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a b s t r a c t

We study a distributed decision-making problem in which multiple agents face the same multi-
armed bandit (MAB), and each agent makes sequential choices among arms to maximize its own
individual reward. The agents cooperate by sharing their estimates over a fixed communication graph.
We consider an unconstrained reward model in which two or more agents can choose the same
arm and collect independent rewards. And we consider a constrained reward model in which agents
that choose the same arm at the same time receive no reward. We design a dynamic, consensus-
based, distributed estimation algorithm for cooperative estimation of mean rewards at each arm. We
leverage the estimates from this algorithm to develop two distributed algorithms: coop-UCB2 and
coop-UCB2-selective-learning, for the unconstrained and constrained reward models, respectively. We
show that both algorithms achieve group performance close to the performance of a centralized fusion
center. Further, we investigate the influence of the communication graph structure on performance.
We propose a novel graph explore–exploit index that predicts the relative performance of groups in
terms of the communication graph, and we propose a novel nodal explore–exploit centrality index
that predicts the relative performance of agents in terms of the agent locations in the communication
graph.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineered and natural systems are faced with the
hallenge of decision making under uncertainty, in which an
gent must make decisions among alternatives while still learning
bout those options. Decision making under uncertainty inher-
ntly features the explore–exploit tradeoff, where one must decide
etween selecting options with a high expected payoff (exploita-
ion) and selecting options with less well-known but poten-
ially better payoff (exploration). Often systems feature multiple
etworked decision makers, where performance of the system
ay require cooperative decision making, in which disparate and
istributed elements of a group act collaboratively.
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The explore–exploit tradeoff can be formally investigated
within the context of the multi-armed bandit (MAB) problem.
In a stochastic MAB problem, an agent is presented with a set
of arms (options), and each arm is represented by a stochastic
reward with a mean that is unknown to the agent. An agent’s
goal is to select arms sequentially in order to maximize its own
cumulative expected reward over time. Good performance in the
MAB problem requires an agent to balance learning the mean
reward of each arm (exploration) with choosing the arm with the
highest estimated mean (exploitation).

The explore–exploit tradeoff has been widely investigated us-
ing the MAB problem across a variety of scientific fields and
has found diverse application in control and robotics (Cheung,
Leighton, & Hover, 2013; Srivastava, Reverdy, & Leonard, 2014),
ecology (Krebs, Kacelnik, & Taylor, 1978; Srivastava, Reverdy,
& Leonard, 2013), and communications (Anandkumar, Michael,
Tang, & Swami, 2011). The MAB problem, and particularly the
classical single-agent variant, has been studied extensively (see
Bubeck & Cesa-Bianchi, 2012 for a survey). In Lai and Robbins
(1985), Lai and Robbins established a limit on the expected per-
formance of any optimal policy in a frequentist setting by prov-
ing a lower bound on the number of times an agent selects a
sub-optimal arm.
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To date most research on the MAB problem has focused on
single-agent policies, but the rising importance of networked sys-
tems and large-scale information networks have motivated the
investigation of the MAB problem with multiple agents. In this
paper, we study two variants of the multi-agent MAB problem, in
which each agent makes choices to maximize its own individual
reward but cooperates by communicating its estimates across
a network. The first variant assumes an unconstrained reward
model, in which agents are not penalized if they choose the same
arm at the same time. The second variant assumes a constrained
reward, in which agents that choose the same arm at the same
time receive a reduced reward. Consider agents in a remote
setting choosing among communication channels to send data
back to a base station. The constrained reward model applies
to the case in which data cannot be sent if agents choose the
same channel. The constrained reward model can also be used to
prevent mobile agents from searching for resource in the same
patch when there exist multiple resource-rich patches.

When a centralized fusion center that has access to all the
information available to every agent decides which arms will be
sampled by the agents, the agents are inherently coordinated and
no two agents ever sample the same arm at the same time. In
this setting, the above two variants become almost the same.
Anantharam, Varaiya, and Walrand (1987) extended the classical
single-agent MAB problem to the setting of such a fusion center
and derived a fundamental lower bound on the performance of
the fusion center. In this paper, we design distributed algorithms
that yield group performance close to that of a centralized fusion
center.

Kolla, Jagannathan, and Gopalan (2016) and Landgren, Srivas-
tava, and Leonard (2018) studied the multi-agent MAB problem
under the unconstrained reward model. In their setup, each agent
can share its actions and the associated rewards at each time with
its neighbors in the communication graph. In this setting, group
performance improves when each agent acts individually. How-
ever, group performance might not be close to the performance of
a centralized fusion center, especially for large sparse networks.
Madhushani and Leonard (2019, 2020) have extended this setting
to examine dynamic interactions among agents governed by a
heterogeneous stochastic process and to design strategies that
minimize sampling regret as well as communication costs.

Several researchers (Anandkumar et al., 2011; Gai & Krishna-
machari, 2014; Kalathil, Nayyar, & Jain, 2014; Liu & Zhao, 2010;
Wei & Srivastava, 2018) have studied the distributed multi-agent
MAB problem under the constrained reward model. In these
works, agents seek to converge on the set of best arms, but
they do not explicitly communicate with one another. In Gai and
Krishnamachari (2014), Kalathil et al. (2014), agents are ranked
and they target the best arm associated with their rank. Anand-
kumar et al. (2011) also studied distributed policies for agents
to learn their ranks while solving the multi-agent MAB problem.
Bistritz and Leshem (2018) studied the distributed multi-agent
MAB problem under no communication among agents. Assuming
no a priori ranking of agents, they developed a game-of-thrones
algorithm, inspired by Marden, Young, and Pao (2014), to enable
coordination among agents.

Shahrampour, Rakhlin, and Jadbabaie (2017) studied a variant
of the multi-agent MAB problem in which the reward associated
with each arm may be different for every agent. The best arm is
defined as the arm with the maximum average mean reward over
all agents. Unlike in other multi-agent MAB setups, in which each
agent makes a decision at each time, they consider a single group
decision obtained using a majority rule on individual decisions.

In early versions (Landgren, Srivastava, & Leonard, 2016a,
2016b) of the present work, we studied distributed cooperative
decision making in the multi-agent MAB problem with the un-
constrained reward model and Bayesian as well as frequentist
2

updates. In comparison, this paper considers a broader class of
reward distributions and studies both unconstrained and con-
strained reward models. We present new proofs that improve
on the preliminary versions and a much broader exploration of
the influence of communication graph structure on individual and
group decision-making performance.

Martínez-Rubio, Kanade, and Rebeschini (2019) extended our
preliminary versions (Landgren et al., 2016a, 2016b) in the con-
text of the unconstrained reward model. Their work is com-
plementary to the approach discussed here. A key difference
between their algorithm and the algorithm discussed in this
paper, is that our algorithm requires only the knowledge of total
number of agents to tune the decision-making heuristic, while
their algorithm requires the knowledge of the spectral gap of the
communication graph. They do not investigate the influence of
the network graph on performance.

In this paper, we study distributed cooperative decision mak-
ing in the multi-agent MAB problem under both unconstrained
and constrained reward models. We use a set of running con-
sensus algorithms for cooperative estimation of the mean reward
at each arm over an undirected graph and develop algorithms
for individual decision making based on these estimates for both
reward models. We also derive indices of graph structure that are
predictive of individual as well as group performance. The major
contributions of the paper are as follows.

First, we employ and rigorously analyze running consensus
algorithms for distributed cooperative estimation of mean reward
at each arm, and we derive bounds on key quantities.

Second, we propose and thoroughly analyze the coop-UCB2
algorithm for the multi-agent MAB problem under the uncon-
strained reward model and sub-Gaussian reward distributions.

Third, we propose and thoroughly analyze the coop-UCB2-
selective-learning algorithm for the multi-agent MAB problem
under the constrained reward model and sub-Gaussian rewards
distributions.

Fourth, we utilize the derived bounds on the decision-making
performance of the group to introduce a novel graph explore–
exploit index that predicts the ordering of graphs in terms of
group explore–exploit performance and a novel nodal explore–
exploit centrality index as a function of an agent’s location in a
graph that predicts the ordering of agents in terms of individual
explore–exploit performance. We illustrate the effectiveness of
these indices with simulations.

The remainder of the paper is organized as follows. In
Section 2 we describe the multi-agent MAB problem studied in
this paper. In Section 3 we present and analyze the cooperative
estimation algorithm. We propose and analyze the coop-UCB2
algorithm in Section 4 and the coop-UCB2-selective-learning al-
gorithm in Section 5. We illustrate our analytic results with
numerical examples in Section 6. We conclude in Section 7.

2. Problem description

We consider a distributed multi-agent MAB problem in which
M agents make sequential choices among the same set of N
arms with the goal of maximizing their individual reward. The M
agents cooperate by sharing their estimates over a bi-directional
communication network. The network is modeled by an undi-
rected graph G in which each node represents a decision-making
agent and edges represent the communication links between
them (Bullo, Cortés, & Martínez, 2009). Let A ∈ RM×M be the
adjacency matrix associated with G and L ∈ RM×M the cor-
responding Laplacian matrix. We assume that the graph G is
connected, i.e., there exists a path between every pair of nodes.

Let the reward associated with arm i ∈ {1, . . . ,N} be a
stationary random variable with an unknown mean m . Using its
i
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ocal information, each agent k ∈ {1, . . . ,M} selects arm ik(t) at
ime t ∈ {1, . . . , T }, where T ∈ N is the time horizon.

We study two reward models that determine how the re-
ard associated with arm ik(t) is received by agent k. In the
nconstrained reward model, agent k receives a reward equal to
he realized value of the reward at arm ik(t), irrespective of the
hoices of the other agents. In the constrained reward model, agent
receives a reward equal to the realized value of the reward at
rm ik(t), only if it is the only agent to select arm ik(t) at time t;
therwise it receives no reward.
The objective of the distributed cooperative multi-agent MAB

roblem is to maximize the expected cumulative group reward.
his objective is equivalent to minimizing the expected cumulative
roup regret defined by the difference between the best possible
xpected cumulative group reward and the achieved expected
umulative group reward.
Let {bi}i∈{1,...,N} be the permuted sequence of arms such that

b1 > mb2 > · · · > mbN .1 Under the unconstrained reward
odel, the expected cumulative group regret is defined by

unc
T = MTmb1 −

T∑
t=1

M∑
k=1

mik(t) =

N∑
i=1

M∑
k=1

∆iE[nk
i (T )], (1)

where nk
i (T ) is the total number of times arm i is selected by

agent k until time T and ∆i = mb1 − mi. In the following, we
use b1 and i∗ interchangeably to denote the arm with the highest
mean reward. Under the unconstrained reward model, the regret
at time t is minimized if every agent chooses arm i∗.

Similarly, under the constrained reward model and assuming
≤ N , the expected cumulative group regret is defined by

con
T = T

M∑
k=1

mbk −

T∑
t=1

M∑
k=1

mik(t)I
k
ik(t)(t), (2)

where Iki (t) = 1 if agent k is the only agent to sample arm i at
time t , and 0 otherwise. In the following, we denote the set of
j best arms by O∗j = {b

1, . . . , bj}. Under the constrained reward
model, the regret at time t is minimized if each agent chooses a
different arm in the set O∗M .

Let pi be the probability distribution of the reward associated
with arm i. For a centralized fusion center that has access to
information available to each agent, and under the unconstrained
reward model, the lower bound
M∑

k=1

E[nk
i (T )] ≥

(
1

D(pi ∥ pi∗ )
+ o(1)

)
ln T (3)

olds asymptotically as T → +∞ for any suboptimal arm i ̸=
∗ (Anantharam et al., 1987; Lai & Robbins, 1985). Here, D(pi ∥
i∗ ) represents the Kullback–Leibler divergence between pi and

pi∗ . Substituting, the lower bound on
∑

k E[n
k
i (T )] in (3) into the

expression (1) for Runc
T yields

Runc
T ≥

∑
i̸=i∗

(
∆i

D(pi ∥ pi∗ )
+ o(1)

)
ln T . (4)

For the constrained reward model, consider a centralized fu-
sion center that has access to the information available to each
agent and can assign the arm to be selected by each agent at each
time. For such a fusion center, no two agents ever select the same
arm at the same time, and, under the constrained reward model,
the lower bound
M∑

k=1

E[nk
i (T )] ≥

(
1

D(pi ∥ pbM )
+ o(1)

)
ln T (5)

1 We rely on the assumption that mbi ̸= mbj for all i, j for the constrained
eward model; it can be relaxed for the unconstrained reward model.
3

holds asymptotically as T → +∞ for any suboptimal arm i /∈

O∗M (Anantharam et al., 1987). Thus, the asymptotic regret of the
fusion center satisfies

Rcon
T ≥

∑
i∈{bM+1,...,bN }

(
∆i

D(pi ∥ pbM )
+ o(1)

)
ln T . (6)

Note that the expected regret under the constrained reward
model is higher if multiple agents select the same arm. Thus, the
above lower bound holds even if agents themselves make arm
selections instead of being assigned an arm by the fusion center.
The situation in which multiple agents select the same arm is
referred to as a collision.

Our objective in this paper is to design a distributed coop-
erative algorithm estimating mean reward at each arm and a
decision-making algorithm for each agent that yields expected
cumulative group regret close to that of a centralized fusion cen-
ter. We consider rewards drawn from a sub-Gaussian distribution.

Definition 1 (Sub-Gaussian Random Variable (Boucheron, Lugosi, &
Pascal, 2016)). A real-valued random variable X , with E[X] = m ∈
R, is sub-Gaussian if

φX (β) ≤ mβ +
σ 2
g β2

2
,

where σg ∈ R>0, β ∈ R, and φX : R → R is the cumulant
generating function of X defined by

φX (β) = ln (E[exp(βX)]) .

Sub-Gaussian distributions include Bernoulli, uniform, and
Gaussian distributions, and distributions with bounded support.

3. Cooperative estimation of mean rewards

In this section we study cooperative estimation of mean re-
wards at each arm. We propose two running (dynamic) consensus
algorithms (Braca, Marano, & Matta, 2008; Olfati-Saber & Murray,
2004) for each arm and analyze performance.

3.1. Cooperative estimation algorithm

For distributed cooperative estimation of the mean reward
at each arm i, we propose two running consensus algorithms:
(i) for estimation of total reward provided at arm i, and (ii) for
estimation of the total number of times arm i has been sampled.

Let ŝki (t) be agent k’s estimate of the total reward provided at
arm i until time t per unit agent. Let n̂k

i (t) be agent k’s estimate
of the total number of times arm i has been selected until time
t per unit agent. Recall that ik(t) is the arm sampled by agent
k at time t and let ξ k

i (t) = 1(ik(t) = i). 1(·) is the indicator
function, here equal to 1 if ik(t) = i and 0 otherwise. For all i and
k, we define rki (t) as the realized reward at arm i for agent k at
time t , which is a random variable sampled from a sub-Gaussian
distribution. The corresponding reward received by agent k at
time t is rk(t) = rki (t) · 1(i

k(t) = i).
The estimates ŝki (t) and n̂k

i (t) are updated using running con-
sensus as follows:

n̂i(t) = P
(
n̂i(t − 1)+ ξi(t)

)
, (7)

and ŝi(t) = P
(
ŝi(t − 1)+ ri(t)

)
, (8)

where n̂i(t), ŝi(t), ξi(t), and ri(t) are vectors of n̂k
i (t), ŝ

k
i (t), ξ k

i (t),
and rki (t) · 1(i

k(t) = i), k ∈ {1, . . . ,M}, respectively; P is a row
stochastic matrix given by

P = IM −
κ

L. (9)

dmax
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M is the identity matrix of order M , κ ∈ (0, 1] is a step size
arameter (Olfati-Saber & Murray, 2004), dmax = max{deg(i) | i ∈
{1, . . . ,M}}, and deg(i) is the degree of node i. In the following,
we assume without loss of generality that the eigenvalues of P
are ordered such that λ1 = 1 > λ2 ≥ · · · ≥ λM > −1.

In the running consensus updates (7) and (8), each agent k
collects information ξ k

i (t) and rk(t) at time t , adds it to its current
opinion, and then averages its updated opinion with the updated
opinion of its neighbors.

Using ŝki (t) and n̂k
i (t), agent k can calculate µ̂k

i (t), the estimated
empirical mean of arm i at time t defined by

µ̂k
i (t) =

ŝki (t)
n̂k
i (t)

. (10)

.2. Analysis of the cooperative estimation algorithm

We now analyze the performance of the estimation algorithm
efined by (7), (8) and (10). Let ncent

i (t) ≡ 1
M

∑t
τ=1 1

⊤

Mξi(τ ) =
1
M

∑M
k=1 n

k
i (t) be the total number of times arm i has been se-

ected per unit agent until time t , and let scenti (t) ≡ 1
M

∑t
τ=1 ξ⊤i

τ )ri(τ ) be the total reward provided at arm i per unit agent until
time t . Let ui be the eigenvector corresponding to λi, ud

i the dth
entry of ui. Note λ1 = 1 and u1 = 1M/

√
M . Let

ν+sum
pj =

M∑
d=1

ud
pu

d
j 1(u

k
pu

k
j ≥ 0), ν-sum

pj =

M∑
d=1

ud
pu

d
j 1(u

k
pu

k
j ≤ 0),

apj(k) =

⎧⎪⎨⎪⎩
ν+sum
pj uk

pu
k
j , if λpλj ≥ 0 & uk

pu
k
j ≥ 0,

ν-sum
pj uk

pu
k
j , if λpλj ≥ 0 & uk

pu
k
j ≤ 0,

νmax
pj |u

k
pu

k
j |, if λpλj < 0,

(11)

here νmax
pj = max {|ν-sum

pj |, ν
+sum
pj }.

We define the graph explore–exploit index ϵn as

n =
√
M

M∑
p=2

|λp|

1− |λp|
, (12)

nd the nodal explore–exploit centrality index ϵk
c for node k as

k
c = M

M∑
p=1

M∑
j=2

|λpλj|

1− |λpλj|
apj(k). (13)

ince |λp| < 1, for all p ≥ 2, definitions (12)–(13) imply that ϵn
nd ϵk

c decrease with a decrease in |λp| for any p ≥ 2. A small
alue of ϵn reflects a high level of symmetry and connectivity in
he graph. This will be shown to predict low error in each agent’s
stimate of the average number of times a suboptimal arm has
een chosen and thus high group explore–exploit performance.
ependence on the kth component of the eigenvectors in (13)
akes ϵk

c an index for node k, which measures how well agent
estimates the second-order moments of rewards. In an asym-
etric graph, ϵk

c < ϵ l
c reflects a more favorable location in the

raph for node k as compared to node l.
Both ϵn and ϵk

c depend only on the topology of the communi-
ation graph, yet they predict distributed cooperative estimation
erformance, as we show next, and explore–exploit performance,
s we show in subsequent sections.

roposition 1 (Performance of Cooperative Estimation). For the
istributed estimation algorithm defined in (7), (8) and (10), and
doubly stochastic matrix P defined in (9), the following statements
old:

(i) the estimate n̂k
i (t) satisfies

ncent
i (t)− ϵn ≤ n̂k

i (t) ≤ ncent
i (t)+ ϵn;
4

(ii) the following inequality holds for the estimate n̂k
i (t) and the

sequence {ξ j
i (τ )}τ∈{1,...,t}, j ∈ {1, . . . ,M}:

t∑
τ=1

M∑
j=1

⎛⎝ M∑
p=1

λt−τ+1
p uk

pu
j
p

⎞⎠2

ξ
j
i (τ ) ≤

n̂k
i (t)+ ϵk

c

M
.

Proof. The proof uses some algebraic manipulations on the
modal decomposition of (7). See Appendix A. □

We now derive concentration bounds for the estimated mean
computed with the cooperative estimation algorithm. Standard
concentration inequalities, such as the Chernoff–Hoeffding in-
equality, rely on the sample size being independent of the real-
ized values of samples. In the context of MABs, the arm selected
at time t depends on the rewards accrued at previous times. This
makes the number of times an arm is sampled and the total
reward accrued at that arm dependent random variables. For the
case of a single agent, the specific kind of dependence between
these random variables that occurs in MAB problems is leveraged
to derive a concentration inequality in Garivier and Moulines
(2008). In the following, we extend this concentration inequality
to the distributed estimation algorithm studied here.

For i ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}, {rki (t)}t∈N is a sequence
f i.i.d. sub-Gaussian rewards with mean mi ∈ R. Let Ft be the

filtration defined by the sigma-algebra of all the measurements
until time t . Let {ξ k

i (t)}t∈N be a sequence of Bernoulli variables
such that ξ k

i (t) is deterministically known given Ft−1, i.e., ξ k
i (t) is

pre-visible with respect to Ft−1. Let φi(β) = ln
(
E
[
exp

(
βrki (t)

)])
denote the cumulant generating function of rki (t).

Theorem 1 (Concentration Bounds for the Mean Estimator). For the
estimates ŝki (t) and n̂k

i (t) obtained using (7) and (8) given rewards
rawn from a sub-Gaussian distribution as defined in Definition 1,

the following concentration inequality holds:

P

(
ŝki (t)−min̂k

i (t)( 1
M

(
n̂k
i (t)+ ϵk

c

)) 1/2 > δ

)
<

⌈
ln (t+ϵn)

ln (1+ η)

⌉
exp

(
−δ2

2σ 2
g
G(η)

)
,

(14)

where δ > 0, η ∈ (0, 4), G(η) = (1− η2

16 ), and ϵn and ϵk
c are defined

n (12) and (13), respectively.

roof. The proof recursively computes a moment generating
unction of ŝki (t) using modal decomposition of (8) and condi-
tioning on the appropriate filtration. It subsequently uses the
Markov inequality and a peeling-argument-based union bound to
establish the inequality. See Appendix B. □

4. Cooperative decision making: unconstrained reward

In this section, we extend the UCB algorithm (Auer, Cesa-
Bianchi, & Fischer, 2002), for single-agent decision making among
arms, to design decision making in the distributed cooperative
setting in which a group of M agents communicate with one
another over a network with fixed graph. At every time t , each
agent k updates its estimates of the mean rewards at each arm
i according to the cooperative estimation algorithm of Section 3.
Then each agent chooses an arm to maximize its own individual
reward. We consider the case of unconstrained sub-Gaussian
rewards here and the case of constrained sub-Gaussian rewards
in Section 5.

Intuitively, each agent will perform better with communi-
cation than without. However, the extent of the performance
advantage of each agent and the group as whole, as a result
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f communication, depends on the network structure. We com-
ute bounds on group performance by computing bounds on
he expected group cumulative regret, and we show how the
ounds depend on graph explore–exploit index ϵn and nodal
xplore–exploit centrality indices ϵk

c , k = 1, . . . ,M .

.1. The coop-UCB2 algorithm

The coop-UCB2 algorithm is initialized by each agent sampling
ach arm once and proceeds as follows (see Appendix C for
seudocode implementation). At time t each agent k selects the
rm with maximum Q k

i (t − 1) = µ̂k
i (t − 1)+ Ck

i (t − 1), where

k
i (t − 1) = σg

√
2γ
G(η)
·
n̂k
i (t − 1)+ f (t − 1)

Mn̂k
i (t − 1)

·
ln (t − 1)
n̂k
i (t − 1)

. (15)

ere, f (t) is an increasing sublogarithmic function of t , γ > 1,
η ∈ (0, 4), and G(η) = 1− η2/16 .

Then, at each time t , each agent k updates its cooperative
estimate of the mean reward at each arm using the distributed
cooperative estimation algorithm described in (8)–(10). Note that
the heuristic Q k

i requires agent k to know the total number of
agents M but nothing about the graph structure.

Theorem 2 (Upper Bound on Suboptimal Selections for coop-UCB2
Algorithm). For the coop-UCB2 algorithm and the distributed coop-
erative multi-agent MAB problem under the unconstrained reward
model with sub-Gaussian rewards, the number of times a suboptimal
arm i is selected by all agents until time T satisfies

M∑
k=1

E[nk
i (T )] ≤

4σ 2
g γ ln T

∆2
i G(η)

⎛⎝1+

√
1+

∆2
i MG(η)
2γ σ 2

s

f (T )
ln T

⎞⎠+ L,

here

(ϵn, ϵ1
c , . . . , ϵ

M
c ) =

M∑
k=1

(t†k − 1)+M(1+ ϵn)+ 1

+
2M

ln (1+ η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

(16)

s a constant independent of T and t†k = f −1(ϵk
c ).

roof. The upper bound is computed as for UCB1 (Auer et al.,
002) and leverages Proposition 1 and Theorem 1. See
ppendix D. □

orollary 1 (Regret of the coop-UCB2 Algorithm). For the coop-UCB2
lgorithm and the distributed cooperative multi-agent MAB problem
nder the unconstrained reward model with sub-Gaussian rewards,
he expected cumulative group regret until time T satisfies

unc(T ) ≤
N∑
i=1

4σ 2
g γ ln T

∆iG(η)

⎛⎝1+

√
1+

∆2
i MG(η)
2γ σ 2

s

f (T )
ln T

⎞⎠+ N∑
i=1

L∆i.

roof. The corollary follows by substituting the upper bound on
M
k=1 E[n

k
i (T )] from Theorem 2 into (1). □

From these bounds, we can compare performance for the
istributed case relative to the centralized case, and we can draw
onclusions about the predictive value of explore–exploit indices
n and ϵk

c as follows.

emark 1 (Asymptotic Regret for coop-UCB2). In the limit t →
∞, f (t)

ln(t) → 0+, η→ 0, and

M∑
E[nk

i (T )] ≤

(
8σ 2

g γ

∆2 + o(1)

)
ln T .
k=1 i r

5

We thus recover the upper bound on regret for a centralized
fusion center as given in (3) within a constant factor. □

Remark 2 (Predicting Relative Performance from Network Graph
Topology). Theorem 2 and Corollary 1 provide bounds on the
performance of the group as a function of the graph structure,
as measured by the group explore–exploit index ϵn and nodal
xplore–exploit centrality indices ϵk

c . While the logarithmic term
n the upper bound on group performance is independent of
raph structure, the sublogarithmic term L, given in (16), depends
n ϵn and ϵk

c . Our theory predicts that the performance of a group
s better for a network with smaller ϵn, since a smaller ϵn implies
smaller upper bound on expected cumulative group regret.

ikewise, our theory predicts that the performance of individual
gent j is better than the performance of individual agent l if
j
c < ϵ l

c , since a smaller ϵk
c implies a smaller contribution from

gent k to the upper bound on expected cumulative group regret.
hese predictions rely on the bounds being sufficiently tight; we
llustrate the usefulness of the predictions with simulations in
ection 6. □

. Cooperative decision making: Constrained reward

In this section we extend our analyses in Section 4 to the case
f the constrained reward model.2 In this setting the optimal
olution in terms of group regret is for the M agents to each
ample a different arm from among the M-best arms at every
ime t . Recall that O∗k is the set of k-best arms. Let ∆min =

in{|mi −mj| | i, j ∈ {1, . . . ,N}, i ̸= j}. In the following, we
assume that each agent k has a preassigned unique rank ωk

∈

{1, . . . ,M} and will attempt to sample the arm with the ωk-th
best reward. Without loss of generality, we assume that ωk

= k.
We define agent ki as the index of the agent attempting to sample
arm i ∈ O∗M . We let ki = 0 if i /∈ O∗M . Therefore, the expected
cumulative regret of agent k at time T is

Rk(T ) =
T∑

t=1

(
mbk − E

[
N∑
i=1

rki (t)1{i
k(t) = i}Iki (t)

])
, (17)

where Iki (t) = 1 if agent k is the only agent to sample arm i at
time t , and 0 otherwise.

In the following, we assume that while agents do not receive
any reward if they sample the same arm, they still have access to
the value of the reward they did not receive and they can use it
in updating their estimates of the mean rewards.

5.1. The coop-UCB2-selective-learning algorithm

In this section, we present the coop-UCB2-selective-learning
algorithm in which agent k selectively targets the kth best arm
(see Appendix E for pseudocode implementation). The coop-
UCB2-selective-learning algorithm for sub-Gaussian rewards is
initialized by each agent sampling each arm once in a round-robin
fashion with agent k beginning the sampling with the kth arm.
At each time t , each agent k updates its cooperative estimate of
the mean reward at each arm using the distributed cooperative
estimation algorithm described in (8)–(10).

Subsequently, at time t , each agent k estimates O∗k by con-
structing the set Ok(t) containing k arms associated with the

2 Some authors (Anandkumar et al., 2011; Kalathil et al., 2014) have consid-
red the case where agents that sample the same arm at the same time receive a
plit reward. The algorithm presented here is still appropriate for that scenario,
nd the regret as defined above will upper bound the regret in the case of split
ewards.
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ndices of the k highest values in the set {Q k
i (t − 1) = µ̂k

i (t −
)+ Ck

i (t − 1) | i ∈ {1, . . . ,N}}, where

k
i (t − 1) = σg

√
2γ
G(η)
·
n̂k
i (t − 1)+ f (t − 1)

Mn̂k
i (t − 1)

·
ln (t − 1)
n̂k
i (t − 1)

, (18)

(t) is an increasing sublogarithmic function of t , γ > 1, η ∈
(0, 4), and G(η) = 1− η2/16 .

Each agent k then selects the arm associated with the mini-
um value in the set {W k

i (t − 1) = µ̂k
i (t − 1) − Ck

i (t − 1) | i ∈
Ok}.

Our algorithm generalizes the selective-learning algorithm for
multi-agent MABs with no communication among agents pro-
posed in Gai and Krishnamachari (2014) to the case of communi-
cating agents.

5.2. Analysis of the coop-UCB2-selective-learning algorithm

We first bound the number of times an arm i is incorrectly
selected. We call the selection of arm i ∈ O∗M incorrect if it is
selected by an agent k ̸= ki. Any selection of arm i /∈ O∗M is
incorrect. Let n̄k

i (t) be the number of incorrect selections of arm i
until time t .

Theorem 3 (Upper Bound on Incorrect Selections for coop-UCB2-
selective-learning Algorithm). For the coop-UCB2-selective-learning
algorithm and the distributed cooperative multi-agent MAB problem
under the constrained reward model with sub-Gaussian rewards, the
number of times an arm i is incorrectly selected by all agent until
time T satisfies∑
k̸=ki

E
[
n̄k
i (T )

]
≤

4σ 2
g γ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)
2σ 2

g γ

f (T )
ln T

)
ln T + L̄,

where

L̄(ϵn, ϵ1
c , . . . , ϵ

M
c ) =

M∑
k=1

(t†k − 1)+M(1+ ϵn)+ 1

+
2M(N + 1)
ln (1+η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

(19)

s a constant independent of T and t†k = f −1(ϵk
c ).

roof. The upper bound is computed similarly to SL(K ) (Gai &
rishnamachari, 2014), leveraging Proposition 1 and Theorem 1.
ee Appendix F. □

orollary 2 (Regret of the coop-UCB2-selective-learning Algorithm).
For the coop-UCB2-selective-learning algorithm and the distributed
cooperative multi-agent MAB problem under the constrained reward
model with sub-Gaussian rewards, the expected cumulative regret of
the group satisfies

Rcon(T ) ≤
M∑

k=1

Rk(T ) ≤ mi∗NB+
M∑

k=1

mbkB,

where

B=
4σ 2

g γ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)
2σ 2

g γ

f (T )
ln T

)
ln T + L̄. (20)

roof. As in Gai and Krishnamachari (2014), agent k incurs regret
either by selecting an arm i ̸= bk or when another user j ̸= k
selects arm bk. Therefore,
M∑

Rk(T ) ≤
M∑∑

E
[
n̄k
i (T )

]
mbk +

M∑∑
E
[
n̄j
bk
(T )
]
mbk
k=1 k=1 i̸=bk k=1 j̸=k

6

≤mi∗

N∑
i=1

∑
k̸=ki

E
[
n̄k
i (T )

]
+

M∑
k=1

∑
j̸=k

E
[
n̄j
bk
(T )
]
mbk

≤mi∗

N∑
i=1

B+
M∑

k=1

mbkB,

completing the proof. □

From these bounds, we can compare performance in the case
of communication between agents relative to the case of no
communication between agents, and we can draw conclusions
about the predictive value of explore–exploit indices ϵn and ϵk

c
for the unconstrained reward model, as follows.

Remark 3 (Concise Upper Bound on Regret). The upper bound on
expected cumulative group regret in Corollary 2 can be expressed
concisely, at the expense of some tightness, as
M∑

k=1

Rk(T ) ≤ mi∗B(M + N).

In the limit η → 0+ and γ → 1+, this is a factor of 4M tighter
than the bounds in Gai and Krishnamachari (2014), demonstrat-
ing the benefits of communication between agents for the con-
strained reward model.

Remark 4 (Predicting Relative Performance from Network Graph
Topology for Constrained Reward Model). Theorem 3 and
Corollary 2 predict the performance of the group as a function
of the graph structure for the constrained reward model just as
described for the unconstrained reward model in Remark 2, since
L̄ given in (19) has the same form as L given in (16). □

6. Numerical illustrations

In this section, we illustrate our theoretical analyses from
the previous sections with numerical examples. We first provide
examples in which the ordering of the performance of nodes
obtained through numerical simulations is as predicted by the
ordering of the nodal explore–exploit centrality indices, as dis-
cussed in Remarks 2 and 4. That is, a smaller ϵk

c predicts better
performance for agent k. We then provide examples in which
the ordering over networks of the performance of a group of
agents is as predicted by the ordering over networks of the graph
explore–exploit index, as discussed in Remarks 2 and 4. That is,
a smaller ϵn predicts better performance for the group with the
orresponding network graph. Our final example illustrates how
erformance improves with connectivity.
Unless otherwise noted in the simulations, we consider a

0-armed bandit problem with mean rewards drawn from a
ormal random distribution for each Monte-Carlo run with mean
and standard deviation 10. The sampling standard deviation is
s = 30 and the results displayed are the average of 106 Monte-
arlo runs. These parameters were selected to give illustrative
esults within the displayed time horizon, but the relevant con-
lusions hold across a wide range of parameter values. In the
imulations f (t) =

√
ln t , and consensus matrix P is as in (9) with

κ = dmax
dmax−1

.

Example 1. Fig. 1 demonstrates the ordering of performance
among agents using coop-UCB2 with the underlying graph struc-
ture in Table 1. The values of ϵk

c for each node are also given in
Table 1. As predicted by Theorem 2 (Remark 2), agent 1 should
have the lowest regret, agents 2 and 3 should have equal and
intermediate regret, and agent 4 should have the highest regret
as this is their ordering with respect to ϵk

c . These predictions are
validated in our simulations shown in Fig. 1.
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able 1
ixed network used in Example 1.

Table 2
Fixed network used in Example 2 and several centrality indices.

Fig. 1. Simulation results comparing expected cumulative regret for agents in
the fixed network shown in Table 1. Agents 2 and 3, with the same centrality
index, have nearly identical expected regret. Agent 1, with lowest centrality
index, performs best and agent 4, with highest centrality index, performs worst.

Example 2. Fig. 2 demonstrates the ordering of performance
among agents using coop-UCB2 with the underlying graph struc-
ture in Table 2. Rewards are drawn from a normal distribution
with mean 0 and standard deviation 5. The values of ϵk

c for each
node are also given in Table 2, along with the values of degree and
information centrality for each node (Poulakakis, Young, Scardovi,
& Leonard, 2015), for comparison. Degree centrality for a node
is defined as the number of neighbors. Information centrality,
defined in Stephenson and Zelen (1989), is a nodal measure of the
‘‘effective resistance’’ between the node and every other node in
the network.

For this example, degree centrality does not distinguish agent
5 from agents 3 and 4, whereas ϵk

c (and information centrality)
oes. Further, according to information centrality, which is larger
he more central the node, node 5 is less information central than
odes 3 and 4. In contrast, according to ϵk

c , which is smaller the
ore central the node, node 5 is more explore–exploit central

han nodes 3 and 4.
As in the prior example, the simulation results of Fig. 2 validate

he prediction of Theorem 2 (Remark 2) that the ordering of
gents by performance, as measured by expected cumulative
egret, is the same as the ordering of agents by nodal explore–
xploit centrality index ϵk

c , with smaller ϵk
c corresponding to

ower regret. In contrast, for this example, the ordering of agents
 i

7

Table 3
Fixed networks used in Example 3 arranged in order of increasing value of ϵn .
Values of ϵn are calculated using P as in Eq. (9) and κ = 0.02. A ⋆ indicates
best performing agent(s) in the graph as determined in the simulations.

Fig. 2. Simulation results comparing expected cumulative regret for agents in
the fixed graph shown in Table 2.

by degree or information centrality do not predict the ordering of
agents by performance.

We have found some parameter regimes, specifically for re-
wards that are far apart in mean value, where information cen-
trality does give the correct ordering of performance, rather than
ϵk
c . This is likely due to sensitivity of performance to the ∆i.
owever, we have observed that ϵk

c is broadly predictive of per-
ormance for a variety of regimes and network graphs.

.1. Validation of relative performance of networks as predicted by
raph explore–exploit index ϵn

xample 3. Fig. 3 compares the expected cumulative regret
veraged over all agents in each of the five graphs in Table 3,
here agents use coop-UCB2. The value of ϵn is shown in Table 3

or each graph. Theorem 2 predicts that graphs with lower ϵn will
ave lower average expected cumulative regret. Here we use two
rms and κ = 0.02. Fig. 3 verifies this prediction, showing the
rdering of graphs by performance is equal to the ordering of
raphs by the graph explore–exploit index ϵn.
Fig. 4 compares expected cumulative regret for best perform-

ng agent(s) in each of the five graphs in Table 3. The central agent

n the star graph outperforms the best agent in the all-to-all graph
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Fig. 3. Simulation results of expected cumulative regret of the group for each
f the fixed graphs shown in Table 3.

Fig. 4. Simulation results of expected cumulative regret of the agent with lowest
regret in each of the fixed graphs shown in Table 3.

Fig. 5. Simulation results of expected cumulative regret of 100 agents on an
Erdös–Rényi random graph for five different values of edge probability ρ.

despite the star graph’s poor group performance. This indicates
that the four peripheral agents are doing most of the exploration.
The stark difference in the propensity to explore between the
central and peripheral agents in the star graph demonstrates that
regret accumulation for different agents could be controlled by
design of the communication graph structure.

Example 4. Fig. 5 compares the average expected cumulative
regret of 100 agents using coop-UCB2 (two arms and κ = dmax )
dmax−1

8

for a range of Erdös-Rényi (ER) random graphs (Bollobás, 1998).
We simulate five values of the probability ρ of a connection
between any two agents, from ρ = 0.05 (weakly connected) to
ρ = 1.0 (fusion center). For each ρ we randomly generated 15
ER graphs. We show the results of 2×104 simulations per graph,
or 3×105 simulations per ρ. The plot shows how performance
mproves as the connection between agents increases.

. Final remarks

We have used a distributed multi-agent MAB problem to
xplore cooperative decision making under uncertainty for net-
orks of agents. Each agent makes choices among arms to maxi-
ize its own individual reward but cooperates with others in the
roup by communicating its estimates across the network. We
onsidered both an unconstrained reward model, in which agents
re not penalized if they choose the same arm at the same time,
nd a constrained reward model, in which agents that choose the
ame arm at the same time receive no reward.
We designed an algorithm for distributed cooperative estima-

ion of mean reward at each arm. Building on this, we designed
he coop-UCB2 and coop-UCB2-selective-learning algorithms for
he unconstrained and constrained reward models, respectively.
hese are distributed algorithms that enable agents to leverage
he information shared by neighbors in their decision making,
ithout requiring that agents know the network graph struc-
ure. We proved bounds on performance, showing logarithmic
xpected cumulative group regret close to that of a centralized
usion center, for both reward models.

From the bounds on regret, we defined a novel graph explore–
xploit index and nodal explore–exploit centrality index, which
epend only on the network graph topology. The group index
redicts the ordering by performance of network graphs and the
odal index predicts the ordering by performance of the nodes.
Future research directions include rigorously exploring other

ommunications schemes, which may offer better performance
r be better suited to modeling classes of networked systems.
he tradeoff between communication frequency and performance
Madhushani & Leonard, 2020) as well as the presence of noisy
ommunications (Savas, Srivastava, & Leonard, 2017) will be im-
ortant considerations.
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ppendix A. Proof of Proposition 1

We begin with statement (i). From (7) it follows that

ˆ i(t) = P t n̂i(0)+
t∑

τ=1

P t−τ+1ξi(τ )

=

t∑
τ=1

( 1
M

1M1⊤Mξi(τ )+
M∑

p=2

λt−τ+1
p upup

⊤ξi(τ )
)

= ncent
i (t)1M +

t∑
τ=1

M∑
p=2

λt−τ+1
p upup

⊤ξi(τ ). (A.1)
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A

For (i), we bound the kth entry of the second term of (A.1):

t∑
τ=1

M∑
p=2

λt−τ+1
p

(
upup

⊤ξi(τ )
)
k≤

t∑
τ=1

M∑
p=2

|λt−τ+1
p |∥up∥

2
2∥ξi(τ )∥2

≤
√
M

t∑
τ=1

M∑
p=2

|λt−τ+1
p | ≤ ϵn.

To prove statement (ii), let νpwi(τ )=
∑M

j=1 u
j
puj

wξ
j
i (τ ) and then

t∑
τ=1

M∑
j=1

⎛⎝ M∑
p=1

λt−τ+1
p uk

pu
j
p

⎞⎠2

ξ
j
i (τ )

=

t∑
τ=1

M∑
p=1

M∑
w=1

(λpλw)t−τ+1uk
pu

k
w

M∑
j=1

uj
pu

j
wξ

j
i (τ )

=

t∑
τ=1

M∑
p=1

M∑
w=2

(λpλw)t−τ+1uk
pu

k
wνpwi(τ )

+
1
M

t∑
τ=1

M∑
p=1

M∑
j=1

λt−τ+1
p uk

pu
j
pξ

j
i (τ )

=

t∑
τ=1

M∑
p=1

M∑
w=2

(λpλw)t−τ+1uk
pu

k
wνpwi(τ )+

1
M

n̂k
i (t). (A.2)

This establishes (ii) since for the first term of (A.2):
t∑

τ=1

(λpλw)t−τ+1uk
pu

k
wνpwi(τ ) ≤

t∑
τ=1

|(λpλw)t−τ+1
∥ uk

pu
k
wνpwi(τ )|

≤

t−1∑
τ=0

|λpλw|
t−τ+1apw(k) ≤

|λpλw|

1− |λpλw|
apw(k).

ppendix B. Proof of Theorem 1
We begin by noting that ŝki (t) can be decomposed as

ŝki (t) =
t∑

τ=1

M∑
p=1

λt−τ+1
p

M∑
j=1

uk
pu

j
pr

j
i (τ )ξ

j
i (τ ). (B.1)

Let ŝkpi (t) =
∑t

τ=1 λt−τ+1
p

∑M
j=1 u

k
pu

j
pr

j
i (τ )ξ

j
i (τ ). Then,

M∑
p=1

ŝkpi (t) =
M∑

p=1

M∑
j=1

λpuk
pu

j
pr

j
i (t)ξ

j
i (t)+

M∑
p=1

λpŝ
kp
i (t − 1). (B.2)

It follows from (B.1) and (B.2) that for any Θ > 0

E
[
exp

(
Θ ŝki (t)

) ⏐⏐⏐Ft−1

]
= E

⎡⎣exp

⎛⎝Θ

M∑
p=1

ŝkpi (t)

⎞⎠⏐⏐⏐Ft−1

⎤⎦
= E

⎡⎣exp

⎛⎝Θ

M∑
p=1

λp

M∑
j=1

uk
pu

j
pr

j
i (t)ξ

j
i (t)

⎞⎠⏐⏐⏐Ft−1

⎤⎦ K(t−1)

=

M∏
j=1

E

⎡⎣exp

⎛⎝Θ

M∑
p=1

λpuk
pu

j
pr

j
i (t)ξ

j
i (t)

⎞⎠⏐⏐⏐Ft−1

⎤⎦ K(t−1)

= exp

⎛⎝ M∑
φi

⎛⎝Θ

M∑
λpuk

pu
j
pξ

j
i (t)

⎞⎠⎞⎠ K(t−1)
j=1 p=1
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= exp

⎛⎝ M∑
j=1

φi

⎛⎝Θ

M∑
p=1

λpuk
pu

j
p

⎞⎠ ξ
j
i (t)

⎞⎠ K(t−1),

K(t−1) = exp

⎛⎝Θ

M∑
p=1

λpŝ
kp
i (t − 1)

⎞⎠ ,

and the second-to-last equality follows since, conditioned on
Ft−1, ξ

j
i (t) is deterministic and r ji (t) are i.i.d. for each

j ∈ {1, . . . ,M}. The last equality follows since ξ
j
i (t) is binary and

the two expressions are the same for ξ
j
i (t) ∈ {0, 1}. Therefore,

E

[
exp

(
Θ

M∑
p=1

ŝkpi (t)−
M∑
j=1

φi

⎛⎝Θ

M∑
p=1

λpuk
pu

j
p

⎞⎠ ξ
j
i (t)
)⏐⏐⏐⏐Ft−1

]
=K(t−1).

Using the above argument recursively with ski (0) = 0, we obtain

E

[
exp

(
Θ ŝki (t)−

t∑
τ=1

M∑
j=1

φi

⎛⎝Θ

M∑
p=1

λt−τ+1
p uk

pu
j
p

⎞⎠ ξ
j
i (τ )

)]
= 1.

For sub-Gaussian random variables φi(β) ≤ βmi +
1
2σ

2
g β2, thus

1 = E

[
exp

(
Θ
(
ŝki(t)−min̂k

i(t)
)

(B.3)

−
σ 2
g

2

t∑
τ=1

M∑
j=1

⎛⎝Θ

M∑
p=1

λt−τ+1
p uk

pu
j
p

⎞⎠2

ξ
j
i (τ )

)]

≥ E

[
exp

(
Θ
(
ŝki(t)−min̂k

i(t)
)
−

σ 2
g Θ2

2M

(
n̂k
i (t)+ ϵk

c

))]
,

where the last inequality follows from the second statement of
Proposition 1. Now using the Markov inequality, we obtain

e−a≥ P

(
exp

(
Θ
(
ŝki(t)−min̂k

i(t)
)
−

σ 2
g Θ2

2M

(
n̂k
i (t)+ ϵk

c

))
≥ea

)

= P

(
ŝki (t)−min̂k

i (t)( 1
M

(
n̂k
i (t)+ ϵk

c

)) 1
2
≥

a
Θ

(
1
M

(
n̂k
i (t)+ ϵk

c

))− 1
2

+
σ 2
g Θ

2

(
1
M

(
n̂k
i (t)+ ϵk

c

)) 1
2
)

. (B.4)

Random variable n̂k
i (t) on the right of (B.4) depends on the

random variable on the left. So, we use union bounds on n̂k
i (t)

to obtain the concentration inequality. Consider an exponentially
increasing sequence of time indices {(1+ η)h−1 | h ∈ {1, . . . ,D}},
where D =

⌈
ln(t+ϵn)

ln(1+η)

⌉
and η > 0. For every h ∈ {1, . . . ,D}, define

Θh =
1
σg

√
2aM

(1+ η)h−
1
2 + ϵk

c

. (B.5)

Thus, if (1+ η)h−1 ≤ n̂k
i (t) ≤ (1+ η)h, then

a
Θh

(
1
M

(
n̂k
i (t)+ ϵk

c

))− 1
2

+
σ 2
g Θh

2

(
1
M

(
n̂k
i (t)+ ϵk

c

)) 1
2

= σg

√
a
2

⎛⎝( (1+ η)h−
1
2 + ϵk

c

n̂k(t)+ ϵk
c

) 1
2

+

(
n̂k
i (t)+ ϵk

c

(1+ η)h−
1
2 + ϵk

) 1
2
⎞⎠
i c
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w
a

P

I

≤ σg

√
a
2

⎛⎝( (1+ η)h−
1
2

n̂k
i (t)

) 1
2

+

(
n̂k
i (t)

(1+ η)h−
1
2

) 1
2
⎞⎠

≤ σg

√
a
2

(
(1+ η)

1
4 + (1+ η)−

1
4

)
, (B.6)

here the second-to-last inequality follows from the fact that for
, b > 0, the function ϵ ↦→

√
a+ϵ
b+ϵ
+

√
b+ϵ
a+ϵ

with domain R≥0 is
monotonically non-increasing, and
the last inequality follows from the fact that for η > 0, the

function x ↦→

√
(1+η)h−

1
2

x +

√
x

(1+η)h−
1
2

with domain [(1 +

η)h−1, (1+η)h] achieves its maximum at either of the boundaries.
Applying union bounds on D possible values of h and using (B.6)
for (1+ η)h−1 ≤ n̂k

i (t) ≤ (1+ η)h, from (B.4) we get

P

⎛⎝ ŝki (t)−min̂k
i (t)( 1

M

(
n̂k
i (t)+ ϵk

c

)) 1
2

> σg

√
a
2

(
(1+ η)

1
4 + (1+ η)−

1
4

)⎞⎠
≤

D∑
h=1

P

⎛⎝ ŝki (t)−min̂k
i (t)( 1

M

(
n̂k
i (t)+ ϵk

c

)) 1
2

>
a

Θh

(
1
M

(
n̂k
i (t)+ ϵk

c

))− 1
2

+
σ 2
g Θh

2

(
1
M

(
n̂k
i (t)+ ϵk

c

)) 1
2

& (1+ η)h−1 ≤ n̂k
i (t)+ ϵk

c < (1+ η)h

⎞⎟⎠ ≤ De−a.

Setting σg
√ a

2

(
(1+ η)

1
4 + (1+ η)−

1
4

)
= δ yields⎛⎝ ŝki (t)−min̂k

i (t)( 1
M

(
n̂k
i (t)+ ϵk

c

)) 1
2

> δ

⎞⎠
≤ D exp

⎛⎜⎝ −2δ2

σ 2
g

(
(1+ η)

1
4 +(1+ η)−

1
4

)2
⎞⎟⎠ .

t can be verified using Taylor series expansion that

4(
(1+ η)

1
4 + (1+ η)−

1
4

)2 ≥ 1−
η2

16
.

Therefore, it holds that

P

⎛⎝ ŝki (t)−min̂k
i (t)( 1

M

(
n̂k
i (t)+ ϵk

c

)) 1
2

> δ

⎞⎠ ≤ D exp
(
−δ2

2σ 2
g

(
1−

η2

16

))

=

⌈
ln (t + ϵn)

ln (1+ η)

⌉
exp

(
−δ2

2σ 2
g

(
1−

η2

16

))
.

Appendix C. Pseudocode for coop-UCB2

See Algorithm 1.

Appendix D. Proof of Theorem 2

We proceed similarly to Auer et al. (2002). The number of
selections of a suboptimal arm i by all agents until time T is
M∑

k=1

nk
i (T ) ≤

M∑
k=1

(t†k − 1)+
M∑

k=1

T∑
†

1(Q k
i (t − 1) ≥ Q k

i∗ (t − 1))

t=tk
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Algorithm 1: coop-UCB2
Input : arms {1, . . . ,N}, agents {1, . . . ,M};
Input : parameters σg > 0, η > 0, γ > 1, function f (t);
Output : allocation sequence ik(t), t ∈ {1, . . . , T }, k ∈ {1, . . . ,M};

1 set n̂k
i ← 0, ŝki ← 0, i ∈ {1, . . . ,N}, k ∈ {1, . . . ,M};

2 for t ∈ {1, . . . , T } do
if t ≤ N then

% Initialization

3 for each agent k ∈ {1, . . . ,M} do
ik(t)← t ;

collect reward rk(t) ;

4 else
5 for each agent k ∈ {1, . . . ,M} do

% select arm with maximum Q k
i

for each arm i ∈ {1, . . . ,N} do

Q k
i ←

ŝki
n̂ki
+ σg

√
2γ
G(η) ·

n̂ki +f (t−1)

Mn̂ki
·

ln(t−1)
n̂ki

;

ik(t)← argmax{Q k
i | i ∈ {1, . . . ,N}} ;

collect reward rk(t) ;

6 for i ∈ {1, . . . ,N} do
7 update n̂i and ŝi using (7) and (8);

≤ A+
M∑

k=1

⎛⎜⎝(t†k − 1)+
T∑

t=t†k

1(Q k
i (t − 1) ≥ Q k

i∗ (t − 1),Mncent
i ≥ A)

⎞⎟⎠
(D.1)

where A > 0 is a constant that will be chosen later.
At a given time t + 1 an individual agent k will choose a

suboptimal arm only if Q k
i (t) ≥ Q k

i∗ (t). For this condition to be
true at least one of the following three conditions must hold:

µ̂i∗ (t) ≤ mi∗ − Ck
i∗ (t) (D.2)

µ̂i(t) ≥ mi + Ck
i (t) (D.3)

mi∗ < mi + 2Ck
i (t). (D.4)

We bound the probability that (D.2) and (D.3) hold using
Theorem 1:

P
(
(D.2) holds | t ≥ t†k

)
= P

⎛⎝ ŝki −min̂k
i√

1
M

(
n̂k
i (t)+ f (t)

) ≥σg

√
2γ ln (t)
G(η)

⏐⏐⏐⏐⏐ t ≥ t†k

⎞⎠
≤ P

⎛⎝ ŝki −min̂k
i√

1
M

(
n̂k
i (t)+ ϵk

c

) ≥σg

√
2γ ln (t)
G(η)

⏐⏐⏐⏐⏐ t ≥ t†k

⎞⎠
≤

(
ln (t)

ln (1+ η)
+

ln (1+ ϵn)

ln (1+ η)
+ 1

)
1
tγ

,

P
(
(D.3) holds |t ≥ t†k

)
≤

(
ln (t)

ln (1+ η)
+

ln (1+ ϵn)

ln (1+ η)
+ 1

)
1
tγ

.

We now examine the event (D.4).

mi∗ < mi + 2Ck
i (t)

H⇒ n̂k
i (t)

2 ∆2
i MG(η)
8σ 2

g
− γ n̂k

i (t) ln(t)− γ f (t) ln(t) < 0. (D.5)
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T
n

f
P

≤

o

µ

T
p

2

w

n

he quadratic equation (D.5) can be solved to find its roots, and if
ˆ i(t) is greater than the larger root the inequality will never hold.
Solving the quadratic equation (D.5), we obtain that event (D.4)
does not hold if

n̂k
i (t) ≥

4σ 2
g γ ln(t)

∆2
i MG(η)

+

√(4γ σ 2
g ln(t)

∆2
i MG(η)

)2
+

8σ 2
g f (t)γ ln(t)

∆2
i MG(η)

=
4σ 2

g γ ln t

∆2
i MG(η)

(
1+

√
1+

∆2
i MG(η)
2σ 2

g γ

f (t)
ln t

)
.

Now, we set A =
⌈
Mϵn +

4σ2
g γ ln T

∆2
i G(η)

(
1 +

√
1+ ∆2

i MG(η)

2γ σ2
g

f (T )
ln T

)⌉
. It

ollows from monotonicity of f (t) and ln(t) and statement (i) of
roposition 1 that event (D.4) does not hold if Mncent

i (t) > A.
Therefore, from (D.1) we see that

M∑
k=1

E
[
nk
i (T )

]
≤ Ā+

M∑
k=1

(t†k − 1)

+
2

ln (1+η)

M∑
k=1

T∑
t=t†k

(
ln (t)
tγ
+

ln ((1+ϵn)(1+η))
tγ

)

≤ Ā+
M∑

k=1

(t†k − 1)+
2M

ln (1+η)

T∑
t=1

(
ln (t)
tγ
+

ln ((1+ϵn)(1+η))
tγ

)

≤ Ā+
M∑

k=1

(t†k−1)+
2M

ln (1+η)

( 1
(γ − 1)2

+
γ ln ((1+ϵn)(1+η))

γ − 1
+ 1

)
,

where Ā = max{M, A} is chosen to account for the M selections
of the ith arm during the initialization phase.

Appendix E. Pseudocode for coop-UCB2-selective-learning

See Algorithm 2.

Appendix F. Proof of Theorem 3

We begin by noting that∑
k̸=ki

nk
i (T ) =

∑
k̸=ki

T∑
t=1

1
{
ik(t) = i

}
=

∑
k̸=ki

T∑
t=1

(
1
{
ik(t) = i,mi < mbk

}
+ 1

{
ik(t) = i,mi ≥ mbk

})
≤ A+

M∑
k=1

(t†k − 1)+
∑
k̸=ki

T∑
t=t†k

1
{
ik(t) = i,mi < mbk ,Mncent

i (t) ≥ A
}

+

∑
k̸=ki

T∑
t=t†k

1
{
ik(t) = i,mi ≥ mbk ,Mncent

i (t) ≥ A
}
, (F.1)

where A is a constant that will be chosen later. In the case where
mi < mbk , agent k picking arm i implies that there exists an arm
j ∈ O∗k such that j /∈ Ok(t). Therefore, the following holds:

∑
k̸=ki

T∑
t=t†k

1
{
ik(t) = i,mi < mbk ,Mncent

i (t) ≥ A
}

≤

∑
k̸=ki

T−1∑
t†k−1

1
{
Q k
i (t) ≥ Q k

j (t), for some j ∈ O∗k \ Ok(t),

m < m ,Mncent(t) ≥ A
}

i bk i

11
Algorithm 2: coop-UCB2-selective-learning
Input : arms {1, . . . ,N}, agents {1, . . . ,M};
Input : parameters σg > 0, η > 0, γ > 1, function f (t);
Output : allocation sequence ik(t), t ∈ {1, . . . , T }, k ∈ {1, . . . ,M};

1 set n̂k
i ← 0, ŝki ← 0, i ∈ {1, . . . ,N}, k ∈ {1, . . . ,M};

2 for t ∈ {1, . . . , T } do
if t ≤ N then

% Initialization

3 for each agent k ∈ {1, . . . ,M} do
ik(t)← (t − 1+ k) mod N ;

collect reward rk(t) ;

4 else
5 for each agent k ∈ {1, . . . ,M} do

for each arm i ∈ {1, . . . ,N} do

Q k
i ←

ŝki
n̂ki
+ σg

√
2γ
G(η) ·

n̂ki +f (t−1)

Mn̂ki
·

ln(t−1)
n̂ki

;

% Compute descending sort indices for Q k
i

Iki ← sort_index({Q k
i | i ∈ {1, . . . ,N}}, ‘descend’);

% Estimate k-best arms

Ok ← {Ik1 , . . . , I
k
k } ;

% select the worst arm from k-best arms

for each arm i ∈ Ok do

W k
i ←

ŝki
n̂ki
− σg

√
2γ
G(η) ·

n̂ki +f (t−1)

Mn̂ki
·

ln(t−1)
n̂ki

;

ik(t)← argmin{W k
i | i ∈ Ok} ;

collect reward rk(t) ;

6 for i ∈ {1, . . . ,N} do
7 update n̂i and ŝi using (7) and (8);

≤

∑
k̸=ki

T∑
t=t†k−1

∑
j∈O∗k

1
{
Q k
i (t) ≥ Q k

j (t),mi < mbk ,Mncent
i (t) ≥ A

}
∑
k̸=ki

∑
j∈O∗k

T∑
t=t†k

1
{
Q k
i (t) ≥ Q k

j (t),mi < mbk ,Mncent
i (t) ≥ A

}
.

As in Theorem 2, Q k
i (t − 1) ≥ Q k

j (t − 1) implies that at least
ne of the following three conditions must hold for any j ∈ O∗k :

ˆ j(t) ≤ mj − Ck
j (t) (F.2)

µ̂i(t) ≥ mi + Ck
i (t) (F.3)

mj < mi + 2Ck
i (t). (F.4)

he first two equations are bounded using Theorem 1 as in the
roof of Theorem 2. The third equation is equivalent to

Ck
i (t) > mj −mi > ∆min,

hich, as in the proof of Theorem 2, does not hold if

k
i (t) >

4σ 2
g γ

∆2
minG(η)

(
1+

√
1+

∆2
minMG(η)
2σ 2

g γ

f (T )
ln T

)
ln T .

Therefore, for

A =

⌈
Mϵn +

4σ 2
g γ

2

(
1+

√
1+

∆2
minMG(η)
2σ 2γ

f (T )
ln T

)
ln T

⌉
,

∆minG(η) g
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F.4) does not hold. This results in∑
k̸=ki

∑
j∈O∗k

T∑
t=t†k −1

1
{
Q k
i (t − 1) ≥ Q k

j (t − 1),mi < mbk ,Mncent
i (t) ≥ A

}
≤

∑
k̸=ki

∑
j∈O∗k

2
ln (1+η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

≤
M(M + 1)
ln (1+η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

. (F.5)

We now examine the second part of (F.1) when mi ≥ mbk and
plit the conditional as{
ik(t)= i,mi≥mbk ,Mncent

i (t) ≥ A
}

= 1
{
ik(t)= i,mi≥mbk ,Mncent

i (t)≥A,Oωk (t) = O∗
ωk

}
+ 1

{
ik(t)= i,mi≥mbk ,Mncent

i (t)≥A,Oωk (t) ̸= O∗
ωk

}
≤ 1

{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

bk (t−1)
}

+ 1
{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

h (t−1)
}

(F.6)

or any arm h /∈ O∗k . The two indicator functions in (F.6) can be
ombined as follows:

F.6) = 1
{
mi≥mbk ,Mncent

i (t)≥A,W k
i (t−1) ≤ W k

j (t−1)
}
,

or any j /∈ O∗k \ {b
k
}. This results in∑

k̸=ki

T∑
t=t†k

1
{
ik(t) = i,mi ≥ mbk ,Mncent

i (t) ≥ A
}

≤

∑
k̸=ki

∑
j/∈O∗k \{b

k}

T∑
t=t†k

1
{
mi≥mbk ,Mncent

i (t)≥A,

W k
i (t−1) ≤ W k

j (t−1)
}
. (F.7)

or W k
i (t) ≤ W k

j (t) to be true, at least one of the following must
old:

µ̂i(t) ≤ mi − Ck
i (t) (F.8)

ˆ j(t) ≥ mj + Ck
j (t) (F.9)

mi < mj + 2Ck
j (t). (F.10)

(F.8) and (F.9) can be bounded using Theorem 1. As before, (F.10)
never holds due to our choice of A. Similarly to (F.5)∑
k̸=ki

T∑
t=1

P
(
ik(t) = i,mi ≥ mbk ,Mncent

i (t) ≥ A
)

≤

∑
k̸=ki

∑
j/∈O∗k \{b

k}

2
ln (1+η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

≤
2NM −M(M − 1)

ln (1+η)

(
1

(γ − 1)2
+

γ ln ((1+ ϵn)(1+ η))
γ − 1

+ 1
)

.

(F.11)

Using (F.1), (F.5), and (F.11) and accounting for the selections of
arm i during the initialization as in the proof of Theorem 2, we
obtain the bound in the theorem statement.
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