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Abstract—Contagious processes, such as spread of in-
fectious diseases, social behaviors, or computer viruses,
affect biological, social, and technological systems. Epi-
demic models for large populations and finite populations
on networks have been used to understand and control
both transient and steady-state behaviors. Typically it is
assumed that after recovery from an infection, every agent
will either return to its original susceptible state or ac-
quire full immunity to reinfection. We study the network
SIRI (Susceptible-Infected-Recovered-Infected) model, an
epidemic model for the spread of contagious processes
on a network of heterogeneous agents that can adapt their
susceptibility to reinfection. The model generalizes exist-
ing models to accommodate realistic conditions in which
agents acquire partial or compromised immunity after first
exposure to an infection. We prove necessary and sufficient
conditions on model parameters and network structure that
distinguish four dynamic regimes: infection-free, epidemic,
endemic, and bistable. For the bistable regime, which is not
accounted for in traditional models, we show how there
can be a rapid resurgent epidemic after what looks like
convergence to an infection-free population. We use the
model and its predictive capability to show how control
strategies can be designed to mitigate problematic conta-
gious behaviors.

Index Terms—Adaptive systems, complex networks,
multiagent systems, propagation of infection, spreading
dynamics.

I. INTRODUCTION

CONTAGIOUS processes affect biological, social, and
technological network systems. In biology, a concern is the

spread of disease across a population [1]. In social networks, the
spread of information, behaviors, or cultural norms has impor-
tant implications for decisions about politics, the environment,
health care, etc. In many contexts a spike in the “infected” popu-
lation is detrimental, e.g., in the spread of misinformation [2]. In
other cases, the spike can be crucial, e.g., in the spread of safety
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instructions in an emergency [3]. In technological networks, like
computer networks and mobile sensor networks, the spread of a
virus can lead to disruptions, while the spread of information on
a changing environment can be critical to a successful mission.
To understand and control the dynamics of contagion, models
with sufficiently good predictive capability are warranted.

Epidemic models have been successfully used to study con-
tagious processes in a large number of systems, ranging from
the spread of infectious diseases on populations [4], [5] and
memes on social networks [6] to the evolution of riots [7] and
power grid failures [8]. The wide applicability of epidemic
models has led to an increase in recent years in the number
of studies in the physics and control communities focusing on
theoretical epidemic models for the propagation of contagious
processes on networks [9]–[13]. Studies are typically based
on the susceptible-infected-susceptible (SIS) model [11]–[16],
in which every recovered individual experiences no change
to its susceptibility to the infection after recovery, or on the
susceptible-infected-recovered (SIR) model [13], [17], in which
recovered individuals gain full immunity to the infection. The
SIS model captures endemic behaviors in which there is a
constant fraction of the population that is infected at steady-state,
while the SIR model captures epidemic behaviors in which there
is a rapid increase in the number of infected individuals that
eventually subsides.

Although the SIR and SIS models are useful, they fall short
in accounting for what can happen in many real-world systems
when agents adapt their susceptibility in more general ways after
their first exposure to the infection. For example, in the case
of infectious diseases, the susceptibility of individuals to the
infection can decrease after a first exposure, resulting in partial
immunity as in the case of influenza [18]. Or susceptibility can
increase, resulting in compromised immunity as in the case of
tuberculosis in particular populations [19]. In the spread of social
behaviors, the susceptibility of individuals to the “infection”
might decrease (increase) as a result of a negative (positive)
past experience that decreases (increases) the propensity of an
individual to engage in the behavior.

For example, in psychology there is a well-established “inocu-
lation theory” [2], [20], [21], which has shown that an effective
way to combat the spread of misinformation is to pre-expose
people to misinformation so that they develop at least partial
cognitive immunity to subsequent contact with misinformation.
Examples also abound in social animal behavior. For example,
desert harvester ants regulate foraging for seeds by means of
a contagious process in which successful ants returning to the
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nest motivate available ants in the nest to go out and forage [22].
Resilience of foraging rates to temperature and humidity
changes outside the nest has been attributed to adaptation of
susceptibility to the “infection” by available ants that have
already been exposed to outside conditions [23].

In technological systems, such as systems comprised of inter-
connected mechanical parts, susceptibility to cascading failures
can increase the second time around when parts become worn
or compromised the first time. When there is the opportunity
for learning and design, such as in a network of autonomous
robots, protocols can be designed so that agents modulate their
response to an “infected” agent based on what they have learned
from previous interactions.

In the present article, we analyze the role of adaptive suscep-
tibility in the spread of a contagious process over a network of
heterogeneous agents using the network susceptible-infected-
recovered-infected (SIRIs) epidemic model. The network SIRI
model describes susceptible agents that become infected from
contact with infected agents, infected agents that recover, and
recovered agents that become reinfected from contact with in-
fected agents. Susceptibility is adaptive when the rates of infec-
tion and reinfection differ. An agent acquires partial immunity
(compromised immunity) to its neighbor, if after recovering from
a first-time infection, it experiences a decrease (increase) in
susceptibility to that neighbor. Every agent may have a different
rate of recovery and different rates of susceptibility to infection
and reinfection to each of its neighbors. SIS and SIR are special
cases of SIRI.

To the best of our knowledge we provide the first rigorous
and comprehensive analysis of the network SIRI model. Models
that consider reinfection usually only consider the case of partial
immunity [24]–[26]. In [9] the authors studied a discrete-time
mean-field model with global recovery, infection, and reinfec-
tion rates, and showed through numerical simulations that when
the reinfection rate is larger than the infection rate, there is an
abrupt transition from an infection-free to an endemic steady
state. We formalize this observation by proving new results on
the existence of a bistable regime in which a critical manifold
of initial conditions separates solutions for which the infection
dies out from solutions for which the infection spreads.

Our analysis of the network SIRI model generalizes our novel
results on the SIRI model of a well-mixed population [27]. Our
contributions are as follows. First, we introduce the network
SIRI model over strongly connected digraphs and present a
rigorous stability analysis. We show there can exist only a set of
nonisolated infection-free equilibria (IFE) and a stable isolated
endemic equilibrium (EE), and we prove conditions on the graph
structure and system parameters that determine the stability of
the IFE. Second, we prove that the model exhibits the same
four distinct behavioral regimes observed in the well-mixed
SIRI model: infection-free, epidemic, endemic, and bistable.
We show how the four behavioral regimes are characterized by
four numbers that generalize, to the network setting, the two
reproduction numbers of [27] and generalize previous results for
the network SIS and SIR models in [13]–[15], [17], [28]. Third,
we prove features of the geometry of solutions near the IFE
in the epidemic and bistable regimes that dictate both transient

and steady-state possibilities. For the bistable regime, which is
not accounted for by the SIS and SIR models, we show how
solutions can exhibit a resurgent epidemic in which an initial
infection appears to die out for an arbitrarily long period of time
before abruptly resurging to an endemic steady state. Finally,
we show how our results can be used to design control strategies
that guarantee the eradication or spread of the infection through
a network of heterogeneous agents with adaptive susceptibility.

In Section II we present notation and well-known results used
in the article. In Section III we introduce the network SIRI model
and its classification into six cases. In Section IV we study the
equilibria and define new notions of reproduction numbers. In
Section V we analyze stability, and in Section VI we prove our
main result on conditions for the four behavioral regimes. In
Section VII we examine the geometry and behavior of solutions
in the epidemic and bistable regimes. We apply our theory
to control laws that guarantee desired steady-state behavior in
Section VIII. We make final remarks in Section IX.

II. MATHEMATICAL PRELIMINARIES

A. Notation

We denote the j-th entry of x ∈ RN as xj , and the (j, k)-th
entry ofM ∈ RN×N asmjk. We define ej ∈ RN , j = 1, . . . , N
as the standard basis vectors. We define 0 ∈ RN as the zero
vector, 1 ∈ RN as the vector with every entry 1, 0̄ ∈ RN×N as
the zero square matrix, and I ∈ RN×N as the identity matrix. We
let diag(x) ∈ RN×N be the diagonal matrix with entries given
by the entries of x ∈ RN .

For any vectors x, y ∈ RN , we write x� y if xj > yj for all
j, x � y if xj ≥ yj for all j, but x �= y, and x � y if xj ≥ yj for
all j. Similarly, for any two matrices M,Q ∈ RN×N we write
M � Q if mjk > qjk, M � Q if mjk ≥ qjk, for any j, k, but
M �= Q, and M � Q if mjk ≥ qjk for any j, k.

A square matrix M is Hurwitz (stable) if it has no eigenvalue
with positive or zero real part, and it is unstable if at least one
of its eigenvalues has positive real part. A real square matrix
M is Metzler if mjk ≥ 0 for j �= k. We denote the spectrum
of a square matrix M as λ(M) = {λ1, λ2, . . . , λN}, its spec-
tral radius as ρ(M) = max {|λj |

∣∣ λj ∈ λ(M)} and its leading
eigenvalue as λmax(M) = argmaxλj∈λ(M) |λj |.

A weighted digraph G = (V, E) consists of a set of nodes
V and a set of edges E ⊆ V × V . Each edge (j, k) ∈ E from
node j ∈ V to node k ∈ V has an associated weight ajk > 0
with ajk = 0 if (j, k) �∈ E . The set of neighbors of node j is
Nj = {k ∈ V|(j, k) ∈ E}.G is strongly connected if there exists
a directed path from any node j ∈ V to any other node k ∈ V .
The adjacency matrix A = {ajk} of G is irreducible if G is
strongly connected. The degree of node j is dj =

∑N
k=1 ajk. G

is d-regular if dj = d for all j = 1, . . . , N .

B. Properties of Metzler Matrices

We use well-known properties of Metzler matrices, which
we summarize in the following three propositions (see [29]
Theorem 6.2.3, [30] Theorem 11 and 17, and [31] Ch. 8).

Proposition 1: Let K be a Metzler matrix. Then
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1) λmax(K) ∈ R. If K is irreducible, λmax(K) has multi-
plicity one.

2) LetwT and v be left and right eigenvectors corresponding
to λmax(K). Then, w, v � 0. If K is irreducible, then
w, v � 0, and every other eigenvector of K has at least
one negative entry.

3) Let Kmin,Kmax be irreducible Metzler matrices where
Kmin ≺ K ≺ Kmax, then

λmax(Kmin) < λmax(K) < λmax(Kmax).

Proposition 2: Let K be a Metzler matrix. Then, the follow-
ing statements are equivalent:

1) K is Hurwitz;
2) there exists a vector v � 0 such that Kv 
 0;
3) there exists a vector w � 0 such that wTK 
 0.
Definition II.1 (Regular Splitting): Let K be a Metzler ma-

trix. K = T + U is a regular splitting of K if T � 0̄ and U is a
Hurwitz Metzler matrix.

Proposition 3: Let K be a Metzler matrix and let K =
T + U be a regular splitting. Then

1) λmax(K) < 0 if and only if ρ(−TU−1) < 1;
2) λmax(K) = 0 if and only if ρ(−TU−1) = 1;
3) λmax(K) > 0 if and only if ρ(−TU−1) > 1.

C. Properties of Gradient Systems

A gradient system on an open set Ω ⊆ RN is a system of the
form ζ̇ = −∇V (ζ)where ζ(t) ∈ Ω, V ∈ C2(Ω) is the potential
function, and ∇V = [∂V/∂ζ1, . . . , ∂V/∂ζN ] is the gradient of
V with respect to ζ. The level surfaces of V are the subsets
Vc = {V −1(c) ∈ Ω | c ∈ R}. A point ζ0 ∈ Ω is a regular point if
∇V (ζ0) �= 0 and a critical point if∇V (ζ0) = 0. If∇V (ζ) �= 0
for all ζ ∈ Vc, then c is a regular value for V .

Proposition 4 (Properties of Gradient Systems [32], [33]):
Consider the gradient system ζ̇ = −∇V (ζ) where V ∈ C2(Ω),
ζ(t) ∈ Ω ⊆ RN . Then

1) V (ζ) is a Lyapunov function of the gradient system.
Moreover, V̇ (ζ) = 0 if and only if ζ is an equilibrium.

2) The critical points of V are the system equilibria.
3) If c is a regular value for V, then the surface set Vc forms

an N − 1 dimensional surface in Ω and the vector field is
perpendicular to Vc.

4) At every point ζ ∈ Ω, the directional derivative alongw ∈
RN is given by DwV (ζ) = wT∇V (ζ).

5) Let ζ0 be an α-limit point or an ω-limit point of a solution
of the gradient system. Then ζ0 is an equilibrium.

6) The linearized system at any equilibrium has only real
eigenvalues. No periodic solutions are possible.

III. NETWORK SIRI MODEL DYNAMICS

In this section we present the network SIRI model dynam-
ics, which represent a contagious process with reinfection in a
population of N agents. Consider a strongly connected digraph
G = (V, E) with adjacency matrix A, where each node in V
represents an agent. The state of each agent j is given by the
random variable Xj(t) ∈ {S, I,R}, where S is “susceptible,”
I is “infected,” and R is “recovered”. Let transitions between

states for each agent be independent Poisson processes with
rates defined as follows. Susceptible agent j becomes infected
through contact with infected neighbor k at the rate βjk ≥ 0.
We assume βjk = 0 if and only if ajk = 0. Infected agent j
recovers from the infection at the rate δj ≥ 0. Recovered agent
j becomes reinfected through contact with infected neighbor k
at the rate β̂jk ≥ 0, where β̂jk = 0 if ajk = 0. These transitions
are summarized as

Sj + Ik
βjk−→ Ij + Ik

β̂jk←−Rj + Ik

Ij
δj−→Rj .

The dynamics are described by a continuous-time Markov chain,
where the probability that an agent transitions state at time t can
depend on the state of its neighbors at time t. Thus, the dimension
of the state space can be as large as 3N .

To reduce the size of the state space, we use an individual-
based mean-field approach (IBMF) [9], [15]. This approach
assumes that the state of every node is statistically independent
from the state of its neighbors. The approximation reduces
the state of every agent j to the probabilities pSj (t), pIj (t),
and pRj (t) of agent j being in state S, I , and R, respectively,
at time t ≥ 0. Since at every time t ≥ 0, these probabilities
sum to 1, the state of every agent j evolves on the 2-simplex
Δ := {(pSj , pIj , pRj ) ∈ [0, 1]3| pSj + pIj + pRj = 1}. The reduced
state space corresponds to N copies of Δ, denoted ΔN , which
has dimension 2N .

The dynamics retain the full topological structure of the
network encoded in the infection and reinfection rates βjk and
β̂jk, which depend on the entries of the adjacency matrix A. We
refer the reader to [28] for a detailed derivation of the individual
mean-field approximation for the SIS model, and to [16], [34]
for a discussion and numerical exploration of the accuracy of
mean-field approximations in network dynamics.

Under the individual mean-field approximation, the dynamics
of the network SIRI model on ΔN are given by

ṗSj = −pSj
N∑

k=1

βjkp
I
k

ṗIj = −δjpIj + pSj

N∑
k=1

βjkp
I
k + pRj

N∑
k=1

β̂jkp
I
k

ṗRj = −pRj
N∑

k=1

β̂jkp
I
k + δjp

I
k (1)

where pSj (0) + pIj (0) + pRj (0) = 1 for all j.
We can reduce the number of equations from 3N to 2N by

using the substitution pRj = 1− pSj − pIj , for all j, in (1):

ṗSj = −pSj
N∑

k=1

βjkp
I
k

ṗIj =

N∑
k=1

(
(1− pSj )β̂jk + pSj βjk

)
pIk − δjp

I
j − pIj

N∑
j=1

β̂jkp
I
k

(2)
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TABLE I
NETWORK SIRI MODEL CASES

where pSj (0) + pIj (0) = 1− pRj (0) for all j.
The dynamics can be written in matrix form where pΩ =

[pΩ1 , . . . , p
Ω
N ]T and PΩ = diag(pΩ) for Ω ∈ {S, I}:

ṗS = −PSBpI

ṗI =
(
B∗(pS)−D

)
pI − P IB̂pI (3)

where

B∗(pS) = (I − PS)B̂ + PSB

and

B = {βjk} � 0̄ (infection matrix)

B̂ = {β̂jk} � 0̄ (reinfection matrix)

D = diag(δ1, . . . , δN ) � 0̄ (recovery matrix).

Further, we define

B̄max = [max(βjk, β̂jk)], B̄min = [min(βjk, β̂jk)]. (4)

The network SIRI model dynamics provide sufficient richness
to describe a family of models which can be classified into six
different cases (summarized in Table I):

1) Case 1 (SI): When D = 0̄ the network SIRI model spe-
cializes to the network SI model.

2) Case 2 (SIR): When B̂ = 0̄ the network SIRI model
specializes to the network SIR model.

3) Case 3 (SIS): When B = B̂ the network SIRI model spe-
cializes to the network SIS model with pS + pR �→ pS .

4) Case 4 (Partial Immunity): When B � B̂ � 0̄, every
recovered agent acquires partial (or no) immunity to each
of its infected neighbors.

5) Case 5 (Compromised Immunity): When B̂ � B � 0̄,
every recovered agent acquires compromised (or no) im-
munity to each of its infected neighbors.

6) Case 6 (Mixed Immunity): Models not in Cases 1–5.
Notably, there is at least one pair of edges (j, k) and (l,m)

such that βjk ≥ β̂jk and βlm < β̂lm. We classify mixed
immunity into two sub-cases:

a) Case 6a (Weak Mixed Immunity): For every agent
j, βjk − β̂jk ≥ 0 for all k ∈ Nj or βjk − β̂jk ≤ 0
for all k ∈ Nj .

b) Case 6b (Strong Mixed Immunity): Mixed immu-
nity that is not weak.

IV. EQUILIBRIA AND REPRODUCTION NUMBERS

In this section we analyze the equilibria of the network SIRI
model dynamics and define the notion of basic and extreme

basic reproduction numbers. We denote the value of pS and pI

at equilibrium as pS∗ and pI∗, respectively.

A. Equilibria

Proposition 5: The only equilibria of the network SIRI
model (3) are an invariant set of infection-free equilibria (IFE)
and one or more isolated endemic equilibria (EE). The IFE set is
defined as M = {(pS∗,0) ∈ ΔN | 0 � pS∗ � 1}, correspond-
ing to all equilibria in which pI∗ = 0, i.e., pS∗ + pR∗ = 1. The
EE are defined as equilibria where pI∗ � 0 satisfies

pI∗j =

∑N
k=1 β̂jkp

I∗
k

δj +
∑N

k=1 β̂jkpI∗k
. (5)

If B̂ is irreducible then, for every EE, pS∗ = 0 and pI∗ � 0.
Proof: Setting ṗS = 0 in (3), we get PS∗BpI∗ = 0. Since

G is strongly connected and B preserves the connectivity of A,
then for every agent j we must have pS∗j = 0 or

∑
Nj

pI∗k = 0.

Moreover, since B̂ has a zero at every entry where B has a zero,
it follows that PS∗B̂pI∗ = 0.

Setting ṗI = 0 in (3) and using PS∗BpI∗ = PS∗B̂pI∗ = 0
we get

0 = (B̂ −D − P I∗B̂)pI∗ = (B̂ −D − diag(B̂pI∗))pI∗. (6)

One solution is the invariant set M = {(pS∗,0) ∈ ΔN | 0 �
pS∗ � 1}. The only other solutions are isolated equilibria pI∗ �
0 satisfying (5).

If B̂ is irreducible, βjk > 0 for any (j, k) ∈ E , and if pI∗k > 0
for any k ∈ V , then by (5) pI∗j > 0 for any j where k ∈ Nj .
So pI∗i > 0 for any i where j ∈ Ni. This argument can be
recursively applied until all nodes in G are covered. Since
PS∗BpI∗ = 0, pI∗ � 0 implies pS∗ = 0. �

Proposition 6: The boundary of M is ∂M = {x =
(pS∗,0) ∈M|∃j, pS∗j ∈ {0, 1}}. The corner set ofM is M̂ =

{x = (pS∗,0) ∈ ∂M| pS∗j ∈ {0, 1}, ∀j}. The interior ofM is
int(M) =M\ ∂M.

Proof: The proof follows from the definition ofM. �
Remark 1: For B̂ irreducible, the equilibria of the network

SIRI model are equivalent to the equilibria of the network SIS
model (Case 3), where B = B̂. This follows since any equilib-
rium of (3) satisfies (6), and therefore is also an equilibrium of
the network SIS dynamics [4], [14], [28]:

ṗI = (B −D)pI − P IBpI . (7)

For the network SI model (Case 1), the only equilibrium is a
unique EE with pI∗ = 1 and pS∗ = 0. For the network SIR
model (Case 2), the only equilibria are the IFE setM.

Remark 2: For initial conditionspS(0) = 1− pI(0), the net-
work SIRI dynamics (3) initially behave as the network SIS
model (7) with infection matrix B. As agents become exposed
to the infection for the first time, the dynamics transition to
network SIS dynamics with infection matrix B̂.
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In the remainder of this article, we assume D is nonsingular
and B̂ is irreducible; thus every EE is strong since pI∗ � 0. The
generalization to reducible B̂ is straightforward.1

B. Basic Reproduction Numbers

The basic reproduction number is a key concept in epi-
demiology, defined as the expected number of new cases of
infection caused by a typical infected individual in a population
of susceptible individuals [1], [36], [37]. For many deterministic
epidemiological models, an infection can invade and persist
in a fully susceptible population if and only if R0 > 1 [38].
For the SIS model in a well-mixed population in which all
agents have the same infection rate β and recovery rate δ, the
basic reproduction number, R0 = β/δ, governs the steady-state
behavior of solutions. If R0 ≤ 1, the infection eventually dies
out. IfR0 > 1, the infection spreads through the population, con-
verging to an endemic steady-state solution with a fixed fraction
of the population in the infected state. In the network SIS model
(7), the basic reproduction number is R0 = ρ(BΓ−1) [14], [37],
[39]. In this case, if R0 ≤ 1, solutions reach the IFE setM as
t→∞ while if R0 > 1, solutions reach the unique EE (5) as
t→∞ [4], [14].

In previous work [27] we proved that, in well-mixed settings,
the transient and steady-state behavior of solutions in the SIRI
model depend on two numbers R0 and R1, corresponding to
the basic reproduction number for a population of susceptible
individuals and for a population of recovered individuals, re-
spectively. Here we extend the definition of R0 and R1 in [27]
to network topologies and introduce the notion of extreme basic
reproduction numbers.

Definition IV.1 (Basic and Extreme Basic Reproduction
Numbers): Consider the following system, which is a
modification to dynamics (3):

ṗS = −PSBpI

ṗI = (B∗(p)−D) pI − P IB̂pI (8)

where

B∗(p) = (I − P )B̂ + PB

0 � p � 1 is constant, and P = diag(p). Let R(p) be the basic
reproduction number for (8). We distinguish R(p) for four
different values of p as follows:

1) Basic infection reproduction number R0 is the reproduc-
tion number for (8) with p = 1.

2) Basic reinfection reproduction number R1 is the repro-
duction number for (8) with p = 0.

3) Maximum basic reproduction number Rmax is the repro-
duction number for (8) with p = argmax0�q�1 R(q).

4) Minimum basic reproduction number Rmin is the repro-
duction number for (8) with p = argmin0�q�1 R(q).

1The graph GB̂ with reducible adjacency matrix B̂ is weakly connected or
disconnected. If GB̂ is weakly connected, the adjacency matrix of GB̂ can
be written as an upper block triangular matrix with K diagonal irreducible
blocks that describe the K strongly connected subgraphs of G [35]. If GB̂ is
disconnected, it is sufficient to study each connected subgraph of GB̂ .

Proposition 7 (Spectral Radius Formulas for Reproduction
Numbers): The basic reproduction number R(p) of (8) for
0 � p � 1 can be computed as

R(p) = ρ(B∗(p)D−1).

Therefore

R0 = ρ(BD−1), R1 = ρ(B̂D−1)

Rmax = max
0�p�1

ρ(B∗(p)D−1), Rmin = min
0�p�1

ρ(B∗(p)D−1).

Proof: The linear term of the dynamics of pI in (8) is K =
B∗(p)−D. Thus, K is Metzler and by Definition II.1 K =
T + U is a regular splitting where T = B∗(p) and U = −D.
Following [39], R(p) = ρ(−TU−1) = ρ(B∗(p)D−1). �

Proposition 8 (Reproduction number ordering): Let
R̄max = ρ(B̄maxD

−1) and R̄min = ρ(B̄minD
−1). Then

R̄min ≤ Rmin ≤ λmax(B
∗(pS)D−1) ≤ Rmax ≤ R̄max (9)

for any 0 � pS � 1. If B � B̂, then R̄max = Rmax = R0 and
R̄min = Rmin = R1. If B̂ � B, then R̄max = Rmax = R1, and
R̄min = Rmin = R0.

Proof: Any matrix with nonnegative entries is Metzler.
Thus, Y (pS) = B∗(pS)D−1 is an irreducible Metzler matrix
since B � 0̄ and B̂ � 0̄ are irreducible. By Proposition 1,
λmax(Y (pS)) increases (decreases) as any entry in Y (pS) in-
creases (decreases). Since every nonzero entry of Y (pS) is a
scaled convex sum of βjk and β̂jk, it follows that B̄minD

−1 �
Y (pS) � B̄maxD

−1 for any 0 � pS � 1. Consequently, (9)
holds for any 0 � pS � 1. If B � B̂, then B̄max = B and
B̄min = B̂. If B̂ � B, then B̄max = B̂ and B̄min = B. The
stated results then follow from the definitions of the reproduction
numbers. �

V. STABILITY OF EQUILIBRIA

In this section we prove conditions for the local stability of
the EE and of points in the IFE setM.

A. Stability of the Endemic Equilibria

Proposition 9: The network SIRI dynamics (3) have a unique
EE, given by (5), which exists if and only if R1 > 1. When it
exists, the EE is locally stable.

Proof: Since B and B̂ are irreducible, pS∗ = 0. Following
the proof of Proposition 5 and the argument of Remark 1, the
equilibria of the network SIRI model (3) are equivalent to the
equilibria of the network SIS model (7) whereB = B̂. Thus, the
proof of existence and uniqueness of the EE of (3), if and only
if R1 > 1, follows the proof in Section 2.2 of [14] for existence
and uniqueness of the EE of (7) where B = B̂.

To prove local stability, we compute the Jacobian of (3) at the
unique EE (5)

JEE =

[
−diag(BpI∗) 0̄

diag((B − B̂)pI∗) Ja

]
(10)
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where Ja=B̂ −D − P I∗B̂−diag(B̂pI∗). Since −diag(BpI∗)
is Hurwitz, showing that the EE is locally stable is equivalent to
showing that the Metzler matrix Ja is Hurwitz.

By (6), (B̂ −D − P I∗B̂)pI∗ = 0, and thus

Jap
I∗ = −diag(B̂pI∗)pI∗ 
 0 (11)

where the inequality follows from pI∗ � 0. By Proposition 2
we conclude that Ja is Hurwitz. �

B. Stability of Infection-Free Equilibria

In this section we prove results on the stability of the IFE set
M. The equilibria inM are nonhyperbolic: the Jacobian of (3) at
a point x ∈M has N zero eigenvalues corresponding to the N -
dimensional space tangent toM. The remaining N eigenvalues
are called transverse as they correspond to the N -dimensional
space transverse to M. The Shoshitaishvili Reduction Prin-
ciple [40], which extends the Hartman-Grobman Theorem to
nonhyperbolic equilibria, can be used to study the local stability
of points in M in terms of the transverse eigenvalues of the
Jacobian and the dynamics on the center manifold. We show
how the irreducibility of B and B̂ imply that the behavior of
solutions in ΔN close to a point x ∈M depends only on the
sign of the leading transverse eigenvalue of the Jacobian at x.

Throughout the rest of this article, we consider the topological
space ΔN as a subspace of R2N . This allows us to study points
in ∂M and in int(M) simultaneously. In R2N , the invariant set
M of IFE points becomes a subset of the invariant manifold of
equilibriaM′ = {(p,0)|p ∈ RN}.

Lemma 1 (Local Stability of Points in the IFE setM): Let
x = (pS∗,0) ∈M. Let JM(x) be the Jacobian of (3) at x and
λTmax(JM(x)) the leading transverse eigenvalue of JM(x).
Then, λTmax(JM(x)) ∈ R and the following hold.

1) Suppose λTmax(JM(x)) < 0. Then, x is locally stable.
I.e., given a neighborhood U of x on M′ such that
λTmax(JM(u)) < 0 for all u ∈ U , there exists V ⊂ ΔN

and x ∈ V such that any solution starting in V converges
exponentially to a point in U ∩ΔN .

2) Suppose λTmax(JM(x)) > 0. Then, x is unstable. I.e.,
there exists W ⊂ ΔN and x ∈W , such that any solution
starting in W leaves W .

Proof: For an arbitrary point x = (pS∗,0) ∈M,

JM(x) =

[
0̄ −PS∗B
0̄ JT (p

S∗)

]
(12)

where JT (p
S∗) = B∗(pS∗)−D. The N transverse eigen-

values of JM(x) are the eigenvalues of JT (p
S∗) and so

λTmax(JM(x)) = λmax(JT (p
S∗)). The matrix JT (p

S∗) is Met-
zler irreducible since B and B̂ are Metzler irreducible. By
Proposition 1 λmax(JT (p

S∗)) ∈ R.
Consider an arbitrary point x′ = (p,′ 0) ∈M′ \M. The Ja-

cobian of (3) at x′ takes on the same form as (12), and JT (p
′) is

Metzler irreducible if every entry of p′ satisfies

⎧⎪⎨
⎪⎩
p′j > −

∑N
j=1 β̂jk

∑N
j=1(βjk−β̂jk)

if
∑N

j=1(βjk − β̂jk) ≥ 0

p′j <
∑N

j=1 β̂jk
∑N

j=1(β̂jk−βjk)
if

∑N
j=1(βjk − β̂jk) ≤ 0.

Since B, B̂ are irreducible, |∑N
j=1 β̂jk/

∑N
j=1(βjk − β̂jk) |>

1 for all j. So, for any x ∈ ∂M, there exists a neighborhood Ū
of x on M′ such that JT (ū′) is Metzler irreducible for every
ū = (ū,′ 0) ∈ Ū . By Proposition 1 λmax(JT (p

′)) ∈ R.
LetU be a neighborhood ofx onM′ such that λTmax(JM(u))

has the same sign as λTmax(JM(x)) for all u ∈ U . Then,
λmax(JT (u

′)) has the same sign as λmax(JT (p
S∗)) for all u =

(u,′ 0) ∈ U . By Proposition 1 every left and right eigenvector of
every eigenvalue of JT (u′), other than λmax(JT (u

′)), contains
at least one negative entry. Thus, for any ū ∈ U ∩ΔN , the
eigenvector corresponding to λTmax(JM(ū)) lies in ΔN , and
the eigenvectors corresponding to the other N − 1 transverse
eigenvalues lie outside ΔN .

If λmax(JT (p
S∗)) < 0, then every transverse eigenvalue of

JM(x) has negative real part. By the Shoshitaishvili Reduc-
tion Principle [40], there exists a neighborhood V ′ ∈ R2N of
x that is positively invariantly foliated by a family of stable
manifolds corresponding to the family of stationary solutions in
U (see [41]–[43]), each stable manifold spanned by the (gener-
alized) eigenvectors associated with the N negative transverse
eigenvalues of JM(u). Let V = V ′ ∩ΔN . Then V ⊂ ΔN is
positively invariantly foliated by a family of stable manifolds.
The invariance of ΔN implies each of these stable manifolds
corresponds to a point ū ∈ U ∩M. Thus, any solution starting
in V converges exponentially along a stable manifold to the
corresponding stationary solution in U ∩M.

If λmax(JT (p
S∗)) > 0, then there is at least one transverse

eigenvalue of JM(x) with positive real part. The trace of
JT (p

S∗) is negative for any 0 � pS∗ � 1, so the sum of the
eigenvalues ofJT (pS∗) is always negative andJM(x)has at least
one transverse eigenvalue with negative real part. By the Shoshi-
taishvili Reduction Principle [40] there exists a neighborhood
W ′ ⊂ R2N of x that is positively invariantly foliated by a family
of stable, unstable, and possibly center manifolds corresponding
to the family of stationary solutions in U . Let W = W ′ ∩ΔN .
Then, the stable and center manifolds of each stationary solution
ū ∈W ∩M lie outside ΔN . Thus, no solution starting in W
can remain in W for all time, i.e., any solution starting in W
leaves W . �

Definition V.1 (Stable, unstable, and center IFE subsets):
The stable IFE subset is M− = {x ∈M| λTmax(JM(x)) <
0}. The unstable IFE subset is M+ = {x ∈
M| λTmax(JM(x)) > 0}. The center IFE subset is
M0 = {x ∈M| λTmax(JM(x)) = 0}.

Proposition 10: M− ∪M+ ∪M0 =M. Every point in
M− is locally stable and every point inM+ is unstable.

Proof: This follows from Definition V.1 and Lemma 1. �
We now state the first two theorems of the article, which relate

the extreme basic reproduction numbers Rmax and Rmin to the
stable, unstable, and center subsets of the IFE setM.
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TABLE II
APPLICABILITY OF THEOREM 1 STATEMENTS TO THE NETWORK SIRI

MODEL CASES

Theorem 1 (Stability of the IFE setM):
A) If Rmax < 1, thenM− =M.
B) If Rmin > 1, thenM+ =M.
C) If Rmax = Rmin = 1, thenM0 =M.
D) If Rmin < Rmax = 1, thenM− =M\M0 andM0 ⊂

∂M.
E) If Rmax > Rmin = 1, thenM+ =M\M0 andM0 ⊂

∂M.
F) If Rmax > 1 > Rmin, thenM−,M+,M0 �= ∅ and each

subset consists of n−, n+, n0 connected sets, respec-
tively. Each of the center connected sets Mj

0, j =
1, . . . , n0, is an N − 1-dimensional smooth hypersur-
face with boundary ∂Mj

0 ⊂ ∂M. Each Mj
0 separates

an N -dimensional stable connected hypervolume from
an N -dimensional unstable connected hypervolume.

Remark 3: Theorem 1 applies to the six different cases of
the network SIRI model as follows (see Table II). (A) applies to
Cases 2, 3, 4, 5, and 6. (B) applies to Cases 3, 4, 5, and 6. (C)
applies to Case 3. (D) applies to Cases 2, 4, 5, and 6. (E) applies
to Cases 4, 5, and 6. (F) applies to Cases 2, 4, 5, and 6. We
specialize (F) in Theorem 2 to provide the key to characterizing
global behavior in Cases 2, 4, 5, and 6a.

Theorem 2 (Uniqueness of stable, unstable, and center
subsets): If Rmax > 1 > Rmin, then for Case 2 (SIR), Case
4 (partial immunity), Case 5 (compromised immunity),
and Case 6a (weak mixed immunity), M0 consists of a
unique (N − 1)-dimensional hypersurface with boundary
∂M0 ⊂ ∂M dividingM intoM− andM+.

Remark 4: We conjecture that Theorem 2 can be extended to
Case 6b. Extensive computations ofM0,M−, andM+, for an
N = 3 agent network, with different network configurations and
parameter values, consistently show a unique connected surface
M0 dividingM intoM− andM+.

The proofs of Theorems 1 and 2 make use of the following
definition and lemmas.

Lemma 2 (Neighborhood E ⊂M′ ofM): Let E be the
union ofM and the neighborhoods Ū ⊂M′ of every x̄ ∈ ∂M
described in the proof of Lemma 1. Then, E ⊂M′ is a neigh-
borhood ofM.

Lemma 3 (JT and Λ): Let JT (p) = B∗(p)−D for (p,0) ∈
E and Λ : E → R, (p,0) �→ λmax(JT (p)). For ease of
notation we use Λ(p) for Λ(p,0). Then Λ(p) = λTmax

(JM(p,0)).
Definition V.2 (Stubborn agents): An agent j ∈ V is stub-

born if (βjk − β̂jk) = 0 for all k ∈ Nj .
Lemma 4 (IFE subsets as level surfaces of Λ): Let Λc =

{(p,0) ∈ E |Λ(p) = c} be the level surface of Λ on

E ⊂M′ corresponding to c ∈ R. Then, M0 = Λ0 ∩M,
M− =

⋃
c<0 Λc ∩M andM+ =

⋃
c>0 Λc ∩M.

Proof: This follows from Definition V.1 and Lemma 3. �
Lemma 5 (Gradient of Λ): For x̃ = (p,0) ∈ E, let wT , v ∈

RN be left and right eigenvectors of JT (p) for Λ(p). Then, Λ is
smooth on E, i.e., Λ(·) ∈ C∞(E), with partial derivatives

∂Λ

∂pj
(p) = wj

N∑
k=1

(βjk − β̂jk)vk (13)

and gradient

∇Λ(p) = diag(w)(B − B̂)v. (14)

In addition, the following hold.
1) If B = B̂, all points x̃ ∈ E are critical points of Λ.
2) If j is a stubborn agent, (∂Λ/∂pj)(p) = 0 for all x̃ ∈ E.
3) If B � B̂, and there are no stubborn agents in G,
∇Λ(p)� 0 for all x̃ ∈ E, and Λ has no critical points.

4) If B̂ � B, and there are no stubborn agents in G,
∇Λ(p)
 0 for all x̃ ∈ E and Λ has no critical points.

5) If B �= B̂ then either Λ has no critical points or all points
x̃ ∈ E are critical points of Λ.

Proof: Let x̃ = (p,0) ∈ E. By the proof of Lemma 1, JT (p)
is Metzler irreducible. By Proposition 1, λmax(JT (p)) ∈ R and
has multiplicity one. Thus by [44, p. 66–67], Λ(·) ∈ C∞(E).

Differentiating the right-eigenvector equation JT (p)v =
Λ(p)v with respect to pj , and premultiplying by wT we get

wT ∂JT
∂pj

v + wTJT
∂v

∂pj
= wT v

∂Λ

∂pj
+ wTΛ

∂v

∂pj

where all terms are evaluated at p, ∂JT /∂pj(p) = {zkl} and

zkl =

{
βkl − β̂kl k = j and (k, l) ∈ E
0 otherwise.

Because Λ(p) has multiplicity one, we can always pick w such
that wT v = 1. Using wTJT (p) = wTΛ(p), we obtain

∂Λ

∂pj
(p) = wT ∂JT

∂pj
(p)v = wj

N∑
k=1

(βjk − β̂jk)vk. (15)

In vector form, (15) becomes ∇Λ(p) = diag(w)(B − B̂)v.
By Proposition 1 w, v � 0. If B = B̂, then ∇Λ(p) = 0 for

all x̃ ∈ E. If j is a stubborn agent, thenβjk − β̂jk = 0 for all k ∈
Nj . Therefore, (∂Λ/∂pj)(p) = 0 for all x̃ ∈ E. If B � B̂ and
there are no stubborn agents in G, then

∑N
k=1(βjk − β̂jk)vk >

0 for any j. Therefore, ∇Λ(p)� 0 for all x̃ ∈ E. A similar
argument is made if B̂ � B, and there are no stubborn agents in
G.

By Proposition 4 and (14), x̃ is a critical point of Λ if and only
if (B − B̂)v = 0. Let x̃0 = (p0,0) ∈ E be a critical point, then
(B − B̂)v0 = 0. Thus, for any p, we have

JT (p)v0 = (B∗(p)−D)v0

= (B̂ −D)v0 + diag(p)(B − B̂)v0

= (B̂ −D)v0. (16)
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In particular, (B̂ −D)v0 = Λ(p0)v0. Hence, (Λ(p0), v0) is an
eigenpair of B̂ −D and by (16) also an eigenpair of JT (p)
for any p. Since Λ(p) has multiplicity one and v is the only
eigenvector satisfying v � 0, then (Λ(p), v) = (Λ(p0), v0) and
x̃ ∈ E is a critical point of Λ. �

Lemma 6. (Λc with stubborn agents): If agents 1, . . . , k,
k < N , are stubborn, then at any (p,0) ∈ E, the subspace
spanned by {e1, . . . , ek} is tangent to the level surface Λc with
p ∈ Λc.

Proof: By Lemma 5, for any stubborn agent j,
(ej)T∇Λ(p) = 0 for any (p,0) ∈ E. By Proposition 4, ej

is tangent to the level surface Λc with p ∈ Λc. �
Lemma 7. (Maximum and minimum values of Λ onM): Λ

achieves its global maximum and minimum cmax, cmin onM at
one or more points in ∂M. In Cases 2, 4, 5, and 6a, there exist
unique corner points (pmax,0) ∈ M̂, (pmin,0) ∈ M̂ such that
Λ(pmax) = cmax, Λ(pmin) = cmin, Rmax = ρ(B∗(pmax)D−1),
and Rmin = ρ(B∗(pmin)D−1). Moreover, pmax and pmin are
the respective unique global maximum and minimum points of
Λ onM if and only if there are no stubborn agents in G.

Proof: The case in which every point inE is a critical point of
Λ is trivial. AssumeΛhas no critical points inE. SinceM⊂M′

is a compact set and Λ is continuous, then by the Extreme Value
Theorem, Λ achieves cmax and cmin at one or more points in
∂M. Let (pmax,0) ∈ ∂M and (pmin,0) ∈ ∂M be points such
that Λ(pmax) = cmax and Λ(pmin) = cmin.

Let (pS ,0) ∈M. Assume there are no stubborn agents.
The components (JT (p

S))jk = (1− pSj )β̂jk + pSj βjk, j �= k,
are maximized and minimized at pSj = 0 or pSj = 1 for all j. If

B � B̂ (Cases 2 and 4), the entries (JT (pS))jk are maximized
at pSj = 1 and minimized at pSj = 0 for all j. It follows from

Proposition 1 that pmax = 1 ∈ M̂ and pmin = 0 ∈ M̂. Using
a similar argument if B̂ � B (Case 5) pmax = 0 ∈ M̂ and
pmin = 1 ∈ M̂. Further, in Case 6a with no stubborn agents,
βjk − β̂jk > 0 for all k ∈ Nj or βjk − β̂jk < 0 for all k ∈ Nj .
Thus, similarly, pmax

j , pmin
j ∈ {0, 1} for all j.

For any pS �= pmax, pmin, it follows that B∗(pmax)D−1 �
B∗(pS)D−1 � B∗(pmin)D−1. By Proposition 1, Rmax =
ρ(B∗(pmax)D−1) and Rmin = ρ(B∗(pmin)D−1).

Now suppose there are stubborn agents 1, . . . , k, k < N .
Let ve ∈ span{e1, . . . , ek}. Then, by Lemma 6, if pmax ∈
Λcmax

then pmax + ve ∈ Λcmax
as long as (pmax + ve,0) ∈ E.

Similarly, if pmin ∈ Λcmin
then pmin + ve ∈ Λcmin

as long as
(pmin + ve,0) ∈ E. �

We now present the proof for Theorems 1 and 2.
Proof of Theorem 1: To prove (A), assume Rmax < 1. By

Proposition 3, λTmax(JM(x)) < 0 for all x ∈M. Therefore,
M− =M, M+ = ∅, and M0 = ∅. The proof of (B) and (C)
follow similarly. To prove (D), assume Rmin < Rmax = 1. By
Proposition 3, maxx∈M λTmax(JM(x)) = 0. Therefore,M0 �=
∅ andM− =M\M0. By Lemma 7,M0 ⊂ ∂M. The proof
of (E) follows similarly.

To prove (F), assume Rmax > 1 > Rmin. By Proposi-
tion 3 and Lemma 7, there exist points xmax = (pSmax,0)
and xmin = (pSmin,0) in ∂M such that λTmax(JM(xmax)) > 0
and λTmax(JM(xmin)) < 0. By the continuity of Λ on E and
Lemma 4, it follows thatM−,M+,M0 �= ∅, with each subset

consisting ofn−, n+, and n0 connected sets, respectively, where
each of then0 center sets separatesn− stable connected sets from
n+ unstable connected sets.

Since, by Lemma 5, Λ has no critical points in E, it follows
that c is a regular value of Λ for any c ∈ R. Hence, by the
Implicit Function Theorem, every center connected set M0 is
an (N − 1)-dimensional smooth hypersurface, and every stable
and unstable connected set is an N -dimensional hypervolume.

Since Λ has no critial points in E, the gradient dynamics
of Λ have no equilibria inM⊂ E. Thus, no center connected
set M0 inM0 is compact in int(M) in any direction, since by
Proposition 4 there cannot be anyα-limit points orω-limit points
inM. Thus, ∂M0 inM must be contained in ∂M. �

Proof of Theorem 2: LetRmax > 1 > Rmin. In Cases 2, 4, 5
and 6a, by Lemma 7, there exists a unique corner point xmin =
(pmin,0) ∈ M̂ where Λ(pmin) ≤ Λ(pS) for any x = (pS ,0) ∈
M, and Rmin = ρ(B∗(pmin)D−1). By Definition IV.1 and
Proposition 3, it follows that Λ(pmin) < 0.

Given pS , there exists a point (pend,0) ∈ ∂M such that the
line connecting pmin to pend passes through pS . Each point on
the line is parameterized by r ∈ [0, 1] as follows: s(r, pend) =
{(p(r),0) ∈M| p(r) = (1− r)pmin + rpend}.

Let p̄ = pend − pmin. Then, p̄ is tangent to s(r, pend), and
p̄j ≥ 0 if pmin

j = 0 and p̄j ≤ 0 if pmin
j = 1, for all j. By Proposi-

tion 4, the directional derivative ofΛ at s(r, pend) in the direction
p̄ is Dp̄Λ(s(r, p

end)) = p̄T∇Λ(s(r, pend)).
By Lemma 7, if B � B̂ (Cases 2 and 4), then pmin =

0 and p̄ � 0. By Lemma 5, ∇Λ(s(r, pend)) � 0 and so
p̄T∇Λ(s(r, pend)) ≥ 0 for any r ∈ [0, 1]. Similarly, for Cases
5 and 6a, p̄T∇Λ(s(r, pend)) ≥ 0 for all r ∈ [0, 1].

If p̄T∇Λ(s(r, pend)) = 0, Λ is constant along the line
s(r, pend), r ∈ [0, 1], and the line describes a level surface Λc.
Moreover, since Λ(pmin) < 0, by Lemma 4 c �= 0, i.e., M0

does not intersectΛc. For all other lines, p̄T∇Λ(s(r, pend)) > 0,
which implies that Λ is strictly increasing from a negative value
at the corner (pmin,0) to the value at (pend,0) ∈ ∂M. By
Theorem 1, ∂M0 ⊂ ∂M. Thus, there is only the possibility
of a single crossing of Λ0 on each of these lines. By Lemma 4
there is a unique center connected hypersurface. �

VI. REPRODUCTION NUMBERS PREDICT

BEHAVIORAL REGIMES

In this section we prove our third theorem, which provides
conditions that determine whether solutions of (3) converge
to a point in the IFE set M or to the EE as t→∞. We
show that the basic and extreme basic reproduction numbers
R0, R1, Rmin, Rmax distinguish four behavioral regimes in the
network SIRI model, each characterized by qualitatively differ-
ent transient and steady-state behaviors.

A. The ω-Limit Set of Solutions

The components of pS decrease monotonically along solu-
tions of (3). Here we show that this monotonicity implies that all
solutions either converge to a point inM or to the EE as t→∞.
Moreover, this means that when the EE is not an equilibrium of
the dynamics, the infection cannot survive in the network and
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Fig. 1. Illustration of local dynamics near M for the four different be-
havioral regimes of the network SIRI model (3) when B � B̂ or B̂ � B.
The diagrams are arranged where they exist in the R0, R1 parameter
space according to Theorem 3.M− is blue,M+ is red, andM0 is the
black dashed line. The stable and unstable manifolds of M0 are green
and magenta, respectively.

all solutions reach an IFE point inM. The results in this section
are valid even if B̂ is not irreducible.

Lemma 8: Lety(t, y0) = (pS(t), pI(t))be the solution of (3)
with initial condition y0 ∈ ΔN . Then the following hold.

1) Every point in the ω-limit set Ω(y0) of y(t, y0) is an
equilibrium of (3).

2) y(t, y0) converges to a point inM as t→∞ if R1 ≤ 1.
3) y(t, y0) converges to a point inM or to the EE as t→∞

if R1 > 1.
Proof: By invariance ofΔN , any solution y = y(t, y0) of (3)

with initial condition y0 ∈ ΔN is bounded and stays in ΔN for
t ≥ 0. Therefore its ω-limit set Ω(y0) is a nonempty, compact,
invariant set, and y approaches Ω(y0) as t→∞ (see Lemma
4.1 in [45]). Let V = 1T pS , then V̇ = −(pS)TBpI ≤ 0 in ΔN .
By LaSalle’s Invariance Principle [45], y approaches the largest
invariant set W in the set L = {(pS , pI) ∈ ΔN | V̇ = 0}. It fol-
lows that, on L, PSBpI = 0 which implies ṗS = 0. Moreover,
since B̂ has a zero at every entry where B has a zero, it follows
that PSB̂pI = 0 on L. This in turn implies that the pI dynamics
on L are given by the network SIS dynamics (7). Since solutions
of (7) either converge to the IFE point pI∗ = 0 or to the EE (5)
as t→∞ [14], it follows that every invariant set of L consists
only of equilibria of (3) (see Remark 1). By Proposition 5, W is
the union of the IFE setM and the EE (5). Furthermore, since
all ω-limit points are equilibria, Ω(y0) contains a single point
corresponding to either a point in the IFE setM or the EE. If
R1 ≤ 1 it follows from Propositions 5 and 9 that the IFE setM
comprises the only equilibria of (3). Therefore, y converges to a
point inM as t→∞. If R1 > 1, y converges to a point inM
or the EE as t→∞. �

B. Behavioral Regimes

We now state the third theorem of the article, which shows how
the four reproduction numbers distinguish the four behavioral
regimes: infection-free, endemic, epidemic, and bistable. We
interpret and illustrate in Fig. 1. The proof follows.

TABLE III
BEHAVIORAL REGIMES OF THE NETWORK SIRI CASES

Theorem 3 (Behavioral Regimes): Let pI(0) � 0, and wT
m

be the leading left-eigenvector associated with Rmax. Then
the network SIRI model (3) exhibits four qualitatively distinct
behavioral regimes.

1) Infection-Free Regime: If Rmax ≤ 1 the following hold:
a) All solutions converge to a point inM as t→∞.
b) IfB � B̂ or B̂ � B, the weighted infected average

pIavg(t) = wT
mD−1pI(t) decays monotonically to

zero.
2) Endemic Regime: If Rmin > 1, all solutions converge to

the EE as t→∞.
3) Epidemic Regime: IfRmax > 1 > Rmin, andR1 ≤ 1, the

following hold:
a) All solutions converge to a point inM as t→∞.
b) There exists H ⊂ ΔN and H ⊃M+ that is foli-

ated by families of heteroclinic orbits, each orbit
connecting two points inM.

4) Bistable Regime: IfRmax > 1 > Rmin andR1 > 1, then,
depending on the initial conditions, solutions converge to
a point inM or to the EE as t→∞.

Table III summarizes which regimes of Theorem 3 exist for
each of the six cases of the network SIRI model. Fig. 1 illustrates
the four regimes of Theorem 3 near the IFE setMwhen B � B̂
or B̂ � B.

In Case 2 (SIR), since B̂ = 0̄,Rmax = R0 andRmin = R1 =
0. So only the infection-free and epidemic regimes are possible.
This corresponds to the line R1 = 0 in Fig. 1.

In Case 3 (SIS), sinceB = B̂,Rmax = R0 = R1 = Rmin. So
only the infection-free and endemic regimes are possible. This
corresponds to the line R1 = R0 in Fig. 1.

In Case 4 (partial immunity), since B � B̂, by Proposition 8,
Rmax = R0 and Rmin = R1. So only the infection-free, en-
demic, and epidemic regimes are possible. This corresponds to
the region R1 < R0 in Fig. 1.

In Case 5 (compromised immunity), since B̂ � B, by Propo-
sition 8,Rmax = R1 andRmin = R0. So only the infection-free,
endemic, and bistable regimes are possible. This corresponds to
the region R1 > R0 in Fig. 1.

In Case 6 (mixed immunity), all four regimes are possible.
The N -dimensional setM is illustrated in Fig. 1 as a plane

(N = 2) for ease of visualization. The blue region represents
M− (the set of stable points inM) and the red region represents
M+ (the set of unstable points inM). Black arrows illustrate
the flow of solutions near M. Theorems 1 and 2 prove which
regions ofM exist in each of the regimes. In the infection-free
regime,M =M− and all solutions converge to the IFE setM.
In the endemic regime,M =M+ and all solutions converge to
the EE. In Cases 2 and 4 in the epidemic regime and in Case 5 in
the bistable regime,M− andM+ both exist and there is a unique
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hypersurfaceM0 shown as a black dashed line separating the
two.

In Section VII we study the geometry of solutions nearM and
the stable manifold (green) and unstable manifold (magenta) of
M0 in the epidemic regime of Cases 2 and 4 and the bistable
regime of Case 5. These manifolds are included in Fig. 1 and
help illustrate how solutions can flow.

Proof of Theorem 3: To prove (A), let Rmax ≤ 1. Then by
definition R1 ≤ 1. By Lemma 8, all solutions converge to a
point inM as t→∞. By (3), the dynamics of pIavg are

ṗIavg = wT
mD−1(B∗(pS)−D)pI − wT

mD−1P IB̂pI

≤ wT
mD−1(B̄max −D)pI − wT

mD−1P IB̂pI

= (R̄max − 1)wT
mpI − wT

mD−1P IB̂pI . (17)

The inequality follows from (4), and the last equality follows
from ρ(D−1B̄max) = ρ(B̄maxD

−1). Since B̂ is irreducible and
by Proposition 1 wm � 0, the nonlinear term wT

mD−1P IB̂pI

is nonnegative. And since B � B̂ or B̂ � B, by Proposition 8,
R̄max = Rmax. Therefore, if Rmax < 1, then ṗIavg < 0 and pIavg
decays monotonically to zero as t→∞.

If Rmax = 1, ṗIavg ≤ 0 with equality holding only at points
in Σ = {0 � pI � 1 | pIj > 0 implies pIk = 0, k ∈ Nj}.

At any point inΣ, the dynamics of node j wherepIj > 0 reduce
to ṗIj = −δjpIj . Thus, no solution can stay in Σ except for the
trivial solution pI = 0. By LaSalle’s Invariance Principle, pIavg
decays monotonically to zero as t→∞.

To prove (B), let Rmin > 1. Then by definition R1 > 1. By
Theorem 1, all points in M are unstable. Therefore, no non-
trivial solution can converge to a point inM. By Lemma 8, it
follows that the ω-limit set of all solutions with pI(0) � 0 is the
EE. Therefore, all solutions converge to the EE as t→∞.

To prove (C), let Rmax > 1 > Rmin, and R1 ≤ 1. By Theo-
rem 1,M−,M+,M0 �= ∅. By Lemma 8, all solutions converge
to a point inM as t→∞. By the proof of Lemma 1, the unstable
manifold of any unstable pointx ∈M+, lies partially or entirely
inΔN . Let y = y(t, y0) be a solution of (3) with initial condition
y0 on the unstable manifold of x. Then, y converges to x as
t→ −∞. By Lemma 8, y converges to a point x′ ∈ M, x′ �= x,
as t→∞. Thus, y forms a heteroclinic orbit. Let H ⊂ ΔN be
the union of the unstable manifolds of all points x ∈M+. Then,
every solution in H forms a heteroclinic orbit connecting two
points inM.

To prove (D), let R1 > 1. By Proposition 9, the EE exists
and it is locally stable. Therefore any solution in the region of
attraction of the EE converges to the EE as t→∞. By Lemma 1,
for any locally stable point x ∈M−, there exists V ⊂ ΔN and
x ∈ V such that any solution starting in V converges to a point
in V ∩M− at an exponential rate. �

VII. BISTABLE AND EPIDEMIC REGIMES

A. Geometry of Solutions NearM
In this section we examine the geometry of solutions near

the IFE set M in the epidemic regime for Case 2 (SIR) and
Case 4 (partial immunity), and the bistable regime for Case 5
(compromised immunity). The bistable regime for the network

SIRI model, which doesn’t exist for the well-studied SIS and
SIR models, generalizes that proved for the well-mixed SIRI
model studied in [27].

Definition VII.1 (Transversal crossing of Λc): Let y(t) =
(pS(t), pI(t)) ∈ ΔN , t ≥ 0, be a solution of (3). We say that
y crosses Λc transversally if pS , the projection of y onto M,
crosses Λc transversally. This holds if there exists a time t′ > 0
and m ∈ Λc such that pS(t′) = m and ṗS(t′)T∇Λ(m) �= 0.

Proposition 11 (Transversal crossing direction): Let y(t) =
(pS(t), pI(t)) ∈ ΔN , t ≥ 0, be a solution of (3) that crosses
Λc transversally at the point (m,0) ∈M and time t = t′,
where c = Λ(m). If ṗS(t′)T∇Λ(m) < 0, thenΛ decreases aspS

crosses Λc, and if ṗS(t′)T∇Λ(m) > 0, then Λ increases as pS

crossesΛc. Suppose (m,0) ∈M0, then if ṗS(t′)T∇Λ(m) < 0,
pS crossesM0 fromM+ toM− and if ṗS(t′)T∇Λ(m) > 0,
then pS crossesM0 fromM− toM+.

Proof: Since ṗS = −PSBpI , then ṗS(t′)T∇Λ(m) is the
derivative of Λ at m along solutions of (3) (see Proposition 4).
If ṗS(t′)T∇Λ(m) < 0, Λ decreases as pS(t) crosses Λc and if
ṗS(t′)T∇Λ(m) > 0, Λ increases as pS(t) crosses Λc. Suppose
(m,0) ∈M0. By Lemma 4, if ṗS(t′)T∇Λ(m) < 0, pS crosses
M0 from M+ to M−. Similarly, if ṗS(t′)T∇Λ(m) > 0, pS

crossesM0 fromM− toM+. �
Theorem 4 (Transversality of solutions): Consider Cases 2

and 4 in the epidemic regime (R0 > 1,R1 < 1) and Case 5 in the
bistable regime (R0 < 1, R1 > 1). Assume no stubborn agents.
Let y(t) = (pS(t), pI(t)) ∈ ΔN , t ≥ 0, be a solution of (3) for
which there exists a time t′ > 0 and (m,0) ∈ int(M), such that
pS(t′) = m and pI(t′) � 0. Let c = Λ(m) so thatm ∈ Λc. Then
y crosses Λc transversally. Suppose (m,0) ∈ int(M0). In the
epidemic regime of Cases 2 and 4, pS crossesM0 fromM+ to
M−, and the stable and unstable manifolds ofM0 lie outside
ΔN . In the bistable regime of Case 5, pS crossesM0 fromM−
toM+, and the stable and unstable manifolds ofM0 lie inside
ΔN .

Proof: Assume no stubborn agents. Let t′ > 0 such that
pS(t′) = m, pI(t′) � 0 and (m,0) ∈ int(M). By Definition 6,
m� 0. Let c = Λ(m). So ṗS(t′) = −diag(m)BpI(t′) ≺ 0.
By Lemma 5, if B � B̂ (Cases 2 and 4) then ∇Λ� 0 and
if B̂ � B (Case 5) then ∇Λ
 0. Thus ṗS(t′)T∇Λ(m) �= 0,
and so, by Proposition 11, y crosses Λc transversally. Suppose
(m,0) ∈ int(M0). Then, by Proposition 11, pS crosses from
M+ toM− in Cases 2 and 4, and fromM− toM+ in Case 5.
By continuity of solutions with respect to initial conditions, it
follows that the stable and unstable manifolds ofM0 must lie
outside ΔN in the epidemic regime of Cases 2 and 4 and inside
ΔN in the bistable regime of Case 5, as illustrated in Fig. 1. �

Corollary 1: In the epidemic regime of Cases 2 and 4, every
heteroclinic orbit in ΔN connects a point in M+ to a point
inM−.

Proof: Since by Theorem 4 the stable manifold of any point
inM0 lies outside ΔN , it follows by Theorem 3 that the orbit
connects a point inM+ to a point inM−. �

Corollary 2: Consider Case 5 in the bistable regime. Let
y(t) = (pS(t), pI(t)) be a solution of (3). Then it holds that

1) If y crossesM0 transversally or (pS(0),0) ∈M+, then
y converges to the EE as t→∞. Moreover, the EE lies
on the unstable manifold ofM0.
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Fig. 2. Bistability and resurgent epidemic. Simulation of pIj versus time
t for network of N = 4 agents in bistable regime of Case 5 (compro-
mised immunity) with pS(0) = 1− pI(0): j = 1 in red, j = 2 in blue,
j = 3 in green, and j = 4 in cyan. A is the unweighted adjacency matrix
of the digraph shown. B = 0.7 A, B̂ = diag([1.5, 0.7, 0.7, 0.7])A, and
D = I. Left. pI(0) = [0, 0.05, 0.1, 0]T . Right. pI(0) = [0, 0.08, 0.1, 0]T .

2) The stable manifold of M0 intersects the boundary of
ΔN where pS = 1− pI .

Proof: If y crossesM0 transversally at t = t′, then, by Theo-
rem 4, pS crosses every level surface Λc inM transversally and
crossesM0 fromM− toM+. By Proposition 11, Λ strictly in-
creases along pS . It follows by Lemma 4 that (pS ,0) ∈M+ for
all t > t′. Since by Lemma 1 y cannot converge to a point in the
IFE subsetM+, it follows by Lemma 8 that y converges to the
EE as t→∞. The same argument holds if (pS(0),0) ∈M+.
It follows that the EE lies on the unstable manifold ofM0.

Consider any point y = (pS , pI) ∈ ΔN on the stable mani-
fold of M0. Then, as t→ −∞ and y(t) ∈ ΔN , y remains on
the stable manifold of M0 and (pS ,0) remains in M−. By
Lemma 1, points inM− have no unstable manifold inΔN so the
stable manifold ofM0 cannot intersectM−. Instead, because
the components of pS increase monotonically as t→ −∞, y
intersects ∂ΔN where pS = 1− pI . �

The locations of the stable and unstable manifolds ofM0, as
proved in Theorem 4, are illustrated in Fig. 1: outside ΔN in
the epidemic regime and inside ΔN in the bistable regime. The
figure shows the heteroclinic orbits proved in Corollary 1 for
the epidemic regime. The solutions along the heteroclinic orbits
crossM0 transversally, with their projection ontoM crossing
fromM+ toM−, as proved in Theorem 4.

Fig. 1 also shows the local flow in the bistable regime, as
proved in Corollary 2. These solutions also crossM0 transver-
sally, but with their projection onto M crossing from M− to
M+, as proved in Theorem 4.

B. Bistability and Resurgent Epidemic

In this section we examine the bistable regime of Theorem 3,
which exists for Case 5 (compromised immunity) and for Case
6 (mixed immunity). We show how solutions in this regime can
exhibit a resurgent epidemic in which an initial infection appears
to die out for an arbitrarily long period of time, but then abruptly
and surprisingly resurges to the EE.

Conditions on the initial state that predict a resurgent epidemic
were proved for the well-mixed SIRI model in [27]. Here we
compute a critical condition on the initial state in the special
case that G is a d-regular digraph, i.e., every agent j in G
has degree dj = d, and every node has the same initial state.
We then illustrate numerically for a more general digraph with
compromised immunity in Fig. 2.

Consider a d-regular digraph with global recovery, infection,
and reinfection rates: D = δI, B = βA, and B̂ = β̂A, where A
is the adjacency matrix. The network SIRI dynamics (2) are

ṗSj = −βdpSj pIj − βpSj

N∑
k=1

ajk
(
pIk − pIj

)

ṗIj = −δpIj + (β − β̂)dpSj p
I
j + β̂dpIj − β̂d(pIj )

2

+
((

β − β̂
)
pSj + β̂

(
1− pIj

)) N∑
k=1

ajk
(
pIk − pIj

)
(18)

where we have used the identity
∑N

k=1 ajkp
I
k = pIjd+∑N

k=1 ajk(p
I
k − pIj ). Let pI(0) = pic1. Then (18) reduce to

ṗSj = −βdpSj pIj
ṗIj = −δpIj + (β − β̂)dpSj p

I
j + β̂dpIj − β̂d(pIj )

2. (19)

(19) describes identical and uncoupled dynamics for every agent
j, which are equivalent to the dynamics of the well-mixed
SIRI model [27] with infection rate βd and reinfection rate
β̂d. Following [27], we find the critical initial condition pcrit =

1− ξ(R0dξ)
−β/β̂ , where ξ = (R1 − 1/d)/(R1 −R0). If pic <

pcrit solutions converge to a point in the IFE as t→∞. If
pic > pcrit solutions converge to the EE, pI∗ = (1− δ/(β̂d))1,
as t→∞. If pic = pcrit, the solution flows along the stable
manifold of the point ξ1 ∈M0 and converges to ξ1. These
results suggest more generally that the stable manifold ofM0

separates solutions that converge to the IFE from those that
converge to the EE, as in [27].

Further, as in [27], if pic > pcrit, the solution exhibits a
resurgent epidemic in which pIj initially decreases to a minimum
value pImin and then increases to the EE. As (pic − pcrit)→ 0,
pImin → 0 and the time it takes for the solution to resurge goes to
infinity. That is, the infection may look like it is gone for a long
time before resurging without warning. We note that the SIR and
SIS models do not admit a bistable regime and therefore fail to
account for the possibility of a resurgent epidemic. This implies
the SIR and SIS models are not robust to variability in infection
and reinfection rates.

Fig. 2 illustrates the bistability and resurgent epidemic
phenomena for an example network of N = 4 agents
for Case 5 (compromised immunity). B = 0.7 A, B̂ =
diag([1.5, 0.7, 0.7, 0.7])A, and D = I. That is, agents 2, 3, 4 are
stubborn and agent 1 acquires compromised immunity to all its
infected neighbors (agents 2 and 4). So Rmax = R1 = 1.28 and
Rmin = R0 = 0.85, placing the system in the bistable regime.
In both panels of Fig. 2, pS(0) = 1− pI(0). In the left panel
pI(0) = [0, 0.05, 0.1, 0]T and the solution can be observed to
converge to the IFE, i.e., pIj → 0 for all j. In the right panel
pI(0) = [0, 0.08, 0.1, 0]T and there is a resurgent epidemic:
each pIj initially decays and then remains close to zero until
t ≈ 100, after which the pIj increase rapidly to the EE, which is
pI∗ = [0.29, 0.11, 0.17, 0.17]T .

VIII. CONTROL STRATEGIES

We apply our theory to design control strategies for technolog-
ical, as well as biological and behavioral settings, that guarantee
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Fig. 3. Simulations of pIj vs. t to illustrate control strategies that erad-
icate infection: j = 1 in red, j = 2 in blue, j = 3 in green, and j = 4 in
cyan. Top Left. Example network of 4 agents with weak mixed immu-
nity (Case 6a) in the endemic regime. B = A, B̂ = diag([0.3, 1, 2, 1])A,
and D = I. Bottom Left. Modification of recovery rate of agent 2 from
δ2 = 1 to δ2 = 3.5. Top Right. Modification of reinfection rate β̂42 = 1 to
β̂42 = 0.3. Bottom Right. Modification of network topology as shown.

desired steady-state behavior, such as the eradication of an infec-
tion. We begin with an example network with mixed immunity
in the endemic regime, which has an infected steady state. We
show three strategies for changing parameters that modify the
reproduction numbers R0, R1, Rmin, and Rmax, and control the
dynamics to a behavioral regime that results in an infection-free
steady state, according to Theorem 3. We then consider two
example networks with mixed immunity in the bistable regime.
We illustrate how vaccination of well-chosen agents increases
the set of initial conditions that yield an infection-free steady
state or at least delay a resurgent epidemic so that further control
can be introduced.

A. Control From Endemic to Infection-Free Steady State

Consider the network of four agents shown in the top left panel
of Fig. 3. Let B = A, the unweighted adjacency matrix for the
digraph shown. Let B̂ = diag([0.3, 1, 2, 1])A and D = I. The
network has weak mixed immunity (Case 6a): Agent 1 acquires
partial immunity to reinfection, agent 3 acquires compromised
immunity to reinfection, and agents 2 and 4 are stubborn.
We compute the reproduction numbers: R0 = 1.32, R1 = 1.22,
Rmin = 1.13, and Rmax = 1.52, which, by Theorem 3, imply
dynamics in the endemic regime and an infected steady state
for every initial condition. This is illustrated in the simulation
of pIj versus time t for initial conditions pS(0) = 1− pI(0),
pI(0) = [0.01, 0.01, 0.01, 0.2]T . By (5), the solution converges
to the EE: pI∗ = [0.07, 0.23, 0.12, 0.19]T .

1) Modification of Agent Recovery Rate: This strategy
controls the network behavior by selecting one or more agents
for treatment to increase its recovery rate. In the epidemiological
setting, this could mean medication. In the behavioral setting,
this could mean providing incentives or training. We make just
one modification to the example network of four agents: δ2 = 1
becomes δ2 = 3.5. The corresponding reproduction numbers
are R0 = 0.80, R1 = 0.72, Rmin = 0.65, and Rmax = 0.94,
which, by Theorem 3, imply dynamics in the infection-free
regime. Using the same initial conditions as in the top left panel,
we simulate the modified system in the bottom left panel of

Fig. 4. Vaccination of agent 2 in network of two agents with mixed
immunity in bistable regime. Agents 1 and 2 acquire compromised and
partial immunity, respectively: β12 = β̂21 = 0.8, β̂12 = β21 = 1.3, δ1 =
δ2 = 1. Left. With agent 2 vaccinated, solutions with initial conditions in
magenta converge to the EE, and in yellow converge to an IFE. Top
Right. Simulation with no vaccination. Bottom Right. Simulation with
vaccination. The initial condition is pI1(0) = 0.1 and pI2(0) = 0.4, shown
as a star in the left panel.

Fig. 3. The solution converges to an infection-free steady state
as predicted by Theorem 3.

2) Modification of Agent Reinfection Rate: This strategy
controls the network behavior by selecting one or more agents for
treatment to decrease its reinfection rate. In the epidemiological
setting, this is vaccination, and in the behavioral setting, it could
be inoculation as in psychology research [2]. We make just one
modification to the example network of four agents: β̂42 = 1
becomes β̂42 = 0.3. The corresponding reproduction numbers
are R0 = 1.32, R1 = 0.96, Rmin = 0.82, and Rmax = 1.52,
which, by Theorem 3, imply dynamics in the epidemic regime.
Using the same initial conditions as in the top left panel, we
simulate the modified system in the top right panel of Fig. 3.
After a small and short-lived epidemic, the solution converges
to an infection-free steady state, as predicted by Theorem 3.

3) Modification of Network Topology: This strategy con-
trols the network behavior by selecting one or more edges in
the network graph for re-wiring. In all settings, this means
affecting who comes in contact with whom. For the example
network, we move the connections between agents 4 and 1 to
be between agents 4 and 2. The corresponding reproduction
numbers are identical to those in the modification of reinfection
rate example and therefore, by Theorem 3, also imply dynamics
in the epidemic regime. Using the same initial conditions as in
the top left panel, we simulate the modified system in the bottom
right panel of Fig. 3. The solution converges to an infection-free
steady state, as predicted by Theorem 3, with an initial epidemic
smaller than in the top right panel.

B. Control in Bistable Regime

1) Small Network: A network of two agents with weak
mixed immunity is shown in Fig. 4. Agent 1 acquires compro-
mised immunity while agent 2 acquires partial immunity: β12 =
β̂21 = 0.8, β̂12 = β21 = 1.3, δ1 = δ2 = 1. The corresponding
reproduction numbers are R0 = R1 = 1.02, Rmin = 0.8, and
Rmax = 1.3. By Theorem 3, the system is in the bistable regime.
Suppose initially there are no recovered agents, i.e., pS(0) =
1− pI(0). Then, it can be shown that the solution will always
converge to the EE. Now suppose we apply a control strategy
in which we vaccinate the agent who acquires partial immunity,
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Fig. 5. Left: Network of twenty agents with weak mixed immunity in
bistable regime. Agents in dark gray acquire partial immunity to reinfec-
tion: βjk = 0.5, β̂jk = 0.1. Agents in gray are stubborn: βjk = β̂jk =
0.5. Agents in light gray acquire compromised immunity to reinfection:
βjk = 0.5, β̂jk = 0.875. D = I. Right. Simulations of p̄I for no vaccina-
tion (solid black), and vaccinations of agents 2, 3, 5, 7 (dotted blue),
agent 11 (dashed orange), agents 7, 11 (point-dashed green), and
agents 7, 11, 13 (dashed violet). Initial conditions are pI1(0) = pI20(0) =

0.5 and pIj (0) = 0.05 for j �= 1, 20.

where vaccination is equivalent to exposing the agent to the
infection. After the vaccination of agent 2 in our example, we
have pS1 (0) = 1− pI1(0)with pI1(0) ∈ [0, 1] and pS2 (0) = 0with
pI2(0) ∈ [0, 1].

We illustrate the results of the vaccination of agent 2 in the left
panel of Fig. 4. Initial conditions that lead to the EE are shown
in magenta and to an infection-free steady state in yellow. We
illustrate with simulations using the initial conditions pI1(0) and
pI2(0) denoted by the star in the left panel of Fig. 4. The top
right simulation is of the system with no vaccination: there is an
infected steady state as predicted. The bottom right simulation is
of the system with agent 2 vaccinated: there is an infection-free
steady state as predicted.

2) Large Network: A network of twenty agents with weak
mixed immunity is shown in Fig. 5. Agents 2, 3, 5, 7, 11, 13, 17,
and 19 (dark gray) acquire partial immunity to reinfection:βjk =

0.5, β̂jk = 0.1. Agents 1 and 20 (gray) are stubborn: βjk =

β̂jk = 0.5. Agents 4, 6, 8, 9, 10, 12, 14, 15, 16, and 18 (light
gray) acquire compromised immunity to reinfection: βjk = 0.5,
β̂jk = 0.875. D = I. The corresponding reproduction numbers
areR0 = 1.06,R1 = 1.26,Rmin = 0.76, andRmax = 1.59. By
Theorem 3, the system is in the bistable regime.

In Fig. 5, we plot simulations of the average infected state
p̄I = 1T pI/N versus t for no vaccinations (solid black) and for
different sets of vaccinated agents: agents 2, 3, 5, and 7 (dotted
blue), agent 11 (dashed orange), agents 7 and 11 (point-dashed
green), and agents 7, 11, and 13 (dashed violet). Vaccinating
agent 11 has the strongest effect. The infection appears to
be eradicated by vaccinating agents 7, 11, and 13. The other
vaccination cases delay the epidemic, which provides time for
treatments or other control interventions.

IX. CONCLUSION

The network SIRI model generalizes the network SIS and
SIR models by allowing agents to adapt their susceptibility to
reinfection. We have proved new conditions on network structure
and model parameters that distinguish four behavioral regimes
in the network SIRI model. The conditions depend on four scalar
quantities, which generalize the basic reproduction number used
in the analysis and control of the SIS and SIR models. The
SIRI model captures dynamic outcomes that the SIS and SIR

models necessarily miss, most dramatic of which is the resurgent
epidemic and the bistable regime.

The generality of the network SIRI model provides a means to
assess robustness to uncertainty and changes in infection rates.
Further, the model provides new flexibility in control design,
including, as we have illustrated, selective vaccination of agents
that acquire partial immunity or modification of recovery rates,
reinfection rates, and wiring, to leverage what can happen when
agents adapt their susceptibility.

Control strategies from the literature can also be extended
to the SIRI setting, for example, optimal node removal, optimal
link removal, and budget-constrained allocation [10], [46]–[48].
However, optimal node and link removal have been shown to
be NP-complete and NP-hard problems, respectively [10], [49]
and all of these strategies rely on knowledge of the network
structure or system parameters. A practical alternative is to
design feedback control strategies whereby agents actively adapt
their susceptibility.

Our results were obtained using the IBMF approach [9], [15]
to reduce the size of the state space. It has been shown that
if solutions in an IBMF model converge to an infection-free
equilibrium, then the expected time it takes the stochastic
Markov model to reach the infection-free absorbing state is
sublinear with respect to network size [10]. It is an open question
if bistability in the stochastic Markov model will be sensitive to
noise. Other questions to be explored include deriving centrality
measures that facilitate optimal control design and extending
to the case in which agents adapt their susceptibility to every
reinfection.
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