 a
pattern that results from the directed sensing network (red) in
Fig. 7: the first agents to become less responsive, as ¢ grows,
should be those in the “front”, and each subsequent agent to
become less responsive should be furthest from the other less
responsive agents.

o T @@
Z 86
208 (0o) 1
g @

g 6

E!J(J.() @@‘

'z ©®

504 1
=0

E O Protocol OR
=502+

?’Z O Protocol AND

s

[

Fig. 8. The optimal fraction of agents using Protocol AND with illustration
of optimal solution ¢/€ as c varies from 0 to 3. Symmetry is implied.

B. Large Heterogeneous Multiplex Networks

We apply Corollary 2 to study multiplex cascade centrality
for a random multiplex network with 20 agents and homo-
geneous and heterogeneous protocols. We randomly generate
duplex networks, for which the projection networks are DAGs,
by fixing a topological order of nodes and assigning edges
randomly with probability p.. A higher probability p, means
agents sense a greater number of the other agents. We consider
five scenarios, where each agent randomly and independently
chooses Protocol OR with probability 0% (homogeneous
AND), 25%, 50%, 75%, 100% (homogeneous OR).

We let the root node be the initial active agent and study
how the cascade centrality of the root changes as we vary p.
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from O to 1. For every value of p., we randomly generate 400
networks. Fig. 9 shows how the cascade centrality, averaged
over the random networks, changes as a function of p,.

o
(=)

—
W
T

——100% OR
—75% OR
—50% OR
—25% OR
0% OR

Average Cascade Centrality
w S

0

0 0.2 0.4 0.6 0.8 1
Probability p. of generating edges in the DAG

Fig. 9. Multiplex cascade centrality of root node, averaged over 400 networks,
as a function of probability p. of edges in the DAG.

Regardless of the protocol, as p. — 0, the DAG become
disconnected and the cascade centrality goes to 1 (only the
root node is active at steady state). As p. — 1, the root node
activates every other agent and the cascade centrality goes to
20. For p. in between, Fig. 9 shows that the homogeneous
groups with u = OR are most readily activated and cascade
size is sensitive in the range p. € (0, .5). Homogeneous groups
with v = AND are least readily activated and cascade size
is sensitive in the range p. € (.5,1). Fig. 9 shows further
the implications of heterogeneity in protocol. For example, it
can be seen how the percentage of agents using OR (versus
AND) can be selected and modulated to tune the sensitivity
of cascade size as a function of p..

X. CONCLUSION

We have extended the LTM to multiplex networks where
agents use different protocols that distinguish signals from
multiple sensing modalities. We have derived algorithms to
compute influence spread accurately using the multiplex LEM
and approximately using probabilistic inference. We have
shown how multiple sensing modalities affect spread and
how heterogeneity trades off sensitivity and robustness of
spread. Our methods provide systematic means for designing
heterogeneous protocols on multiplex networks of resource
constrained systems, such as teams of nano-robots, to control
the dynamics of spread.

Our analyses naturally extend to more general protocols
and alternative logical rules. The non-progressive LTM, where
active agents don’t necessary stay active, has been studied
on monoplex networks (see, e.g., [26]). Understanding the
non-progressive LTM on multiplex networks presents another
compelling direction for future work.
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