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Abstract

The cooperative bandit problem is increasingly becoming relevant due to its applications
in large-scale decision-making. However, most research for this problem focuses exclusively on
the setting with perfect communication, whereas in most real-world distributed settings, com-
munication is often over stochastic networks, with arbitrary corruptions and delays. In this
paper, we study cooperative bandit learning under three typical real-world communication sce-
narios, namely, (a) message-passing over stochastic time-varying networks, (b) instantaneous
reward-sharing over a network with random delays, and (c) message-passing with adversarially
corrupted rewards, including byzantine communication. For each of these environments, we pro-
pose decentralized algorithms that achieve competitive performance, along with near-optimal
guarantees on the incurred group regret as well. Furthermore, in the setting with perfect com-
munication, we present an improved delayed-update algorithm that outperforms the existing
state-of-the-art on various network topologies. Finally, we present tight network-dependent
minimax lower bounds on the group regret. Our proposed algorithms are straightforward to
implement and obtain competitive empirical performance.

1 Introduction

The cooperative multi-armed bandit problem involves a group of N agents collectively solving a
multi-armed bandit while communicating with one another. This problem is relevant for a variety
of applications that involve decentralized decision-making, for example, in distributed controls
and robotics (Srivastava, Reverdy and Leonard, 2014) and communication (Lai, Jiang and Poor,
2008). In the typical formulation of this problem, a group of agents are arranged in a network
G = (V, &), wherein each agent interacts with the bandit, and communicates with its neighbors in
G, to maximize the cumulative reward.

A large body of recent work on this problem assumes the communication network G to be
fixed (Kolla, Jagannathan and Gopalan, 2018; Landgren, Srivastava and Leonard, 2021). Fur-
thermore, these algorithms inherently require precise communication, as they construct careful
confidence intervals for cumulative arm statistics across agents, e.g., for stochastic bandits, it has
been shown that the standard UCB1 algorithm (Auer, Cesa-Bianchi and Fischer, 2002) with a neigh-
borhood confidence interval is close to optimal (Dubey and Pentland, 2020a; Kolla, Jagannathan and
Gopalan, 2018; Madhushani and Leonard, 2020a,b), and correspondingly, for adversarial bandits, a
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neighborhood-weighted loss estimator can be utilized with the EXP3 algorithm to provide competi-
tive regret (Cesa-Bianchi, Gentile and Mansour, 2019). Such approaches are indeed feasible when
communication is perfect, e.g., the network G is fixed, and messages are not lost or corrupted. In
real-world environments, however, this is rarely true: messages can be lost, agents can be byzantine,
and communication networks are rarely static (Leskovec, 2008). This aspect has hence received
much attention in the distributed optimization literature (Yang et al., 2019). However, contrary
to network optimization where dynamics in communication can behave synergistically (Hosseini,
Chapman and Mesbahi, 2016), bandit problems additionally bring a decision-making component
requiring an explore-exploit trade-off. As a result, external randomness and corruption are incom-
patible with the default optimal approaches, and require careful consideration (Vernade, Cappé
and Perchet, 2017; Lykouris, Mirrokni and Paes Leme, 2018). This motivates us to study the
multi-agent bandit problem under real-world communication, which regularly exhibits external
randomness, delays and corruptions. Our key contributions include the following.

Contributions. We provide a set of algorithms titled Robust Communication Learning (RCL)
for the cooperative stochastic bandit under three real-world communication scenarios.

First, we study stochastic communication, where the communication network G is time-varying,
with each edge being present in G with an unknown probability p. For this setting, we present a UCB-
like algorithm, RCL-LF (Link Failures), that directs agent i to discard messages with an additional
probability of 1 — p; in order to control the bias in the (stochastic) reward estimates. RCL-LF

obtains a group regret of O ((Zi\il(l — P i) + D cee(maxi<c p;) -p) (Zle %)), where € is
a non overlapping clique covering of G, T is time horizon, and Ay, is the difference in reward mean
between the optimal and kth arm. The regret exhibits a smooth interpolation between known rates
for no communication (p = 0) and perfect communication (p = 1).

Second, we study the case where messages from any agent can be delayed by a random (but
bounded) number of trials 7 with expectation E[r]|. For this setting, simple reward-sharing with a
natural extension of the UCB algorithm (RCL-SD (Stochastic Delays)) obtains a regret of

( (ZlogT) (N E[r] + log(T) + /N - B[] log(T >ZAk>

k>1 k>1

, which is reminiscent of that of single-agent bandits with delays (Joulani, Gyorgy and Szepesvari,
2013) (Remark 4). Here x(G) is the clique covering number of G.

Third, we study the corrupted setting, where any message can be (perhaps in a byzantine manner)
corrupted by an unknown (but bounded) amount e. This setting presents the two-fold challenge of
receiving feedback after (variable) delays as well as adversarial corruptions, making existing arm
elimination (Lykouris, Mirrokni and Paes Leme, 2018; Chawla et al., 2020; Gupta et al., 2021) or
cooperative estimation (Dubey and Pentland, 2020a) methods inapplicable. We present algorithm
RCL-AC (Adversarial Corruptions) that overcomes this issue by limiting exploration only to well-
positioned agents in G, who explore using a hybrid robust arm elimination and local confidence

bound approach. RCL-AC obtains a regret of O (w(GV) S lOgT FNYE loglogT + NTK’}/G)

where 1(G~) denotes the domination number of the v graph power of G, which matches the rates
obtained for corrupted single-agent bandits without knowledge of e.

Finally, for perfect communication, we present a simple modification of cooperative UCB1 that
provides significant empirical improvements, and also provides minimax lower bounds on the group
regret of algorithms based on message-passing.




Related Work. A variant of the networked adversarial bandit problem without communication
constraints (e.g., delay, corruption) was studied first in the work of Awerbuch and Kleinberg (2008),
who demonstrated an average regret bound of order /(1 4+ &/N)T'. This line of inquiry was gener-
alized to networked communication with at most  rounds of delays in the work of (Cesa-Bianchi,
Gentile and Mansour, 2019), that demonstrate an average regret of order /(y + ¢(G-)/N) KT where
a(G) denotes the independence number of G, the y-power of network graph G. This line of in-
quiry has been complemented for the stochastic setting with problem-dependent analyses in the
work of Kolla, Jagannathan and Gopalan (2018) and Dubey and Pentland (2020a). The former
presents a UCB1-style algorithm with instantaneous reward-sharing that obtains a regret bound of
O(a(G) - Zﬁil IngT) that was generalized to message-passing communication with delays in the
latter.

Alternatively, Landgren, Srivastava and Leonard (2021) consider the multi-agent bandit where
communication is done instead using a running consensus protocol, where neighboring agents av-
erage their reward estimates using the DeGroot consensus model (DeGroot, 1974). This algorithm
was refined in the work of Martinez-Rubio, Kanade and Rebeschini (2019) by a delayed mixing
scheme that reduces the bias in the consensus reward estimates. A specific setting of Huber con-
taminated communication was explored in the work of Dubey and Pentland (2020b); however, in
contrast to our algorithms, that work assumes that the total contamination likelihood is known a
priori. Additionally, multi-agent networked bandits with stochastic communication was considered
in Madhushani and Leonard (2019, 2021a,b), however, only for regular networks and multi-star

networks.

Our work also relates to aspects of stochastic delayed feedback and corruptions in the context of
single-agent multi-armed bandits. There has been considerable research in these areas, beginning
from the early work of Weinberger and Ordentlich (2002) that proposes running multiple bandit
algorithms in parallel to account for (fixed) delayed feedback. Vernade, Cappé and Perchet (2017)
discuss the multi-armed bandit with stochastic delays, and provide algorithms using optimism
indices based on the UCB1 (Auer, Cesa-Bianchi and Fischer, 2002) and KL-UCB (Garivier and Cappé,
2011) approaches. Stochastic bandits with adversarial corruptions have also received significant
attention recently. Lykouris, Mirrokni and Paes Leme (2018) present an arm elimination algorithm
that provides a regret that scales linearly with the total amount of corruption, and present lower
bounds demonstrating that the linear dependence is inevitable. This was followed up by Gupta,
Koren and Talwar (2019) who introduce the algorithm BARBAR that improves the dependence on the
corruption level by a better sampling of worse arms. Alternatively, Altschuler, Brunel and Malek
(2019) discuss best-arm identification under contamination, which is a weaker adversary compared
to the one discussed in this paper. The corrupted setting discussed in our paper combines both
issues of (variable) delayed feedback along with adversarial corruptions, and hence requires a novel
approach.

In another line of related work, Chawla et al.Chawla et al. (2020) discuss gossip-based commu-
nication protocols for cooperative multi-armed bandits. While the paper provides similar results,
there are several differences in the setup considered in Chawla et al compared to our setup. First,
we can see that Chawla et al.do not provide a uniform (9(%) speedup, but in fact, their regret
depends on the difficulty of the first % arms, which is a (’)(%) speed up only when all arms are
“uniformly” suboptimal, i.e., A; = A;Vi,j € [K]. In contrast, our algorithm will always provide

a(Gy)

a speed up of order =g regardless of the arms themselves, and when we run our algorithm by

setting the delay parameter v = d,(G) (diameter of the graph G), we obtain an O(%;) speedup



Table 1: Quantity (with notation) for any graph G.

Average degree (d) | Maximum degree (dmax) | Degree of i (d;) Independence number («)
Message life (v) Minimum degree (dmin) | Neighborhood of ¢ (N;) | Domination number (¢)
k-power of G (Gr) | Diameter (dy) N; U {i} (N)T) Clique covering number (%)

regardless of the sparsity of G. Additionally, our constants (per-agent) scale as O(K) in the worst
case, whereas Chawla et al obtain a constant between O(K + (log N)?) and O(K + N¥) for some
8 > 1, based on the graph structure, which can dominate the logT term when we have a large
number of agents present.

2 Preliminaries

Notation (Table 1). We denote the set a,...,b as [a,b], and as [b] when a = 1. We define
the indicator of a Boolean predicate = as 1{z}. For any graph G with diameter d,(G), and any
1 < v < di(G), we define G as the y-power of G, i.e., the graph with edge (¢, j) if 4, j are at most
a distance 7.

Problem Setting. We consider the cooperative stochastic multi-armed bandit problem with K
arms and a group V of N agents. In each round ¢t € [T], each agent ¢ € V pulls an arm A;(t) € [K]
and receives a random reward X;(t) (realized as r;(t)) drawn i.i.d. from the corresponding arm’s
distribution. We assume that each reward distribution is sub-Gaussian with an unknown mean gy,
and unknown variance proxy U]% upper bounded by a known constant 2. Without loss of generality
we assume that p; > po... > pg and define Ay := py — pg, vk > 1, to be the reward gap (in
expectation) of arm k. Let A := ming~; A; be the minimum expected reward gap. For brevity
in our theoretical results, we define g(¢,0) := 8( + 1)0? = o(1) and f(M,G) :== MY o Ay +
4L, (3log(3(di(G) + 1)) + (log (di(G) + 1)) - gy Ak = o((M + Nlog N) - 32501 Ay).
Networked Communication (Figure 1). Let G = (V,€) be a connected, undirected graph
encoding the communication network, where £ contains an edge (i, 7) if agents ¢ and j can commu-
nicate directly via messages with each other. After each round ¢, each agent j broadcasts a message
m;(t) to all their neighbors. Each message is forwarded at most v times through G, after which it
is discarded. For any value of v > 1, the protocol is called message-passing (Linial, 1992), but for
v =1 it is called instantaneous reward sharing, as this setting has no delays in communication.
Exploration Strategy (Figure 2). For Sections 3 and 4 we use a natural extension of the UCB1
algorithm for exploration. Thus we modify UCB1 (Auer, Cesa-Bianchi and Fischer, 2002) such that
at each time step t for each arm k each agent ¢ constructs an upper confidence bound, i.e., the sum
of its estimated expected reward f (¢t — 1) (empirical average of all the observed rewards) and the

2(€+1) logt

uncertainty associated with the estimate Ci(t—1) :== o N(-1)

where £ > 1, and pulls the arm

with the highest bound.
Regret. The performance measure we consider, group regret, is a straightforward extension of
pseudo regret for a single agent. Group regret is the regret (in expectation) incurred by the group
V by pulling suboptimal arms. The group regret is given by Regs(T) = YN | i1 Ak E [0k ()],
where nj (t) is the number of times agent 7 pulls the suboptimal arm & up to (and including) round
t.

Before presenting our algorithms and regret upper bounds we present some graph terminology.



For t =1,2,... each agent : € V
1. Plays arm A;(t), gets reward r;(t), computes m;(t) = (A;(t),r:(t),1,1).

2. Adds m;(t) to the set of messages M;(t), broadcasts all messages in M;(¢) to its neighbors and
receives messages M. (t) from its neighbors.

3. Computes M;(t + 1) from M/(¢) by discarding all messages sent prior to round t — .

This is called instantaneous reward sharing for v =1 (no delays), and message-passing for v > 1.

Figure 1: The cooperative bandit protocol with delay parameter ~.

For t=1,2,..., each agent i € V

1. Calculates, for each arm k € [K], QL(t— 1) =i(t—1)+ o %, where Nj(t —1) is
k

the number of reward samples available for arm k at time ¢.

2. Plays arm A;(t) = arg max;, Q% (t — 1)

Figure 2: Cooperative UCB1 which uses additional arm pulls from messages.

Definition 1 (Clique covering number). A clique cover C of any graph G = (V, &) is a partition
of V into subgraphs C' € C such that each subgraph C' is fully connected, i.e., a clique. The size of
the smallest possible covering C* is known as the clique covering number x(G).

Definition 2 (Independence number). The independence number a(G) of G = (V, €) is the size of
the largest subset of V, C V such that no two vertices in V, are connected.

Definition 3 (Domination number). The domination number )(G) of G = (V, £) is the size of the
smallest subset Vy, C V such that each vertex not in Vy, is adjacent to at least one agent in V.

Organization. In this paper, we study three specific forms of communication errors. Section 3
discusses the case when, for both message-passing and instantaneous reward-sharing, any message
forwarding fails independently with probability p, resulting in stochastic communication failures.
Section 4 discusses the case when instantaneous reward-sharing incurs a random (but bounded)
delay. Section 5 discusses the case when the outgoing reward from any message may be corrupted
by an adversarial amount at most €. Finally, in Section 6, we discuss an improved algorithm for the
case with perfect communication and present minimax lower bounds on the problem. We present
all proofs in the Appendix and present proof-sketches highlighting the central ideas in the main

paper.

3 Probabilistic Message Selection for Random Communication
Failures

The fundamental advantage of cooperative estimation is the ability to leverage observations about
suboptimal arms from neighboring agents to reduce exploration. However, when agents are com-
municating over an arbitrary graph, the amount of information an agent receives varies according
to its connectivity in GG. For example, agents with a large number of neighbors receive more infor-
mation, leading them to begin exploitation earlier than agents with fewer neighbors. This means



that well-connected agents exhibit better performance early on, but because they quickly do only
exploiting, agents that are poorly connected typically only observe exploitative arm pulls, which
requires them to explore for longer in order to obtain similarly good estimates for suboptimal arms,
increasing their regret. The disparity between performance in well-connected versus poorly con-
nected agents is exacerbated in the presence of random link failures, where any message sent by an
agent can fail to reach its recipient with a failure probability 1 — p (drawn i.i.d. for each message).

Indeed, it is natural to expect the group regret to decrease with decreasing link failure probability,
i.e., increasing communication probability p. However, what we observe experimentally (Section 7)
is that this holds only for graphs G that are regular (i.e., each agent has the same degree), or close
to regular. When G is irregular, as we increase p from 0 to 1, the group performance oscillates.
While, in some cases, the improved performance in the well-connected agents can outweigh the
degradation observed in the weakly-connected agents (leading to lower group regret), it is prudent
to consider an approach that mitigates this disparity by regulating information flow in the network.

Information Regulation in Cooperative Bandits. Our approach to regulate information
is straightforward: we direct each agent ¢ to discard any incoming message with an agent-specific
probability 1 — p;, while always utilizing its own observations. For specific values of p;, we can
obtain various weighted combinations of internal versus group observations. Our first algorithm
RCL-LF (Link Failures) is built on this regulation strategy, coupled with UCB1 exploration using all
selected observations for each arm. Essentially, each agent runs UCB1 using the cumulative set of
observations it has received from its network. After pulling an arm, it broadcasts its pulled arm
and reward through the network, but incorporates each incoming message only with a probability
p;- Pseudo code for the algorithm is given in the appendix. We first present a regret bound for
RCL-LF when run with the instantaneous reward-sharing protocol.

Theorem 1 (RCL-LF Regret with instantaneous reward-sharing). RCL-LF running with the instan-
taneous reward-sharing protocol (Figure 1, v = 1) obtains cumulative group regret of

N
Rega(T) < g(&.0) (Z(l —pi-p)+ Z@gm) 'p> <Z 1055) + f(BN,G)

i=1 ceC k>1

where C is a non-overlapping clique covering of G.

Proof sketch. We follow an approach similar to the analysis of UCB1 by Auer, Cesa-Bianchi
and Fischer (2002) with several key modifications. First, we partition the communication graph
G into a set of non-overlapping cliques and then analyze the regret of each clique. The group
regret can be obtained by taking the summation of the regret over each clique. Two major
technical challenges in proving the regret bound for RCL-LF are (a) deriving a tail probability
bound for probabilistic communication, and (b) bounding the regret accumulated by agents by los-
ing information due to communication failures and message discarding. We overcome the first
challenge by noticing that communication is independent of the decision making process thus
E <exp (A St Xi1{AL =k} — upNi(t) — )‘220’% N,z(t))) < 1 holds under probabilistic commu-
nication. We obtain the tail bound by combining this result with the Markov inequality and
optimizing over A using a peeling type argument. We address the second challenge by proving
that the number of times agents do not share information about any suboptimal arm k can be
bounded by a term that increases logarithmically with time and scales with number of agents, G,
and communication probabilities, as Zf\il(l — i p) + D cce(maxi<c p;) - p. O




Remark 1 (Regret bound optimality). Under perfect communication (p = 1) and no message
discarding, i.e., p; = p = 1,Vi € [N] the dominant term in our regret bound scales with Y (G),
obtaining identical performance to deterministic communication over G (Dubey and Pentland,
2020a). Alternatively, when p; = p = 0, there is no communication, and hence, the regret bound
is O(NlogT). Theorem 1 quantifies the benefit of communication in reducing the group regret
under probabilistic link failure and when agents incorporate observations with an agent-specific

probability. Note that vazl(l—pi-p)+zc€e(maxigc pi)'p=N-—p- (Zij\ilpi — ZCE@(maXiSC pz)>
Since the clique covering is non-overlapping, the results show that agents obtain improved group
performance for any communication probability p > 0 for any nontrivial graph as compared to the
case with no communication in which each agent learns on its own.

Remark 2 (Controlling information disparity). In order to regulate the information disparity
across the network we set p; = d’é‘;%((g). Thus, the agent(s) with minimum degree dy,, incorporate
each message they receive with probability 1 and we have that the expected number of messages
for each agent is the same, i.e., T - dpin(G). Therefore, every agent receives the same amount of
information (in expectation), providing a large performance improvement for irregular graphs (see

Section 7).

Message-Passing. Under this communication protocol each agent ¢ communicates with neigh-
bors at distance at most v, where each hop adds a 1-step delay. Our algorithm RCL-CF obtains a
similar regret bound in this setting as well, when all agents use the same UCB1 exploration strategy
(Figure 2).

Theorem 2 (RCL-LF Regret with message-passing). Let C be a minimal clique covering of G .
For any C € € and i,j € C let v; = maxjec d(i,j) be the mazimum distance (in graph G) between
agents i and j. RCL-LF running with the message-passing protocol (Figure 1) with delay parameter
v obtains cumulative group regret of

N log T
Regq(T) < g(&,0) (Z(l —pip") +X(Gy) - (max pi -p%')) (Z %) + f((y + 4N, G,).

=1 k>1

Proof sketch. We partition the graph G, into non-overlapping cliques, analyze the regret of
each clique and take the summation of regrets over cliques to obtain group regret. In addition
to the challenges encountered in Theorem 1 here we are required to account for having different
probabilities of failures for messages due to having multiple paths of different length between agents
and to account for the delay incurred by each hop when passing messages. We overcome the first
challenge by noting that agent ¢ receives each message with at least probability p7i. We overcome
the second challenge by identifying that regret incurred by delays can be upper bounded using

(Zf\;1 Yi — N) Zk>1 Ay. O

Remark 3. Finding an optimal observation probability {p;}{_; for RCL-LF with message-passing is

difficult due to the delays added by each hop when forwarding messages. If messages are forwarded
without a delay, optimal performance can be obtained by using p; = %éf)w). For dense G, the
above choice of observation probability provides near-optimal performance. When v = d,(G) we
dmin(G’Y)
di(G’y)

However, when v < d.(G), the graph G, is not complete. Therefore agents receive different

have that G, is a complete graph, p; = = 1, and agents do not discard any message.



amounts of information which are approximately proportional to the degree distribution of G.,. As
explained earlier this information disparity leads to a performance disparity among agents. As a
result group performance decreases. In this case we design the algorithm such that each agent i

discards messages with 1—p; where p; = d;‘??é(j)”) . This regulates the information flow mitigating the

bias introduced by information disparity. As a result the group obtains near-optimal performance.

4 Instantaneous Reward-sharing Under Stochastic Delays

Next, we consider a communication protocol, where any message is received after an arbitrary (but
bounded) stochastic delay. We assume for simplicity that each message is sent only once in the
network (and not forwarded multiple times as in message-passing), and leave the message-passing
setting as future work. We assume, furthermore that the delays are identically and independently
drawn from a bounded distribution with expectation E[7] (similar to prior work, e.g., Joulani, Gy-
orgy and Szepesvéri (2013); Vernade, Cappé and Perchet (2017)). For this setting, we demonstrate
that cooperative UCB1, along with incorporating all messages as soon as they are available, pro-
vides efficient performance, both empirically and theoretically. We denote this algorithm as RCL-SD
(Stochastic Delays), and demonstrate that this approach incurs only an extra O(y/N logT +logT)
overhead compared to perfect communication.

Theorem 3 (RCL-SD Regret). Let Dyyiqr = N - E[7] 4+ 2logT + 24/ N - E[r]log T denote an upper
bound on the total number of outstanding messages. RCL-SD obtains, with probability at least 1 — %,
cumulative group regret of

RegG(T) < g(fv U) : )Z(G) : (Z loAng> + Dtotal . (Z Ak) + f(5N’ G)

k>1 k>1

Proof sketch. We first demonstrate that the additional group regret due to stochastic delays can
be bounded by the maximum number of cumulative outstanding messages over all agents at any
given time step. Then we apply a result similar to Lemma 2 of Joulani, Gyorgy and Szepesvari
(2013) to bound the total number of outstanding messages using the cumulative expected delay
N - E[7], giving the result. O

Remark 4. The Dy, term is a succinct upper bound on the maximum number of cumulative
outstanding messages over all agents, and when the expected delay E[7] = o(1), we see that the
contribution of Dyta is O(v/NlogT +1log T). We conjecture that this cannot be improved without
restricting communication, as each agent will send T messages in total. The result obtained by
Joulani, Gyorgy and Szepesvari (2013) has a similar dependence for a single agent.

5 Hybrid Arm Elimination for Adversarial Reward Corruptions

In this section, we assume that any reward when transmitted can be corrupted by a maximum
value of €, i.e., maxy, [rn(t) — 7n(t)| < € where 7, (f) denotes the transmitted reward. Further-
more, we assume that the corruptions can be adaptive, i.e., can depend on the prior actions and
rewards of each agent. This model includes natural settings, where messages can be corrupted
during transmission, as well as byzantine communication (Dubey and Pentland, 20200). If € were
known, we could then extend algorithms for misspecified bandits (Ghosh, Chowdhury and Gopalan,



2017) to create a robust estimator and a subsequent UCB1-like algorithm that obtains a regret of
O(X(GH)K( lOiT) + TN Ke). However, this approach has two issues. First, e is typically not known,
and the dependence on G, can be improved as well. We present an arm-elimination algorithm called
RCL-AC (Adversarial Corruptions) that provides better guarantees on regret, without knowledge of
€ in Algorithm 1.

Algorithm 1: RCL-RC: Cooperative Hybrid Arm Elimination
Parameters: Confidence § € (0, 1), horizon T, graph G with exploration set Z C V.
Initialize T,(0) = K, Vi € TA = 1024log (%(Gv) log, T) and AL(0) = 1,V k € [K] and
1€l
for each subgraph N;"(G,) where i € T do
for t =1,..., K, each agent j € N;'(G,) do
| Play arm K and get reward 7;(t).
end
for epoch m; =1,2,..., do
Set ni (m;) = AM(AL(m; — 1))~ 2Vk € [K].
Ni(m;) = >, ni(m;) and T;(m;) = Ti(my) + Ni(m;) + 2.
for agent j € N;"(G,) do
for t =T;(m; — 1) to s =T;(m; — 1) + 2y do
if j # ¢ then
if t <K +d(i,7) then
| Pull random arm.
end
else
| Pull A;(t) = Ai(t — d(4,7)) and get reward r;(t).
end

end
else
| Pull A;(t) = UCB1(t)
end
nd
or t = T;(m; — 1) + 27 to T;(m;) do
if j # i then
| Pull A;(t) = Ai(t — d(4,7)) and get reward r;(t).
end
else
| Pull an arm A;(t) = k € [K] with probability nf (m;)/Ng(m;).
end

= 0

end

end
end

end

The central motif in RCL-AC’s design is to eliminate bad arms by an epoch-based exploration,
an idea that has been successful in the past for adversarially-corrupted stochastic bandits (Lyk-



ouris, Mirrokni and Paes Leme, 2018; Gupta, Koren and Talwar, 2019). The challenge, however,
in a message-passing decentralized setting is two-fold. First, agents have different amounts of in-
formation based on their position in the network, and hence badly positioned agents in G may
be exploring for much larger periods. Secondly, communication between agents is delayed, and
hence any agent naively incorporating stale observations may incur a heavy bias from delays. To
ameliorate the first issue, we partition the group of agents into two sets - exploring agents (I)
and imitating agents (V \ Z). The idea is to only allow well-positioned agents in Z to direct the
exploration strategy for their neighboring agents, and the rest simply imitate their exploration
strategy. We select 7 as a minimal dominating set of G, hence |Z| = 9(G5). Furthermore, since
V\ T is a vertex cover, this ensures that each imitating agent is connected (at distance at most )
to at least one agent in Z. Next, observe that there are two sources of delay: first, any imitating
agent must wait at most y trials to observe the latest action from its corresponding ezploring agent,
and second, each exploring agent must wait an additional « trials for the feedback from all of its
imitating agents. We propose that each exploring agent run UCB1 for 2+ rounds after each epoch of
arm elimination, using only local pulls. This prevents a large bias due to these delays, at a small
cost of O(loglogT') suboptimal pulls.

Theorem 4 (RCL-RC Regret). RCL-RC obtains, with probability at least 1 — &, group regret of

Rega(T) = O ( KTNve +1(G,) - 32 %8 log (XG0T 4 N 32 Ay + 2 MesQriosT) )
k>1 " k>1 k>1 r

Proof sketch. Since the dominating set covers )V, we can decompose the group regret into the
cumulative regret of the subgraphs corresponding to each agent in ¢(G,). For each subgraph,
we can consider the cumulative regret incurred when the exploring agent follows UCB1 versus arm
elimination. We have that arm elimination occurs for logT epochs, and since UCB1 runs for 2+
rounds between succesive epochs, we have that in any subgraph of size n, the cumulative regret
from UCB1 rounds is of O(nK log(ylogT)). For arm elimination, we can bound the subgraph
regret using a modification of the approach in Gupta, Koren and Talwar (2019): the difference in
our approach is to construct a multi-agent filtration for arbitrary (reward-dependent) corruptions
from message-passing, and then applying Freedman’s bound on the resulting martingale sequence.
Subsequently, the regret in each epoch is bounded in a manner similar to Gupta, Koren and Talwar
(2019), and finally applying a union bound. O

Remark 5 (Regret Optimality). Theorem 4 demonstrates a trade-off between communication
density and the adversarial error, as seen by the first two terms in the regret bound. The first
term (KT N~e) is a bound on the cumulative error introduced due to message-passing, which is
increasing in 7y, whereas the second term denotes the logarithmic regret due to exploration, where
1(G) decreases as 7 increases: for v = d,(G),¥(G,) = 1, matching the lower bound in Dubey
and Pentland (2020a). This too is expected, as fewer exploring agents are needed with a higher
communication budget. Furthermore, we conjecture that the first term is optimal (in terms of T,
up to graphical constants): a linear lower bound has been demonstrated for the single-agent setting
in Lykouris, Mirrokni and Paes Leme (2018).

Remark 6 (Computational complexity). While the dominating set problem is known to be NP-
complete (Karp, 1972), the problem admits a polynomial-time approximation scheme (PTAS) (Crescenzi,

10



Kann and Halldérsson, 1995) for certain graphs, for which our bounds hold exactly. However,

RCL-RC can work on any dominating set of size n, and suffer regret of O(KTN~e + n D k1 k’fg)l

6 An Algorithm for Perfect Communication and Lower Bounds

For perfect communication, we present Delayed MP-UCB, a simple improvement to UCB1 with
message-passing where each agent ¢ only incorporates messages originated prior to ¥ < ~ time
steps, reducing disparity in information across agents.

Theorem 5 (Delayed MP-UCB Regret). Delayed (MP)-UCB obtains cumulative group regret of

Rego(T) < (6,0)X(G-) (Z l‘ff) +(N = X(G) (= 1) Apt (5N, Gy) + h(Gr, )
k>1 k>1

i (Gy)¥
N B B 7 log 177?‘ X
where h(G~,7) = ((N = X(Gy)7 + Zt>'7 ( fig(fé)w)) t<5+1)(}_%) > k1 Dk

Proof sketch. Following a similar approach to the proof of Theorem 2 we partition the graph
G, into a set of non-overlapping cliques, analyze the regret of each clique via a UCB1 type analysis
and take the summation of regret over cliques. However, using less information (due to delayed
information usage) in estimates leads to a large confidence bound C%(t) and this reduces the contri-

bution to the regret from tail probabilities. Note that log (1 — %) is negative V¢ > 7, and

hence lower regret achieved due to low tail probabilities is given by the second term of h(G.,7). O

Remark 7. Incorporating only the messages originated before 4 time steps is similar to commu-
nicating over G5 after a delay of 4 time steps. When G is connected and 4 = = d, this is similar
to communicating over a complete graph with a delay of d,. Thus Delayed MP-UCB mitigates the
disparity in information used by each agent, leading to improved group performance.

Lower Bounds. Without strict assumptions, a lower bound of O (Zk>1 10gT/A,€) has been
demonstrated both for v = 1 (instantaneous reward-sharing, Kolla, Jagannathan and Gopalan
(2018)) and v > 1 (message-passing, Dubey and Pentland (2020a)), which both suggest that
a speedup of % is potentially achievable. For a more restrictive class of individually consis-
tent and non-altruistic policies (i.e., that do not contradict their local feedback), a tighter lower
bound of O (a(G2) > )~ 198T/A,) can be demonstrated for reward-sharing (Kolla, Jagannathan
and Gopalan, 2018), and consequently O (a(GﬂYH) Yokl IOgT/Ak) for message-passing. To supple-
ment these results, we present a lower bound to characterize the minimax optimal rates for the
problem. We present first an assumption on multi-agent policies.

Assumption 1 (Agnostic decentralized policies). A set of N policies w1, ..., mn are termed agnostic
decentralized policies, if for every pair (i,7) of agents that communicate in G and each t € [T, m;(t)

is independent of {ﬂ'j(T)}t_d(i’j) conditioned on the rewards {(A;(7), X; (T))}tT__Ci(i’j).

T=1 =

'The O notation ignores absolute constants and loglog(-) factors in T
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Theorem 6 (Minimax Rate). For any policy A, there ezists a K-armed environment over N agents
with A <1 for any connected graph G and v > 1 such that, for some absolute constant c,

Regi(A,T) > e/ KN(T +d(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K-armed environment over N
agents with A < 1 for any connected graph G and v > 1 such that, for some absolute constant ¢,

Reg (A, T) > ¢\/a*(Gy)KNT.

Here d( ) = Zd =2 d—;-i denotes the average delay zncurred by message-passing across the network

- (G,).

G, and o*(G,) = 14]:17

Remark 8 (Tightness of lower bound). The first minimax bound does not make any assumptions
on the policy A, and hence we only see an additive dependence of the average delay incurred by
communication over G. This dependence generalizes the minimax rate for delayed multi-armed
bandits (Neu et al., 2010) to graphical feedback. For the latter bound, observe that a variety of
cooperative extensions of single-agent bandit algorithms (Kolla, Jagannathan and Gopalan, 2018;
Dubey and Pentland, 2020a; Cesa-Bianchi, Gentile and Mansour, 2019) obey this assumption,
where the decision-making for any agent is independent of any other agent, conditioned on the
observed rewards. In this setting, agents merely treat messages as additional pulls to construct
stronger estimators, and do not strategize collectively. This bound is exact (up to constants) for

a variety of communication graphs G. For instance, for linear and circular graphs, %GGJ)) = o(1),

and for d-regular graphs, o*(G5) = a(G5) (Turdn, 1941).

7 Experimental Results

We consider the 10-armed bandit with rewards drawn from Gaussian distributions with o} = 1 for
each arm, such that g1 = 1 and pgx = 0.5 for k£ # 1, and the number of agents N = 50, where
we repeat each experiment 100 times with G selected randomly from different families of random
graphs. The bottom row of Figure 3 corresponds to Erdos-Renyi graphs with p = 0.7. The top
row of Figure 3 (a), (¢) and (d) corresponds to multi-star graphs and (b) and (e) to random tree
graphs. We set { = 1.1 and v = max{3, d,(G)/2}.

Stochastic Link Failure. Figure 3(a) and Figure 3(b) summarize performance of RCL(RS)-LF
and RCL (MP) -LF, comparing it with the corresponding reward-sharing and message-passing UCB-like
algorithms in which p; = 1, Vi € [N], for different p values. The group regret is given at T" = 500.
The results validate our claim that probabilistic message discarding improves performance for
irregular graphs and provides competitive performance for near-regular graphs.

Stochastic Delays. We compare performance of RCL-SD with UCB1. We draw delays from a
bounded distribution with E[7] = 10 and 7ymax = 50. The results are summarized in Figure 3(c).

Adversarial Communication. We compute the (approximate) dominating set using the algo-
rithm provided in networkx for each connected component in G. We draw corruptions uniformly
from the range [0, €] for each message, where ¢ is increased from 1073 to 1072, The group regret
at 7' = 500 as a function of € is shown in Figure 3(d) and compared against individual UCB1 and
cooperative UCB with message-passing (MP-UCB), which incur larger regret increasing linearly with
€.

12
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Figure 3: Experimental results for various imperfect communication settings.

Perfect Communication. We compare the regret curve for 7' = 1000 for our Delayed (MP)-UCB
against regular MP-UCB in Figure 3(e). We use ¥ = 2. It is evident that delayed incorporation of
messages markedly improves performance across both networks.

8 Conclusions

In this paper, we studied the cooperative bandit problem in three different imperfect communication
settings. For each setting, we proposed algorithms with competitive empirical performance and
provided theoretical guarantees on the incurred regret. Further, we provided an algorithm for
perfect communication that comfortably outperforms existing baseline approaches. We additionally
provided a tighter network-dependent minimax lower bound for the cooperative bandit problem.
We believe that our contributions can be of immediate utility in applications. Moreover, future
inquiry can be pursued in several different directions, including multi-agent reinforcement learning
and contextual bandit learning.

Ethical Considerations. Our work is primarily theoretical, and we do not foresee any negative
societal consequences arising specifically from our contributions in this paper.
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A  Proof of Theorem 1

We consider the case where each message fails with probability 1 — p and each agent ¢ uses the
messages it receives from its neighbors with probability p;. This is equivalent to each agent ¢
receiving messages from its neighbors with probability p;p. Let 1{(i,5) € E;} be the indicator
random variable that takes value 1 if agent ¢ receives reward value and arm id from agent j at time
t and 0 otherwise.

We start by proving some useful lemmas.
Lemma 1. (Restatement of results from (Auer, Cesa-Bianchi and Fischer, 2002)) Let

N = (8(627?02> logT. For any suboptimal arm k and Vi, t we have
k
P (Ai(t+1) =k, N(t) > mi) <P (1) < 1 — C1(8) + P (13,(t) > pux + Ci(1))
Proof. Let Qi.(t) = 1t.(t) + Ci(t). Note that for any & > 1 we have

{Ait+1) =k} < QL) > Qi(0)}
C {{m <+ 200} U R0 < i — C{(0)} U AL > s+ Cl(1)}}

Let n = (8(§+1)02> log T. Since N (t) > m the event {u1 < px +2C}(t)} does not occur. Thus

A%
we have
P (Ai(t +1) = &, Ni(t) > mi) <P (A1(t) < pa = CL(1) + P (7 (t) > pur, + CL(1))
This concludes the proof of Lemma 1. O
_ . . . [ 8(&+1)o?
Lemma 2. Let x(G) is the clique covering number of graph G. Let ni, = 7 logT. Then we
k
have
N . N
> E[nj(T)] < <Z(1 —pip) + X(G)pmaxp> M + 2N (1)
i=1 i=1
N T-1 ' 4 '
+3 > [P () < = CL®) + P (7i(6) > e + CL(1))] (2)
i=1 t=1

Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal arm k& > 1
we have

N N T T
D_ERLT) =3 3 PA@®) =k) =3 > > P(A)=k). 3)

i=1 t=1 cee ieC t=1

Let 71, ¢ denote the maximum time step when the total number of times arm k has been played by
all the agents in clique C is at most 7 + |C| times. This can be stated as 7, ¢ = max{t € [T] :
> ice M(t) < mi +|CJ}. Then, we have that n, < Y, .0 nb(The) < mi +[C|.

For each agent i € C let

= ZZI{AJ(T) == k‘}l{(Z,]) € ET}7

jec =1

17



denote the sum of the total number of times agent ¢ pulled arm k and the total number of obser-
vations it received from agents in its clique about arm £ until time ¢. Define 7‘,’;76 =max{t € [T]:

Ni(t) < ng}. Then we have that n — |C| < N,i(ﬂ;c) < .

Note that Nj(t) > Ni(t),Vt, hence for all i € C we have Nj(t) > ny,Vt > 7} .. Here we consider

that f,i% > Tr.c, Vi. From regret results it follows that regret for this case is greater than the regret

for the case where %li,c < 7 ¢ for some (or all) 1.

We analyse the expected number of times agents pull suboptimal arm k as follows,

DD 1{Ait) =k}

CeCieC t=1

—i
Tk,C Tk,C

=SS A=k + 33 Y A

cee ieC t=1 CeC ieC t>mhe
e
S D+ D 1{Ai() =k} +[C]
cee CEC ieC t>Tk ¢

T-1
+3°3 Y 1A+ 1) = kJL{NL(E) > )

CEC ieC t>7i

Taking expectation we have

T
DD D P =k) <D (mn+2(C))

CeC ieC t=1 CeC
e

1 ID I

CelieC t>1x ¢

T-1
R+ > > P
CeC ieC t>7- 3.

Note that we have

=k D) 1{A(t) =k}

CEC i€C t>71

) = k}1{(i,j) € Ei}

) = k}1{(i,4) € Ei}

The
YD A=
i€C t>Th e
Tk,C Tk,
=Y Ni(Fe) =D D AW =k =Y Y > {4
ieC ieC t=1 i€C j#i,jeC t=1
e
=D Ni(Fe) =D milree) = > D D {4t
i€C ieC i€C ji,jeC t=1

—i
Tk,C

<Clmk—me =Y > > 1{A4;(t)

i€C j#i,jeC t=1
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= k}l{(%]) € Et}

(12)
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Tk,C

<Clmk—me =Y > > 1{A;(t) = k}1{(i,j) € E;}.

i€C j#i,jeC t=1

Taking the expectation

Thc Tk,C
D> P =k <[Clm—me =D pip > > P4
1€C t>Tk ¢ ieC j#i,g€C t=1

=Clm—m— > pip > E(n(tie))

ieC Jj#i,jeC

= [Clmk — m — <2p¢p> (Z E(ﬂi(m,a))) +) " pipE(nj (i)

ieC 1eC 1eC
<|Clmk =k —p | Y _pj— Pmax | E (Z n?;(m,c)>
jec ieC

<I[Clmk —mk—p (ij pmax) Mk

jec

= (C —1-p (ngj pmax)) Mk

Substituting this results to (9) we get

DD D P =k <Y (e +20C)+ ) (C —1-p (ij pmax)) Mk

CeCieC t=1 cec cec jec

T-1
+ZZZ Ai(t+1) =k, Nj(t) > m1) -

Cel ieC t>7- e

Thus from Lemma 1 and (22) we have

IR

CeC ieC t=1
§an+2N+Z |C‘_1_p ij_pmax Nk

CeeC CeC jec

220 Z 1) < 1 — CL() + P (Ah(t) > i + CL(D))]

CceC ieC t>Tk
(a) al
= X(G)m, + <N = pip— X(G)(1 - pmaxp)> M + 2N
=1
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N T-1
+) ) < —CH(t)) + P (15, (t) > pue + CL(1)) ] (27)
=1 t>*rkc
N
< (Z(l —pip) + X(G)pmaxp> n + 2N (28)
+)° ) < p1— Ci(t)) + P (g (t) > e + Ci(1)) ], (29)
i=1 t=1

where (a) follows from the fact that clique covering is non overlapping. This concludes the proof
of Lemma, 2. ]

Lemma 3. Let d;(G) be the degree of agent i in graph G. For any o > 0 some constant { > 1

(i

L(6) = ] > o

206 +1) logt> < log((di(G) + 1)) 1 (30)

Ni(1) log ¢ (e (=652

Proof. For all klet X! (t) for all i, ¢ be iid copies of X;. Then we have X;1{A;(t) = k} = X} ()1{4(t) = k}.
Recall that reward distribution of arm k has mean uj and variance proxy ox. Thus Vi,t we have

, A2g2
E (exp (A (Xi(t) — jux))) < exp <2k> . (31)
Define local history at every agent i as follows
Hi = o (XL, Ai(1), X11{(i,5) € E-}, Aj(1)1{(i,5) € B },VT € [t],j € Ni(Q)) . (32)

Since 1{A;(7) = k}1{(4,7) € E;} for j € N;(G) is a H._; measurable random variable, we have

E (exp (A (X2 — i) 1{A;(7) = K}1{(0.) € E.})| #E_y) (33)
—E (exp ()\ (X,g(f) — uk) 1{A;(r) = k}1{(i,j) € ET}> ‘ Hi_l) (34)
2 2
<o (FFE1{A,) = ML) € 1)) (35)
Define a new random variable such that V7 > 0.
N
Yi(r) = 3 (XA () = B1{(.5) € B} — B [X[()1{4;(r) = k}{(i. ) )
j=1
(36)
N .
=3 (Xh) = ) 1{A; () = k}1{(. ) € Br). (37)
j=1
Note that E (Y;(1)) = E (Y{(7)[H:_,) =0. Let Zi(t) = >\ _, Y;i(7). For any A > 0
E (exp(AY}(7))[H:_1) (38)
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T 1) (39)
1) (40)

j=1

N
P TIE (e (0 () =) 1{41(0) = B11G) € B:3) ) ()
j=1

N 20_
< [Tew (*52104500) = b11((5) < 1)) (42)
j=1
_ )\20,% N . _ .

exp | XZES1Ay(r) = KIL{(. ) € Br} | (43

j=1

, N
Equality (a) follows from the fact that random variables {exp ()\ (X]i(’f) — Mk) 1{A;(7) = k}1{(4,j) € ET})} '

are conditionally independent with respect to HZ_;. Since 1{A4;(7) = k},1{(i,j) € E.} are H_,

measurable, and so
’H) <1 (44)

)\2
E (exp ()\Yk a’f Z 1{A;(r) = k}1{(i,j) € ET})
Let Ni(t) =3 , Z;VZI 1{A;(7) = k}1{(i,5) € E;}. Further, using the tower property of con-
ditional expectation we have

i )‘2% i i )‘2%
Repeating the above step t times we have
, A\2g2
E <exp <Az,g(t) 2"k Ni(t )>> <1 (46)
Note that we have
A2g?
P <exp (AZ,Q(t) 5 LNL(t )) > exp (2&19)) (47)
o2
=P (Az,g(t) —kNi(t) > 2m9> (48)
Zi(t 2
_p ( ), 20 0y N,g(t)) (49)
Np(t) A/ Ng(t)
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Fix a constant ¢ > 1. Then 1 < Ni(t) < ¢P* where D; = W‘ For A, = glk\/ nglf/Q and
¢t < Nit) < ¢! we have

20 1 o2 o ¢l-1/2 Ni(t)
NN + E’WM— ox VK0 (\/N/i(t) + \/<1k1/2> < V9, (50)

1
ai(cheed)
Then we have

Zi(t) W D Zj(t) > 2kY _,_‘L’%/\ Ni(t 51
{ a9 > }c B NI TR N (51)

Loy
2

where k =

=uPy {)\ZZ,i(t) - Ni(t) > 2519} . (52)

E(Y)

a

Recall from the Markov inequality that P(Y > a) <
Thus from (52) and Markov inequality we get,

for any positive random variable Y.

Zi(t) D
P (Jifk(t) > \/T9> < ;exp(—Ql-ﬂ?). (53)
Then we have,
p (Zé(t) > |2 ) < %exp(%ﬂ?‘) (54)
N (1) Ny(t) )~ =

Substituting ¥ = 207 (£ 4 1) log t we get

AZ- 2(6+1)logt log((d;(G) + 1)t 46 +1)logt
POW)_M‘M €+ 1)log ) < loell@ 419 e+ Diogt (55)
k(1) 0g ¢ <gz + g*z)
Note that V( > 1 we have
4 —1)2
(cr+c 0
Then we have
i 2(§+1)logt log((di(G) + 1)t) 1
P () — > . < ) 57
<’“k( )= | > o Ni(D) og¢ e (1- 52 (57)
This concludes the proof of Lemma 3. O
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Lemma 4. Let ( =1.3,£ > 1.1, d; > 0 and t € [T]. Then we have

szl 1 log((di +1)t)

log ¢ (§+1(1 %)— 0g(3(d; + 1)) +3(log (d; +1) + 1) (58)

t=1

Proof. For { = 1.3 we have 1— < 8.78. Further (£ + 1) < ﬂ) > 2 and Vit > 3 we see that

16
log((d;+1)t)

———= 5~ is monotonically decreasing. Thus we have
(e+n) (1- L)
t

-1 ' T-1 ,
3 log ((di + DY) _ 1 369 10g(3(ds + 1)) + log ((di + D), (59)
(e+1)(1-4522) 3 2
t=1 ¢ 16
Let z = (d; + 1)t. Then we have
T-1 . (di+1)(T—1)
log ((di +1)t) ,, _ (d; +1) logz (60)
3 t2 3(d;i+1) 22
—(di+1) [_logz B 1] (di+1)(T—1) 61)
,, i 3((di+1)
Thus we have
=1 og ((d; + 1)t) log(d; +1) 1
———dt < (d; + 1 2
/3 2 < (dit ){3(di+1) +3(di+1)] (62)
1 1
— “log(di+ 1)+ -
3 og(di +1)+ 3 (63)

Recall that For ¢ = 1.3 we have @ < 8.78. Thus the proof of Lemma 4 follows from (59) and
(63). O

Now we prove Theorem 1 as follows. Recall that group regret can be given as Regqy(T) =
SV > ko1 Ak - E [ni(¢)] . Thus using Lemmas 2, 3 and 4 we obtain

N
Rege (T) < 8(¢ + 1)o7 (Za i)+ >-<<G>pmaxp> (Z kff) (64)
=1 k>1
+5N Y Ay +4 Z (3log(3 +1)) + (log (d 0D Ax (65)
k>1 k>1

B Proof of Theorem 2

In this section we consider the case where agents pass messages up to v hop neighbors with each
hop adding a delay of 1 time step. Let €, be a non overlapping clique covering of G.,. For any
C € C, and i,j € C let 7; = max;ec d(4, j) be the maximum distance (in graph G) between agent i
and any other agent j in the same clique in graph G,. Let 1{(1', j) € ET/J} is a random variable
that takes value 1 if at time 7 agent i receives the message initiated by agent j at time 7/. Recall
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that each communicated message fails with probability 1 — p and each agent i incorporates the
messages it receives from its neighbors with probability p;.

We follow an approach similar to proof of Theorem 1. We star by providing a tail probability
bound similar to Lemma 3.

Lemma 5. Let d;(G~) be the degree of agent i in graph G.. For any o, > 0 some constant { > 1

2(6 + 1) logt> _ log((di(G4) + 1)) 1 (66)

> ([ -] > o2 CICH S o)

Proof. For all klet X/ (t) for all i, ¢ be iid copies of X;. Then we have X;1{A;(t) = k} = X} (t)1{A(t) = k}.
Recall that reward distribution of arm k has mean uj; and variance proxy ox. Thus Vi,t we have

A A2o?
E (exp (A (X4 (t) — k) < exp ( 5 k> . (67)
Define local history at every agent ¢ as follows
Hi =0 (X;',, Ai(r"), X2,1{(i,§) € By 2}, Ay (7)1 (5, 5) € Ep ) V7 T € [t],5 € M(Gﬁ) . (68)

Since 1{A;(7') = k}1{(i,j) € E.,} for j € N;j(G,) is a H._, measurable random variable, we
have V7' < 7

E (exp ()\ (Xj, - uk) 1{A;(7') = k}1{(i,j) € ET/,T})‘ 3,1) (69)
=B ((exp (A (X](7) = ) 1{A(7) = k}1{(0.j) € Brr -} )| i) (70)
< exp (Az E104,() = k)1{G ) eET,,T}) (71)
Define a new random variable such that V7 > 0 and 7/ < 7
:i Z (XA () = K}1{(0.5) € By} (72
J—_ET[X,z;W)l{Aj(T/) = k}1{(i,)) € Bor 7} 1)) (73)
=§_V;Z_ (Xh(r) = ) 1{4,(7) = k}1{(0,) € Brr.}. (74)

Note that E (Yk (1)) = ( ki(T)\Hi,l) =0. Let Zj(t) =Y.' _, V(7). For any A >0

(exp(AY}(7))] (75)

<exp )\Z Z XJ ﬂk) 1{Aj(7") = k}1{(i,j) € Err ,} "Hi,l (76)

j=17'=1

~E ﬁﬁexp (» (i )uk)l{Am’)k}l{(@j)eEm})Hil) (77)

j=17'=1
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(

II'=

'TLIT E (exp (A (X4 = ) 1{45(7") = k}1{(G.5) € B }) 1)) (78)

N T
=1

—_

T

<

IN

N T )\20_2
:1Tl:16Xp <2’<31{Aj(7’) =k}1{(i,j) € ET,,T}> (79)

J

exp( kZZL{A ) = k}1{(i, j) eETIVT}) : (80)

Jj=17'=1

Equality (a) follows from the fact that V7' < 7 random variables {exp ()\ (X,J€ (') — ,uk> 1{A;(7") = k}1{(i,j) € E:

are conditionally independent with respect to H._;. Since 1{4;(7’) = k},1{(i,j) € Ey ,} are H._,
measurable, and so

2 2 N T
E (exp (AYk Tk Z Z 1{A;(r') = k}1{(4,5) € E}) Hil) <1.  (81)

Let Ni(t)=>"_ 37T, Zjvzl 1{A;(7") = k}1{(i,j) € E ,}. Further, using the tower property
of conditional expectation we have

i Nail i i Naj
Repeating the above step t times we have
. A\2g2
E (exp <Az,g(t) 2"’“ Ni(t )>> <1 (83)
Note that we have
) )\2 2
P <exp ()\Z,Zc(t) 5 i Ni(t )) > exp (2&19)) (84)
. A2
—p (Az,g(t) Tk N (t) > 2m9> (85)
Zi(t
Y U R ST (86)
Ni(t) A
Fix a constant ¢ > 1. Then 1 < Ni(t) < ¢P* where D; = W For \; = szf/z and

¢t < Ni(t) < ¢! we have

K a / / ;
2;9 2 MY = on/ed (\/Cl E; \/é’V 52) < V%, (87)

1
o'z (CZl{Jr(*ZlI)Q

where k =

25



Then we have

{ZW >¢a}cu?a{ G0, 29, %, Nf;(t>} 53)

Ni(t) Ni(t) /N
D ; )\202 ;
:ultl{AlZ,g(t)— leN,g(t) 22m9}. (89)

Recall from the Markov inequality that P(Y > a) < ( ) for any positive random variable Y.
Thus from (89) and Markov inequality we get,

ZZ
P i) >V | < Zexp —2k0). (90)
Nj(t)
Then we have,
; Dy
Z (1)
P2 > : —2519) (91)
(N;i(t) i) ) 2 el
Recall that V¢ > 1 we have
12
GEIs) 0
Substituting ¥ = 207 (£ + 1) log ¢t we get
i 2(£+1)logt log((di(G~) + 1)t) 1
Pl |u(t) — Mk‘ > oy, - < : (93)
( K Ni(t) log ¢ t(&l)(l_%)
This concludes the proof of Lemma 5. 0

We prove a Lemma similar to Lemma 2 for message-passing as follows.

Lemma 6. Let x(G,) is the clique number of graph G.,. Let ny, = (8@27;)0’%) logT. Then we have
k
N
(Z (1= pip™) + X(Gy) maxp; p%> me+ Ny +1)+ (94)
N _T—l A ' '
+> > [P (@) < = Ci(0) + P (B () > e + CL(®))] (95)
i=1 t=1

Proof. Note that for each suboptimal arm k& > 1 we have

N N T T
D ERLUT =D D PA) =k) =D Y Y P(Ai(t) =k). (96)
=1

i=1 t=1 cee, ieC t=1
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Let 71, ¢ denote the maximum time step when the total number of times arm & has been played
by all the agents in clique C is at most 7 + |C| times. This can be stated as 74, ¢ := max{t € [T7] :
S ice i (t) < m +|C|}. Then, we have that ny < Y,;c0 b (Tke) < mi +[C|.

For each agent ¢ € C let

=353 {47 = k}1{(i ) € B r )

jeC t=17'=1

denote the sum of the total number of times agent ¢ pulled arm &k and the total number of obser-
vations it received from agents in its clique about arm k until time ¢. Define 7/ , := max{t € [T] :

Ni(t) < mit FQr each_@gent i€ [N] let ?};’C = max{7g ¢ + Vi - 1, ﬂic}. '
Note that N} (t) > N/(t),Vt, hence for all i € C we have N} (t) > ny,Vt > T}, .. Here we consider
that ﬂi,c > T.c, Vi. From regret results it follows that regret for this case is greater than the regret

for the case where %li,c < 7c for some (or all) 1.
We analyse the expected number of times agents pull suboptimal arm k as follows,

T
oD D A =k (97)

cee, ieC t=1

Th,C Th.c T
=2 2 > HAW=K+ Y D> > HAW=k+D > > HAM =k (%)
cee, ieC t=1 Cel, ieC t>Trc Ceey i€C 1>7i
<Y et + X3S 1AW =k (99)
cet, Cely ieC t>Tk
T
+ 33T ST 1A = BNt 1) > ). (100)

cee, icC t>ﬂc,c

Taking expectation we have

T
YD D P =k (101)
cee, ieC t=1
<Y me+2e)+ S Y Pt =k (102)
cee, Cel, ieC t>Tk c

+ZZZP i(t+1) =k, Ny(8) > ) - (103)

ceey ieC t>7‘k c

Case 1. For agent 7 we have that 7,¢c +7; —1 > ﬂi ¢ then we have ﬁf ¢ = Tkc +7 — 1. Then we

have Zt>ch 1{A;(t) =k} <y —1
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Case 2. For agent i we have that 7, +v —1 < %,iyc then we have ﬁ;;,c = %,f/,,c.

f 1{A;(t) = k} (104)

= Ni(Thc) — Zl{A )=k = ) Zzl{fl ) = k}1{(i,J) € Ert} (105)
t=1 j#i,jeC t=1 7=1
Tk,C Tretyi—1 ¢

SNiThe) =D HA =k = >0 > D UHA(M) =k1{G ) € Erey. (106)
t=1 j#i,jeC t=1 T=1

Taking the expectation we have

?I.QC Tk,C
> D P )< [Clmk —me+ Y (=1 =D pip" > DY P(A(t)=k)  (107)
1€C t>Tk c ieC ieC Jj#i,jeC t=1
Thie
= [Clm =+ > (=D =D 3 D OE(nd(me))  (108)
icC ieC j#ijec t=1
<|Icl-1- ijpw — maxplp”“ Nk + Z(% —1). (109)
jec ieC

Substituting these results to (103) we get

> ZZP <> (C -1- (ijp” - maxpzp%)) M+ Y (v (110)

Cee, ieC t=1 Cely jec 1€[N]
+ ) +2C)+ D) Z P ( ) =k, Nj(t) > i) (111)
cee, CeCy i€C t>7i,
N
< (Z(l —pip"") + X(Gy )rg[aﬁpzp”) m+ D vt N (112)
i=1 i€[N]

+Y 0N Z i(t+1) =k, Nj(t) > ;) (113)

cee, ieC t>Tk,C
This concludes the proof of Lemma 6. O

Now we prove Theorem 2 as follows. Thus using Lemmas 4, 5 and 6 we obtain

N
Reg (T) < 8(¢ + 1)o7 (Zu — i) + X(G, >maxp1p%) (Z 10gT> (114)

=1 €lV] k>1 Z&k

(Z%+4N>ZA,€+4Z 310g(3(d;(G,) + 1)) + (log (d M A (115)

k>1 k>1
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C Proof of Theorem 3

Agents receive information from their neighbors with a stochastic time delay. Let Np be the
maximum number of outstanding arm pulls by all the agent. We start by proving a result similar
to Lemma 2.

Lemma 7. Let x(G) is the cligue number of graph G. Let ni = <8(§+1)02) logT. Then we have

Y
N .
>_Ei(T)] < X(G)me + ENp] + 2N+ (116)
ISP (A <~ CLD) + P (AL = e+ Cl1)] (117)
i=1 t=1

Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal arm k& > 1
we have

N N T T
S ERT) =YD P (A = k) = 33 P (A = ). (118)

=1 t=1 Cee ieC t=1

Let 7, ¢ denote the maximum time step such that the total number of arm pulls shared by agents
in clique C from arm k is at most 1, + |C|. For each agent i € C let D;(7c) be the number of
outstanding messages by agent 4 from arm k at time 73, ¢. This can be stated as 7, ¢ := max{t € [T :
Yice () < e + > ice Di(tie) +|C|}. Then, we have that n, + > ..o Di(Tee) < 3 iee 14 (The) <
Mk + 2 ice DilTre) +[C. .

Note that for all i € C we have N/(t) > ni,t > T c.

We analyse the expected number of times agents pull suboptimal arm k as follows,

T
DD At =k} (119)

CeC ieC t=1
Tk,C T
=> > > HAam=k+) > > AR =k (120)
CeC ieC t=1 CeC ieC t>Tk ¢

T-1
<> (nk +3 " Di(rie) + 2yC|> +3 3TN At + 1) = BN > ) (121)

Cec ieC CeCieC t>1kc

Taking expectation we have

T
DD D Pl =k (122)

cee, ieC t=1

N N T-1
< X(Gy)m +E ?1%3]( Di(t)| +2N +Y "> P (Ai(t +1) = k, Ni(t) > i) (123)
€
i=1 t=1
The proof of Lemma 7 follows from Lemma 1 and (123). O
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We upper bound the expected number of outstanding messages by any agent using results by
Joulani, Gyorgy and Szepesvéari (2013) as follows.

Lemma 8. . Let Dyyq be the maximum number of outstanding messages by all the agent at any
time step t € [T] and let E[T] be the expected delay of any message. Then with probability at least
1-— % we have

E[Diotal] < NE[7] + 21logT + 2/ NE|[7]logT. (124)
Proof. The proof directly follows from Lemma 2 by Joulani, Gyorgy and Szepesvari (2013). O

From Lemmas 7, 3, 4 and 8 we obtain with probability at least 1 — %

Regg(T) < 8(¢ +1)oix(G) (Z 1‘5) (125)
k>1
+ (NIE[T] +2log T + 21/ NE[r] log T> S oa, (126)
k>1
+5N2Ak+4z 31og(3(d;(G) + 1)) + (log (d )Y A (127)
k>1 i=1 k>1

D Proof of Theorem 4

We first restate the result for clarity.

Theorem 7. Algorithm 1 obtains, with probability at least 1 — §, cumulative group regret of

Rego(T) = O | KTNve +1(G,)
k#k*

K logT
logT log ( Y(G,)log > L NA, © Nlog(N~logT)

o Ay

Proof. We decompose the regret based on the dominating set and epoch. Let Z C V be an domi-
nating set of G and M; be the number of epochs run for the subgraph covered by agent 7. Observe
that the total regret can be written as,

K T
Rego(T)=> | DD Ap- [Pt =k + > PA;1)=k]|. (128)

€T \k=1t=1 JEN;(GY)

First, observe that A;(t) = A;(t — d(i, 7)) for all j € N;(G,) and all t € [d(7,7),T]. Rearranging
the above, we have,

T T—d(i,5)
Rego(T) <Y ZAk D P(Ai(t) =k) + > P(Ai(t) = k) +d(i, j)
i€ \k=1 t=1 FEN(G~) t=1
(129)
K T—~
<y (ZA WGy (zww:mﬂ)) (130)
i€l \k=1 t=1
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K T—~ K
=> (\M*(Gm > A (Z P(A;i(t) = k))) + Ny A (131)

i€ k=1 k=1
(132)

Now, observe that we run two algorithms in tandem for each subgraph of G induced by ./\/;JF(GV).
Let us split the total number of rounds of the game into epochs that run arm elimination and the
intermittent periods of running UCB1. We denote the cumulative regret in the i*" induced subgraph
from rounds v to T" as Reg Ni+(G7)(T)7 and analyse it separately.

Regr+ () (1) < V(G \Z Ay, Y PAt) =R+ D PA) =k)
t<T—~:teM; t<T—~:tgM;
(133)

Here M; denotes the rounds in which arm elimination is played in the agents in the i** induced
subgraph. Since each UCB1 period after each epoch is of length 2, we have at most 2vM; rounds
of isolated UCB1. We analyse the second term in the bound first. By the standard analysis of the
UCB1 algorithm (Auer, Cesa-Bianchi and Fischer, 2002), we have that the leader agent, i.e. agent
i, incurs O(K log T'/A) regret. We therefore have,

= us 2 8log(2vM;)
NF@IS | A 3 Pt =0 S Y (14 ) v SREEIE),

tgM; k=1

Now, we analyse the first term in the regret bound. By Theorem 8, we have that with probability
at least 1 — § simultaneously for each induced subgraph corresponding to agent i € Z,

K

Z Ay Z E [nj,(m)] =0 (’ye -KTINH(G,)| + Z kfkT log (Klb((SGv) logT>> .

k=1 meM; k>1

Summing over each leader agent, we have that with probability at least 1 — 9,

K
ZZ Ay, Z E [n}i,(m)} =0 (’76 KTN + Z ICZOTT og (K%Z)((SGW) logT)) .

€T k=1 meM; k>1 Ok

Next, observe that for all 4, |M;| < log(MT') by Lemma 9. Replacing this result in the UCB1 regret

for each leader, and summing over all ¢ € Z, we have,

log T < Ky(
log

G-)logT Nlog(N~logT
Reg(T) = O(’ye KTN + ) ¢(G, Ak ?Og>+NAk+ og(AZ og )>'
k>1

O]

Lemma 9. For any leader i, let L'(m) denote the length of the m' epoch of arm elimination.
Then, we have that L(m) satisfies,

22m=2)\ < Li(m) < K2?m 2\,

Furthermore, the number of arm elimination epochs for agent i satisfies M; < logy(T — 27).
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Proof. The proof closely follows the proof of Lemma 2 in Gupta, Koren and Talwar (2019). For
any leader i, let k be the optimal arm under 7*(m), therefore r’(m) — r’]%(m) < 0 and therefore
A;(m) = 2™ and therefore Li(m + 1) > n;(m +1) = /\(A%(m))*2 > 22m)\. Next, observe that
A} (m) >27™ for each arm k, and therefore n} (m + 1) < 22™), giving the upper bound.

For the second part, observe that Z%’zl Li(m) < T—2yM; < T -2, and that L*(m) > ‘/%[2:;’\)‘.
Summing over m € [M;] and taking the logarithm provides us with the result. Y O

Lemma 10. Denote & to be the event for which,

vmalak7‘Tk(m> _Mk‘ < 2’76+T/\ Z Xk<t+d(zv.7)) < an(m)
teM;(m)
JENT(Gy)

Then, we have that P(€) > 1 — 4.

Proof. Recall that at each step in the epoch, the leader agent picks an arm k with probability
nj, (m)

pi(m) = Timy» and let X,z(t) denote whether agent j picks arm k at time ¢. Let C;_,(t) =

7j—i(t) —r;j(t) denote the corruption in the transmitted reward from agent j when it reaches agent
i, and M;(m) = [Ti(m — 1) + 1,--- ,T;(m)] denote the L!(m) steps in the m* epoch for the arm
elimination algorithm run by the leader . We then have,

ri(m) = — S° X (t+d(i, ) - (gt + d0i, ) + Cyalt + d(i, 1))
n,(m) teM;(m)
JENT(G)

For simplicity, let

Apm) = Y X{(t+d(,5)) - ri(t+d,5), Bp(m) = Y Xi(t+d(i,5)) - Cini(t+d(i, 5)).
teM;(m) teM;(m)
j€M+(G7) jEN;_(G'y)

We can bound the first summation by a multiplicative version of the Chernoff-Hoeffding bound (An-
gluin and Valiant, 1979) as each 7; is bounded within [0, 1] and X} is a random variable in {0,1}
with mean pi (m)L*(m)u, < nf(m). We obtain that with probability at least 1 — 3/2,

Aj(m)

3log(4
)—Mz‘ < g(ﬁ)

R EAGD)

nj (m

To bound the second term, we must construct a filtration that ensures that the corruption is
measurable. For the set N7 (G.), consider an order o of the N agents, such that o[1] = i, followed
by the agents at distance 1 from 4, then the agents at distance 2, and so on until distance -,

+
and next consider the ordering {FT}‘TA:G1 @It of the rewards generated by all agents within M;(m)
where 7, is the reward obtained by agent j = (o(7) mod |N;*(G,)|) during the round | 1+

~ +
d(i,7), and similarly consider an identical ordering of the pulled arms {XT}L/\:[il (Gl

T
NG (G

. Now consider
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the filtration {F; tTZIJI/f(G”)‘ generated by the two stochastic processes of 7 and X. Clearly, the
corruption Cy(;);(t) is deterministic conditioned on ;1. Moreover, we have that the pulled arm
satisfies, for all 7 € [[N;7(G,)|t] that E[X,|F,_1] = pi(m). Furthermore, since the corruption
in each round is bounded and deterministic, we have that the sequence Z, = (X, — pi(m)) - C,
(where C, is the corresponding ordering of corruptions) is a martingale difference sequence with
respect to {F,}7_,. Now, consider the slice of [|N;"(G,)[¢] that is present within B¢ (m), and let
the corresponding indices be given by the set Mz(m) Using the fact that the observed rewards are
bounded, we have that,

S OBRZAF < Y (G V(Z) <pim) - Y G <4CLim),

‘reﬁ/lvi(m) Teﬂi(m) Teﬂi(m)
We then have by Freedman’s inequality that with probability at least 1 — g,
i i ~ i
B _shtm) (5~ g CLm) o))y flos/5)
ni(m) = ni(m) i (m) 16 (m)

The last inequality follows from the fact that ni(m) > X > 161n(4/3). With the same probability,
we can derive a bound for the other tail. Now, observe that since each X,i is a random variable
with mean p};, we have by the multiplicative Chernoff-Hoeffding bound that the probability that
the sum of L(m) i.i.d. bernoulli trials with mean p (m) is greater than 2pi(m) - L*(m) = 2n% (m)
is at most 2 exp(—nt(m)/3) < 2exp(—\/3) < B.

To conclude the proof, we apply each of the above bounds with 8 = to each epoch

)
2Ka(G~)logT
and arm. Observe that 3 > 4exp (—%;). Now, since log(4/8) = A/(32)? we have that,

- Al (m —1) ; , )
P ? — > 2 TRV X2 (t+d(i, 7)) > 2nt < ——F—.
ri(m) = | = 296+ =E—= N\ > X{(t+d(i, ) > 2nj(m) | < 2Ka(G,)log T
teM;(m)
jE-/\fiJr(G'y)
The proof concludes by a union bound over all epochs, arms and agents in Z. O

Lemma 11. If the event & (Lemma 10) occurs then for each i € T,m € M;,

Al(m —1 ,
—2ye — *(n;) < ri(m) = pe < 2.

Proof. Observe that i (m) > ri.(m) — AL, (m — 1). This fact coupled with the fact that £ holds

provides the lower bound. The upper bound is obtained by observing that,

Aj(m—=1)  Ajm—1)
16 16

i (m) < max {ui + 27ve + } < oy + 2ve.
(2
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Lemma 12. If the event £ (Lemma 10) occurs then for each i € T,m € M,,

i A ~ qnem  3om

Proof. We first bound A} (m) < 2(Ag + 27" + 2ve- >, 8" ™) under £ by induction. Observe
that when m = 1 we have that trivially A} (1) <1< 2- 2 1. Now, if the bound holds for epoch
m — 1 for any agent, we have by Lemma 11,

Al(m—1)
16 ’

i

ri(m) — 7 (m) = ri(m) — g + pe — pr + pr — 71 (m) < dye+ Ag +

Replacing the induction hypothesis in the upper bound, we have,

m—1

n=1

m
2(Ap+27" 4 27e- Y 8",

Now, we bound the gaps as,

Al(m) > ri(m) — ri(m) > Ay — dye — <%<fg -1 _ Azo?ﬁ— 1>> |

The last inequality follows from Lemma 11 and the event £. Replacing the bound from induction
we obtain,

6ve 3 A
i(m) > Ay — dvye — (ge Y onom oy Sommel) 8’“)
n=1
2——67628" m 2—m
n=1

O

Theorem 8. The cumulative regret for all agents within each independent set corresponding to
leader i € T satisfy simultaneously, with probability at least 1 — ¢,

M; K
> ) AE[nj(m)] = O <1og <K¢§G”)10g )log (Z A ) +~e- KT - |NZ.+(G7)|> :

Proof. We bound the regret in each epoch m € M; for each arm k # k* based on three cases.
Case 1. 0 < Ay, < 4/2™: We have that nj(m) < A22™=1 since Al (m — 1) > 2™, and hence,

) 4\ 1
ALE[n} < — - -Ap =4\ —.
kE[ng(m)] < Az A A



Case 2. A, >4/2" and ve) " | 8™ < Ay /64: We have by Lemma 12,

1 3 3\ A
AY > — - nom 2_m >Ap(z—=—= —.
(m Ore Z ® (2 32 8> 32
Therefore, we have that nj(m) < 1%231)‘, and hence the regret is,
; 1024\ 1
AiE[n] < A =1024\ - —
kElng(m)] < Az Ak = A

Case 3. Ay > 4/2™ and ve) " | 8~ ™ > Ay /64: This implies that Ay < 64ye- Y " 8" .
Therefore,

ArE[ng(m)] < 64\ve (Z 8’”_m> . 92(m=1)

n=1

gm+1 > 92(m—1)

< 64X
L

23m
< —Zqe- L'(m).

Here the last inequality follows from Lemma 9. Putting it together and summing over all epochs
and arms, we have with probability at least 1 — § simultaneously for each i € Z,

SKY(G
ZZAkEnk )] < 1024210 (1%(”)105; >log (ZA >+7476~KT-]./\/;.+(G7)\.

m=1 k=1

O]

E Proof of Theorem 5

In this section we consider that each agent passes messages upto ~-hop neighbors. Agents do not
use the messages received during last 4 number of time steps.

Lemma 13. Let x(G) is the clique number of graph G.. Let ), = (8@:;) ) logT. Then we have

N
ZEW;(T)} <X(Gy)mk+ (N = X(Gy) (Y +v — 1) + 2N+ (134)
- N T-1
+> D [P (@) < = CL1) + P (B (1) > e + CL(®))] (135)
i=1 t=1

Proof. Let C be a non overlapping clique covering of G,. Note that for each suboptimal arm k > 1
we have

T
NTER(T] =YY P(At)=k)=> > > P(A(t)=k). (136)

i=1 i=1 t=1 cee., ieC t=1
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Let 71, ¢ denote the maximum time step when the total number of times arm & has been played
by all the agents in clique C is at most nx + (|C| — 1)(¥ + v — 1) 4+ |C| times. This can be stated
as Tre = max{t € [T] : Y,ccni(t) < me+ (IC| —1)(¥ +~v — 1) + |C|}. Then, we have that
e+ (10 = D) +7 — 1) < Sseenb(me) < 1+ (€~ 1)(3+7— 1)+ |C].

For each agent i € C let

t

Ni(t) =" 1{Ai(r _k}+ZZZ1{A ) =k}1{(i,j) € By},

=1 j#i,jeCt=17'=1

denote the sum of the total number of times agent ¢ pulled arm &k and the total number of obser-
vations it received from agents in its clique about arm k until time t.

Note that for all i € C we have N{(t) > ng, Vt > 14 c.

We analyse the expected number of times agents pull suboptimal arm k as follows,

T
>SS A - 1) (137)

cee, ieC t=1

Tk,C T
— S S A =k + 33 S A =k (138)
Cel, ieC t=1 cee, ieC t>7L ¢

<t el-DEF+Hy =D 2+ D)) Z T{A;(t+1) = k}L{Ni(t) > mi.}. (139)

cee, Cee, ieC t>Trc

Taking expectation we have

T
YD > P =k) (140)

cee, ieC t=1

’ﬂ
L

< 3"+ (€] - D)7+ 1) +2c]) +ZZ P(A(t+1) =k Ni(t)>n). (141)
Cety CeCy ieC t>Tc
T—1
= X(G )+ (N =X(Gy) (F+v—1) +2N+ > P(Ai(t+1) =k, Ni(t) > mi)  (142)
Cety ieC t=1

The proof of Lemma 13 follows from Lemma 1 and (142). O

Now we prove Theorem 5 as follows. Thus using Lemmas 4, 5 and 13 we obtain

Rego(T) < 8(¢ + 1)o2x(G) (Z k’gT> (N =G (G- +5N) S Ay (143)

Ay
k>1 k>1

N
+4  (3log(3(di(G) + 1)) + (log (d N> A (144)
i=1

k>1
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F Lower Bounds

Theorem 9 (Minimax Rate). For any multi-agent algorithm A, there exists a K—armed environ-
ment over N agents with Ay < 1 such that,

Regc:(A,T) > ey KN(T + d(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K — armed environment over
N agents with Ay, <1 for any connected graph G and v > 1 such that, for some absolute constant

C/

Rego (A, T) > ¢\/a*(Gy)KNT.

—

G) 7

;_n

Where d( ) = Zj* —i - © denotes the average delay incurred by message-passing across the
network G, d—; = + D {d(z j) = i} denotes the number of agent pairs that are at distance
( =

exactly i, and « is Turan’s lower bound (Turdn, 1941) on o(G~).

\_,2\

1+d7
Proof. Our approach is an extension of the single-agent bandit lower bound (Cesa-Bianchi and
Lugosi, 2006). Let A be a deterministic (multi-agent) algorithm, and let the empirical distribution
of arm pulls across all agents be given by p'(t) = (p}(¢), ..., p%(t)), where pi(t) = TL’T(T) Consider
the random variable J; drawn according to p’(¢) and P; denote the law of J, when drawn from arm
% (and other arms with parameter —) We have,

P (s =) =i [0

k having parameter

Since on pulling any arm k' # k, we obtain regret e, we therefore have for the group regret,

T
Ex Z (N'Tk(t)—ZTAi(t)>] za-T-ZPk (Jti:k:’)
t=1 % i€y
=e Ty |12 Peldi=
iey K2k

By Pinsker’s inequality and averaging over all k € [K], we have for any i € V,

1 & . 1 1 N1
K;Pk (i =k) < 5+ K; 5 KL(Po, Py).

We now bound the R.H.S. using the chain rule for KL-divergence. Since we assume that A is
deterministic, we have that the rewards obtained by the agent ¢ until time ¢ from its neighborhood
alone determine uniquely the empirical distribution of plays. Here, the analysis diverges from that
of the single-agent bandit as a richer set of observations is available to each agent. Denote the set
of rewards observed by agent i at instant 7 be given by O;(7). First, observe that since each reward
is i.i.d., we have for any k,

KL(Po(04(7)), Pi(0i(7))) = |0i(7)| - KL (1 —e 14 )

2 72
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For k = 0 the above divergence is 0. When we consider the standard single-agent setting, |O;(7)| =
1, recovering the usual bound. Now, by the chain rule, we have that, at round ¢ for any agent 1,
and arm k € [K],

KL(Po(t). Pu(®)) = KL(Po(1 +Z|@ e (155159)

2
—KL<

Replacing this result in the earlier equation, we have by the concavity of KL divergence:

7Z|:>k

>IE0 Zn (t—d(i,7))

JeEVY

1 K

1
+ 2 Z} 5KL(Po, Py)

N\H

N\H

K
SR ( _< 1;5>E0 > "0k (T — d(i, )

k=1 jev

K
J TN - Y7 _j(i).j>-KL<1_€ 1+e>
2 T2 )

Now, observe that the KL divergence between Bernoulli bandits can be bounded as

(p—q)?
KL(p,q) < :
(7. 9) q(1—q)
Substituting we get,
a*(G) N
i C1, [ EPOT - d(0) )
K (1—&2)K '

k:

Replacing this in the regret and using ¢ < 1/2, we get that,

T
Eg Z(N'Tk(t)—ZTAi(t)>]

t=1 =%

1 [4e(NT - S () - )
%'T'; =%~ (- 2K
1 (NT — 0P a3 - 5)
>5-T-%; 245\/ 3;{ !
1/2

e-NT 4e2NT
= — T —d(i, ]
2 \/E Z (Z’])

1,jEV
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Setting e = ¢ - \/ ff(G) where ¢ is a constant to be tuned later, we have,
NI-" D a_ )

T
c  4c? KN27?
E N-rps— > 74, >(-——]- T
k ;( k.t ZEZV Az(t),t)] <2 \/g) N(T_Z;l:(lG) d:j-j)
d* (@)
>0.027 |KN(T+ Y dj - j).
j=1

This proves the first part of the theorem. Now, when the policies are decentralized and agnostic,
the chain rule step can be factored as follows.

KL(Po(t), Pr(t)) = KL(Po(1 +Z|(9 |KL< 571?)

— KL (155, 1"55) Eo | S nk(t—d(i,))

ENS (G)
Note that here instead of taking the cumulative sum over all ¥V we select only those agents that
are within the y—neighborhood of 7 in G, since conditioned on these observations the rewards of
the agents are independent of all other rewards (by Assumption), and hence the higher-order KL
divergence terms are 0. Replacing this in the analysis gives us the following decomposition (after
similar steps as the first part):

T 2
Ek[Z<Nm ZrA )]/Nga_il/gg%.z ZT d(i, 5)

1/2

t=1 i€y i€V \jNT (i)
; 1/2
NT 4e2NYV2T
>N NS Y 1 d)
3K ZEV]N"" (4)
. _ NK .
Setting € = ¢ \/Zbev 2 T ) where c is a constant to be tuned later, we have,

Eg

3 (N-rk(t) - Zmi(t)>] >

t=1 eV

c N3T?
2 Zzev ZJEN+(G —d(i, j)

(51
2(3 \/Zlevler G
3

>4(z‘¢§) (GrNT

> 0.019y/0*(G,)NT.

The constants in both settings are obtained by optimizing ¢ over R. Extending this to random
(instead of deterministic) algorithms is straightforward via Fubini’s theorem, see Theorem 2.6
of Bubeck (2010). O
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G Pseudo code

Algorithm 2: RCL-LF

Input: Arms k € [K], variance proxy upper bound o2, parameter ¢
Initialize: N/ (0) = 13 (0) = C1(0) = 0,Vk,i

for each iteration ¢ € [T] do

for each agent i € [N] do
/* Sampling phase

end

/* Send messages

end
for each agent i € [N] do

/* Receive messages

end
end
/* Update estimates

| dCALCULATE (Ni(t),
en

end
end

for each arm k € [K] do

i

Hi

if t =1 then

| Al « RanDOMARM ([K])
end
else

CREATE (mff = <A§,r};,i,t>)
SEND (M} + M;_, Umj})

for each neighbor j € N;(G,) do
/* Discard messages with probability 1 — p;
for each message m € Mg do
with probability p;,

with probability 1 — p;,

M <~ M!Um
M «+ M

(t), Ci (1))

| Al + argmax;, [k (t— 1)+ Cj(t — 1)

*/

*/

*/

*/

*/
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