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Abstract— We examine the tuning of cooperative behav-
ior in repeated multi-agent games using an analytically
tractable, continuous-time, nonlinear model of opinion dy-
namics. Each modeled agent updates its real-valued opin-
ion about each available strategy in response to payoffs
and other agents’ opinions, as observed over a network. We
show how the model provides a principled and systematic
means to investigate behavior of agents that select strate-
gies using rationality and reciprocity, key features of hu-
man decision-making in social dilemmas. For two-strategy
games, we use bifurcation analysis to prove conditions for
the bistability of two equilibria and conditions for the first
(second) equilibrium to reflect all agents favoring the first
(second) strategy. We prove how model parameters, e.g.,
level of attention to opinions of others, network structure,
and payoffs, influence dynamics and, notably, the size of
the region of attraction to each stable equilibrium. We
provide insights by examining the tuning of the bistability
of mutual cooperation and mutual defection and their re-
gions of attraction for the repeated prisoner’s dilemma and
the repeated multi-agent public goods game. Our results
generalize to games with more strategies, heterogeneity,
and additional feedback dynamics, such as those designed
to elicit cooperation or coordination.

Index Terms— Game theory, opinion dynamics, decision
making, distributed control, multi-agent systems

I. INTRODUCTION

SOCIOLOGISTS, political scientists, and economists have
long argued that reciprocity is key to promoting coopera-

tion [1]–[3]. Computer simulations have shown that reciprocal
strategies can elicit mutual cooperation in repeated games:
the winning strategy for the repeated prisoner’s dilemma in
Axelrod’s tournaments was Tit-for-Tat (TFT), where an agent
reciprocates the opponent’s strategy in the previous round;
more generally, successful strategies were nice, forgiving,
provocable, and clear [2]. Subsequent laboratory studies have
revealed that humans in fact employ such reciprocity-based
rules in repeated interactions [4]–[6]. However, the observed
reciprocity cannot be recapitulated by game-theoretic models
of rational, payoff-maximizing agents, which, in contrast to
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the experiments, predict convergence toward mutual defection,
i.e., the Nash equilibrium in a social dilemma.

Here we investigate the tuning of cooperative behavior, in-
cluding mutual cooperation or coordination, in repeated games
among agents that rely on both rationality and reciprocity. Our
first key contribution is a new framework for studying multi-
agent repeated games using the nonlinear opinion dynamics
model [7] (see also [8]) in which agents’ strategic decisions
depend not only on payoffs, as in rationality models [9], [10],
but also on social interactions that enable agents to observe
strategy preferences (opinions) of other agents. We show how
the social interaction term, formulated as a saturation function
of observed opinions, provides a representation of reciprocity
and a means to tune cooperation (or coordination) in social
dilemmas.

Our second key contribution leverages analytical tractability
of the model: we prove conditions for bistability of two
equilibria for repeated two-strategy games in which multiple
agents observe the opinions of others over a fixed network.
We also show conditions under which each equilibrium cor-
responds to all agents favoring one of the two strategies.
Our proof relies on a bifurcation analysis that builds on the
results of [7]. We prove how the bistability of equilibria and
the regions of attraction depend on the level of attention
to observed opinions, network structure, payoffs, and other
model parameters. We apply our theory to the two-agent
prisoner’s dilemma and the multi-agent public goods game to
present further insights into how mutual cooperation emerges
through social interaction (reciprocity) and how the predicted
likelihood of cooperation can be tuned. Our results apply
analogously to tuning coordination in games like the Stag
Hunt. Our analytical results complement the large literature on
reciprocity-based decision-making [2] that evaluates agents’
long-term interaction with computer simulations.

Most models of opinion dynamics in the literature use an
opinion updating process that relies on a linear weighted
average of exchanged opinions, as in the original work of
DeGroot [11]. The nonlinear opinion dynamics model of [7]
instead applies a saturation function to exchanged opinions,
making the updating process fundamentally nonlinear and thus
allowing for multistability of equilibria, a key aspect of our
project. For a comprehensive review of, and comparison with,
other opinion dynamics models see [7]. Our investigation of
the means to tune cooperation in social dilemmas is distin-
guished from works such as [12], [13] that examine opinion
dynamics using game-theoretic approaches.

Our approach is also distinguished from the investigations
in [7]: evolving opinions, which represent strategy preferences,
depend not only on saturated opinion exchange but also on the
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payoff mechanism of the game. Our results are also new: they
explain the emergence of mutual cooperation (or coordination)
in social dilemmas as one of two bistable equilibria that arise
through a pitchfork bifurcation.

In §II, we introduce the nonlinear opinion dynamics model
and show how it recovers rationality and reciprocity. In §III,
for two-strategy games, we prove the bistability of equilibria
and expressions for the tunability of those equilibria and their
corresponding regions of attraction in terms of system parame-
ters. We apply the theory to the prisoner’s dilemma and public
goods game. In §IV, we use numerical simulations to illustrate
the theoretical predictions on the tuning of cooperation. In §V,
we discuss extensions and generalizations.

II. OPINION DYNAMICS IN GAMES

Consider an Na-agent decision-making problem where each
agent selects a strategy, continuously in time t, from the set
{1, · · · , Ns} of Ns available strategies. Each agent performs
a probabilistic choice of strategy where xi(t) ∈ Xi is the
probability distribution for the strategy selection at time t of
agent i and Xi is the probability simplex in RNs . The j-
th element xij of xi is the probability that agent i selects
strategy j. Following convention in game theory [14], xi is
the mixed strategy of agent i and x = (x1, · · · , xNa) ∈ X is
the mixed strategy profile, where X = X1 × · · · × XNa .

The mixed strategy xi(t) is defined by the logit choice
function [10] and depends on agent i’s opinion state at time
t, z̄i(t) = (z̄i1, · · · , z̄iNs

) (t) ∈ RNs , as follows:

xij = σj (z̄i) =
exp

(
η−1z̄ij

)∑Ns

l=1 exp (η−1z̄il)
, (1)

where the positive constant η is called the noise level [15]
or rationality parameter [16].1 Each entry z̄ij of z̄i represents
agent i’s preference for the j-th available strategy. The relative
opinion state zi, with j-th entry zij = z̄ij − 1

Ns

∑Ns

l=1 z̄il,
defines an agent’s preferred strategies, i.e., the inequality
zij > 0 can be interpreted as the agent favoring strategy j
relative to other strategies and the magnitude |zij | denotes the
level of its preference. Under logit choice (1), the higher z̄ij
relative to other entries of z̄i, the more likely agent i selects
strategy j. (1) can be interpreted as the best response with
respect to the opinion state z̄i subject to a random perturbation
[15].

Given mixed strategy profile x ∈ X, we let Ui(x) =
(Ui1(x), · · · , UiNs

(x)) ∈ RNs be the payoff function for
agent i. Entry Uij(x) defines agent i’s payoff associated with
strategy j. The following are examples of multi-agent games.

Example 1 (Prisoner’s Dilemma): Consider two agents,
each with two available strategies: cooperate (strategy 1) and
defect (strategy 2). When both agents cooperate or defect, they
receive payoff pCC or pDD, respectively. If one defects while
the other cooperates, the former receives payoff pDC and the
latter receives pCD. The payoff function Ui is

Ui(x) =

(
Ui1(x)
Ui2(x)

)
=

(
pCC pCD
pDC pDD

)
x−i, i ∈ {1, 2} (2)

1For simplicity, we assume that η is identical across the agents.

where, as shorthand notation, we let x−1 = x2 and x−2 = x1.
The parameters pCC , pCD, pDC , pDD satisfy pDC > pCC >
pDD > pCD, which means that the agents have individual
incentives to defect and receive pDD, even though they would
receive the higher payoff pCC by cooperating.

Example 2 (Public Goods Game): There are Na agents
and Ns strategies. Each agent has a total wealth of a(Ns − 1)
and selects a strategy j in {1, · · · , Ns} that corresponds to
contributing a(Ns−j) to a public pool. The total contribution
is multiplied by a factor ρ and distributed equally among all
agents. The payoff function Ui is

Uij(x) = a (j − 1) +
ρ

Na

∑Na

k 6=i
k=1

∑Ns

l=1 a(Ns − l)xkl

+
ρ

Na
a(Ns − j), i ∈ {1, · · · , Na}, j ∈ {1, · · · , Ns}, (3)

where a > 0 and Na > ρ > 1. According to (3), regardless
of the others’ contributions, each agent receives the highest
payoff when it makes no contribution to the pool. Hence, the
rational agent contributes nothing, i.e., chooses j = Ns.

We define rate-of-change ˙̄zi = dz̄i/dt of agent i’s opinion
state z̄i in response to payoffs and social interactions, with the
continuous-time nonlinear opinion dynamics model [7]2:

˙̄zij = −di
(
z̄ij − ui

∑Na

k=1 2R
(
Ajikzkj

)
− Uij(x)

)
, (4)

with z̄i(0) ∈ RNs . Ajik ∈ R is the weight agent i places in its
evaluation of strategy j on its observation of agent k’s opinion
of strategy j. The constant resistance parameter di > 0 reflects
the speed with which agent i’s opinions change; the attention
parameter ui > 0 reflects the weight placed on incentives
derived from social interactions, where R : R → [0, 1].
Thus, the state z̄i of agent i, and hence its strategy selection,
evolves according to the accumulation over time, with the
discount factor di, of the payoffs Uij(x) and social incentives
R(Ajikzkj).

We define R as the saturating function

R(Ajikzkj) = P
(
Ajikzkj ≥ ε

)
, (5)

where ε is a random variable with a symmetric and unimodal
probability density function, e.g., the standard normal distri-
bution. To interpret, suppose Ajik ≥ 0. Then Ajik quantifies the
influence of noise ε on inter-agent interactions: the larger Ajik,
the smaller the effect of noise ε.3 Thus, we can interpret (5)
as a probabilistic model of agent i’s perception of agent k’s
preference for strategy j over other strategies.

A. Emergence of the Cooperative Equilibrium

In this section, using the prisoner’s dilemma as an illustra-
tive example, we provide intuition for how the equilibria of
(4) depend on system parameters, and under what parameter
regime a cooperative equilibrium emerges. To simplify the

2In §III, we explain how (4) relates to its original form presented in [7].
For concise presentation, we omit time dependency of the variables in (4).

3See §II-C for more discussions on the parameter Aj
ik .
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presentation, let di = d, ui = u, Ajii = α, and Ajik = γ
if i 6= k. Let z̄∗ be an equilibrium of (4) that satisfies

z̄∗ij = 2u

(
R(αz∗ij) +

∑Na

k 6=i
k=1

R(γz∗kj)

)
+ Uij(x

∗), (6)

where x∗ij = σj(z
∗
i ).

Note that by (5), in a dense subset of the tangent space
TX of X, as the influence of the noise in the social interac-
tion becomes arbitrarily small, i.e., α, γ are arbitrarily large,
R(αzij) and R(γzkj) converge to a binary ({0, 1}-valued)
function. If α, γ are sufficiently large, we can approximate
(6) as z̄∗ij ≈ 2un∗j + Uij(x

∗), where n∗j is the number of
agents k having a positive relative opinion z∗kj of strategy j at
equilibrium. As the attention u increases, each agent tends to
favor the most popular strategy, even though selecting other
strategies would return higher payoffs. It follows that the social
interaction R incentivizes each agent to reciprocate with other
agents in the strategy selection, and the level of reciprocation
is determined by the attention parameter u and the number n∗j
of agents preferring the same strategy under consideration.

Example: With two reciprocating agents (Na = 2, α =
0, γ > 0) playing the prisoner’s dilemma (Ns = 2), the equi-
librium z̄∗ satisfies z̄∗i1 ≈ 2un∗1 +Ui1(x∗), where n∗1 ∈ {0, 1}
indicates whether the opponent cooperates (n∗1 = 1) or
defects (n∗1 = 0). If the attention parameter satisfies 2u >
max(pDC − pCC , pDD − pCD), then for sufficiently large γ,
cooperation becomes an equilibrium of (4). Moreover, given
any arbitrarily large u, there is a minimum value of γ below
which cooperation will not be an equilibrium.

B. Rationality and Reciprocity in the Model
In this section, we show how the model (4) captures a range

of features observed in human decision-making, including
(bounded) rationality [17] and reciprocity [1], [3]. We begin
by showing that (4) generalizes the exponentially discounted
reinforcement learning (EXP-D-RL) model studied in [9]
where every agent makes an individually rational decision
by selecting payoff-maximizing strategies. To see this, let
Ajik = 0 for i, k ∈ {1, · · · , Na} and j ∈ {1, · · · , Ns} for
which the social interaction R(Ajikzkj) becomes constant, i.e.,
R(Ajikzkj) = 0.5, ∀zkj ∈ R. By translating z̄ij by constant
uiNa and since the logit choice function is invariant with
respect to the translation of z̄ij , (4) specializes to

˙̄zij = −di (z̄ij − Uij(x)) , xij =
exp

(
η−1z̄ij

)∑Ns

l=1 exp (η−1z̄il)
,

which is the EXP-D-RL model presented in [9]. In this sense,
our model (4) realizes rationality.

To discuss reciprocity of the opinion dynamics, we consider
a two-agent (Na = 2) two-strategy (Ns = 2) case. Suppose
that Ajik = η−1 if i 6= k and Ajik = 0 otherwise, where η is
the noise level constant in the logit choice function (1). Then,
with R(·) = (tanh(·) + 1)/2, we have R(Ajikzkj) = xkj if
i 6= k and R(Ajikzkj) = 0.5 otherwise.

For small h > 0, assuming that Uij is arbitrarily small, we
can approximate the opinion dynamics model (4) as

z̄ij(t+ h)− z̄ij(t) ≈ −hdi (z̄ij(t)− 2uix−ij(t)) .

For sufficiently large di, by evaluating the opinion state at time
instant t+ h with h = d−1i , we observe that

z̄ij(t+ h) ≈ 2uix−ij(t). (7)

Recall that x−ij is the j-th entry of the mixed strategy x−i
of the opponent of agent i. According to (7), with large ui,
it holds that xij(t + h) = 1 if and only if x−ij(t) = 1. In
the prisoner’s dilemma, under (7), each agent i decides to
cooperate (or defect) if its opponent does so at the previous
stage. This behavior resembles TFT, a well-known reciprocity-
based strategy in discrete-time iterated games [2]. In this sense,
our model (4) realizes reciprocity.

C. Further Remarks on the Model
Social interaction encourages reciprocity: When Ajik > 0

for i 6= k, the social interaction in (4) encourages reciprocity
by incentivizing each agent to select the strategies preferred
by other agents. As shown in §IV, in the prisoner’s dilemma
and public goods game, such a social interaction mechanism
leads to decision-making representative of human behavior;
notably, the agents conditionally cooperate. This contrasts with
the outcomes of rationality-based models where agents fail to
cooperate (or coordinate).

Our model and analysis can be readily extended to a more
general case, as in [7], where the social interaction term in (4)
is given by ui

∑Na

k=1

∑Ns

l=1 2R(Ajlikzkl). In this generalization,
agent i’s opinion of strategy j may also depend on other
agents’ opinions of strategies l 6= j.

Network structure: The Ajik in (4) defines a network
structure among agents for strategy j. One can specify the
presence (Ajik > 0 for reciprocal, Ajik < 0 for antagonistic)
or lack (Ajik = 0) of interaction between agents i and k in
their selecting strategy j. We prove results on the role of
network structure in our model in §III. See [7], [18] for more
on network structure and the nonlinear opinion dynamics.

III. BISTABILITY ANALYSIS OF 2-STRATEGY GAMES

We present bistability analysis for (4) in two-strategy games
with homogeneous parameters.4 We assume G = (V,E) and
Ĝ = (V, Ê), with V = {1, · · · , Na}, are simple graphs gov-
erning the social interaction and game interaction, respectively,
and A = (aik)i,k∈V and Â = (âik)i,k∈V are the corresponding
adjacency matrices. We assume the payoff function has the
form: (

Ui1(x)
Ui2(x)

)
=
∑

(i,k)∈Ê

(
p11 p12
p21 p22

)
xk +

(
b1
b2

)
, (8)

and the parameters of (4) are given by di = d, ui = u, and
Ajii = α > 0, and Ajik = γaik ≥ 0 if i 6= k.

For analysis, we adopt the original form of (4) from [7]:

żij = Fij (z)− 1

Ns

∑Ns

l=1 Fil (z) ,
∑Ns

j=1 zij(0) = 0, (9)

Fij(z)=−d
(
zij−u

(
S (αzij)+

∑
(i,k)∈E S (γzkj)

)
−Uij(x)

)
where zij(0) = z̄ij(0) − 1

Ns

∑Ns

l=1 z̄il(0) and the saturation
function S is given by S = 2R − 1. The variable z =

4The proofs of all the theorems are provided in the Appendix.
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Fig. 1. Bifurcation diagram of (16) in the prisoner’s dilemma with (a)
pCC = 15 and (b) pCC = 30, where α = 0, d = γ = η = 1,
pCD = 0, pDC = 40, pDD = 5, and in the public goods game with
(c) a = 40 and (d) a = 10, where α = 0, d = γ = η = 1, ρ = 2,
and Na = 20. Blue (orange) curves are stable (unstable) equilibrium
states. Solutions with zc < 0 (zc > 0) correspond to mutual defection
(cooperation). Mutual defection is always stable; for large enough ũ,
mutual cooperation is stable.

(z1, · · · , zNa) ∈ TX denotes the relative opinion state. In
Theorem 1, we show that models (4) and (9) are related by
the projection zi = P0z̄i, where P0 = I − 1

Ns
11T , and yield

the same transient and steady-state mixed-strategy behavior.
Theorem 1: The following two statements are true.
i) If z̄(t) is a solution of (4), then z(t), satis-

fying zi(t) = P0z̄i(t), is a solution of (9). Con-
versely, if z(t) is a solution of (9), then z̄(t) defined
as z̄ij(t) = e−dtz̄ij(0) + d

∫ t
0
e−d(t−τ)(2u(R(αzij(τ)) +∑

(i,k)∈ER(γzkj(τ))) + Uij(x(τ))) dτ with xij = σj(zi)
satisfies zi(t) = P0z̄i(t) and is a solution of (4).

ii) If z̄∗ is a stable (unstable) equilibrium of (4), then z∗,
satisfying z∗i = P0z̄

∗
i , is a stable (unstable) equilibrium of

(9). Conversely, if z∗ is a stable (unstable) equilibrium of (9)
then z̄∗, defined as z̄∗ij = 2u(R(αz∗ij) +

∑
(i,k)∈ER(γz∗kj)) +

Uij(x
∗) with x∗ij = σj(z

∗
i ) satisfies z∗i = P0z̄

∗
i and is a stable

(unstable) equilibrium of (4).
We further assume that S satisfies the following conditions:

S is odd sigmoidal and it holds that S(0) = 0, S′(0) > 0,
signS′′(a) = −sign(a), ∀a ∈ R, and S′′′(0) = −2.5 Since
zi1 = −zi2, we can simplify the expression (9) as

ż = −d
(
z− u (S(αz) +AS(γz))

− 1

4
pÂ tanh(η−1z)− 1

4
p⊥Â1− (b1 − b2)1

)
(10)

with z = (z11, · · · , zNa1), p = p11 − p12 − p21 + p22, p⊥ =
p11+p12−p21−p22, and S(γz) = (S(γz11), · · · , S(γzNa1)).

Theorem 2 (Bistability in games): Consider (10). Let
ζmax(u, γ, p) be the largest-real-part eigenvalue of
uγS′(0)A+ 1

4η
−1pÂ and vmax (wmax) be its corresponding

right (left) eigenvector.
i) Suppose ζmax is real and simple, and

wTmaxγS
′(0)Avmax > 0 holds. When p⊥ = b1 = b2 = 0,

there exists a critical value u∗ for which if u < u∗, the
origin z = 0 is locally exponentially stable, and if u > u∗,
the origin is unstable and two bistable equilibrium solution

5To simplify the notation, without loss of generality, we make the assump-
tion that S′′′(0) = −2, for instance, by scaling S.

branches emerge in a symmetric pitchfork bifurcation along
a manifold tangent to the span of vmax. When p⊥, b1, and/or
b2 are nonzero, the system is an unfolding of the symmetric
pitchfork bifurcation, and the parameter

b = 〈wmax,
1

4
dp⊥Â1 + d(b1 − b2)1〉 (11)

determines the direction of the unfolding. Furthermore, u∗

depends on p according to ∂u∗

∂p = − 1
4αS′(0)w

T
maxÂvmax.

ii) Suppose uγS′(0)A+ 1
4η
−1pÂ is an irreducible nonneg-

ative matrix.6 Near u∗, for the bistable equilibria, sign(zi1) =
sign(zk1), ∀i, k, i.e., all agents favor the same strategy.

iii) Suppose vmax (wmax) is also a left (right) eigenvector
of both A and Â. Denote by λ, λ̂ the eigenvalues of A,
Â, respectively, corresponding to vmax(wmax). Then u∗ =
1− 1

4η
−1pλ̂

S′(0)(α+γλ) , and the unfolding parameter (11) simplifies to

b = d

(
1

4
p⊥λ̂+ b1 − b2

)
〈wmax,1〉. (12)

The following theorem shows how the bifurcation depends
on degree (number of neighbors) for G, Ĝ regular graphs.

Theorem 3: Suppose γ > 0, p ≥ 0, and G, Ĝ are
undirected, connected, and regular with degrees K, K̂, re-
spectively. The bifurcation point u∗ and unfolding parameter
b satisfy sign

(
∂u∗

∂K

)
= sign

(
1
4η
−1pK̂ − 1

)
, sign

(
∂u∗

∂K̂

)
=

sign(−p), and sign
(
∂b
∂K̂

)
= sign(p⊥).

Remark 1: For games with more than 2 strategies and het-
erogeneous payoff functions, the analysis can be generalized
using Uij(x) =

∑
(i,k)∈Ê

(
pikj1 . . . pikjNs

)
xk + bij .

In what follows, we discuss implications of Theorems 2,3
in social dilemmas using the prisoner’s dilemma and public
goods game. From now on, we take S(·) = tanh(·).

Prisoner’s dilemma: Let p11 = pCC , p12 = pCD, p21 =
pDC , p22 = pDD and b1 = b2 = 0 so (8) specializes to (2).

Corollary 1: For γ > 0, the following hold: vmax =
wmax = (1, 1), λ = λ̂ = 1, and p⊥ < 0. Hence, we have
u∗ =

1− 1
4η
−1p

α+γ and b = 1
2dp
⊥ < 0.

Figs. 1(a),1(b) show the bifurcation diagram (plot of equi-
libria as a function of bifurcation parameter ũ = u − u∗) of
the Lyapunov-Schmidt reduction (16) of (9), for two values
of pCC . p and p⊥ have a two-fold effect: i) p changes the
location of the pitchfork bifurcation point in the ũ-axis. ii)
Since p⊥ < 0, the pitchfork bifurcation unfolds favoring the
branch of solutions corresponding to mutual defection. For
sufficiently large ũ (equivalently, u), a branch of solutions
corresponding to mutual cooperation emerges, and the larger
the u the larger its region of attraction. A smaller u is required
for larger pCC , since larger pCC decreases incentive to defect.

If p11 > p21 = 40, the game is the Stag Hunt where the
strategy to hunt a stag replaces cooperation and the strategy to
hunt a hare replaces defection. Coordinated stag hunting and
coordinated hare hunting are both Nash equilibria, the former
payoff-dominating and the latter risk-dominating. The model
predicts the larger the u, the larger the region of attraction to
coordinated stag hunting.

6This holds, e.g., when γ > 0, p ≥ 0, and at least one of A, Â corresponds
to a connected graph.
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Fig. 2. Heatmaps depict the probability of mutual cooperation in the
prisoner’s dilemma for three different values of r in (13).
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Fig. 3. Heatmaps depict the average number of agents cooperating in
the public goods game for three different values of a in (14).

Public goods game: Let Ns = 2, i.e., each agent decides to
cooperate and contributes its entire wealth (j = 1), or defect
and contributes nothing (j = 2). Note that (8) specializes to
(3) by selecting p11 = p21 = b1 = aρ/Na, p12 = p22 = 0,
and b2 = a with all-to-all game interaction graph Ĝ.

Corollary 2: With Ns = 2, p = p⊥ = 0. For γ > 0 and
connected social interaction graph G, the following hold: i)
vmax, wmax have all nonzero same-sign entries, u∗ = 1

α+γλ

and b = −da(1−ρ/Na)〈wmax,1〉 < 0. ii) When A is regular
with degree K, it holds that ∂u

∗

∂K < 0, i.e., with larger K (more
social interactions), bistability requires less attention u.

Figs. 1(c),1(d) show the bifurcation diagram for two values
of total wealth a. Since p = 0, p has no effect. However,
b1− b2 = −a(1− ρ/Na) < 0; hence, for reciprocating agents
(γ > 0), the pitchfork bifurcation unfolds towards the branch
of solutions corresponding to no agent contributing to the
public pool. Since the strength of the unfolding is proportional
to a, emergence of the mutually cooperative solution, when all
agents contribute, requires a smaller u for smaller a and for a
fixed u its region of attraction grows as a decreases.

IV. NUMERICAL STUDIES

A. Prisoner’s Dilemma
We set di = η = 1, ui = 10, Ajii = 0, Ajik = 1 for i 6= k,

and S(·) = tanh(·). Consider the payoff matrix (2) given by(
pCC pCD
pDC pDD

)
=

(
35 0− r

40 + r 5

)
(13)

with r > 0 an extra reward (penalty) an agent receives if it
defects (cooperates) while its opponent cooperates (defects).

Using simulations, we illustrate limit points of the opinion
state trajectories predicted by the theory. In Fig. 2 each
heatmap illustrates the probability of both agents cooper-
ating and the two axes represent the initial opinion states
z11(0), z21(0) of the agents associated with the cooperation
strategy. Since the two agents are reciprocating, for all cases,
we observe that the heatmaps for both agents are identical,
and hence we only present that of agent 1.

In Figs. 2(b) and 2(c), we can observe that when both
agents are nice, i.e., the agents’ initial opinion states z11(0) >

0, z21(0) > 0 for the cooperation are large enough, they
can maintain mutual cooperation. Also, a sufficiently nice
agent (zi1(0) > 0) forgives the exploiting behavior (defection)
of its opponent that initially is not nice (z−i1(0) < 0).
However, when its opponent has a strong intention to defect
(z−i1(0) < 0 substantially large in magnitude), the agent also
defects to avoid being exploited and is provocable.

An increase in r motivates the agents to defect (Fig. 2).
When r = 20, since pDC−pCC = pDD−pCD = 25 > 2ui =
20, the cooperation strategy is dominated by the defection
strategy, and both agents eventually defect (Fig. 2(a)). Thus,
as predicted by the theory and illustrated in Figs. 1(a),1(b),
when there is a strong enough incentive to defect, the level
of attention u to opinion exchanges, which translates into the
level of reciprocity, may be insufficient to prevent the agents
from pursuing individually rational decision-making.

B. Public Goods Game

For the 2-strategy public goods game, we adopt the same
parameters of (9) as in §IV-A except that ui = 5, the inter-
agent interactions are governed by the Erdös-Rényi graph with
parameter pG (for i 6= k, Ajik = 1 with probability pG and
Ajik = 0 with probability 1 − pG), and the initial opinion
state of each agent is uniformly randomly selected as zi1(0) ∼
Uniform(−0.5 + pB , 0.5 + pB), where pB is a bias in favor
of cooperation. Let ρ = 2, Na = 20 so (3) is

Uij(x) =


a
10 + a

10

∑20
k 6=i
k=1

xk1 if j = 1

a+ a
10

∑20
k 6=i
k=1

xk1 if j = 2.
(14)

We evaluate opinion state trajectories over a range of values
of pG, pB , and a to explore how the network structure of the
social interaction, initial opinion states, and total wealth tune
the emergence of cooperation as predicted by the theory.

Each heatmap in Fig. 3 depicts, for a given a, the average
number of agents that cooperate at steady-state for a range
of pG, pB . Both network structure, determined by pG, and
agents’ initial preference to contribute to the public pool,
determined by pB , play important roles: The cooperation
among the 20 agents is more likely to be sustained if each
agent has a greater chance to interact with others (pG large)
and favors cooperation at the beginning of the game (pB large).
Interestingly, even if they prefer to cooperate at the beginning
(pB large), when the agents are interacting less and cannot
perceive the opinion state of others (pG small), they decide to
defect over time. The advantage of large pG is as for large K
for regular graphs, as predicted by Corollary 2.

The payoff difference Ui2(x)−Ui1(x) = 0.9a between the
two strategies depends on the total wealth a and quantifies
the incentive for the agents to defect. Consequently, the more
wealth agents have, the higher incentive they receive to not
contribute. This is illustrated in Fig. 3, where mutual defection
(cooperation) is more (less) likely as a increases.

V. FINAL REMARKS

We have shown that the nonlinear opinion dynamics model
of [7], [8], [18] provides an analytically tractable framework
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for studying cooperative behavior in repeated multi-agent
games, where agents rely on rationality and reciprocity, both
of which are central to human decision-making. The opinion
update depends on a saturated function of inter-agent opinion
exchanges, which allows mutual cooperation (or coordination)
to emerge as one of two bistable equilibria in two-strategy
games. For the prisoner’s dilemma and multi-agent public
goods game, mutual cooperation emerges when the attention u
to social interaction, and thus reciprocity, is sufficiently strong.
The bistability provides a possible mathematical account for
how reciprocity enables stable cooperative behavior, as ob-
served in experimental studies, and a principled approach for
tuning cooperative behavior.

Building on coupled opinion-attention dynamic analysis of
[7], [18], we will design feedback dynamics for u to reflect, for
instance, agents’ growing appreciation of social interactions.
This will allow opportunities to influence behavior, e.g., to
elicit cooperation or coordination among agents. We will also
leverage the versatility of the model to investigate games with
more than two strategies and heterogeneity.

APPENDIX

Proof of Theorem 1: i) The first statement is verified by
comparing (4) and (9). For the second statement, by the
definition of S and zij(0) = z̄ij(0) − 1

Ns

∑Ns

l=1 z̄il(0) we

get d
dt

(
z̄ij(t)− 1

Ns

∑Ns

l=1 z̄il(t)
)

= Fij(z)− 1
Ns

∑Ns

l=1 Fil(z).

Therefore, z̄ij(t) − 1
Ns

∑Ns

l=1 z̄il(t) is a solution of (9) and
hence zij(t) = z̄ij(t) − 1

Ns

∑Ns

l=1 z̄il(t). Thus, σj(zi(t)) =
σj(z̄i(t)) for all t ≥ 0 and z̄(t) is a solution to (4).

ii) If z̄∗ is an equilibrium of (4) then z∗i = P0z̄
∗
i satisfies

P0Fi(z
∗) = 0 and hence is an equilibrium of (9). To prove the

second statement, suppose z∗ is an equilibrium of (9). As in
the proof for i), we can establish that z∗ij = z̄∗ij − 1

Ns

∑Ns

l=1 z̄
∗
il

for z̄∗ij defined as in the statement. Thus, σj(z∗i ) = σj(z̄
∗
i )

and z̄∗ is an equilibrium of (4). The stability of the equilibria
follows from i).

Proof of Theorem 2: i) When p⊥ = b1 = b2 = 0, the neutral
state z = 0 is always an equilibrium of (10). The Jacobian of
the linearization of (10) at z = 0 is

J(0) = −d
(

(1−uS′(0)α)I−uγS′(0)A− 1

4
η−1pÂ

)
(15)

and its eigenvalues take the form µi = −d(1 −
uS′(0)α − ζi(u, γ, p)) where ζi is an eigenvalue of the
matrix uγS′(0)A + 1

4η
−1pÂ. By [19], we can derive that

∂ζmax

∂u = wTmaxγS
′(0)Avmax, and ∂µmax

∂u = dS′(0)α +
wTmaxγS

′(0)Avmax > 0 for any u, p, γ. Hence, there exists
a critical value u∗ for which if u < u∗, all eigenvalues of
(15) have negative real part, and if u > u∗, µmax is positive,
real, and simple. By Lyapunov-Schmidt reduction [20], the
one-dimensional dynamics projected onto span of vmax are

żc = −2d〈wmax, ṽ〉z3c + dS′(0)〈wmax, (αI + γA)vmax〉

× ũzc + 〈wmax,
1

4
dp⊥Â1 + d(b1 − b2)1〉+ h.o.t. (16)

where ṽ = vmax � (αI + γA + 1
4pÂ)vmax � (αI + γA +

1
4pÂ)vmax and ũ = u − u∗(α, γ, p, η). By the recognition
problem [20, Chapter II, Proposition 9.2], (16) describes an un-
folding of the pitchfork bifurcation. The last statement follows
by implicit differentiation of −1 + αS′(0)u∗ + ζmax = 0.

ii) By the Perron-Frobenius theorem, vmax and wmax have
all same-sign entries. The rest follows from part i) and the
center manifold theorem.

iii) By the assumptions on vmax (wmax), ζmax =
uγS′(0)λ+ 1

4η
−1pλ̂, µmax = −d(1−uS′(0)α−uγS′(0)λ−

1
4η
−1pλ̂). Thus, u∗ =

1− 1
4η
−1pλ̂

S′(0)(α+γλ) . The rest follows from (11)
since wmax is the left eigenvector of Â.

Proof of Theorem 3: By the assumptions on p, G, and Ĝ, we
can verify that vmax, wmax, λ, and λ̂, given in Theorem 2
iii), satisfy vmax = wmax = 1, λ = K, and λ̂ = K̂; then
∂u∗

∂K =
−γ(1− 1

4η
−1pK̂)

S′(0)(α+γK)2 and ∂u∗

∂K̂
=

− 1
4η
−1p

S′(0)(α+γK) . From (12),
∂b
∂K̂

= 1
4Nadp

⊥, and the theorem follows.

REFERENCES

[1] A. W. Gouldner, “The norm of reciprocity: A preliminary statement,”
American Sociological Review, vol. 25, no. 2, pp. 161–178, 1960.

[2] R. Axelrod, The Evolution of Cooperation. Basic Books, 1984.
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