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Abstract
From ant colonies to human societies, social groups exhibit remarkable collective behav-
ior. Central to the functioning of these self-organizing systems are individual heterogene-
ity and population structure. This dissertation explores how the interplay between these
features influences collective dynamics, and vice versa, in complex social systems.

Chapter 1 investigates patterns of behavioral specialization in heterogeneous groups,
using a dynamical model based on behavioral response thresholds. Testing the model
predictions against experimental data from ant colonies reveals that the simplest form of
response thresholds can capture the full range of observed social organization, but only
if we consider variation in previously overlooked behavioral parameters.

Chapter 2 probes the role of opinion diversity in the coupled dynamics of interindi-
vidual cooperation and political polarization. Using a cultural evolution model grounded
in evolutionary game theory, we show that increasing interest diversity can improve indi-
vidual and collective outcomes. But partisanship reduces the dimensionality of opinion
space via self-sorting along party lines, potentially yielding greater in-group cooperation
at the cost of heightened polarization—an emergent tension between the individual and
the collective.

Chapter 3 studies the consequences of stereotyping, or generalizing beliefs about so-
cial groups, for cooperation. Using a game-theoretic model of indirect reciprocity, we
identify conditions under which stereotype use spreads via social imitation. While stereo-
typing behavior can boost cooperation in some scenarios, group structure in information
availability gives rise to in-group favoritism, potentially resulting in an asymmetric im-
provement in cooperation levels, with individuals cooperating more on average but pref-
erentially with their in-group.

Chapter 4 examines mechanisms underlying the emergence of enduring hierarchies.
Using an adaptive network model, we prove that feedback between social prestige and
individual-level decision-making alone can lead to stratification among otherwise equal
competitors. Fitting the model to empirical data, such as hiring patterns among mathe-
maticians, reveals that observed social systems may be near the critical threshold between
egalitarianism and hierarchy.

Complex social systems—from social media platforms to democracies—shape how
we organize our societies. A greater understanding of the connections among diversity,
social structure, and collective dynamics may enable us to become better stewards of
these systems.
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Introduction

Social systems across the tree of life exhibit remarkable collective behavior. Colonies of

ants, termites, and other social insects harmoniously perform complex tasks, such as

nest building, nursing, and navigation (Gordon, 2010; Gordon and Schwengel, 1999;

Perna and Theraulaz, 2017; Seeley, 2010). Birds and fish display mesmerizing patterns,

from starling murmuration in the evening sky to predator avoidance among schooling

fish (Sumpter, 2006). Humans are no exception: we navigate crowded crossings with

ease, vote to achieve distributed decision making, and form an extensive economy

through individual transactions.

These systems typically operate without a leader or central control. For instance, no

single fish plans the spatial arrangement of every individual in a group; instead,

individuals adjust their positions, speeds, and headings to those of their neighbors,

organizing themselves into what we recognize as a school. Such a process—in which

local interactions among the components, often following simple rules, give rise to

collective order that transcends the individual—is called self-organization.

Many self-organizing systems are also adaptive. Individuals comprising a system

can adjust their behavior based on experience or the external environment. This can

occur either within the lifetime of an individual entity—e.g., birds become more efficient

navigators with experience (Pettit et al., 2013)—or across generations—e.g., species

evolve for better survival in changing environments.
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This dissertation explores social systems across scales that self-organize and adapt. In

complexity theory, such systems are called complex systems or complex adaptive systems.

While definitions of these terms vary slightly (Gell-Mann, 1994; Holland, 2006; Levin,

2002), Herbert Simon captured the general idea in his classic 1962 essay: complex

(adaptive) systems are ”made up of a large number of parts that interact in a non-simple

way” and have the property that “the whole is more than the sum of the parts...in

the...sense that, given the properties of the parts and the laws of their interaction, it is not

a trivial matter to infer the properties of the whole” (Simon, 1962, p. 468).

Fascination with complex social systems is hardly new, and decades-long research

has identified their key features. One is individual heterogeneity. Diversity among

components has long been thought to make systems robust to perturbations (Levin,

2002). Recent empirical studies have revealed that behavioral variation can also facilitate

collective living in animal groups, from synchronized movements of fish schools

(Couzin et al., 2011, 2005; Jolles et al., 2017) and bird flocks (Aplin et al., 2014) to group

coordination among primates (King and Sueur, 2011) (see Jolles et al. (2020) for a

review). Fewer theoretical studies explicitly account for group composition (Jolles et al.,

2020), but those that do show that even small differences among individuals can have

large effects on system-level behavior (Couzin et al., 2011, 2005, 2002; Leonard et al.,

2012).

Population structure also plays a fundamental role in complex social systems. Early

work on complex systems identified modularity—the division of a whole into groups or

clusters with more interconnections within than between them—as a critical factor that

protects systems from disturbances (Levin, 2002; May, 1972; Simon, 1962). More recent

work has focused on the effects of interaction patterns on contagion processes, such as

information transfer in networks of honeybees (Naug, 2008) and fish (Rosenthal et al.,

2015) or disease transmission in ants (Stroeymeyt et al., 2014) and, of course, humans. In
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social evolution, population structure can alter whether and how much cooperation

evolves (Chu, 2021; Nowak et al., 2010; Ohtsuki et al., 2006; Santos et al., 2006). Network

structure can also facilitate (Bizyaeva et al., 2022; Gray et al., 2018) or skew (Stewart

et al., 2019) collective decision-making. And even without an exhaustive survey of the

literature, we only need to look around to understand the enduring preoccupation with

social organization: groups and group identities are central to our social lives.

Despite the long-standing interest in inter-individual variation and social structure,

we still lack a systematic understanding of how these factors shape collective dynamics.

This stems partly from an empirical challenge: it is difficult to measure the effects of

heterogeneity or interaction patterns because they are often hard to control

experimentally. Theoretically, capturing these variables in a tractable manner is not

simple: analyzing heterogeneous, structured populations typically requires

mathematical tools different from those used for homogeneous, well-mixed populations

(although significant advances have been made for the former). Moreover, the interplay

among composition, structure, and collective behavior can vary across phenomena in

subtle and unpredictable ways.

At the interface of mathematical, biological, and social sciences, this dissertation

explores how individual heterogeneity and population structure influence collective

dynamics, and vice versa, in complex social systems. The four research chapters address

this overarching theme from different angles:

• Self-organization: How do different axes of behavioral variation drive the dynamics

of task allocation in colonies of a social insect? (Chapter 1)

• Multi-level dynamics: How does partisanship mediate the coupled dynamics of

individual-level cooperation and collective-level polarization among individuals

with diverse political interests? (Chapter 2)
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• Social information: What roles do moral reputations based on individual actions and

stereotyped reputations based on group affiliations play in promoting norm-based

cooperation? (Chapter 3)

• Emergence: How do stable, global-level rankings emerge from noisy,

individual-level endorsements in networked populations? (Chapter 4)

This dissertation focuses on theory: to address these questions, I develop and analyze

theoretical frameworks using computational and mathematical tools. Where possible, I

have collaborated with researchers in experimental biology and network science to

explore connections between theory and data.

Here I provide a summary of each chapter:

Self-organization: behavioral specialization

Social groups across taxa divide tasks among specialized individuals. Such division of

labor is considered key to the ecological success of many social groups, especially social

insect colonies (Robinson, 1992). Theory suggests that variation in behavioral response

thresholds can generate specialized behavior among otherwise identical workers

(Beshers and Fewell, 2001; Bonabeau et al., 1996a). However, few studies have

considered behavioral variation along axes other than thresholds (Jeanson and

Weidenmüller, 2014).

In Chapter 1, I collaborated with experimental biologists to investigate the dynamics

of behavioral specialization in heterogeneous groups of social insects. The clonal raider

ants in our study exhibit different behavioral types based on their genotype,

morphology, or age. Previous work has invoked complex mechanisms, such as social

learning (Alem et al., 2016; van de Waal et al., 2013) or information transfer (Berdahl

et al., 2013; Rosenthal et al., 2015), to explain behavioral patterns in heterogeneous
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groups. However, our analysis shows that simple behavioral rules suffice for

specialization: a simple, dynamical model based on fixed thresholds—the simplest form

of response thresholds—alone can recapitulate all experimentally observed patterns of

social organization, but only if we allow for inter-individual differences in parameters

other than thresholds.

These parameters, such as task efficiency or larval demand for food, remain

under-explored in the literature on social insects and on behavioral specialization more

broadly. Our study thus underscores the need for collective behavior research to

consider diverse sources of heterogeneity. It also identifies larvae as important

regulators of worker specialization, opening up novel avenues for further investigation

into colony regulation. Overall, our study demonstrates that simple models can advance

our understanding of collective behavior even in groups with complex compositions.

Multi-level dynamics: political polarization

Shifting the focus to human societies, Chapter 2 explores the problem of political

polarization. In his essay, Federalist No. 10, James Madison argued that the then-nascent

republic could mitigate the dangers of political sectarianism by fostering a diversity of

political interests (Madison, 1787). But although Americans today care about many more

political issues than 75 years ago, polarization plagues the United States.

Motivated by this paradox, Chapter 2 explores how individual-level interactions in a

multidimensional issue space can shape collective-level polarization. With collaborators

in theoretical biology and political science, I develop a model of cultural evolution

grounded in evolutionary game theory (Nowak, 2006; Tarnita et al., 2009a), which

couples cooperative behavior and opinion dynamics. Our analysis shows that societal

cohesion should increase with increasing diversity of issues, confirming Madison’s

intuition. However, partisanship complicates the picture. Under extreme levels of
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partisanship, individuals are less willing to learn from political opposites. This reduces

the effective dimensionality of opinion space via self-sorting along party lines. We find

that the resulting political tribalism leads to high levels of within-ideology cooperation

at the expense of between-ideology polarization. In other words, tribal instincts in the

political arena, as harmful as they might be to collective cohesion, could pay off at the

individual level.

However, we only find this tug-of-war between the individual and the collective

when individuals learn primarily from their peers. This provides a silver lining: we

might be able to escape the worst perils of ideological tribalism if we occasionally

explore new issues independently. Our findings emphasize the need to study

polarization in a coupled, multi-level context.

Social information: stereotypes

In Chapter 3, we explore another distinctive feature of human societies: systems of social

norms and reputations (Tomasello and Vaish, 2013). Norm-based reputations promote

cooperation via indirect reciprocity: altruistic behavior, typically considered a moral

good, may improve individuals’ standings, making them more likely to receive help

from others (Nowak and Sigmund, 2005). But cognitive constraints may limit access to

individual-level reputations, particularly because interactions in modern societies often

involve strangers whose information may be difficult to obtain. As a result, people may

resort to stereotypes—generalized reputations based on individuals’ group affiliations.

Chapter 3 investigates the effects of stereotype use and its evolution on cooperation.

We develop a game-theoretic model of indirect reciprocity in which individuals are

assigned both individual reputations based on their actions and stereotyped reputations

based on their group memberships. Our analysis shows that the use of stereotypes can

spread via social imitation when access to individual reputations is costly, reputation
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assessments and strategy execution are error-prone, or people’s actions are judged

privately. But stereotyping may not always be bad for collective welfare. Despite their

diminished precision relative to individualized information, stereotypes can promote

cooperation if shared more widely than individual reputations, thus facilitating greater

agreement among individuals about their peers’ standings.

However, an important subtlety arises when reputation information is shared only

within each group. Such group-wise monitoring gives rise to in-group favoritism: the

structure of information sharing leads individuals to view in-group members more

favorably than out-group members. This emergent phenomenon can result in an

asymmetric improvement in cooperation levels, with individuals cooperating more on

average but preferentially with their in-group. Our findings highlight the importance of

group structures in indirect reciprocity, a topic that remains under-explored.

Emergence: stable hierarchies

Chapter 4 turns to the origins of individual variation and population structure, focusing

on emergent social hierarchies. Systems across scales exhibit enduring

hierarchies—stable sets of relative rankings among individuals—including those

governing prestige in academia (Clauset et al., 2015) and dominance in animal groups

(Hobson and DeDeo, 2015). These hierarchies play a critical role in social life: social rank

can shape who gets hired by universities or attacked by conspecifics. But by what

general mechanisms do persistent hierarchies arise from individual interactions? In

particular, can hierarchies form even without intrinsic differences among competitors?

Developed in collaboration with network scientists, Chapter 4 examines how

individual endorsements give rise to prestige-based hierarchies. We introduce an

adaptive-network model in which endorsements (links) occur based on the utilities of

individuals (nodes). The utility function considered preferences for those high in rank
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(prestige) and those close in rank (proximity). Under different notions of rank, we prove

the existence of a critical transition between egalitarianism and persistent hierarchy that

depends only on prestige preference.

Strikingly, when fit to data on several real-world systems (e.g., employment flows

among math PhDs), our model estimated that they were near the critical threshold. This

finding offers hope: small reductions in prestige preference could unset entrenched

hierarchies in real systems. But it also urges caution: feedback between social prestige

and individual-level decision-making alone can lead to stratification among otherwise

equal competitors. Observed differences in social rank may be “the product of accident,

not worth” (DeDeo and Hobson, 2021).

Co-author contributions and prior publications

While a common theme unites the chapters in this dissertation, each of Chapters 1–4

represents a self-contained manuscript, either published (Chapters 1, 2 and 4) or to be

submitted soon for publication (Chapter 3). The Notes section at the start of each chapter

details publication status and prior scholarly presentations based on the material in that

chapter. Chapters 1–4 contain the main texts for the manuscripts; supplementary

analyses, tables, and figures are in Appendices A–D.

I am a primary author for all chapters in this dissertation. I share primary authorship

with Yuko Ulrich in Chapter 1; with Sebastián Michel-Mata in Chapter 3; and with Philip

Chodrow and Nicole Eikmeier in Chapter 4. The contributions of all co-authors are

described in the Notes sections.
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Other work related to this dissertation

In addition to Chapters 1–4, I co-authored a paper on the dynamics of cooperation and

nonlinear opinion dynamics in multi-agent systems (Park et al., 2022):

Shinkyu Park, Anastasia Bizyaeva, Mari Kawakatsu, Alessio Franci, Naomi Ehrich

Leonard. Tuning cooperative behavior in games with nonlinear opinion dynamics.

IEEE Control Systems Letters, 6:2030–2035 (2022). doi:10.1109/LCSYS.2021.3138725

Although not part of this dissertation, this work complements Chapter 2: whereas

Chapter 2 describes a model grounded in evolutionary game theory, in which both

opinions and behavior evolve via social imitation, Park et al. (2022) builds on a

dynamical-systems model of opinion dynamics, in which opinions and behavior update

via social influence. My hope is that the multiplicity of methods will help us better

understand the intersection of opinion dynamics and cooperation.

Thank you for reading.
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Chapter 1

Response thresholds alone cannot explain

empirical patterns of division of labor

in social insects

1.1 Notes
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Yuko Ulrich*, Mari Kawakatsu*, Christopher K. Tokita, Vikram Chandra, Jonathan

Saragosti, Corina E. Tarnita**, Daniel J. C. Kronauer**. Response thresholds alone

cannot explain empirical patterns of division of labor in social insects. PLOS Biology,
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V. Chandra performed the experiments. C. K. Tokita, C. E. Tarnita, and I developed the

theoretical approach. C. K. Tokita and I performed the simulations, and C. K. Tokita,
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C. E. Tarnita, and I analyzed the simulation results. I performed analytical calculations
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1.2 Abstract

The effects of heterogeneity in group composition remain a major hurdle to our

understanding of collective behavior across disciplines. In social insects, division of
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labor (DOL) is an emergent, colony-level trait thought to depend on colony composition.

Theoretically, behavioral response threshold models have most commonly been

employed to investigate the impact of heterogeneity on DOL. However, empirical

studies that systematically test their predictions are lacking because they require control

over colony composition and the ability to monitor individual behavior in groups, both

of which are challenging. Here, we employ automated behavioral tracking in 120

colonies of the clonal raider ant with unparalleled control over genetic, morphological,

and demographic composition. We find that each of these sources of variation in colony

composition generates a distinct pattern of behavioral organization, ranging from the

amplification to the dampening of inherent behavioral differences in heterogeneous

colonies. Furthermore, larvae modulate interactions between adults, exacerbating the

apparent complexity. Models based on threshold variation alone only partially

recapitulate these empirical patterns. However, by incorporating the potential for

variability in task efficiency among adults and task demand among larvae, we account

for all the observed phenomena. Our findings highlight the significance of previously

overlooked parameters pertaining to both larvae and workers, allow the formulation of

theoretical predictions for increasing colony complexity, and suggest new avenues of

empirical study.

1.3 Introduction

The study of collective behavior and self-organization is an active area of research across

fields, from animal movement (Sumpter, 2006) to robotics (Werfel et al., 2014), from

tissue engineering (Cohen et al., 2014) to public health (Nadell et al., 2013), and from

voting (Stewart et al., 2019) to conservation (Westley et al., 2018). Despite considerable

theoretical and empirical advances, however, our understanding remains limited by a

poor grasp on the impacts of heterogeneity in group composition on collective
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organization. This limitation stems from the difficulty in precisely controlling the

sources of heterogeneity and rigorously and comprehensively measuring their impacts

experimentally. This empirical challenge, in turn, has hindered the systematic testing

and refining of the conceptual and theoretical frameworks employed to investigate the

mechanisms underlying the collective dynamics.

The colonies of social insects are striking examples of highly integrated, complex

biological systems that can self-regulate without centralized control (Gordon, 1996).

Consequently, social insects have emerged as powerful systems to study collective

behavior and social dynamics, both experimentally and theoretically (Brahma et al.,

2018; Greenwald et al., 2018; Huang and Robinson, 1996; Khuong et al., 2016; Seeley

et al., 2012). An emergent, colony-level trait that has long been thought to depend on

colony composition (e.g., in age, genotype, or morphology) is division of labor (DOL),

the nonrandom interindividual variation in task performance among members of a

social group that is consistent over time (Beshers and Fewell, 2001; Robinson, 1992).

However, few experimental studies have comprehensively measured this dependence

because the inherent complexity of social insect colonies usually renders their

composition intractable: a typical social insect colony consists of one or more queens,

dozens to thousands of workers of different (and often unknown) age, genotype, and

morphology, and various brood development stages. This difficulty in controlling and

replicating colony composition has hampered attempts to systematically test and refine

the theoretical framework for collective organization in insect societies. Consequently,

we have a limited understanding of how colony composition affects individual behavior

and the emergent DOL, which, in turn, limits our understanding of the evolution of

collective organization (Duarte et al., 2011).

While several proximate mechanisms have been proposed to explain DOL in social

insects (see Beshers and Fewell (2001) for a review), the “vast majority of studies on the
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impact of variability on colony behaviour have so far focused on the distribution of

individual response thresholds and how this distribution affects the collective response

behaviour” (Jeanson and Weidenmüller (2014), p. 679). In this framework, colony

members are assumed to differ in their response thresholds, i.e., in their propensity to

respond to task-specific stimuli indicating the group-level demand for a given task

(Bonabeau et al., 1996b, 1998; Gautrais et al., 2002; Huber, 1814; Myerscough and

Oldroyd, 2004; Page and Mitchell, 1998; Waibel et al., 2006). Individuals with lower

thresholds perform the corresponding task more readily than individuals with higher

thresholds. Stimulus intensity, in turn, decreases with the number, efficiency, and time

investment of individuals performing the task. With this negative feedback loop,

response thresholds offer a simple mechanism for both robust and flexible allocation of

individuals to tasks (Beshers and Fewell, 2001). While refinements of response threshold

models have included a self-reinforcement mechanism, whereby thresholds are

modulated through experience such that individuals become more likely to perform a

task that they have already performed (Beshers and Fewell, 2001; Theraulaz et al., 1998),

DOL can emerge in the absence of threshold reinforcement so long as individuals differ

in their response thresholds. Indeed, the simplest version of the model, which only

assumes intrinsic (i.e., fixed) variation in individual thresholds, has been successful in

recapitulating certain empirically observed patterns of DOL (Brahma et al., 2018; Fewell

and Jr, 1999; Gordon, 1989; Holbrook et al., 2013; Jeanson and Fewell, 2008; Jeanson et al.,

2007; Pankiw and Page, 2000; Ulrich et al., 2018).

Empirically, worker behavior in social insect colonies often correlates with individual

traits (Jeanson and Weidenmüller, 2014). For example, within a colony, workers of

different age (Hinze and Leuthold, 1999; Naug and Gadagkar, 1998; Seeley, 1982; Tripet

and Nonacs, 2004), experience (Ravary et al., 2007), genotype (Fewell and Page, 1993)

(e.g., patrilines (Eyer et al., 2012; Frumhoff and Baker, 1988) or matrilines (Blatrix et al.,

2000)), or morphology (e.g., size (Blanchard et al., 2000; Eyer et al., 2012; Kwapich et al.,
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2018; Spaethe and Weidenmüller, 2002; Wetterer, 1999) can vary in their propensity to

engage in tasks such as foraging, nursing, or nest construction. Such behavioral

variation is often attributed to the developmental or genetic modulation of response

thresholds. However, empirical evidence suggests that response thresholds are only one

of several axes of possible individual variation. For example, workers can also vary in

the efficiency with which they perform tasks (Kay and Rissing, 2005; Mertl and Traniello,

2009; Wilson, 1980) or in the average time spent performing a given task (Weidenmüller,

2004). These empirical findings suggest that previously under-explored parameters may

vary depending on developmental or genetic factors and may play a role in colony

organization. This possibility has led to recent calls for a diversity of parameters to be

considered when investigating the relationship between colony composition and DOL

(Jeanson, 2019; Jeanson and Weidenmüller, 2014; Weidenmüller et al., 2019).

Here, we combine theoretical modeling with behavioral tracking experiments in the

clonal raider ant, Ooceraea biroi, to both assess the explanatory power of existing

behavioral response threshold models and explore other axes of individual variation.

The unique biology of this species affords unparalleled control over the main axes of

colony composition that are thought to affect individual- and group-level behavior in

social insects: genotype, age, and morphology. Specifically, colonies of clonal raider ants

are naturally queenless and exclusively composed of workers that all reproduce

asexually and synchronously, so that all adults within a colony are genetically almost

identical and emerge in discrete age cohorts. Furthermore, individuals show variation in

ovariole number that is associated with body size and other morphological features

(Teseo et al., 2014), making it possible to approximately sort individuals into “regular

workers” (2 to 3 ovarioles) and “intercastes” (4 to 6 ovarioles) based on their size (Teseo

et al., 2014). Intercastes typically represent a small fraction (3.7% to 6.3% (Ravary and

Jaisson, 2004)) of individuals in unmanipulated colonies, but colonies with higher

fractions of intercastes (50% or more) do occur occasionally and are functional (Teseo
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et al., 2014). Conveniently, workers of different clonal genotypes, age cohorts, and

morphologies can be mixed to create functional chimeric experimental colonies (Teseo

et al., 2014). Additionally, colony behavior is controlled by larvae (Ravary et al., 2006;

Ulrich et al., 2016, 2018), which solicit food and care from the workers and induce them

to forage. This means that colony-level task demand can be standardized or

manipulated across colonies by controlling larvae number or, potentially, genotype.

Finally, while colonies collected in the field contain between approximately a dozen and

several hundred workers (Ravary and Jaisson, 2002; Trible et al., 2020; Tsuji and

Yamauchi, 1995), smaller colonies of approximately 10 workers have high fitness and

show complex collective behavior (e.g., group raiding (Chandra et al., 2021), stable DOL,

and phasic reproduction (Ulrich et al., 2018)) in the laboratory. Taking advantage of

these features, we quantify individual and collective behavior of O. biroi in response to

precise, independent manipulations of colony genetic, morphological, and demographic

composition, as is uniquely possible in this system.

1.4 Results and discussion

1.4.1 Theoretical model

We adopt the simplest and most commonly employed formulation of the response

threshold model, which assumes that individual thresholds do not change over time

(Bonabeau et al., 1996b). We consider a colony of n individuals, NX of which are of type

X and NY = n − NX are of type Y. Types X and Y represent any pair of the experimentally

manipulated subcolony compositions (i.e., genotypes A and B, Young and Old, or

Regular Workers and Intercastes). The colony must perform m tasks; for consistency

with the experimental approach (see below), we assume that there are 2 tasks (m = 2).

At a given time step, an individual can be either performing one of the m tasks (active)

or not performing any (inactive). The task state of individual i at time t is given by the
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binary variable xij,t: if individual i is active and performing task j at time t, then xij,t = 1

and xij′,t = 0 for all j′ 6= j; if individual i is inactive and resting, then xij,t = 0 for all j.

Each task j has an associated stimulus sj,t, signaling the group-level demand for that

task. The stimulus for a task changes depending on the rate at which the demand

increases (e.g., the demand for foraging increases due to increased hunger in the colony),

the efficiency with which workers perform the task (e.g., more efficient foragers decrease

hunger faster), and the number of individuals performing the task. Mathematically, the

stimulus sj,t is governed by Eq.(1.1):

sj,t+1 = sj,t + δj −
αX

j nX
j,t + αY

j nY
j,t

n
, (1.1)

where δj is the task-specific demand rate, taken to be constant over time; αX
j

(respectively, αY
j ) is the task-specific performance efficiency (i.e., the rate with which an

individual decreases stimulus intensity by performing the corresponding task) of type X

(respectively, type Y) individuals; and and are the numbers of type X and Y individuals

performing task j at time t, respectively. We assume that individuals i = 1, . . . , NX are of

type X and individuals i = NX + 1, . . . , n are of type Y.

Each individual i is assumed to have an internal threshold for each task j, θij, drawn

at time t = 0 from a normal distribution with mean µj and normalized standard

deviation σj (i.e., expressed as a fraction of the corresponding mean µj). Thus, an

individual can, and typically does, have different thresholds for different tasks.

Although thresholds may change over the individuals’ lifetime (Robinson, 1987), they

are assumed to be fixed over the timescale of the experiments and, consequently, over

the simulation runs. We refer to µj as the mean task threshold (or mean threshold) and to

σj as the threshold variance for task j; each can be type and/or task specific (i.e., µX
j , µY

j ,

σX
j , σY

j ).
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At each time step, inactive individuals assess the m task stimuli in a random

sequence until they either begin performing a task or have encountered all stimuli

without landing on a task. For each encountered stimulus, individual i evaluates

whether to perform the task by comparing the stimulus level to its internal threshold.

Specifically, given stimulus sj,t and internal threshold θij, individual i commits to

performing task j with probability

Pij =
sη

ij

sη
ij + θ

η
ij

, (1.2)

where parameter η governs the steepness of this response threshold function. The larger

the value of η, the more deterministic the behavior; in the limit η → ∞, the response

function becomes a step function. Active individuals spontaneously quit their task with

a constant quit probability τ. Active individuals can neither evaluate stimuli nor switch

tasks without first quitting their current task.

Each agent-based simulation began with both stimuli set to 0 (i.e., sj,t = 0 for j = 1, 2)

and lasted T = 10, 000 time steps (see Table A.2 for parameter settings).

1.4.2 Baseline model predictions

To establish baseline predictions for ant colonies with different compositions, we use the

simplest implementation of this model, which assumes that ant types differ only in

mean response threshold (Bonabeau et al., 1996b). We simulated colonies that were

either homogeneous (pure), with a single type of ant, or heterogeneous (mixed), with

two types in equal proportions. The individual thresholds for each type were drawn

from a normal distribution with the type-specific mean (µX
j = µX or µY

j = µY). All other

model parameterstask performance efficiency, demand rate, and threshold variancewere

constant across types. Thus, the only source of heterogeneity in pure colonies was the

distribution of individual response thresholds, while in mixed colonies that
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Figure 1.1: Baseline theoretical predictions. Division of labor (DOL, measured by
colony-level behavioral variation (a), colony-level specialization (b)) and task per-
formance frequency for a single task (c) shown as a function of colony composition.
Opaque circles represent individual replicate colonies (n = 100 replicates for each
composition); solid circles represent the average value across replicates; horizontal
lines represent s.e.; and the horizontal gray line (c) represents the average of the
pure colonies (first 2 columns). Types X and Y differ in mean threshold: µX = 10,
µY = 20; all other parameters are identical across types (see Table A.2).

heterogeneity was compounded by differences in the means of the type-specific

distributions.

To quantify individual behavior, we computed each individual’s task performance

frequency for each task, defined as the fraction of time that an individual spent

performing a given task. For example, if an ant spent 2,000 time steps performing task 1

(e.g., foraging), 4,000 performing task 2 (e.g., nursing), and the remaining 4,000 being

inactive in a simulation of 10,000 time steps, then it had a task 1 performance frequency

of 0.2 and a task 2 performance frequency of 0.4. To quantify the mean behavior of ants

in a given colony for a given task, we then averaged the individual task performance

frequencies for that task across all individuals in that colony. In a mixed colony, we also

quantified the type-specific mean behavior for a given task by taking the average across

all individuals of a given type in the colony instead. To quantify DOL, we measured two

colony-level properties: behavioral variation, defined as the standard deviation of task

19



performance frequency across all individuals in a colony; and specialization, defined as

the mean correlation in individual task performance frequencies across time, measured

as the Spearman rank correlation on consecutive windows of 200 time steps. Thus,

specialization measures how consistent ants in a colony are in their task performance

relative to each other.

In pure colonies, there is a single normal distribution of individual thresholds for a

given task. In contrast, mixed colonies have a bimodal distribution of thresholds for

each task, with the thresholds of the two types clustered around the different modes.

This wider distribution of thresholds resulted in both greater behavioral variation

(because individuals from the lower end of the distribution for a task are more sensitive

to the stimulus for that task, they tended to perform that task more often than those from

the higher end) and greater colony-level specialization (those performing a task in a

given time step are likely to be from the lower end of the distribution and therefore also

likely to be performing that task in a future time step) relative to pure colonies, resulting

in more pronounced DOL (Fig.1.1A and B). However, all colonies, irrespective of their

composition, had the same mean behavior (Fig.1.1C). This is because while colonies may

differ in how they allocate workers to tasks–within mixed colonies, the two ant types

differed in their mean task performance because the type with the lower average

threshold for a given task took up that task more often than the other type–they must

perform the same amount of work overall to satisfy a given demand. Thus, on average,

colony members spent the same fraction of time performing each task across pure and

mixed colonies.

In summary, the simple model predicted that (P1) mixed colonies would exhibit

higher overall DOL but that (P2) all colonies would have the same mean behavior

(Fig.1.1C), although (P3) the two types would diverge behaviorally in mixed colonies
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(Fig.1.1C). The same predictions held if, instead of differences in the means of the

response thresholds, we assumed differences in the variances (Fig.A.1).

1.4.3 Empirical tests of the theoretical predictions

We then tested these theoretical predictions in experimental colonies that were either

pure or 1:1 mixes of clonal raider ants that differed in one of 3 factors thought to

influence DOL: genotype (A vs. B (Teseo et al., 2014; Ulrich et al., 2018)), age (around

3-month-old old ants vs. 1-month-old young ants; the life span of workers in this species

is around 1 year), and size (large intercastes vs. smaller regular workers (Teseo et al.,

2014)) (Table A.1). Colonies contained larvae of the same genotype as the workers; in the

case of genotype effects, the experiment was performed twice, once with larvae of each

genotype (see Supplementary methods). We analyzed individual behavior in 120

experimental colonies using automated tracking (Ulrich et al., 2018).

Because work in insect societies is spatially organized (e.g., foraging and waste

disposal occur away from the nest, whereas nursing only occurs at the nest), individual

spatial distribution can be used as a proxy for individual behavioral roles (Crall et al.,

2018; Mersch et al., 2013; Pamminger et al., 2014; Sendova-Franks and Franks, 1995).

Here, the spatial distribution of each ant was measured as the two-dimensional

root-mean-square deviation (r.m.s.d.) of its spatial coordinates:

r.m.s.d. =

√√√√∑i

(
(xi − x̄)2 + (yi − ȳ)2

)
F

(1.3)

where xi and yi are the coordinates of the focal ant in frame i, x̄ and ȳ are the coordinates

of the center of mass of the focal ant’s overall spatial distribution, and F is the number of

frames in which the focal ant was detected. As previously shown (Ulrich et al., 2018), the

r.m.s.d. of an ant captures its tendency to leave the nest: workers that spend a lot of time
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at the nest with the brood (e.g., nursing the larvae) and little time performing extranidal

tasks (e.g., foraging or waste disposal) have low r.m.s.d. values, whereas workers that

spend more time away from the brood have higher r.m.s.d. values (Fig.1.2A).

Consequently, the mean r.m.s.d. of a colony reflects its collective foraging activity, as

shown by the fact that r.m.s.d. increases in response to experimentally inflated

nutritional demand (Ulrich et al., 2018). We therefore use the r.m.s.d. as a proxy for the

propensity to perform tasks away from the nest (e.g., foraging) rather than at the nest

(e.g., nursing) (Ulrich et al., 2018). Analogously to the simulations, we quantified the

mean behavior of a given ant type as the average r.m.s.d. of all ants of that type in a

colony; similarly, to quantify colony-level DOL, we computed behavioral variation as

the standard deviation across r.m.s.d. values of all ants in a colony and specialization as

the mean correlation in individual r.m.s.d. across time, measured as the Spearman rank

correlation on consecutive days in the experiment (Ulrich et al., 2018) (see Supplementary

methods).

Colonies with different compositions often differed in mean behavior (Fig.1.2B–D),

inconsistent with prediction (P2). For instance, pure colonies of genotype A on average

spent more time at the nest than pure colonies of genotype B (Fig.1.2B: Bpure vs. Apure,

LME post hoc tests: z = 7.75, p = 3.64 ∗ 10−14; Fig.1.2C: Bpure vs. Apure: z = 7.45,

p = 2.80 ∗ 10−13). Similarly, colonies of young workers spent more time at the nest than

colonies of old workers (Fig.1.2D: Oldpure vs. Youngpure: z = −6.05, p = 4.39 ∗ 10−09).

That ants of different genotype (Blatrix et al., 2000; Eyer et al., 2012; Frumhoff and Baker,

1988) and age (Biedermann and Taborsky, 2011; Seeley, 1982; Tripet and Nonacs, 2004)

differ in their task performance is consistent with observations in other social insects.

However, such behavioral differences are theoretically only predicted to emerge (and

have empirically mostly been documented) within mixed colonies (as also observed

here: Fig.1.2B: Bmixed vs. Amixed: z = 4.61, p = 8.06 ∗ 10−06, Fig.1.2C: Bmixed vs. Amixed:

z = 7.68, p = 6.57 ∗ 10−14, Fig.1.2D: Oldmixed vs. Youngmixed: z = −13.31, p < 2 ∗ 10−16),

22



c

Gen. A
(n=8)

Gen. B
(n=8)

Mixed
(n=8)

b

M
ea

n 
r.m

.s
.d

.±
 s

.e
.

a

Gen. A
(n=8)

Gen. B
(n=8)

Mixed
(n=8)

n.s

12

14

16

18 ***

Brood genotype: B

*

***

d

Old
(n=8)

Mixed
(n=8)

12

14

16

18

***

n.s.

Young
(n=8)

n.s

***

Intercaste
(n=16)

Regular
Worker
(n=16)

Mixed
(n=16)

12

14

16

18 n.s.

*

n.s

e
***

**

12

14

16

18

Brood genotype: A

**

*** ***

M
ea

n 
r.m

.s
.d

.±
 s

.e
.

Figure 1.2: Behavior as a function of colony composition. (a) Spatial distribu-
tions of 2 ants with high (blue; genotype B) and low (red; genotype A) activity
outside the nest. Arrows point to corresponding r.m.s.d. values. Gray areas rep-
resent the position of the larvae. (b–e) Mean behavior (mean r.m.s.d.) as a function
of colony composition. Opaque circles represent mean behavior across individu-
als in replicate colonies or subcolonies. Solid circles represent average behavior
across replicate colonies or subcolonies. For mixed colonies, data are shown both
as type-specific and colony-level mean behavior (in average color). Sample sizes
indicate the number of replicate colonies. Black curly brackets represent the effect
of mixing on behavioral differences between types. (b) Behavioral convergence in
genetically mixed colonies with A brood. Bpure − Apure vs. Bmixed − Amixed: t test:
t = 3.86, p = 0.002. (c) Behavioral convergence in genetically mixed colonies with
B brood. Bpure − Apure vs. Bmixed − Amixed: t = 2.63, p = 0.025. (d) No effect of
mixing in demographically mixed colonies. Oldpure − Youngpure vs. Oldmixed −
Youngmixed, t = −1.50, p = 0.157. (e) Behavioral divergence in morphologically
mixed colonies. Regular Workerpure − Intercastepure vs. Regular Workersmixed −
Intercastemixed: t = −2.44, p = 0.022. n.s., nonsignificant; ∗, p < 0.05; ∗∗, p < 0.01;
∗∗∗, p < 0.001; r.m.s.d., root-mean-square deviation.
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and not across pure colonies (Fig.1.1C). Moreover, while the simple model predicted

behavioral divergence between types in mixed colonies relative to pure colonies (P3),

experiments produced all possible outcomes. Most surprisingly, mixing different

genotypes resulted in behavioral convergence (see definitions in Materials and methods),

whereby genotypes behaved more similarly in mixed colonies than in separation (i.e.,

across pure colonies) (Fig.1.2B and C). In contrast, mixing different age cohorts had no

detectable effect on mean behavior (henceforth no effect) (Fig.1.2D). Only mixing regular

workers and intercastes produced behavioral divergence as predicted by the simple

model: intercastes spent more time at the nest than regular workers in mixed colonies

(Fig.1.2E: Regular Workermixed vs. Intercastemixed: z = 8.95, p < 2 ∗ 10−16) but not in

pure ones (Fig.1.2E: Regular Workerpure vs. Intercastepure: z = 2.14, p = 0.098). Because

intercastes have more ovarioles than regular workers, this behavioral difference is

consistent with observations that reproductive potential often negatively correlates with

the propensity to forage (Bernadou et al., 2018; Ito and Higashi, 1991; Ravary and

Jaisson, 2004).

While in most cases mixing had symmetric effects on behavior—i.e., the behavior of

both types was equally affected (Fig.1.2D: |Youngmixed − Youngpure| vs. |Oldmixed −

Oldpure|: t = 0.94, p = 0.365; Fig.1.2E: |Regular Workermixed − Regular Workerpure|

vs. |Intercastemixed − Intercastepure|: t = −0.68, p = 0.501; see Supplementary

methods)—we found that asymmetric effects are also possible: in genetically mixed

colonies with A larvae, mixing affected the behavior of A workers more than that of B

workers, manifesting in asymmetric behavioral convergence (Fig.1.2B: |Amixed − Apure|

vs. |Bmixed − Bpure| t test: t = −3.86, p = 0.002). Such an asymmetry was not apparent in

the presence of B larvae, however (Fig.1.2C: |Amixed − Apure| vs. |Bmixed − Bpure|:

t = 0.53, p = 0.607).
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Consistent with these behavioral patterns, mixed colonies had overall higher DOL

than pure colonies in the age and morphology experiments, in line with the baseline

model prediction (P1) (Figs.A.2 and A.3). However, this trend was weakened (i.e., half

of the pairwise comparisons were not significant) in the genotype experiments by the

emergent behavioral convergence (Figs.A.2 and A.3), so that mixed colonies did not

systematically have higher DOL than pure colonies in all experiments, violating (P1).

Taken together, our experimental results revealed a greater diversity of behavioral

patterns than predicted by the simple model: colonies differed in mean behavior, thus

violating (P2) (Fig.1.2); the direction and magnitude of behavioral changes in mixed

colonies depended on the specific source of workforce heterogeneity, thus violating (P3)

(Fig.1.2); and consequently, DOL was not necessarily higher in mixed than in pure

colonies, thus violating (P1) (Figs.A.2 and A.3). Thus, heterogeneity in response

thresholds alone was insufficient to explain our observations. This discrepancy

prompted us to consider other biologically realistic sources of heterogeneity in the

model.

1.4.4 An expanded model of DOL

Previous work revealed that the developmental trajectory of O. biroi larvae—i.e., the size

of the resulting adults—depends on nonlinear interactions between the larval genotype

and the genotype of the caregiving adults (Teseo et al., 2014). This finding suggests (i)

that larvae of different genotypes signal different levels of demand, e.g., for food or care;

and (ii) that workers of different genotypes differ in their response to a given level of

larval demand, possibly via differences in their response thresholds or in the efficiency

with which they perform the corresponding task. Indeed, when we added differences in

task performance efficiency and in larval-induced task demand to the simple model

(with between-type differences in response thresholds, i.e., consistent variation in

threshold across types), we were able to qualitatively recapitulate the phenomena
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observed in genotype-mixing experiments (Fig.1.3A and B). Differences in task

performance efficiency were, in fact, sufficient to robustly produce both colonies with

different mean behaviors and behavioral convergence in mixed colonies, where the more

efficient ants compensated for the less efficient ones by spending more time performing

the task than they did in pure colonies. By affecting how much more the efficient ants

needed to work in the mixed colonies, the differences in larval-induced task demand

determined the asymmetry of the convergence. In particular, when task demand was so

high that the less efficient type could not keep up with the demand on their own, we

recovered the experimental pattern in Fig.1.2B (see Fig.1.3A; see also stimulus dynamics

in Fig.A.4 and Supplementary analyses). While the simulations assumed, for simplicity,

that the two tasks had the same level of demand, the analytical calculations suggest that

varying demand across tasks would produce patterns qualitatively identical to either

Fig.1.3A or B, depending on the demand levels (see Supplementary analyses).

Exploring the efficiency-threshold parameter space broadly recapitulated not only

the behavioral convergence observed in the genotype experiments, but also the

divergence and no effect patterns observed in the morphology and age experiments,

respectively (Fig.1.3C). The emergent pattern in mixed colonies depended on the

interplay between differences in efficiency, which increased behavioral similarity, and

differences in threshold, which decreased similarity. Manipulating genotypic

composition corresponded to regions of the parameter space with relatively strong

effects of differences in efficiency and relatively weak effects of differences in threshold

(Fig.1.2A and B, Fig.1.3A and B). Manipulating morphological composition

corresponded to regions where differences in threshold had a relatively stronger effect

(Fig.1.2E and Fig.1.3D). Finally, manipulating age composition corresponded to an

intermediate scenario in which the 2 effects balanced each other out (Fig.1.2D and

Fig.1.3E). Consistent with the experiments, DOL was higher in mixed colonies than in

pure colonies when threshold effects were at least as strong as efficiency effects—i.e., in
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Figure 1.3: Theoretical predictions of the expanded model. (a, b, d, and e) Task per-
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represent the average across replicates; horizontal bars represent s.e.; and horizontal
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colors indicate ants of the same type; in particular, type Y ants are the same across
all panels (αY = 2, µY = 10). (a and b) Differences in both task efficiency and mean
threshold (αX1 = 4.5, µX1 = 11) capture asymmetric behavioral convergence, with
directionality determined by the demand rate: (a) upward (δ = 1.3) and (b) down-
ward (δ = 0.6). (d and e) Differences in both task efficiency and mean threshold
capture both (d) behavioral divergence (αX3 = 3, µX3 = 15) and (e) a lack of effects
from mixing (αX2 = 1.5, µX2 = 7.5). (c) Change in relative task performance between
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(Ym − Xm < Yp − Xp); and light gray indicates regions with behavioral patterns
falling outside our definitions (see Materials and methods). See Table A.2 for other
parameter values.
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areas of behavioral divergence or no effectbut not when threshold effects were

weaker—i.e., in areas of behavioral convergence (Figs.A.5 and A.6).

1.5 Conclusions

In most social insect colonies, all factors studied here (worker genotype, age,

morphology, and larval genotype) influence behavior simultaneously and in largely

intractable ways. However, the unique biology of O. biroi allows us to break this

complexity down experimentally and study each effect independently, thereby

providing insight into the basic organizing principles of behavior in social groups. Our

finding that the magnitude and direction of effects on DOL depend on the specific factor

being manipulated underscores the importance of considering and controlling the

various sources of heterogeneity that naturally act in social groups in order to study the

different (and possibly opposing) effects that they have on collective organization.

Moreover, our work also underscores the importance of considering factors beyond the

usual suspects (e.g., age and morphology): while larval cues (Mas and Kölliker, 2008) are

known to affect worker physiology (Maisonnasse et al., 2009; Oldroyd et al., 2001) and

behavior (Pankiw et al., 1998; Ulrich et al., 2016), our results highlight larvae as

important players in the actual regulation of DOL between workers, something that has

rarely been considered. And, on longer timescales, our findings suggest the need to

consider a broader array of factors when investigating the evolution of DOL (Duarte

et al., 2011).

The integrated empirical and theoretical analysis reveals that models based on

threshold variation alone fail to recapitulate the diverse outcomes observed in

heterogeneous colonies. However, consistent with recent calls to expand theoretical

investigations to other sources of heterogeneity (Jeanson, 2019; Jeanson and

Weidenmüller, 2014; Weidenmüller et al., 2019), incorporating differences in
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larval-induced demand and in worker task performance efficiency, two parameters that,

like response thresholds (Detrain and Pasteels, 1991; Pankiw and Page, 2000; Pankiw

and Page Jr., 1999; Robinson, 1992), are known to vary in nature (Dornhaus, 2008;

Kaptein et al., 2005; Kay and Rissing, 2005; Mertl and Traniello, 2009; Wilson, 1980),

allowed us to recapitulate all empirically observed behavioral patterns. Importantly, the

expanded threshold model could recapitulate these patterns using only simple

individual behavioral rules and without invoking social interactions. For example,

behavioral convergencea phenomenon that intuitively appears to rely on direct social

interactionscould emerge without invoking complex social processes, such as social

learning (Alem et al., 2016; van de Waal et al., 2013) or direct information transfer

between group members (Berdahl et al., 2013; Rosenthal et al., 2015). Although the

theoretical treatment can only suggest candidate mechanisms, it is reassuring that the

observed behaviors are robust and generic, i.e., the parameter values chosen to illustrate

the versatility of the model are representative of large regions of parameter space.

Nevertheless, rigorous empirical quantifications of thresholds, efficiency, and demand

for realistic task-stimulus pairs—which have only rarely been attempted (Detrain and

Pasteels, 1991; Merling et al., 2020; Weidenmüller, 2004) and remain very

challenging—are a critical next step toward bridging the gap between theory and

empirical observations.

While we focused on the simplest model that could recapitulate our empirical

results, we recognize that DOL can be influenced by an even broader set of parameters,

whose roles deserve further empirical and theoretical work. For example, experience

and social interactions (Fewell and Bertram, 1999; Jeanson et al., 2007; Pacala et al., 1996;

Tokita and Tarnita, 2020) might dynamically change individual thresholds (Ravary et al.,

2007) and/or task efficiency (O’Donnell and Jeanne, 1992; Tripet and Nonacs, 2004) over

time, potentially modulating the effects observed here. It will be important to consider

such effects in future theoretical extensions. At the same time, this simple model can
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nevertheless be used to make rich testable predictions for colonies with increasingly

complex composition. A first attempt using different ratios of ant types led to a striking

range of patterns even among the four parameter combinations in Fig.1.3A–D: the

model predicts that behavior can change linearly or nonlinearly as a function of colony

composition depending on the between-type differences in mean threshold (Fig.A.7,

Supplementary analyses). In other words, despite one type of ant being more efficient than

the other in all cases considered, replacing an individual of the former with one of the

latter led to proportional, greater-than-proportional, or less-than-proportional changes

in task performance. Testing these predictions empirically will accelerate the productive

crosstalk between theory and experiments.

Our findings add to the growing literature on the role of individual heterogeneity in

the collective behavior of complex biological (e.g., schools of fish, neurons in a brain,

pathogen strains sharing a host, etc.) and artificial (e.g., robot swarms, synthetic

microbial communities, etc.) systems. Much like colonies of the clonal raider ant, these

systems exhibit patterns that can be interpreted as behavioral convergence (Berdahl

et al., 2013; Broly and Deneubourg, 2015; Centola, 2018; Christakis and Fowler, 2007; van

de Waal et al., 2013), divergence (Bettenworth et al., 2019), and nonlinear effects of

mixing on group-level phenotypes (Buttery et al., 2010; Kaushik et al., 2006; Pande and

Velicer, 2018). In turn, these patterns affect important processes such as collective

decision-making (Stewart et al., 2019), the transmission and evolution of disease (Bell

et al., 2006; Read and Taylor, 2001), and the evolution of cooperative behavior (Diggle

et al., 2007; Strassmann et al., 2000). While different variants of threshold-based models

have been employed to study several of these systems (Dodds and Watts, 2005;

Hopfield, 1982; Melke et al., 2010; Ward et al., 2008), we still lack a unified theoretical

framework to understand the consequences of individual differences on collective

dynamics (Jolles et al., 2020). Thus, a comparative approach to the study of the basic
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organizing principles of heterogeneous systems across scales constitutes an important

next step toward understanding the behavior of complex biological systems.

1.6 Materials and methods

For details of the experiments designed and performed by my collaborators (V. Chandra,

D. J. C. Kronauer, J. Saragosti, Y. Ulrich), see Supplementary methods.

1.6.1 Definitions of behavioral patterns

We use the following definitions to characterize the qualitative outcomes of mixing

individuals with different behavioral tendencies on individual behavior. Let Xk and Yk

denote the mean behavior of ant types X and Y, respectively, in pure (k = p) or mixed

colonies (k = m). We assume that Yp > Xp and Ym > Xm, to reflect our observation that

the type with higher r.m.s.d. in pure colonies always also had higher r.m.s.d. in mixed

colonies. Given this assumption, mixing could, in principle, result in one of the

following patterns:

1. No effect of mixing on individual behavior: The mean behavioral difference

between types across pure colonies is the same as the mean behavioral difference

between types within mixed colonies, so that Yp − Xp = Ym − Xm;

2. Behavioral convergence: Individuals of different types are behaviorally more similar

on average to each other when mixed, so that Yp − Xp > Ym − Xm; or

3. Behavioral divergence: Individuals of different types are behaviorally more different

on average from each other when mixed, so that Yp − Xp < Ym − Xm.
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Chapter 2

Interindividual cooperation mediated by

partisanship complicates Madison’s cure

for “mischiefs of faction”

2.1 Notes

This chapter is adapted from:

Mari Kawakatsu, Yphtach Lelkes, Simon A. Levin, Corina E. Tarnita. Interindividual

cooperation mediated by partisanship complicates Madison’s cure for “mischiefs of

faction.” Proceedings of the National Academy of Sciences, 118(50):e2102148118 (2021).

doi:10.1073/pnas.2102148118

Author contributions. Y. Lelkes, S. A. Levin, C. E. Tarnita, and I designed this study

and developed the theoretical framework. I performed computational simulations and

analytical calculations with input from C. E. Tarnita. Y. Lelkes, C. E. Tarnita, and I

drafted the paper, and all authors provided comments.
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2.2 Abstract

Political theorists have long argued that enlarging the political sphere to include a

greater diversity of interests would cure the ills of factions in a pluralistic society. While

the scope of politics has expanded dramatically over the past 75 years, polarization is

markedly worse. Motivated by this paradox, we take a bottom-up approach to explore

how partisan individual-level dynamics in a diverse (multidimensional) issue space can

shape collective-level factionalization via an emergent dimensionality reduction. We

extend a model of cultural evolution grounded in evolutionary game theory, in which

individuals accumulate benefits through pairwise interactions and imitate (or learn) the

strategies of successful others. The degree of partisanship determines the likelihood of

learning from individuals of the opposite party. This approach captures the coupling

between individual behavior, partisan-mediated opinion dynamics, and an interaction

network that changes endogenously according to the evolving interests of individuals.

We find that while expanding the diversity of interests can indeed improve both

individual and collective outcomes, increasingly high partisan bias promotes a reduction

in issue dimensionality via party-based assortment that leads to increasing polarization.

When party bias becomes extreme, it also boosts interindividual cooperation, thereby

further entrenching extreme polarization and creating a tug-of-war between individual

cooperation and societal cohesion. These dangers of extreme partisanship are highest

when individuals’ interests and opinions are heavily shaped by peers and there is little

independent exploration. Overall, our findings highlight the urgency to study

polarization in a coupled, multilevel context.

34



2.3 Introduction

Two hundred and twenty-six years ago, George Washington, in his farewell address,

predicted that factions—or monolithic parties—would yield precisely the political

sectarianism that the United States now experiences. As party sectarianism has

increased, democratic norms have eroded, and the United States seems to be at a

breaking point. However, a decade prior to Washington’s speech, James Madison argued

that the “mischiefs of faction” could be prevented by expanding the sphere of politics: in

a society with diverse interests, no faction could act as a monolith and agendas could be

pursued only by negotiating across differences and forming alliances toward shared

goals.

The scope of politics has dramatically increased over the past 75 years. Potentially

driven by increases in educational attainment, the nationalization of politics, and

changes to the information environment (Chaffee and Wilson, 1977; Green and Hobolt,

2008), the number of issues people care about and consider within the realm of national

politics has markedly increased (Edy and Meirick, 2018; Jennings et al., 2011; McCombs

and Zhu, 1995). Despite this trend, and the consequent expectation that an abundance of

issues will improve the collective cohesion by decreasing the likelihood of monoliths,

polarization is markedly worse.

A potential explanation for this paradox is the decreasing dimensionality of the issue

space. In other words, although the number of issues may have increased, individuals’

opinions on these issues might be so strongly correlated with their political ideology

that, in effect, there are only one or two issue dimensions (Taagepera and Grofman, 1985;

Treier and Hillygus, 2009). While some papers have argued that the decreasing

dimensionality of issue attitudes (DellaPosta, 2020; Webster and Abramowitz, 2017) is at

the core of current political tensions, any demonstrated relationship between
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dimensionality reduction and polarization has been merely correlational. In fact, some

have argued that “[a]lthough polarization and the reduction in dimensionality tend to

coincide, there is no necessary logical connection between the two trends” (Barber and

Lelkes, 2015, p. 42).

Here we propose a bottom-up mechanism that might offer a resolution for the

paradox of polarization in the face of rising issue diversity. In particular, we focus on

individual-level interactions that are influenced by issue stances, coupled with social

learning that is mediated by partisan bias. The issues individuals care about (political or

otherwise) and the stances they take on these issues have become both increasingly

visible to others (e.g., via social media) and strong determinants of individual behaviors

(Settle, 2018): how trustful, forgiving, or helpful we are—even in quotidian, pairwise

interactions with neighbors, colleagues, friends, or strangers (Carlin and Love, 2013,

2018; Iyengar and Westwood, 2015; Rand et al., 2009)—can hinge on our respective

views on a variety of issues, from preferred sports teams to art tastes (Billig and Tajfel,

1973) to gun control or to favored political candidates [even in a primary election (Rand

et al., 2009)]. Simultaneously, the stronger the perceived partisan bias, the less likely it is

that individuals leaning toward one end of the political spectrum will embrace issues or

opinions held by those at the opposite end (e.g., mask wearing in the COVID-19

pandemic) (Allcott et al., 2020; Guilbeault et al., 2018; Milosh et al., 2020).

We propose that the interplay between individual-level behavior on the one hand

and the degree of partisanship on the other hand mediates the effect of issue

dimensionality both on individual-level dynamics and on emergent collective-level

factioning. To investigate this proposition, we extend an evolutionary game theoretic

(Hofbauer et al., 1998; Nowak, 2006) model of cultural evolution (Tarnita et al., 2009a)

that allows the coevolution of individual states and social networks (Castellano et al.,

2009): individuals imitate others—i.e., adopt their interests, opinions, and
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strategies—depending on their relative success in a pairwise donation game (also

known as a simplified Prisoner’s Dilemma). Our choice of game is motivated by

previous behavioral studies that have used similar pairwise games, such as the dictator

game or the trust game, to measure cooperation between individuals with different

political or other attitudes (Carlin and Love, 2013, 2018; Iyengar and Westwood, 2015;

Rand et al., 2009). However, our framework is sufficiently versatile to allow multiplayer

interactions, such as public goods games, or even multilevel interactions, in which

individuals can not only cooperate with peers but also contribute to their party.

Finally, but importantly, we assume that the imitation process is influenced by

political affiliations and partisan bias, a mesolevel societal organization—intermediate

between the individual and the collective—that governs the extent of a politically

mediated reduction in issue dimensionality (Levendusky, 2010). Because we focus on

the United States, where third parties have minimal influence (Goff and Lee, 2019), we

model a two-party system (L, R) with individuals distributed equally between the

parties. We also ignore unaffiliated independents since a majority of independents admit

to leaning Democrat or Republican and act much like their partisan counterparts, at least

in their voting behavior (Keith et al., 1992). However, because independents may

perceive partisan bias differently in their day-to-day pairwise interactions, future work

should extend this model to consider an independent class.

2.4 Model description

2.4.1 Population

Building on Tarnita et al. (2009a), we consider a population of N individuals distributed

over M potentially overlapping groups, each representing a political issue of interest

(e.g., climate change, gun control; Fig.2.1A). A priori, we do not assume any relationship
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among the issues; i.e., we assume that all M issues are independent, so that M gives the

dimensionality (or diversity) of the issue space. Individuals can care about (or have an

interest in) any non-zero number of issues. Individual i cares about issue k if she takes

either a liberal (hik = −1) or a conservative (hik = +1) position on it; future extensions

could explore different strengths of interest by allowing values along a scale (e.g., 1–7).

We say that she does not care about issue k if i takes a neutral position (hik = 0) on it. We

define the opinion vector of i as hi = [hi1, hi2, · · · , hiM] ∈ {−1, 0, 1}M and the

corresponding issue interest vector as hi = [|hi1| , · · · , |hiM|] ∈ {0, 1}M, where |hi1| = 1 if

i cares about issue k and 0 otherwise. For simplicity, we assume that every individual

cares about exactly K ≤ M issues, but the set of K issues can differ among individuals.

Individuals also have political affiliations, but their opinions on issues are not

necessarily perfectly correlated with their political label. In other words, someone who

identifies as a member of a left-leaning party can hold right-leaning opinions and vice

versa (e.g., an American might identify as a Democrat based on stances on economic and

racial issues but still oppose the party on some social issues). The strength of correlation

between one’s party label and opinions is subject to model dynamics as described below

in Imitation dynamics.

2.4.2 Pairwise interactions

In our model, an interaction takes the form of a one-shot pairwise donation game. In a

game, the donor must choose whether to cooperate with the recipient. A cooperating

donor (‘cooperator’, C) incurs a cost c to provide a benefit b to the recipient; a defecting

donor (‘defector’, D) incurs no cost and provides no benefit to the recipient.

Interactions are entirely determined by issues and are not influenced by party

affiliation. Specifically, individuals i and j (independent of their party labels) interact if

and only if there is at least one issue that they are both interested in, and they interact as
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Figure 2.1: Schematic illustration of the model. (A) N = 6 individuals (nodes) are
distributed over M = 3 groups (black ovals), each representing a political issue. Col-
ors represent behavioral strategies as indicated; shapes represent party affiliations
(circle = L, diamond = R). Individual i cares about all three issues and has opinion
vector hi = [−1, 1, 1], where −1 and +1 correspond to liberal and conservative posi-
tions, respectively. Individual j cares only about issue 3 and takes a liberal position;
hence, hj = [0, 0,−1]. In each round, every pair plays one-shot donation games as
many times as they have issues in common. Edges represent the interactions of focal
individual i; widths are proportional to the number of interactions. Opinions deter-
mine interaction patterns: whether i cooperates with j in a given group depends
on whether they agree on that issue. (B) Once all games in a round are played, a
learner k is chosen uniformly at random to imitate a role model j, chosen propor-
tional to fitness. Strategies and issues/opinions can both be imitated but not party
affiliation, which is fixed. (C) Whether learner k imitates role model j depends on
partisan bias p and on the pair’s party affiliations: an imitation event occurs with
probability 1 − p if k and j belong to different parties and with probability 1 other-
wise. In an imitation event, k adopts j’s strategy with probability 1 − u or a random
strategy with probability u; independently, k abandons her issues and adopts j’s is-
sues and opinions with probability 1 − v; with probability v, k picks a random set
of issues and adopts opinions on those issues that are biased toward k’s party with
probability p.
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many times as they have shared interests (Fig.2.1A). This dynamic reflects, for instance,

social media interactions, where an individual will only respond to someone else if they

are talking about the same issue, and will do so regardless of whether they have the

same opinion on that issue. How they choose to respond will, however, be determined

by their opinions. In our model, an individual can employ one of four strategies

depending on her own opinion and that of the donor: unconditional defector (DD),

unconditional cooperator (CC), homophilous cooperator (CD; cooperates with those

who share the same opinion but defects against those who have the opposite opinion),

or heterophilous cooperator (DC; defects against those who share the same opinion but

cooperates with those who have the opposite opinion).

2.4.3 Fitness

After all pairwise games for a given round have been played, the fitness fi of individual i

is computed as fi = 1 + β · πi, where πi denotes the total payoff accumulated by

individual i and β denotes the intensity of selection, a quantity employed in

evolutionary game theory to capture the impact of the dynamics under study on relative

fitness. Most often, and in our case, the assumption is that selection is weak (i.e., β � 1),

to reflect the fact that most peer interactions represent only a tiny fraction of an

individual’s overall fitness. This limit also facilitates analytical insights.

2.4.4 Imitation dynamics

The population updates dynamically according to a frequency-dependent Moran

process (Nowak et al., 2004; Taylor et al., 2004; Traulsen et al., 2006), a standard approach

in models of cultural evolution (Fig.2.1B). This framework describes a social learning

process in which individuals preferentially copy the traits of successful others. In our

model, both the strategy and the issues and associated opinions are subject to this

updating process. However, we assume that individual party affiliations are fixed over

40



time because empirical evidence suggests that Americans rarely change their party

affiliations (Green et al., 2004)—although future work can relax this assumption to

explore the dynamics of party affiliations, possibly on longer timescales. This imitation

process plays out at the individual level (i.e., individuals imitate peers). However, it

mirrors the influence of political leaders and campaigns on public discourse (Wang et al.,

2020), as exemplified by the empirically documented follow-the-leader phenomenon

(Lenz, 2013); i.e., voters tend to first pick a political leader they deem successful and then

adopt their policies, rather than choosing a leader whose policies match the voters’ own

preferences.

Once fitness is computed for all individuals, a learner k is chosen uniformly at

random from the population. The learner then selects a role model j randomly with

probability proportional to fitness (Fig.2.1B). Importantly, the learner and the role model

do not have to share any issues in common prior to the imitation event; i.e., the imitation

network is the complete graph and there is a breaking in symmetry (Ohtsuki et al., 2007)

between the interaction network (which is local) and the imitation network (which is

global). Whether the learner proceeds to imitate the role model or not depends on their

party affiliations (Fig.2.1C), so that an imitation event is initiated with probability 1 if k

and j belong to the same party, but only with probability 1 − p otherwise. When p = 1

the imitation graph completely segregates into two modules according to party

affiliations. The exogenous parameter 0 ≤ p ≤ 1—which, for simplicity, we assume to be

the same for both parties—thus captures partisan bias: a larger p means that individuals

are less willing to imitate across party lines, consistent with cognitive dissonance theory

and partisan mediated reasoning (Bakker et al., 2020); if p = 1, individuals only imitate

those in their own party.

An imitation event also allows for the possibility of errors (e.g., incorrectly assessing

someone’s strategy or opinions) and for non-social learning or exploration (e.g., learning
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about new issues from sources other than peers) (see Fig.2.1C). Let 0 ≤ u ≤ 1 and

0 ≤ v ≤ 1 be the strategy mutation rate and the issue and opinion exploration rate,

respectively. Learner k adopts either role model j’s strategy with probability 1 − u or a

random strategy with probability u. Similarly, with probability 1 − v, k adopts j’s

opinion vector hj; with probability v, however, k explores a new and random set of

issues and opinions, hk. The lower the exploration rate, the more reliant individuals are

on their peers as sources of information. When an individual explores a completely new

and random set of issues, party affiliation can still play a role in determining what

opinions that individual will take on the newly adopted issues. With probability 1 − p,

learner k adopts a random set of opinions. With probability p, however, learner k adopts

a biased set of opinions aligned with her party membership.

2.5 Individual- and collective-level metrics

We define the following metrics to characterize the three phenomena of interest:

cooperation, opinion alignment, and interest alignment. See Materials and methods for full

mathematical definitions.

2.5.1 Cooperation

To quantify the amount of interindividual cooperation in the population, we define the

effective cooperation to be the population-level mean fraction of cooperative interactions

averaged over the stationary distribution of the dynamical process. To characterize

individual behaviors in more detail, we also measure the steady-state strategy

distribution, i.e., the frequency (or relative abundance) of each of the four possible

behavioral strategies averaged over the stationary distribution.
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2.5.2 Opinion alignment

We use as a measure of factionalization the ability of a party to act as a monolith on

issues of interest, i.e., the extent to which within-party opinions are aligned. Though this

metric has been primarily used to describe party unity, some have argued that it can be

used to characterize the degree of societal polarization (Baldassarri and Gelman, 2008).

To quantify opinion alignment, we define the average opinion distance in a given

subpopulation as the average city block distance—also known as Manhattan distance or

ℓ1 norm—between pairs of opinion vectors. The opinion distance between individuals i

and j thus represents the total magnitude of their opinion differences across all issues

and is computed as ∑M
k=1 |hik − hjk|. We define average opinion distance for three

subpopulations: among members of the same party (within-party), among members of

different parties (between-party), and among all individuals (population-level). A lower

average opinion distance in a subpopulation indicates greater opinion alignment within

that subpopulation.

2.5.3 Interest alignment

Interest alignment refers to the degree to which individuals share overlapping interests

and therefore interact with one another. To quantify it, we define the average interest

distance within a given subpopulation as the average pairwise Hamming distance

between issue interest vectors. The interest distance between i and j thus measures the

number of issues they do not have in common (i.e., issues that either i or j cares about

but not both) and is computed as ∑M
k=1

∣∣(|hik| − |hjk|)
∣∣. We define average interest

distance within parties, between parties, and within the whole population. A lower

average interest distance within a subpopulation indicates greater interest alignment

within that subpopulation.
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To illustrate how opinion distance and interest distance work in tandem, consider a

population in which each individual cares about three out of five available issues (i.e.,

M = 5, K = 3). Suppose individuals i, j, and k have opinion vectors [0, 0, 1, 1, 1],

[1, 1, 1, 0, 0], and [1, 1,−1, 0, 0], respectively. Even though both pairs ij and ik have the

largest possible divergence in issues for the given M and K (pairwise interest distance 4,

since they only share one issue of interest), the opinion distance for pair ik (given by

1 + 1 + 2 + 1 + 1 = 6) is greater than that for pair ij (given by 1 + 1 + 0 + 1 + 1 = 4)

because i and j have the same opinion on the one issue that they do have in common.

Thus, the two quantities together capture not only the overlap in issues but also the

divergence in opinion on those overlapping issues.

2.6 Results and discussion

We conducted computational simulations (see Materials and methods) and, where

possible, analytical calculations (see Supplementary analyses).

2.6.1 Regardless of political bias, increasing the number of available

issues (M) but decreasing the number of issues that each indi-

vidual cares about (K) promotes inter-individual cooperation and

reduces polarization

At the individual level, pairwise cooperation tended to increase when there were more

available issues (higher M; Fig.2.2A) or when individuals cared about fewer issues

(lower K; Fig.2.2B). The latter had a stronger effect on cooperation, particularly when

individuals were not exploratory (v = 0.001), but the effect of the former became clear as

v increased to an intermediate level (see effect sizes in Tables B.2 and B.3). Analytical

calculations provide insight into the relative effects of M and K (Supplementary analyses,
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Figure 2.2: Cooperation increases with increasing number of available issues (M)
and decreasing number of issues individuals care about (K). For each parameter
setting, we ran an ensemble of 150 simulations with population size N = 40, each
lasting 2 × 107 generations, the first 10% of which were disregarded to account for
potential initialization effects. (A and B) Effective cooperation as a function of M
and K in the absence of partisan bias (p = 0), grouped by K (A) or by M (B). Within
a simulation, effective cooperation was measured as the fraction of cooperative ac-
tions among all interactions in a generation, averaged across generations. Each cir-
cle represents the mean effective cooperation (±SD) averaged across the ensemble.
Colors indicate issue/opinion exploration rates (v). (C and D) Steady-state strat-
egy distributions as a function of M and K in the absence of partisan bias (p = 0).
Each circle represents the average frequency (±SD) of the corresponding strategy
(indicated by its color) across generations, averaged across the ensemble; error bars
indicate s.e. within the ensemble. Parameter v is as indicated. (E and F) Effective
cooperation as a function partisan bias across combinations of M and K. Color indi-
cates degree of effective cooperation, from low (yellow) to high (purple). Parameter
v is as indicated. See Table B.1 for other parameter values and Tables B.2 and B.3 for
the effect sizes corresponding to A–D.

Eqs.(B.21) and (B.22)). Whereas K affects the frequencies of both unconditional (CC) and

conditional (CD, DC) cooperators, M only affects the former and only positively

(Supplementary analyses, Eq.(B.22)). Consequently, effective cooperation always increases

with the number of available issues, consistent with the simulations. However, M

impacts the frequency of CC via a term proportional to 1/M, and therefore the positive

effect of increasing M is vanishingly small. In contrast, K impacts all frequencies at least
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linearly, and therefore the effects of varying K are much stronger than those of varying

M.

Consistent with previous work (Tarnita et al., 2009a), these findings capture the

essence of why structured populations promote cooperation: the greater the possibility

for assortment with like-minded individuals, the higher the chance for cooperation to

thrive (Antal et al., 2009a; Cavaliere et al., 2012; Nowak et al., 2010; Tarnita et al.,

2009a,b). Having more available issues but few of those issues claimed by any one

individual increases the possibility for cooperators to find refugia from free-riders (i.e.,

unclaimed issues that cooperators can make their own and thrive). This increased

assortment leads to a lower frequency of unconditional defection (DD) relative to

unconditional cooperation (CC) (Fig.2.2C and D).

At the collective level, within-party average opinion distance increased (and the

potential for a party to act as a monolith decreased) with increasing M and decreasing K

(see Fig.2.4A). When there are more issues to explore, individuals have the possibility to

adopt a wider variety of opinions and therefore are less confined to a small cluster of

opinions. This reduces the chances of high within-party opinion alignment and the

potential for polarization.

2.6.2 A moderate rate of issue/opinion exploration optimally promotes

cooperation while also reducing polarization relative to a rigid

population

At the individual level, relative to our low-exploration baseline (v = 0.001), effective

cooperation tended to be higher as the exploration rate increased up to a moderate rate

of issue/opinion exploration (v = 0.025), after which it began to decrease (Fig.2.2A and

B, Fig.2.3A). These results are consistent with previous work showing that an

intermediate level of stochasticity in the imitation of the population structure optimally
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Figure 2.3: Moderate rates of issue/opinion exploration promote cooperation. For
each parameter setting, we ran an ensemble of 150 simulations with population size
N = 40, each lasting 2 × 107 generations, the first 10% of which were disregarded to
account for potential initialization effects. (A–C) Mean effective cooperation (±SD)
across the ensemble as a function of issue/opinion exploration rate v log scale. Col-
ors indicate combinations of M and K. (D–F) Steady-state strategy distributions for
M = 3, K = 2 as a function of issue/opinion exploration rate v log scale. Each circle
represents the average frequency (±SD) of the corresponding strategy (indicated by
color), averaged across the ensemble. Solid curves in D and E show the correspond-
ing theoretical predictions in the limit of small µ = Nu (Supplementary analyses,
Eqs. (B.19) and (B.20)) and dashed gray lines show the critical exploration rate v∗

computed from Eq.(2.1), both showing excellent agreement with the simulation re-
sults. Partisan bias p is as indicated in each panel. See Table B.1 for other parameter
values and Fig.B.3 for an expanded figure with p = 0.25, 0.75 and M = 1, K = 1.
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promotes cooperation (Nowak et al., 2010; Tarnita et al., 2009a). That such an

intermediate optimum also arises in our system is to be expected, since too little

exploration limits the cooperators’ ability to take advantage of ‘empty’ issues while too

much exploration scrambles the population structure and renders it virtually

well-mixed.

To understand how changes in individual behavior drive the rising effective

cooperation, we investigated the effect of issue/opinion exploration rate v on the

steady-state strategy distribution (Fig.2.2C and D, Fig.2.3D). Notably, while

heterophilous cooperators (DC) were more frequent than homophilous cooperators

(CD) at low exploration rates (Fig.2.2C), this ordering was eventually reversed at

intermediate exploration rates (Fig.2.2D, Fig.2.3D). Analytical calculations confirm that

these simulation results hold for any benefit-to-cost ratio (b/c), as long as b > c > 0

(Supplementary analyses; fitted to simulation data in Fig.2.3D). Selection favors CD (and

simultaneously disfavors DC) when the effective population-level exploration rate

(ν = Nv) satisfies

ν > ν∗ =
−2(b/c) + 3 +

√
4(b/c)2 − 3

2(b/c − 1)
, (2.1)

where ν∗ is the critical threshold, which is independent of M and K. Importantly,

although selection always favors CD when Eq.(2.1) holds, the frequency of CD has a

maximum as a function of ν (Fig.B.1), which likely contributes to the existence of an

optimum exploration rate for the effective cooperation (Fig.2.3).

Intuitively, the order reversal in the frequencies of CD and DC occurs because, as the

exploration rate increases, so does the possibility of assortment with ‘like’ individuals.

This favors those who cooperate with others who are the same (share the same opinion)

and penalizes those who cooperate with others who are different: both CD and DC are

more likely to encounter their own type (same strategy and, importantly, same opinions),
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but two CD’s with the same opinions will mutually cooperate and gain benefits,

whereas two DC’s with the same opinions will mutually defect and forgo benefits.

At the collective level, exploration introduces new issues and opinions into a

subpopulation, thus continually increasing opinion diversity. This, in turn, helps shuffle

the opinion clusters, thereby mitigating polarization. Unlike at the individual level,

where eventually too much scrambling of opinions and issues diminishes the possibility

of assortment and reduces cooperation, polarization at the collective level will continue

to decrease with increasing shuffling of sets and opinions. We therefore did not expect

an intermediate optimum level of exploration, past which polarization would begin to

increase again. Accordingly, we found that the average opinion distance increased with

the issue/opinion exploration rate v, regardless of the subpopulation (Fig.2.4, Fig.B.2A).

2.6.3 Strong partisan bias promotes within-party opinion and interest

alignment at the cost of global alignment

At the collective level, partisan bias tended to promote stronger opinion alignment by

party regardless of M and K (Fig.2.4A, Fig.B.2A), though these trends were more

striking with increasing exploration rate (Fig.2.4A). Extreme partisan bias (p = 1)

corresponded to maximum alignment among members of the same party (minimum

within-party average opinion distance) and minimum alignment among those of

different parties (maximum between-party average opinion distance). Within-party

alignment decreased nonlinearly and between-party alignment increased nonlinearly as

partisan bias declined; at reasonable values of issue/opinion exploration

(0.001 ≤ v ≤ 0.125), the most pronounced change occurred between p = 1 and p = 0.75.

This pattern suggests that, while extreme partisan bias (p = 1) leads to strong

assortment in the opinion space and therefore polarization, a fairly small amount of

cross-party imitation can mitigate this adverse effect.
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Figure 2.4: Opinion and interest alignment as a function of partisan bias. For
each parameter setting, we ran an ensemble of 150 simulations with population size
N = 40, each lasting 2 × 107 generations, the first 10% of which were disregarded
to account for potential initialization effects. Each circle within a panel represents
the mean value (±SD) of the corresponding metric averaged across generations and
across the ensemble. Dotted and dashed lines indicate values within and between
parties, respectively. Values of M and K are as indicated; the values of p between
0.75 and 1.00 are p = 0.8, 0.85, 0.9, 0.95, 0.99. (A) Opinion alignment as measured by
normalized average opinion distance. Opinion alignment decreases with increasing
average opinion distance. (B) Interest alignment as measured by normalized aver-
age interest distance. Interest alignment decreases with increasing average interest
distance. See Materials and methods for definitions and the normalization procedure;
Fig.B.5 for population-level values; and Table B.1 for other parameter values.
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As expected from its definition (see Individual- and collective-level metrics), the average

interest distance was zero when individuals cared about all available issues (K = M),

irrespective of subpopulation, partisan bias, or opinion mutation rate (Fig.2.4B). When

K < M, partisan bias increased interest alignment within, but not between, parties:

average interest distance rose within parties but declined between parties. As in the

opinion case, the within-party and between-party curves quickly converged as p

decreased. This outcome showed that, while the population strongly tended to fragment

into party-based clusters when partisan bias was extreme (p = 1), a fairly small

likelihood of cross-party imitation made the population more cohesive. Unlike in the

opinion case, however, partisan bias had no effect on interest distance at high

exploration rates (Fig.2.4B).

2.6.4 Extreme partisan bias promotes pairwise cooperation while max-

imizing polarization, but only if individuals are not sufficiently

exploratory

At the individual level, there was a marked difference in steady-state behavior between

the cases p < 1 and p = 1 (extreme bias): while p < 1 behaved the same as p = 0

(compare Fig.2.3A vs. B and D vs. E) and this was confirmed by our analytical

calculations (see Supplementary analyses, Eqs.(B.19) and (B.20)), p = 1 had a markedly

different dynamics (Fig.2.3C and F). This is because p qualitatively modifies the

imitation network: when p = 0, the imitation network is the complete graph (anyone

can imitate anyone else in the population); as p increases, the imitation structure

becomes modular (according to party label) with an increasingly weak connection

between the two modules. Ultimately, when partisan bias is extreme (p = 1), the two

modules become disconnected, as individuals can only imitate those of their own party.

Importantly, when p = 1, even if the exploration rate v is nontrivial, individuals’
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opinions on new issues are perfectly aligned with their party (Fig.2.1C). This gives rise

to a discontinuity in the system behavior: for p = 1, even though individuals continue to

interact according to issue membership, the world becomes segregated according to

party labels when it comes to learning and exploration (i.e., at p = 1, there is zero

probability to be influenced by an individual outside of one’s party or to adopt an

opinion misaligned with one’s party).

Consequently, this party-based segregation and alignment further boosted spatial

assortment by both strategy and opinion, maximizing effective cooperation (Fig.2.2E).

Unlike when p < 1, cooperation was not primarily boosted by a strong positive effect on

CD, but rather by a positive effect on CC and a negative effect on DD (Fig.2.3F

vs. Fig.2.3D, Fig.B.4C and D vs. Fig.2.2C and D): when assortment by opinion is very

high, the second letter of each strategy matters less because individuals will mostly

encounter others of the same opinion. However, this trend largely disappeared around

the optimum issue/opinion exploration rates (Fig.2.2F and compare Fig.2.3A–C), where

the moderate exploration sufficiently boosts cooperation at low p as to match the

positive effect of extreme bias. Moreover, when p = 1, the effect of extreme bias

overshadowed the effect of exploration: effective cooperation changed minimally with

increasing v (Fig.2.2C; Fig.B.4A and B; and see also Fig.B.4C and D for corresponding

steady-state strategy distributions).

These results—together with the fact that, at the collective level, extreme partisan

bias maximized both opinion and interest alignment among members of the same party

and minimized alignment among those of different parties—suggest a potential tension

between the individual and collective levels when the population is away from the

optimum issue/opinion exploration rate. This tension disappears when the

issue/opinion exploration rate is around the optimum: then, extreme bias still increases

polarization but without increasing effective cooperation.
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2.7 Conclusion

Our results demonstrate that partisan bias interacts in unexpected ways with the

diversity of issues that people care about. If partisan bias is not too high, increasing issue

diversity both increases interindividual cooperation and prevents a monolithic majority.

Interestingly, decreasing the number of issues that any given individual cares about has

an even stronger positive effect than increasing the total number of available issues,

suggesting that the extent to which individuals engage with available issues can

dramatically impact cooperation and cohesion even when the scope of issues considered

in the society stays the same. Thus, when partisanship is not too high, our results

support Madison’s argument that a diverse set of issues can prevent a monolithic

majority, but they further suggest that, counter to some contemporary democratic

theories (Sunstein, 2001), the splintering of attention driven by information abundance

could, in fact, further improve outcomes.

However, increasingly high partisan bias induces party-based assortment of issues

and opinions, thereby reducing issue diversity and making the collective worse off.

When bias is extreme (p = 1), individuals become completely closed off to influence

from ideologically divergent peers, and the emergent tribalism boosts interindividual

cooperation at the cost of a weakened, polarized collective. This suggests that, in a

highly polarized state, there will be an emergent tension between the individual and the

collective levels, with little incentive for individuals to reduce the collective polarization.

This emergent tension could hinder bottom-up efforts to reduce polarization

endogenously until, eventually, the cost of living in a polarized, dysfunctional society

outweighs the high individual benefits of tribalism (Finkel et al., 2020; Fu et al., 2012).

But our results offer a silver lining: not only do the boost to cooperation and associated

appeal of tribalism occur only when partisanship is extreme, they are also substantial
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only in a society whose members are primarily learning from peers and are limited in

their independent exploration.

Although, a priori, issues in our model are completely independent of each other

(i.e., uncorrelated), high partisanship leads to emergent alignment of issues according to

party labels and, thus, to emergent correlations among them (e.g., if i and j are both left

leaning and i cares about issue X, there is a very high likelihood that j does too). The

associated dimensionality reduction is, as hypothesized, a driver of the observed

factioning. However, it is not the sole driver. Even when individuals care about all

available issues and therefore cannot sort themselves across issues by party affiliation,

we still observe between-party divergence in opinions when partisanship is high (i.e., if i

holds a right-leaning position on issue X, then i is likely to also be right leaning on issue

Y). This latter scenario seems to capture the current state of US politics: Democrats and

Republicans care about the same set of hot-button issues, such as gun control and

immigration, but they hold opposing views (McCarty et al., 2016). To understand how

the waxing and waning of a society’s interest in politics affect both individual and

collective-level dynamics, future work could allow individuals to dynamically change

the number of issues they care about and/or their party memberships. Such extensions

would further our understanding of how independents or the politically indifferent

might impact polarization (Jones et al., 2022).

Given well-known differences in openness to experience between the right and the

left (Malka et al., 2014) and documented patterns of asymmetric polarization in the

United States, wherein the right is more polarized than the left (Leonard et al., 2021;

Mann and Ornstein, 2016; McCarty, 2019; Pierson and Schickler, 2020), future work

needs to explore individual-level or party-level differences in partisan bias, openness to

experience, and other attributes that might affect issue exploration and social learning. A

simple extension would have p be party dependent (i.e., individuals of different parties
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could perceive different levels of partisan bias), with independents experiencing an

altogether different level. To study the endogenous evolution of partisanship,

individuals could exhibit different levels of partisanship independent of their party

labels and partisanship could be subject to learning and imitation, just as the issues and

opinions are. If individual fitnesses then depend both on pairwise interaction payoffs

and on the collective-level factioning, this approach could allow the study of

endogenous waxing and waning of partisanship and polarization.

While our model focuses on two major parties because third parties have minimal

influence in the United States–they typically get <5% of the popular vote in a

presidential election (Goff and Lee, 2019)–it can be extended to include three or more

parties. This would allow one to explore dynamics of coalition formation, including the

possibility of logrolling (“I will cooperate with you on issue 1 if you cooperate with me

on issue 2”), which would constitute a key step toward understanding polarization in

multiparty parliamentary systems. Here, an important question would be whether and

how the introduction of a third party could destabilize the system. To answer this

question, one could consider parties with dynamic memberships, that is, where

individuals can migrate from a party to another via social learning or based on shifts in

party platforms, among other factors.

Despite the simplicity of our model, the results comport with recent evidence of

polarization, factionalization, and party bias. Using data from 1972 to 2004, Baldassarri

and Gelman (Baldassarri and Gelman, 2008) do not find increases in within-group issue

alignment. However, since then, factionalism has markedly increased (Kozlowski and

Murphy, 2021), as has partisan bias (Donovan et al., 2020; Iyengar et al., 2019) and

subsequent polarization (McCarty, 2019). At the same time, the first decades of the 21st

century were also accompanied by exponential increases in information production and

consumption, driven by digital technology (Dhamdhere and Dovrolis, 2011). Our study
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uncovers how these trends may not be in opposition and prompts us to reevaluate the

effectiveness of Madison’s suggested cure for the mischiefs of faction. Issue diversity, in

the absence of strong partisan bias, promotes individual and collective welfare. Issue

diversity, in the presence of extreme partisan bias and a rigid society, promotes

individual cooperation while intensifying polarization.

2.8 Materials and methods

2.8.1 Full model description

Opinions and political affiliations. We consider N individuals distributed over M

potentially overlapping groups, each representing a political issue. As described in

Model description, let hi = [hi1, · · · , hiM] ∈ {−1, 0, 1}M denote the M-element opinion

vector of individual i, where hik represents i’s opinion on issue k: liberal (−1), neutral (0),

or conservative (+1). Individual i cares about issue k if she takes either a liberal or

conservative position on it. Thus, the issue interest vector of i is given by

hi = [|hi1| , · · · , |hiM|] ∈ {0, 1}M, where |hi1| = 1 if i cares about issue k and 0 otherwise.

Individuals also have political affiliations. Let ai ∈ {1, · · · , P}N denote the party

affiliation of i. For simplicity, we focus on a two-party system (P = 2) with individuals

distributed equally across the parties and, without loss of generality, assume that party 1

is liberal-leaning (L) and that party 2 is conservative-leaning (R).

Interactions and payoffs. Opinions determine the patterns of interaction. In each

round, two individuals play one-shot pairwise donation games as many times as the

number of shared interests. In a given game, the donor can choose to either cooperate

(C)—incur a cost c to provide a benefit b to the recipient—or defect (D)—incur no cost

and provide no benefit to the recipient.
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Whether a donor cooperates or defects depends both on her behavioral strategy and

on the agreement between her and the recipient. The strategy of individual i is given by

si = [sia, sid] ∈ {0, 1}2, where 0 corresponds to defection and 1 to cooperation. When i

interacts with j in group k, i plays strategy sia if i and j agree on issue k (e.g., both have

opinion −1) and plays sid if they disagree. Thus, an individual can be an unconditional

defector (DD = [0, 0]), a homophilous cooperator (CD = [1, 0]), a heterophilous

cooperator (DC = [0, 1]), or an unconditional cooperator (CC = [1, 1]). Note that i does

not interact with j in group k if j does not care (i.e., is neutral) about issue k.

In sum, an individual i is characterized by three variables: (i) party affiliation (ai

∈ {1 (= L), 2 (= R)} under our simplifying assumptions), (ii) opinions hi, and (iii)

behavioral strategy si. These, together with benefit b and cost c, determine the total

payoff πi of i in a given round:

πi =
N

∑
j=1
j 6=i

M

∑
k=1

|hikhjk|
[

δk
ij
[
−csia + bsja

]
+ (1 − δk

ij)
[
−csid + bsjd

] ]
, (2.2)

with δk
ij = 1hik=hjk

= 1 if i and j agree on issue k and 0 otherwise;
(
−csi∗ + bsj∗

)
is i’s

payoff when i and j agree (∗ = a) or disagree (∗ = d).

Fitness and its nonnegativity. After all the games for a given round are played, we

compute the fitness fi of i as fi = 1 + β · πi, where β denotes the intensity of selection. To

guarantee nonnegativity of fi, we consider the scenario that results in minimum possible

fitness and derive the parameter conditions under which fi ≥ 0. When i interacts with

every other individual in every issue group and loses c in every interaction, i’s fitness is:

fi = 1 + βπi ≥ 1 − β(N − 1)Mc ≥ 0. Thus, β and c must satisfy 1 ≥ β(N − 1)Mc, that is,

β ≤ β∗ = 1/(N − 1)Mc. We chose simulation parameters (c = 0.2, N = 40, 1 ≤ M ≤ 5,

and β = 0.001; Table B.1) satisfying this condition.
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2.8.2 Simulation details

We implemented our model as stochastic agent-based simulations in Julia (Bezanson

et al., 2017). For the simulations, we assumed that every individual cares about exactly K

issues. Under these assumptions, the population was initialized as follows: without loss

of generality, individuals 1 through N/2 were assigned to party L and N/2 + 1 through

N were assigned to party R. To initialize an individual’s opinions, we first selected K out

of the M issues at random. We assigned her an opinion corresponding to her party

affiliation (−1 for party L, +1 for party R) for each of these K issues and a neutral

opinion 0 for the remaining M − K issues. This process was repeated independently for

all N individuals. Finally, each individual was also assigned a strategy (DD, DC, CD,

CC) at random.

2.8.3 Measuring opinion alignment

Polarization was characterized using average opinion distance. The opinion distance

between individuals i and j is defined as the city block distance between their opinion

vectors hi and hj: dopinion(hi, hj) = ∑M
k=1 |hik − hjk|. Then, population-level, within-party,

and between-party average opinion distances are defined as

dpopulation
opinion =

1

(N
2 )

N

∑
i<j

dopinion(hi, hj) , (2.3)

dwithin
opinion =

1
2 ∑

a∈{L,R}

1

(N/2
2 )

N

∑
i<j,ai=aj=a

dopinion(hi, hj) , (2.4)

dbetween
opinion =

1
(N/2)2

N

∑
i<j,ai 6=aj

dopinion(hi, hj) , (2.5)

respectively. Equation (2.3) computes the average opinion distance between every pair

of individuals i and j in the population. In Eq.(2.4), the bracketed term sums the opinion

distance between every pair i and j within party a (ai = aj = a). In Eq.(2.5), the
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bracketed term sums the opinion distance between every pair i and j whose party

affiliations differ (ai 6= aj).

Normalization. The range of possible pairwise opinion distances depends on K:

given K, the maximum possible opinion distance is dmax
opinion(K) = 2K. To allow for

meaningful comparisons of opinion alignment across values of K, we divided each raw

average opinion distance by dmax
opinion(K).

2.8.4 Measuring interest alignment

Interest alignment was characterized using average interest distance . The interest

distance between i and j is defined as the Hamming distance between their issue interest

vectors h̄i and h̄j: dinterest(h̄i, h̄j) = ∑M
k=1

∣∣|hik| − |hjk|
∣∣ . Then, population-level,

within-party, and between-party average interest distances are defined as

dpopulation
interest =

1

(N
2 )

N

∑
i<j

dinterest(h̄i, h̄j) , (2.6)

dwithin
interest =

1
2 ∑

a∈{L,R}

1

(N/2
2 )

N

∑
i<j,ai=aj=a

dinterest(h̄i, h̄j) , (2.7)

dbetween
interest =

1
(N/2)2

N

∑
i<j,ai 6=aj

dinterest(h̄i, h̄j) , (2.8)

respectively. Equation (2.6) computes the average interest distance between every pair of

individuals i and j in the population. In Eq.(2.7), the bracketed term sums the interest

distance between every pair i and j within party a (ai = aj = a). In Eq.(2.8), the

bracketed term sums the interest distance between every pair i and j whose party

affiliations differ (ai 6= aj).

Normalization. In contrast to opinion distance, the range of possible pairwise

interest distances depends on both M and K: the maximum possible interest distance is

dmax
interest(M, K) = 0 if K = M and 2 |bM/2c − b|M/2 − K|c| if K < M, where b·c is the
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floor function. To allow for meaningful comparisons of interest alignment across values

of K, we divided each raw average interest distance by dmax
interest(M, K) when K < M.

Data availability

All simulation data and code for simulations, figures, and analytical calculations are

available at Github (https://github.com/marikawakatsu/CooperationPolarization2).
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Chapter 3

Stereotypes, moral reputations, and

indirect reciprocity in group-structured

populations

3.1 Notes

This chapter is adapted from:
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group-structured populations. Manuscript in preparation.
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presentation with Sebastián Michel-Mata.

Acknowledgments. We thank Joe Sartini for helpful discussions on earlier versions

of this work. M. Kawakatsu gratefully acknowledges support from the Army Research

Office Grant W911NF-18-1-0325.

3.2 Abstract

Moral reputations facilitate cooperation: altruistic behavior may improve individuals’

standings in their community, making them more likely to receive help in future

interactions. However, moral reputations based on individual actions may be costly to

observe, assess, and remember. Instead of relying solely on reputations based on past

actions, people may also use stereotypes—generalized reputations of individuals based

on their group affiliations. But it remains unclear whether stereotypical views boost or

undermine cooperation, as stereotypes reduce cognitive burden while also diminishing

the precision of perceived reputations. Here we investigate the effect of stereotype use

on indirect reciprocity. We develop a theoretical model of group-structured populations

in which individuals are assigned both individual reputations based on their actions and

stereotyped reputations based on their group memberships. Among individuals with a

uniform propensity to use stereotypes, group-level sharing of reputation information

generates emergent in-group favoritism, even when behavior is unconditional on group

identity. Stereotype use can spread via social imitation and remain robust against

replacement when access to individual reputations is costly, reputation assessments and

strategy execution are error-prone, and individuals hold private views of others. Finally,

we show that whether stereotyping benefits or harms society depends on the extent to

which individual and stereotyped reputations are public knowledge. Under some

scenarios, increased stereotyping can simultaneously promote altruism and in-group
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bias, resulting in an asymmetric improvement in within- and between-group

cooperation.

3.3 Introduction

Reputations are critical to cooperation in human societies (Alexander, 1987; Nowak and

Sigmund, 2005; Trivers, 1971). When individuals behave altruistically, their perceived

reputations improve, predisposing others to help them in the future. This feedback loop,

termed indirect reciprocity, is a powerful motivator and mechanism for cooperation

(Boyd and Richerson, 1989; Leimar and Hammerstein, 2001; Nowak and Sigmund,

1998a, 2005). Indeed, people are more likely to offer help when being observed

(Bereczkei et al., 2007).

Theoretical studies of indirect reciprocity typically assume that individuals decide

whether to cooperate with others based on their moral reputations. Classical models

assume reputations are public knowledge (Nowak and Sigmund, 1998b; Ohtsuki and

Iwasa, 2004, 2006), facilitated by informal processes such as rapid gossip (Balliet et al.,

2020; Nowak and Sigmund, 2005; Sommerfeld et al., 2007) or formal structures such as

e-commerce websites that collect customer reviews. Under public knowledge,

individuals never disagree about the reputations of one another, and this high level of

agreement helps facilitate cooperation. However, in realistic settings, people may hold

private—and often differing—opinions about the moral standings of others. Recent

work has shown that, under private information, disagreements in how individuals see

each other can arise and retard cooperation (Hilbe et al., 2018; Okada et al., 2017, 2018;

Uchida, 2010). But studies have also identified mechanisms that can rescue cooperation

in such scenarios, including empathetic moral evaluation (Radzvilavicius et al., 2019),

generous moral evaluation (Schmid et al., 2021), or the evolution of adherence to public

monitoring systems that broadcast public reputations (Radzvilavicius et al., 2021).
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However, the underlying assumption in these models—that cooperative behavior is

conditional on the receivers’ individual reputations—is not always realistic. Although

people are adept at processing social information, cognitive constraints limit their ability

to attend to and recall information (Fiske and Taylor, 1991). These constraints may be

particularly costly under private assessments: mental burden can arise from costs of

evaluation (i.e., individuals must form their own judgments of others by either

observing their interactions or talking to those who have previously done so) or from

costs of memory (i.e., individuals must remember and recall each reputation). Public

monitoring systems help ease this burden, but they may introduce economic and

administrative costs: in modern societies, establishing and maintaining public

institutions often requires taxation and legislation (Radzvilavicius et al., 2021).

Altogether, these costs may make individual reputations less accessible.

In reality, instead of relying solely on individual reputations, people may also use

heuristics based on social association. For instance, individuals may use biological or

social “tags” (i.e., the hypothetical “green beard” (Hamilton, 1964)) to identify and

preferentially help those who are like them. Theoretical studies on tag-based cooperation

find that altruism can evolve if individuals cooperate only with sufficiently similar

others (Riolo et al., 2001). However, in well-mixed populations, tag-based cooperation

can fail unless individuals of similar tags always help each other (Roberts and Sherratt,

2002). Without this assumption, successful tag-based cooperation requires additional

mechanisms, such as spatial structure (Hammond and Axelrod, 2006; Jansen and van

Baalen, 2006), a large number of tags (Jansen and van Baalen, 2006; Traulsen and Nowak,

2007), or knowledge of others’ strategies (Masuda and Ohtsuki, 2007)—each of which

likely increases rather than decreases the cognitive burden of choosing whom to help.

Stereotypes are another type of reputation based on social affiliation. Social

psychology defines stereotypes in various ways (Ashmore and Del Boca, 1981; Hilton
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and von Hippel, 1996); here, we adopt the widely accepted view that stereotypes are sets

of beliefs about the characteristics, attributes, or behaviors of members of certain social

groups (Ashmore and Del Boca, 1981; Hilton and von Hippel, 1996; Judd and Park,

1993). Stereotypes reduce cognitive burden by simplifying how people process

information about others: they provide mental shortcuts that are readily learnable and

highly structured, whereby group memberships indicate a few associated individual

attributes (Macrae and Bodenhausen, 2000; Martin et al., 2014). However, stereotyped

reputations may be less accurate relative to individual standings. Although often based

on empirical reality, stereotypes are generalizations and may even entail exaggerations

(Bordalo et al., 2016; Judd and Park, 1993). For example, the stereotype that members of

a particular academic department are collegial may be accurate in general but may not

apply to all members.

Given this trade-off between cognitive cost and accuracy, how do individual and

stereotyped reputations differentially affect indirect reciprocity? And under what

conditions do populations evolve to use stereotyped reputations? Despite the prevalence

of stereotypes in human societies, their role in the evolution of cooperation has not been

thoroughly studied.

Here we investigate how stereotype use and its evolution impact cooperative

behavior in group-structured populations. To do so, we extend a game-theoretic

framework of indirect reciprocity in two key ways. First, we consider a group-wise

monitoring system, in which members within a group agree on their views of others but

might disagree across groups. Although natural and realistic to consider in human

populations, such group-level sharing of information remains under-explored in the

literature (but see Kessinger and Plotkin (2022) for a theoretical framework for

intermediate levels of information availability between strictly private and fully public).
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Second, we consider monitoring systems for stereotyped reputations that are

analogous to individual reputations. We define a stereotyped reputation as a reputation

assigned to a sub-group of the population. In the simplest model of stereotypes, which

we study here, to form the stereotyped reputation of a given group, a third-party

observer observes a random individual in that group and assesses her moral standing

based on her action toward another random individual in the population. Although

elementary, this approach captures basic features of stereotypes: stereotypes are

generalized beliefs about members of a group based on some empirically observed

behavior, and, contrary to the closely related concept of prejudice, stereotypes may be

positive or negative (Judd and Park, 1993). However, in some contexts, stereotype

assessments may be conditioned on group memberships; for example, an observer

might judge a focal individual based on her behavior toward the observer’s own group

or toward the focal individual’s own peers. These alternative models of forming

stereotypes remain a topic for future research.

To establish baseline dynamics under stereotyping, we first investigate the effects of

stereotype use on the level of sustained cooperation among individuals with a uniform

propensity to use stereotyped reputations. Then, we study the evolution of stereotype

use using the framework of adaptive dynamics (Geritz et al., 1998). We identify

conditions under which stereotype use can evolve and remain evolutionarily stable, and

determine the evolutionary consequences of stereotyping for cooperation. This chapter

summarizes our results to date; we outline future directions in Discussion.

3.4 Model description

We consider a population of N individuals, each belonging to one of K groups. Let νk be

the fraction of the total population in group k, satisfying ∑K
k=1 νk = 1. For simplicity, our

analyses will focus on the scenario with two groups of equal size (K = 2, ν1 = ν2 = 0.5).
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However, the model implementation described below can accommodate any K and νk;

future research could analyze the effects of heterogeneous group structures.

3.4.1 Games and behavioral strategies

Individuals play a sequence of pairwise, one-shot donation games, also known as a

simplified prisoner’s dilemma. In a game, the donor must choose whether to cooperate

with the recipient. If the donor cooperates, she pays a cost c, and the recipient receives a

benefit b > c > 0; if the donor defects, she incurs no cost, and the recipient receives no

benefit. For simplicity, we fix c = 1 throughout our analyses.

Whether the donor i cooperates or not depends on her current strategy si. We

consider three strategies commonly explored in game-theoretic models of reputations

(Santos et al., 2018; Sasaki et al., 2017): Always Cooperate (ALLC), which cooperates

with any recipient; Always Defect (ALLD), which defects against any recipient; and

Discriminate (pDISC), which cooperates when the donor considers the recipient as

“good” but defects when the donor considers the recipient as “bad”. The parameter p in

pDISC modulates the type of information the donor uses to judge whether the recipient

is good or bad: with probability 1 − p, a donor with the pDISC strategy uses the

recipient’s individual reputation, as in commonly used models of indirect reciprocity

(Nowak and Sigmund, 2005; Ohtsuki and Iwasa, 2004; Santos et al., 2018; Sasaki et al.,

2017); whereas with probability p, the donor instead uses the recipient’s stereotyped

reputation, i.e., the donor’s view of the entire group to which the recipient belongs (see

Monitoring systems for reputations for how reputations are updated and shared).

A key difference between individual and stereotyped reputations is that using the

former may carry a higher cognitive cost (Macrae and Bodenhausen, 2000). We

operationalize this difference in the simplest possible manner: we assume that a pDISC

donor pays an access cost η ≥ 0 per interaction when using individual reputations. As we
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show, we find rich model dynamics even under this simple assumption; however,

because cognitive cost many depend nonlinearly on the number of interactions, future

research should consider a variety of cost functions.

Every individual interacts with every other individual in each round, once as a donor

and once as a recipient. After all games in a given round are complete, reputations are

updated according to a monitoring system (see Monitoring systems for reputations) and a

social norm (see Social norms).

3.4.2 Monitoring systems for reputations

A monitoring system specifies how widely individuals’ views of others are shared

within the population. Prior studies on indirect reciprocity assume that reputations are

either public knowledge, i.e., individuals are assessed publicly and agree about the

moral standings of others (Nowak and Sigmund, 1998b; Ohtsuki and Iwasa, 2004, 2006),

or private knowledge, i.e., individuals make private judgments about others and may

disagree about who is good or bad (Hilbe et al., 2018; Okada et al., 2017, 2018; Uchida,

2010). Here we introduce a group-wise monitoring system, in which members within a

group agree on their views of others but might disagree across groups. In other words,

under group-wise assessment, knowledge is shared less widely than under public

assessment, but shared more widely than under private assessment.

Our model also introduces monitoring systems for stereotyped reputations. We

define a stereotype as a reputation assigned to a group based on the behavior of a subset

of its members. As the simplest implementation of this definition, our model assumes

that, to assign a stereotyped reputation to a given group, an observer observes a

randomly chosen donor in that group and assesses whether she is good or bad based on

her action toward a randomly chosen recipient in the population. This stereotypical

assessment of the group is then shared with a subset of the population as defined by the
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stereotype system (see below and Table 3.1). Importantly, we assume that reputations

can operate at different scales of information sharing: for instance, members of an

academic department might disagree on their views of individual colleagues (private

reputations) but collectively subscribe to the stereotype that their department is good

and a another department is bad (group-wise stereotypes).

Altogether, we consider three levels of individual and stereotyped reputations:

public, group-wise, and private, as defined below.

1. Public: There is a single public view of each individual or each group.

Public individual reputations: One randomly chosen observer assesses each donor

based on their action toward a random recipient and the recipient’s individual

reputation. The observer then broadcasts the reputations of each individual to the

entire population.

Public stereotyped reputations: One randomly chosen observer assesses a

randomly chosen donor in each group based on her action toward a random

recipient and the stereotyped reputation of the recipient’s group, and assigns the

resulting reputation as a stereotype to the donor’s group. The observer then

broadcasts the stereotype of each group to the entire population.

2. Group-wise: Each group has a commonly-held view of each individual or group.

Group-wise individual reputations: One randomly chosen observer from each

group assesses every donor based on her action toward a random recipient and the

recipient’s individual reputation. Each observer then broadcasts the reputations of

individuals to her group.

Group-wise stereotyped reputations: One randomly chosen observer from each

group assesses a randomly chosen donor in each group based on her action toward

a random recipient and the stereotyped reputation of the recipient’s group, and
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Type No. of
observers

No. of
assessments

Individual / stereotyped
reputations with K = 2,

ν1 = ν2 = 0.5

Public 1 N


r1⋆ r1⋆ · · · r1⋆
r2⋆ r2⋆ · · · r2⋆
...

...
. . .

...
rN⋆ rN⋆ · · · rN⋆



R
ep

ut
at

io
ns

Group-wise K N × K


r1A · · · r1A r1B · · · r1B
r2A · · · r2A r2B · · · r2B

...
. . .

...
...

. . .
...

rNA · · · rNA rNB · · · rNB



Private N N × N

 r11 · · · r1N
...

. . .
...

rN1 · · · rNN


Public 1 K

(
sA⋆ sA⋆ · · · sA⋆

sB⋆ sB⋆ · · · sB⋆

)

St
er

eo
ty

pe
s

Group-wise K K × K
(

sAA · · · sAA sAB · · · sAB
sBA · · · sBA sBB · · · sBB

)

Private N K × N
(

sA1 · · · sAN
sB1 · · · sBN

)

Table 3.1: Summary of monitoring systems for individual and stereotyped repu-
tations. The rightmost column show corresponding matrices of individual reputa-
tions (N-by-N) and stereotyped reputations (K-by-N) in a population of N individu-
als in two groups of equal size (K = 2, ν1 = ν2 = 0.5). Top three rows: rij is the indi-
vidual reputation of individual i in the eyes of the whole population (j = ⋆), a group
(j ∈ {A, B}), or an individual (j ∈ {1, . . . , N}). Bottom three rows: skj is the stereo-
typed reputation of group k ∈ {A, B} in the eyes of the whole population (j = ⋆), a
group (j ∈ {A, B}), or an individual (j ∈ {1, . . . , N}). Without loss of generality, we
assume that individuals 1, . . . , N/2 belong to group A and N/2 + 1, . . . , N to group
B. Highlighted cells show how widely individual (light blue) and stereotyped (light
pink) reputations are shared within each system.

70



assigns the resulting reputation as a stereotype to the donor’s group. Each

observer then broadcasts the stereotyped reputations to her group.

3. Private: Every individual has a private view of every other individual or group. No

information is broadcast.

Private individual reputations: Every individual assesses every donor based on

her action toward a random recipient and the recipient’s individual reputation.

Private stereotyped reputations: Every individual assesses a randomly chosen

donor in each group based on her action toward a random recipient and the

stereotyped reputation of the recipient’s group, and assign the donor’s reputation

as the stereotype of her group.

Table 3.1 summarizes these three levels of monitoring systems. The structure of

individual and stereotyped reputation matrices under the assumption of two equally

sized groups are described in the rightmost column of Table 3.1.

3.4.3 Social norms

An observer assesses a donor according to a prescribed social norm, i.e., a set of rules

that determine how the donor’s moral standing (good or bad) depends on her behavior.

We consider four second-order norms, which depend only on the donor’s action and the

recipient’s reputation, that are commonly explored in the literature (Radzvilavicius et al.,

2019; Santos et al., 2018; Sasaki et al., 2017). While more complex norms are possible,

they often produce less cooperation and mean payoff than the four simple simple norms

we consider (Santos et al., 2018). Each norm can be expressed as a binary matrix, whose

row indicates the donor’s action and whose column indicates the recipient’s reputation
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(individual or stereotyped):

Stern Judging (SJ):

G B C G B

D B G

Simple Standing (SS):

G B C G G

D B G

Scoring (SC):

G B C G G

D B B

Shunning (SH):

G B C G B

D B B

For example, under Stern Judging, an observer will (1) endorse (with a good reputation)

a donor who either cooperates with a recipient with a good reputation (according to the

observer) or defects against a recipient with a bad reputation but (2) condemn (with a

bad reputation) a donor who cooperates with a bad recipient or defects against a good

recipient.

Following Sasaki et al. (2017) and Radzvilavicius et al. (2019), we allow for errors in

both strategy execution and reputation assessment. With probability 0 ≤ ue ≤ 1, a donor

makes an execution error, erroneously defecting while intending to cooperate. With

probability 0 ≤ ua ≤ 1, an observer makes an assessment error, erroneously assigning a

good reputation instead of a bad reputation, and vice versa.

3.5 Results

To investigate how the use of stereotypes affects cooperation, we use replicator

dynamics (Taylor and Jonker, 1978) to describe how the frequencies of strategies change

over time in an infinite population. Under these dynamics, strategies spread in the

population at rates proportional to their relative payoffs (see Materials and methods).

Following Sasaki et al. (2017), Radzvilavicius et al. (2019), Radzvilavicius et al. (2021),
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and Kessinger and Plotkin (2022), we assume that the timescale of reputations is faster

than that of strategy dynamics; in other words, reputations (either individualized or

stereotyped) are assumed to equilibrate before individuals consider updating their

strategies (see Materials and methods).

3.5.1 Cooperation and in-group favoritism in monomorphic popula-

tions

To establish baseline dynamics under stereotyping, we first study monomorphic

populations of discriminators with a fixed propensity to use stereotypes. This effectively

turns off strategy evolution (all individuals use the same pDISC strategy), allowing us to

isolate how equilibrium behavior and payoff depends on both the monitoring systems

(public, group-wise, private) and the likelihood of stereotyping (p). In particular, the

equilibrium reputations described below are independent of the payoff parameters b, c,

and η.

Under the Scoring (SC) norm, the equilibrium level of cooperation is independent of

whether the monitoring systems are public, group-wise, or private (Fig.C.1). But under

all other norms, we find that the more public the individual or stereotyped reputation

system, the higher the resulting level of cooperation (Fig.3.1 for Stern Judging; Fig.C.2

for Simple Standing; and Fig.C.3 for Shunning). In other words, for a given reputation

system (e.g., public) and probability of using stereotypes (e.g., p = 0.5), average

cooperation is lowest when stereotypes are private (∼62%, Fig.3.1A), intermediate when

group-wise (∼72%, Fig.3.1B), and highest when public (∼83%, Fig.3.1C). These results

are consistent with previous work on reputations, which has found that public

monitoring outperform private assessment, because the former facilitates greater

agreement among individuals on their views of one another (Hilbe et al., 2018; Okada

et al., 2017). Our results suggest that the same intuition extends to group-wise
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Figure 3.1: Group-wise monitoring promotes intermediate levels of cooperation
and in-group favoritism in monomorphic populations. We analyzed equilibrium
levels of cooperation under the Stern Judging norm among pDISC strategists with
a uniform propensity p to use stereotypes. Individuals are in two groups of equal
size (K = 2, ν1 = ν2 = 0.5). Each panel corresponds to a combination of monitor-
ing systems for reputations (rows) and stereotypes (columns). Solid lines indicate
average levels of cooperation in the population; dashed lines indicate average lev-
els of cooperation within (navy) and between (light blue) groups. Error rates are
ue = ua = 0.02. For analogous results for the Simple Standing, Scoring, and Shun-
ning norms, see Figs.C.1–C.3.

monitoring: a system in which knowledge about others’ standing is semi-public, i.e.,

shared within but not necessarily between groups, outperforms private monitoring but

underperforms fully public monitoring. And the benefits of monitoring systems that
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broadcast information, either to groups or to the entire populations, hold for both for

individual and stereotypical reputations.

In fact, in monomorphic populations, individual and stereotypical reputations

systems (public, group-wise, or private) have symmetric effects on cooperation (Fig.3.1),

as indicated by the symmetry across the diagonal in Fig.3.1 (Fig.3.1A vs. I, B vs. F, D

vs. H). For example, the level of cooperation at p = 0.2 under public individual

reputations and private stereotypes (Fig.3.1A) matches the level of cooperation at

p = 0.8 under private individual reputations and public stereotypes (Fig.3.1I). This

suggests that, in the absence of competing strategies, neither individual nor stereotypical

reputations are more effective at promoting a cooperative society per se; instead,

cooperation increases with more frequent use of whichever type of reputational

information is shared more widely across the population.

Moreover, the population maximizes the level of cooperation when individuals use

only individual (p = 0) or only stereotyped (p = 1) reputations. If individual and

stereotypical information are held at different scales, then cooperation is maximized at

either p = 0 or 1 (Fig.3.1A, B, D, F, H, I). If reputations both group-wise or both public,

cooperation is equally maximized at both ends (Fig.3.1C, E). This highlights that, in

general, the population does best when everyone uses individual assessment or

everyone stereotypes, at least when strategies are not evolving. The only exception is

when both types of reputations are held privately, in which case the cooperation level is

independent of p (Fig.3.1G).

Group-wise monitoring gives rise to a phenomenon not found under public or

private monitoring: in-group favoritism, in which individuals cooperate preferentially

with members of their own group (Fig.3.1B, D–F, H). This phenomenon is emergent: we

assume no behavioral strategies whose cooperation is conditional on group

memberships. Instead, group-wise monitoring ensures agreement among members of
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the same group (group members share the same view of all individuals in the

population) while creating possibility for disagreement among members of different

groups (groups can differ in how they view each individual in the population). These

different levels of agreement within and between groups, in turn, produce differential

in- and out-group cooperation. The gap between in- and out-group cooperation is most

pronounced when individuals are using only individual reputations (p = 0; Fig.3.1D–F)

or only stereotypes (p = 1; Fig.3.1B, E, H). The value(s) of p that maximizes this

divergence also maximizes cooperation in some (Fig.3.1D, E, H) but not all cases,

highlighting that in-group bias can but does not always boost global cooperation.

In-group favoritism is particularly strong under Stern Judging, relative to the other

three norms (Figs.C.1–C.3). This is likely because Stern Judging harshly punishes

discrepancies in assessment: under Stern Judging, a donor garners a bad reputation if

she cooperates with a recipient who is considered bad in the eyes of a third-party

observer, whereas under Simple Standing, for example, the donor would retain a good

reputation. Moreover, prior literature has found that the Stern Judging norm is also the

most effective at stimulating cooperation under indirect reciprocity (Santos et al., 2018);

indeed, Stern Judging is naturally favored over other norms in models of multi-level

selection (Cooney et al., in prep). To study the most salient effects of the group-wise

monitoring on cooperation, our analysis will hereafter focus exclusively on the Stern

Judging norm, but our approach is general and covers all four norms (Materials and

methods).

3.5.2 Evolution of stereotype use

We have shown that, under Stern Judging, each combination of monitoring systems has

an optimal level (or levels) of stereotype use that maximizes collective cooperation in

monomorphic populations. However, it remains unclear whether a stereotyping

propensity that is best for the collective will actually evolve in a population under
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Figure 3.2: Evolution of stereotype use. We use adaptive dynamics to predict which
invader types pQ can invade which resident types pR under Stern Judging. Results
shown are with individual and stereotype reputations held publicly (A, D), group-
wise (B, E), or privately (C, F); see Figs. C.4 and C.5 for expanded versions. Indi-
viduals are in two groups of equal size (K = 2, ν1 = ν2 = 0.5). (A–C) Pairwise
invasibility plots indicate parameter regions in which pQ can invade pR (white), i.e.,
invader payoff ΠQ exceeds resident payoff ΠR in the limit of negligible invader
frequency, or not (black) (Pairwise invasibility). Orange arrows indicate predicted di-
rections for the evolution of p. (D–F) Stochastic simulations in finite populations of
N = 50 with small, local mutations (Stochastic simulations) support the predictions
of pairwise invasibility analysis. Lines indicate mean p in the population over time.
Colors distinguish initial conditions (monomorphic populations with uniform p),
with 10 simulation runs per initial condition. Payoff parameters are b = 3, c = 1,
and η = 0.3; error rates are ua = ue = 0.02.

selection for increasing (individual-level) payoffs. Under what conditions do individuals

evolve to adopt stereotyping, a cognitively inexpensive heuristic, and how what effect

does the evolution of stereotype propensities have on cooperative in the resulting
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society? Conversely, is a population that adopts the more cognitively costly approach of

individual assessment resist invasion by those who use stereotypes?

To investigate whether individual-level selection favors stereotype use, we apply the

framework of adaptive dynamics (Geritz et al., 1998). We restrict our analysis to

discriminators (pDISC), and we let the the propensity for an individual to use

stereotypes p evolve according to biased imitation of individuals with high payoff. We

define ΠR and ΠQ as the per-round expected average payoff of the resident and invader

types with probabilities 0 < pR, pQ < 1 of using stereotypes, respectively. To determine

the conditions under which an invader with pQ can invade a resident population with

pR, we derive an analytical expression for the invasion fitness ΠR − ΠQ in the limit of

negligible invader frequencies, and we evaluate it numerically across a range of model

parameters (Fig.3.2; see also Materials and methods). To determine long-term population

dynamics, we also identify singular points 0 < p∗ < 1 and we characterize their

evolutionary stability (Fig.3.3; Materials and methods). Since p is restricted to p ∈ [0, 1],

we also consider whether the extremal values (p = 0 and 1) are evolutionary attractors.

Finally, to support the analysis of singular points and their stability in an infinite

population, we perform stochastic simulations in finite populations of N = 50

individuals with small, local mutations in p (Fig.3.2; Materials and methods).

Selection can favor stereotyping. But whether and to what extent stereotyping

evolves depends on the monitoring system—individual, group-wise, or public.

Figure 3.2 focuses on the cases where reputations are monitored at the same scale

(variable scales are included in Figs.C.4 and C.5). In this example, stereotyping can

evolve under group-wise or private monitoring but not under public monitoring

(Fig.3.2): under public monitoring, p = 0 (i.e., no stereotyping) is the only attractor

(Fig.3.2A, D); under group-wise and private monitoring, by contrast, maximum

stereotype use (p = 1) is an attractor (Fig.3.2B, C, E, F). In fact, under group-wise
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monitoring, there is a single repulsive singular point (Fig.3.2B, E): if the (monomorphic)

resident population starts out with pR below this value, then the population will evolve

toward complete reliance on individual reputations (p = 0); otherwise, the population

will adopt a high level of stereotyping (p = 1). Thus, unlike for cooperation levels—in

which group-wise assessments achieve intermediate performance between public and

private assessments (Fig.3.1)—the evolution of stereotyping propensity exhibits

bistability: a population may evolve to one or another stable propensity, depending on

the initial conditions (Fig.3.2).

These results suggest that the evolutionary dynamics of stereotype use are

potentially more complex than the dynamics of cooperation in monomorphic

populations. To better understand these dynamics, we analyze how the evolutionary

stability of stereotyping depends on key model parameters, namely the cost of accessing

reputations and the rate of errors in reputation assessment and strategy execution.

3.5.3 Evolutionary stability of stereotype use

Across monitoring systems, evolution favors stereotyping when access to individual

reputations are costly (Fig.3.3). In general, when η is small, p = 0 is the unique

evolutionary attractor; when η is large, p = 1 is the unique evolutionary attractor. Thus,

the population evolves toward no stereotyping when access to individual reputations is

inexpensive but towards full stereotyping when they are expensive. The one exception is

when both reputations are private, in which case p = 1 is the unique attractor for any

η > 0 ; selection is neutral in p for η = 0 (Fig.3.3G; see also Fig.C.6G).

This trend makes sense in light of the cost-precision trade-off between individual and

stereotyped reputations: individual reputations are more costly to use than stereotypes,

but they are simultaneously more precise an indicator each individuals’ standing

because, in our model, the stereotype as a group results from the assessment of a
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Figure 3.3: Evolutionarily stable levels of stereotyping and corresponding out-
comes for cooperation. We analyzed the stability of the singular points (p∗) of the
adaptive dynamics as well as the extremal values of p (0 and 1) as a function of
reputation access cost η in two groups of equal size (K = 2, ν1 = ν2 = 0.5). Each
panel corresponds to a combination of monitoring systems for individual reputa-
tions (rows) and stereotyped reputations (columns). Solid and empty circles are
attractive and repulsive points, respectively. Gray arrows indicate predicted direc-
tions for the evolution of p. The color of each circle indicates the average level of
cooperation in a monomorphic population of pDISC with p corresponding to that
circle (Fig.3.1). Size indicates difference between in- and out-group cooperation lev-
els (i.e., average in-group cooperation − average out-group cooperation); the greater
the difference, the larger the circle, and the stronger the preference toward cooper-
ating with one’s own group. Parameters: b = 3, c = 1, ue = ua = 0.02.
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randomly sampled individual in that group. When the cost to access individual

reputations η is sufficiently high, though, it exceeds benefit provided by increased

reputational precision, so that stereotyping becomes favorable.

While costly individual reputations promote stereotyping in general, the nature of

the transition from no stereotyping to full stereotyping varies across monitoring

systems. When individual reputations are held privately but stereotypes are not (i.e.,

they are held group-wise or publicly), the evolutionarily stable level of stereotype use

increases gradually from p = 0 to 1 with increasing η (Fig.3.3H, I). Intermediate values

of η lead to unique intermediate equilibria (0 < p∗ < 1): regardless of the initial

conditions, individuals will converge to a strategy that uses both individual and

stereotyped reputations with some probability. This strategy is sensible and intuitive: by

using both reputations in some proportions, one can strike a balance between the

benefits of reputational precision (higher for individual reputations) and costs of

cognitive burden (lower for stereotyped reputations).

When individual reputations are held group-wise or publicly, by contrast, there are

regions of bistability facilitated by backward bifurcations: at an intermediate value of η,

an attractive singular point emerges at a high level of stereotyping (e.g., p∗ ≈ 0.95 at

η = 0.4 in Fig.3.3C). Further increasing η increases the range of initial conditions (i.e., pR

of the initial monomorphic resident population) from which the population will evolve

towards an attractor at p > 0—until p = 0 loses stability, when the cost η is sufficiently

large.

This hysteretic patterns suggest that the use of individual reputations can be resistant

to small changes in access cost (Fig.3.3A–F): under group-wise or public reputations, if

one starts from a society whose individuals rely solely on reputations (p = 0), then a

small increase in η may not immediately trigger a shift toward stereotyping. But this

shift, when it does occur, will be sudden: under public reputations, for example, our
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analysis predicts a jump from p = 0 to 1 as η crosses ∼0.90 (Fig.3.3C). Stereotyping

behavior can also be ‘sticky’: in a population that relies only on stereotypes and never on

reputations (p = 1), merely decreasing the cost of accessing reputations would not

curtail use of stereotypes, at least not immediately.

So far, we have identified the cost of accessing individual reputations as a key driver

of stereotyping. This raises two questions: How do the other parameters in the payoff

function affect the evolution of stereotyping? And how does the evolution of stereotype

use propensity affect cooperation? We address the former first and return to the latter in

Consequences for cooperation.

Out[ ]=

individual reps. only

individual reps. only or

intermediate p* (bistable)

individual reps. only or

stereotyped reps. only (bistable)

intermediate p*

stereotyped reps. only

neutrality

Figure 3.4: Errors and costly reputations promote stereotype use. We show the
number and type of evolutionarily attractive values of p as a function of (A) benefit
of cooperation (b) and cost of accessing reputations (η) and (B) rates of assessment
(ua) and execution (ue) errors. We assume two groups of equal size (K = 2, ν1 = ν2 =
0.5) Results shown are with stereotyped reputations held publicly and individual
reputations held group-wise; see Fig. C.6 and Fig. C.7 for expanded versions with
all 9 combinations of monitoring systems. Light gray indicates parameter regions in
which stereotype use does not evolve (p = 0 in the only stable outcome). Hues of
purple indicate regions in which stereotype use is guaranteed to evolve (p∗ > 0 is
the only stable outcome). Hues of orange indicate regions of bistability (p = 0 and
p∗ > 0 are both stable outcomes), in which stereotype use may evolve depending
on initial conditions. Parameters: η = 0.3, b = 3, c = 1, ue = ua = 0.02.

We find that, for a fixed cooperation cost (c = 1), decreasing the benefit b of

cooperation promotes stereotyping behavior (Fig.3.4A, Fig.C.6). A lower b effectively
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increases the relative cost of using individual reputations, thus making stereotypes more

beneficial. As a result, given a fixed η, decreasing b shifts the system from a regime that

does not support stereotyping (light gray regions in Fig.3.4A) through bistable regimes

(light and dark orange regions in Fig.3.4A, in which both non-stereotyping and

stereotyping are possible outcomes depending on initial conditions) to regimes with a

single attractive point (light and dark purple regions in Fig.3.4A) in which stereotyping

will evolve regardless of initial conditions.

Interestingly, the evolutionary outcome is independent of the benefit of cooperation,

b, under private individual reputations (Fig.C.6, bottom row). Individuals gain b when

donors view them as having good reputations and therefore cooperate with them

(Individual reputations of discriminators). Under private monitoring, on average, invader

and resident individuals have identical individual reputations. (This is because when

two observers judge the same individual privately, their assessments are uncorrelated,

regardless of whether the focal individual uses pQ or pR.) As a result, for any value of b

residents and invaders receive equal amounts of cooperation. And so changing b has no

impact on their relative fitness and, consequently, on the evolution of stereotype

propensity.

In addition to the costs and benefits of cooperation, errors in reputation assessment

and strategy execution also facilitate the evolution of stereotyping (Fig.3.4B, Fig.C.7).

Because each assessment introduces a possibility for an erroneous judgment, assessment

errors are more harmful for individual reputations than for stereotyped reputations: a

single observation is required to assign a stereotype to a group of N/K individuals,

whereas N/K observations are required to assign N/K individual reputations.

Stereotyping thus confers a roughly N/K-fold increase in the accuracy of evaluations.

Execution errors also penalize payoffs under individual reputations more than they do

under stereotypes: if a donor defects erroneously, she becomes much more likely to
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garner a bad individual reputation—at least under Stern Judging—which, in turn,

reduces the likelihood that others cooperate with her; however, the group to which she

belongs could maintain a good stereotype if the donor sampled for stereotype

assessment is viewed as ‘good.’ Thus, relying on stereotypes can help mitigate the

vicious cycle of bad reputations and diminished cooperation.

Our evolutionary analysis thus far has focused on parameters that affect

individual-level payoffs (η, b) or accuracy (ua, ue). We now return to the question of how

the monitoring systems affect the evolutionary stability of stereotyping. To compare

evolutionary outcomes across scenarios with and without bistability, we compute the

expected level of stereotyping (expected p) (Fig.3.5) as the weighted average of the

evolutionarily attractive values of p, where the weight for each p is the range of initial

values of p0 ∈ [0, 1] that will evolve toward that p—that is, the weight of each attractive

point is given by the volume of its basin of attraction. This procedure is equivalent to

sampling initial conditions—monomorphic pDISC populations—uniformly at random,

letting p evolve, and computing the average long-term p in the population.

Plotting expected p against access cost η reveals that, in general, the more private the

monitoring of individual reputations, the greater the expected propensity to use

stereotypes (Fig.3.5). Given a fixed stereotype monitoring system (private, group-wise,

or public), expected p becomes non-zero at a lower η when individuals reputations are

held privately (light olive lines in Fig.3.5) than when they are shared (i.e., held

group-wise or publicly; olive and dark olive lines, Fig.3.5).

We can understand these results in terms of the trade-off between precision and

disagreement under each monitoring system. As discussed previously, in our model,

stereotyped reputations are less precise than individual reputations because the former

is based on the behavior of a single randomly sampled donor. However, stereotypes

provide a benefit that potentially counteracts the cost of diminished precision: given a
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Figure 3.5: Private assessments of individual reputations promote the use of
stereotypes. We analyzed the expected level of stereotyping (expected p) as a func-
tion of the cost to access individual reputations (η) under Stern Judging and in two
groups of equal size (K = 2, ν1 = ν2 = 0.5). Expected p is computed as the weighted
average of evolutionarily attractive values of p, where the weight for each value is
the range of initial values of p that will evolve toward that value (see text for an
expanded discussion). Stereotyped reputations are public (A), group-wise (B), or
private (C). Colors indicate the monitoring system for individual reputations. Pa-
rameters: b = 3, c = 1, ua = ue = 0.02.

scale of monitoring, stereotypes constrain the space of possible disagreement relative to

individual reputations simply because the former requires fewer assessments (Table 3.1).

This reduction in disagreement is particularly beneficial when the underlying reputation

monitoring system allows high levels of disagreement, i.e., when reputations are

monitored privately. As a result, for a fixed access cost to individual reputations η and

stereotype system, the expected use of stereotypes is highest under privately held

reputations (Fig.3.5A–C).

3.5.4 Consequences for cooperation

We have shown that selection can favor the use of stereotypes when individual

reputations are relatively costly to access; when strategy execution and moral judgments

are prone to errors; and when individuals hold private view of others. These findings

mean that, in principle, stereotyping behavior could be reduced by eliminating these

conditions. But we may not always want to curb the use of stereotypes. In fact, as we
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saw in Fig.3.1, stereotyping behavior can be either beneficial or harmful from the

perspective of cooperation. When selection acts on stereotyping propensity, how

cooperative is the resulting society? To address this question, we study the average level

of cooperation in a monomorphic population of discriminators pDISC at each

evolutionarily attractive value of p (Fig.3.3).

We find that whether the transition from no stereotyping to full stereotyping

improves cooperation depends on the underlying reputation and stereotype systems. In

general, when stereotypes are more public than reputations (panels below the diagonal,

Fig.3.3F, H, I), the greater the access cost η, the higher the level of cooperation achieved

at the corresponding evolutionarily attractive p. Conversely, when stereotypes are less

public than reputations (panels above the diagonal, Fig.3.3A, B, D), reducing η improves

cooperation at the attractor. When stereotypes and reputations are monitored at the

same scale, η has little effect on the level of cooperation at attractive p (with the

exception of the bistable region in Fig.3.3C, in which cooperation dips slightly at p∗ < 1).

But group-wise monitoring systems introduce an important subtlety. Under private

individual reputations and group-wise stereotypes, higher access cost (η) increases

cooperation while simultaneously increasing the gap between in-group and out-group

cooperation (Fig.3.3H); the case with individual reputations shared group-wise and

stereotypes held privately exhibits a similar effect but in reverse direction of η (Fig.3.3D).

This highlights an asymmetry that arises from the interplay between the evolutionary

dynamics of reputation use and the emergence of in-group bias (Fig.3.1): when

cooperation increases via the increased use of group-wise reputations (individual or

stereotyped), the boost in cooperation benefits in-group interactions more than it helps

out-group interactions.
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3.6 Discussion

Social norms and reputations catalyze altruistic behavior in human societies. Most

theoretical studies on indirect reciprocity assume that individuals decide whether to

cooperate with others based on their individual moral standings, i.e., reputations based

on their prior actions (Hilbe et al., 2018; Nowak and Sigmund, 1998b, 2005; Ohtsuki and

Iwasa, 2004, 2006; Okada et al., 2017, 2018; Uchida, 2010). However, individualized

reputations may be cognitively costly to assess and access. This challenge is particularly

relevant in modern societies, in which cooperative interactions often involve strangers

whose reputational information may be difficult to obtain. As a result, individuals may

resort to heuristic, generalized reputations based on social affiliations: stereotypes.

In this chapter, we have explored how stereotype use and its evolution affect indirect

reciprocity. In our model, conditional cooperators (discriminators) probabilistically use

either individual or stereotyped reputations of potential interaction partners to

determine whether to cooperate. A discriminator is thus characterized by her propensity

to use stereotypes.

Among discriminators with a uniform stereotype use propensity, we find that

group-wise reputations promote cooperation more successfully than public reputations

but less so than public reputations. Interestingly, group-wise monitoring systems also

facilitate emergent in-group favoritism: individuals cooperate preferentially with

members of their own group, despite playing a strategy conditional only on reputations

and not on group memberships. This suggests that in-group bias—a phenomenon

widely observed in both real-world and laboratory settings (Tajfel, 1982; Tajfel et al.,

1971; Yamagishi and Mifune, 2008)—can arise as a function of differential access to

information, even if individuals harbor no preferences toward in- or out-groups a priori.
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Future work further needs to investigate structured reputation systems, particularly

those with multiple groups or public institutions (Kessinger and Plotkin, 2022).

We have also analyzed whether stereotype use can spread via social imitation. We

find a rich set of outcomes: populations can evolve to never, always, or sometimes use

stereotypes, or arrive at two different levels of stereotyping depending on initial

conditions. As expected from the cost-precision trade-off between individual and

stereotyped reputations, players tend to adopt stereotyping behavior when individual

standings are costly to access.

However, high access costs are not the sole driver. Stereotype use is also favored

when strategy execution and moral assessments are error-prone. Stereotyping reduces

the number of opportunities for assessment errors: fewer observations are required to

assign a stereotype to a group than to assign individual reputations to the corresponding

members. Also, while a single erroneous action can have immediate effects on the

donor’s status, it has comparatively little impact on the status of her group. For these

reasons, indirect reciprocity based on stereotypes may be less sensitive to noisy actions

and assessments than its classical counterpart based on individualized reputations

(Okada et al., 2017, 2018; Uchida, 2010). For the reader distressed by the prevalence of

quick, harsh judgments cast on misdeeds—i.e., cancel culture—this may be good news:

in a world of imperfect individuals, generalized reputations can provide a buffer against

mistaken actions and judgments. But stereotypes can be a double-edged sword:

group-based reputations may obscure individual errors that merit punishment, allowing

offenders to remain in good standing when they do not deserve to.

But the question remains: can the spread of stereotyping behavior via social imitation

ever improve cooperation? Our analysis reveals that, on average, stereotyping can

indeed lead to higher cooperation levels, but only if stereotype information is more

publicly available than individual reputations. However, group-wise monitoring
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introduces an important nuance: under private individual reputations and group-wise

stereotypes, increased use of stereotypes promotes cooperation and in-group favoritism

simultaneously. This results in an asymmetric improvement in cooperation levels, with

individuals cooperating more on average but primarily with their in-group members.

This finding bodes ill in a world where political tribes hold different, antagonistic

stereotypes of one another: in the United States, for example, both Democrats and

Republicans say that members of the other party are hypocritical, selfish, and

closed-minded (Iyengar et al., 2019). Our results suggest that, under such polarization,

increased reliance on stereotypes may only entrench in-group preference without

improving society-wide cooperation.

Our model assumes arguably the most straightforward mechanism for assigning

stereotypes. To form the stereotyped reputation of a group, an observer assesses a

random member of that group and applies her reputation to the whole group. Because

few studies have explored stereotypes in the context of cooperation, we have used this

simple setup to establish their baseline effects. But this approach neglects the complex

factors on which stereotypes may depend. For example, evidence shows that individuals

preferentially recall information consistent with existing stereotypes (Hilton and von

Hippel, 1996; Kashima, 2000). As a result, stereotypes may be slower to change than

individual reputations: observing a single “bad” behavior by a member of a

stereotypically “good” group may not alter the observer’s stereotype of that group.

Future research could explore these additional mechanisms for stereotype formation.

Our study also focuses on a simple population structure. While we have assumed

that strategic interactions are well-mixed, group memberships can skew interaction

patterns so that individuals interact more frequently with in-group members than with

out-group members. A simple extension could consider how such interaction insularity

affects the dynamics of stereotyping. Variation in group size may also play a key role in
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forming stereotypes. Social cognition research shows that people tend to view minority

groups more negatively than majority groups, even if they behave identically (Hilton

and von Hippel, 1996). However, it remains unclear how this minority bias affects

indirect reciprocity. While our analysis has focused on two equally sized groups, our full

model allows for more complex structures, including arbitrarily many groups of

arbitrary sizes. Future work could take advantage of this flexibility to investigate how

group size variation influences the use of individual versus stereotyped reputations.

Finally, contrary to our assumption that each individual remains a member of one social

group, group memberships can be dynamic and overlapping—even within a lifetime,

one can belong to different cultural, familial, or occupational groups at different times.

Although we have tools for studying cooperation in temporal social networks (Cavaliere

et al., 2012; Fu et al., 2012; Tarnita et al., 2009a), little is known about the co-evolution of

population structure, individual reputations, and stereotypes. These topics remain

important directions for future research.

3.7 Materials and methods

The notations used in our analyses are summarized in Table 3.2.

3.7.1 Replicator dynamics

We study the evolutionary dynamics of strategies using replicator dynamics in an

infinitely large population (Taylor and Jonker, 1978). We consider three main types of

strategies: Always Cooperate (ALLC), denoted X; Always Defect (ALLD), denoted Y;

and Discriminate (pDISC), denoted Z. Discriminators condition their behavior on their

views of others: pDISC cooperates with recipients who are “good” and defects against

those who are “bad,” where good or bad is determined based on the recipients’
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Parameter Definition
K number of groups

qC
probability that cooperating with a bad individual yields a good reputation
(barring errors)

qD
probability that defecting against a bad individual yields a good reputation
(barring errors)

b benefit of cooperation
c cost of cooperation
η cost of accessing individual reputations

p probability that a pDISC uses stereotyped reputations rather than individual
reputations (stereotype use propensity)

ua
probability that a bad donor is accidentally assigned a good reputation (as-
sessment error)

ue
probability that a donor intending to cooperate accidentally defects (execu-
tion error)

ϵ
probability that an individual who intends to cooperate with a recipient with
a good reputation is assigned a good reputation (ϵ = (1− ue)(1− ua)+ ueua)

PXY
probability that a donor intending to Y ∈{cooperate, defect} with a recipient
whom the observer views as X ∈{good, bad} is viewed as good

Variable Definition
gX probability that an ALLC has a good reputation
gY probability that an ALLD has a good reputation
gZ probability that a pDISC has a good reputation
νI fraction of the population in group I
f I
i frequency of strategy i in group I

ΠI
i fitness of a strategy i individual in group I

Π̄I average fitness of individuals in group I

gI,J
i

fraction of strategy i individuals in group I who have good individual repu-
tations in the eyes of J

gI,J fraction of I individuals who have good individual reputations in the eyes of
J

gI,J
S

fraction of I individuals who have good stereotyped reputations in the eyes
of J

Table 3.2: Parameters and variables used in pairwise invasibility analysis.

stereotyped reputations with probability p and based on their individual reputations

with probability 1 − p. We assume that p is fixed for a given pDISC.
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Individuals are distributed among K non-overlapping groups, with each group I

containing fraction νI of the population (∑K
I=1 νI = 1). However, we assume that

interactions are well-mixed: every individual plays a game with every other individual.

We also assume global imitation: individuals can choose to imitate anyone in the

population, not just those within their groups.

Let fi be the frequency of strategy i ∈ {X, Y, Z} in the total population and f I
i be the

frequency of strategy i in group I ∈ {1, . . . , K}, such that fi = ∑I νI f I
i . The replicator

dynamics (see Kessinger and Plotkin (2022) for the derivation) follows

ḟ I
i = f I

i ∑
J

νJ

(
ΠJ

i − Π̄J
)

. (3.1)

Here, ΠI
i is the average fitness of strategy i individuals in group I; Π̄I is the average

fitness of group I, given by Π̄I = ∑i f I
i ΠI

i .

The fitness of each individual is the average expected payoff earned from the

donation game. In each round, each individual interacts once as a donor and once as a

recipient with every other individual in the population. As a recipient, each individual

earns a benefit b from every interaction with a donor who cooperates, either a cooperator

(ALLC) or a discriminator (pDISC) who views the recipient (the focal individual) as

good. As a donor, a cooperator (ALLC) pays a cost c to cooperate in every interaction; a

defector (ALLD) never pays the cost; and a discriminator (pDISC) pays the cost only

when interacting with a recipient with a good standing. A pDISC pays an additional η

per interaction when using a recipient’s individual reputation to determine her standing

but not when using her stereotyped reputation. Finally, with probability 0 ≤ ue ≤ 1, a

donor erroneously defects while intending to cooperate.
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Altogether, the average fitness of each strategy in group I is given by

ΠI
X = (1 − ue)

[
b ∑

J
νJ

(
f J
X + f J

Z[(1 − p)gI,J
X + pgI,J

S ]
)
− c

]
,

ΠI
Y = (1 − ue)

[
b ∑

J
νJ

(
f J
X + f J

Z[(1 − p)gI,J
Y + pgI,J

S ]
)]

,

ΠI
Z = (1 − ue)

[
b ∑

J
νJ

(
f J
X + f J

Z[(1 − p)gI,J
Z + pgI,J

S ]
)
− c[(1 − p)g•,I + pg⋆,I ]

]
− η(1 − p) ,

(3.2)

where we adopt and extend the notation in Kessinger and Plotkin (2022):

• gI,J
i , i ∈ {X, Y, Z}, is the fraction of group I members using strategy i who have

good individual reputations in the eyes of group J;

• gI,J
S is the fraction of group I members who have good stereotyped reputations in

the eyes of group J;

• g•,I = ∑J νJ ∑i f J
i gJ,I

i is the fraction of individuals in the whole population who

have good individual reputations in the eyes of group I; and

• g⋆,I = ∑J νJ gJ,I
S is the fraction of individuals in the whole population who have

good stereotyped reputations in the eyes of group I.

In Eq.(3.2), the quantity (1 − p)gI,J
i + pgI,J

S is the probability that a strategy i individual

in group I receives cooperation from discriminators in group J. The quantity

(1 − p)g•,I + pg⋆,I gives the fraction of individuals in the population a discriminator

pDISC sees as good and therefore cooperates with.

3.7.2 Reputation dynamics

We assume that reputations equilibrate more quickly than strategies; in other words, the

timescale of reputations is faster than that of strategy dynamics (Radzvilavicius et al.,

2021, 2019; Sasaki et al., 2017). After all games in a round are complete, each

observer—specified for each monitoring system as described in Table 3.1—observes an
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independent, random interaction of each donor (in the case of individual reputations) or

a random interaction of a randomly selected donor in each group (in the case of

stereotyped reputations). In the former, the observer evaluates each donor according to

the social norm and the individual reputation of the recipient; in the latter, the observer

applies the social norm to the stereotype of the recipient’s group instead.

Social norms and probability of being assigned a good reputation. The four

second-order norms considered in our model share two entries in the norm matrix:

cooperating with a recipient who is good is considered good, as is defecting against a

recipient who is in bad is considered bad. But the norms differ in (i) whether

cooperating with a bad recipient is considered good and (ii) whether defecting against a

bad recipient is considered good. Suppose that cooperating with a bad recipient yields a

good standing with probability qC and defecting against a bad individual yields a a good

standing with probability qD. Then the four norms can be parameterized as in Table 3.3.

Norm qC qD
Stern Judging 0 1

Simple Standing 1 1
Scoring 1 0

Shunning 0 0

Table 3.3: A parameterization of the four norms. Here qC is the probability that
cooperating with a bad recipient yields a good standing and qD is the probability
that defecting against a bad individual yields a a good standing.

Computing the equilibrium reputations involves keeping track of observations with

different combinations of (a) observer view (does the observer view the recipient as

good or bad?) and (b) donor intent (did the donor view the recipient as good (or bad)

and therefore intend to cooperate (or defect)?). To facilitate this, we define the following
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quantities:

PGC = (1 − ue)(1 − ua) + ueua = ε ,

PGD = ua ,

PBC = qC(ε − ua) + qD(1 − ε − ua) + ua ,

PBD = qD(1 − 2ua) + ua ,

(3.3)

where PXY is the probability that a donor who intends to Y ∈{cooperate (C), defect (D)}

with a recipient viewed as X ∈{good, bad} by the observer is assigned a good

reputation (individual or stereotyped). For example, consider PGC: a donor who intends

to cooperate with a recipient who has a good individual reputation in the eyes of the

observer can maintain a good individual reputation when the donor either (i)

successfully cooperates (with probability 1 − ue) and is correctly assigned a good

individual reputation (with probability 1 − ua), or (ii) erroneously defects (with

probability ue) and is erroneously assigned a good individual reputation (with

probability ua).

Individual reputations of cooperators and defectors. A cooperator (ALLC) gains a

good individual reputation by either

• interacting with someone with a good individual reputation (probability g•,I),

intending to cooperate, and successfully being assigned a good individual

reputation (probability PGC), or

• interacting with someone with a bad individual reputation (probability 1 − g•,I),

intending to cooperate, and erroneously being assigned a good individual

reputation (probability PBC).
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Thus, the average individual reputation for cooperators is given by

gI,I
X = gJ,I

X = g•,I PGC + (1 − g•,I)PBC . (3.4)

Similarly, a defector (ALLD) gains a good individual reputation by either

• interacting with someone with a good individual reputation (probability g•,I),

intending to defect, and erroneously being assigned a good individual reputation

(probability PGD), or

• interacting with someone with a bad individual reputation (probability 1 − g•,I),

intending to defect, and successfully being assigned a good individual reputation

(probability PBD).

Thus, the average individual reputation for defectors is given by

gI,I
Y = gJ,I

Y = g•,I PGD + (1 − g•,I)PBD . (3.5)

Individual reputations of discriminators. Throughout the following, we assume,

without loss of generality, that the observer is in group I, the donor in group J, and the

recipient in group L.

A discriminator (pDISC) in group I with probability p of using stereotypes can gain a

good individual reputation by

(i) using individual reputations (probability 1 − p)

(a) that are shared between the donor and the observer (i.e., individual

reputations are public, or they are group-wise and donor and observer belong

to the same group), and
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* interacting with someone with a good individual reputation (probability

g•,I), intending to cooperate, and successfully being assigned a good

individual reputation (probability PGC), or

* interacting with someone with a bad individual reputation (probability

1 − g•,I), intending to defect, and successfully being assigned a good

individual reputation (probability PBC).

(b) that are not shared between the donor and the observer (i.e., individual

reputations are private, or they are group-wise and donor and observer

belong to different groups), and

* interacting with someone the donor (the focal discriminator) views as

good (probability gL,J
i ) and the observer views as good (probability gL,I

i ),

intending to cooperate, and being assigned a good individual reputation

(probability PGC), or

* interacting with someone the donor views as bad (probability 1 − gL,J
i )

and the observer views as good (probability gL,I
i ), intending to defect, and

being assigned a good individual reputation (probability PGD).

* interacting with someone the donor views as good (probability gL,J
i ) and

the observer views as bad (probability 1 − gL,I
i ), intending to cooperate,

and being assigned a good individual reputation (probability PBC).

* interacting with someone the donor views as bad (probability 1 − gL,J
i )

and the observer views as bad (probability 1 − gL,I
i ), intending to defect,

and being assigned a good individual reputation (probability PBD).

(ii) using stereotyped reputations (probability p), and

– interacting with someone the donor (the focal discriminator) views as good

(probability gL,J
S ) and the observer views as good (probability gL,I

i ), intending
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to cooperate, and being assigned a good individual reputation (probability

PGC).

– interacting with someone the donor views as bad (probability 1 − gL,J
S ) and

the observer views as good (probability gL,I
i ), intended to defect, and being

assigned a good individual reputation (probability PGD).

– interacting with someone the donor views as good (probability gL,J
S ) and the

observer views as bad (probability 1 − gL,I
i ), intending to cooperate, and being

assigned a good individual reputation (probability PBC).

– interacting with someone the donor views as bad (probability 1 − gL,J
S ) and

the observer views as bad (probability 1 − gL,I
i ), intending to defect, and being

assigned a good individual reputation (probability PBD).

Altogether, a pDISC in group I will have a good individual reputation

(i)(a) with probability gJ,I
public = g•,I PGC + (1 − g•,I)PBD, when using individual

reputations that are shared,

(i)(b) with probability gJ,I
private = gJ,I

α,1PGC + gJ,I
β,1PGD + gJ,I

γ,1PBC + gJ,I
δ,1PBD, when using

individual reputations that are not shared, and

(ii) with probability gJ,I
independent = gJ,I

α,2PGC + gJ,I
β,2PGD + gJ,I

γ,2PBC + gJ,I
δ,2PBD, when using

stereotyped reputations,
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where we define the following disagreement terms for convenience:

gJ,I
α,1 = ∑

L
νL ∑

i
f L
i gL,I

i gL,J
i

gJ,I
β,1 = ∑

L
νL ∑

i
f L
i gL,I

i (1 − gL,J
i ) = g•,I − gJ,I

α,1

gJ,I
γ,1 = ∑

L
νL ∑

i
f L
i (1 − gL,I

i )gL,J
i = g•,J − gJ,I

α,1

gJ,I
δ,1 = ∑

L
νL ∑

i
f L
i (1 − gL,I

i )(1 − gL,J
i ) = 1 − g•,I − g•,J + gJ,I

α,1

(3.6)

gJ,I
α,2 = ∑

L
νLgL,J

S ∑
i

f L
i gL,I

i = ∑
L

νLgL,J
S gL,I

gJ,I
β,2 = ∑

L
νL(1 − gL,J

S )∑
i

f L
i gL,I

i = ∑
L

νL(1 − gL,J
S )gL,I = g•,I − gJ,I

α,2

gJ,I
γ,2 = ∑

L
νLgL,J

S ∑
i

f L
i (1 − gL,I

i ) = ∑
L

νLgL,J
S (1 − gL,I) = g⋆,J − gJ,I

α,2

gJ,I
δ,2 = ∑

L
νL(1 − gL,J

S )∑
i

f L
i (1 − gL,I

i ) = ∑
L

νL(1 − gL,J
S )(1 − gL,I) = 1 − g•,I − g⋆,J + gJ,I

α,2

(3.7)

Putting these together, we obtain equations for the average individual reputation of each

discriminator subtype:

gJ,I
Q = (1 − pQ)

[
(1 − AI J)

(
gJ,I

private
)
+ AI J

(
gJ,I

public

)]
+ pQ

[
gJ,I

independent

]
,

gJ,I
R = (1 − pR)

[
(1 − AI J)

(
gJ,I

private
)
+ AI J

(
gJ,I

public

)]
+ pR

[
gJ,I

independent

]
,

(3.8)

where

AI J =


0 private individual reputations ,

δI J group-wise individual reputations ,

1 public individual reputations .
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Finally, we can write the average individual reputation of individuals in group J in the

eyes of I as

gJ,I = f J
QgJ,I

Q +
(

1 − f J
Q

)
gJ,I

R

=
[

f J
Q
(
1 − pQ

)
+
(
1 − f J

Q
)
(1 − pR)

] [
(1 − AI J)

(
gJ,I

private
)
+ AI J

(
gJ,I

public

)]
+
[

f J
Q pQ +

(
1 − f J

Q
)

pR

] [
gJ,I

independent

] (3.9)

where f J
Q
(
1 − pQ

)
+
(
1 − f J

Q
)
(1 − pR) is the probability that a J individual uses an

individual reputation in a given interaction.

Stereotyped reputations. By similar logic, a pDISC in group I will have a good

stereotyped reputation

(iii) with probability gJ,I
S,independent = gJ,I

α,3PGC + gJ,I
β,3PGD + gJ,I

γ,3PBC + gJ,I
δ,3PBD, when using

individual reputations,

(iv)(a) with probability gJ,I
S,public = g⋆,I PGC + (1 − g⋆,I)PBD, when using shared stereotyped

reputations, and

(iv)(b) with probability gJ,I
S,private = gJ,I

α,4PGC + gJ,I
β,4PGD + gJ,I

γ,4PBC + gJ,I
δ,4PBD, when using

private stereotyped reputations,

where we define the following disagreement terms for convenience:

gJ,I
α,3 = ∑

L
νLgL,I

S ∑
i

f L
i gL,J

i = ∑
L

νLgL,I
S gL,J

gJ,I
β,3 = ∑

L
νLgL,I

S ∑
i

f L
i (1 − gL,J

i ) = ∑
L

νLgL,I
S (1 − gL,J) = g⋆,I − gJ,I

α,3

gJ,I
γ,3 = ∑

L
νL(1 − gL,I

S )∑
i

f L
i gL,J

i = ∑
L

νL(1 − gL,I
S )gL,J = g•,J − gJ,I

α,3

gJ,I
δ,3 = ∑

L
νL(1 − gL,I

S )∑
i

f L
i (1 − gL,J

i ) = ∑
L

νL(1 − gL,I
S )(1 − gL,J) = 1 − g⋆,I − g•,J + gJ,I

α,3,

(3.10)
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gJ,I
α,4 = ∑

L
νLgL,I

S gL,J
S

gJ,I
β,4 = ∑

L
νLgL,I

S (1 − gL,J
S ) = g⋆,I − gJ,I

α,4

gJ,I
γ,4 = ∑

L
νL(1 − gL,I

S )gL,J
S = g⋆,J − gJ,I

α,4

gJ,I
δ,4 = ∑

L
νL(1 − gL,I

S )(1 − gL,J
S ) = 1 − g⋆,I − g⋆,J − gJ,I

α,4.

(3.11)

Using these terms, we can write an equation for the average stereotyped reputation of

group J in the eyes of I:

gJ,I
S = f J

QgJ,I
S,Q +

(
1 − f J

Q

)
gJ,I

S,R

=
[

f J
Q
(
1 − pQ

)
+
(
1 − f J

Q
)
(1 − pR)

] [
gJ,I

S,independent

]
+
[

f J
Q pQ +

(
1 − f J

Q
)

pR

] [
(1 − BI J)

(
gJ,I

S,private
)
+ BI J

(
gJ,I

S,public

)]
.

(3.12)

with

BI J =


0 private stereotyped reputations ,

δI J group-wise stereotyped reputations ,

1 public stereotypes .

3.7.3 Pairwise invasibility

We now turn to the evolution of stereotype use. Our goal is to determine the level(s) of

stereotyping that are evolutionarily attractive. To do so, we use the framework of

adaptive dynamics (Geritz et al., 1998) and perform pairwise invasibility analysis in

p—that is, we investigate which invaders pQDISC (with stereotyping probability

0 < pQ < 1, denoted ZQ) can invade a given resident population pRDISC (with

stereotyping propensity 0 < pR < 1, denoted ZR).
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Let f I
Q and fR

I be the frequency of pQDISC and pRDISC individuals in group I,

respectively. The replicator dynamics for ḟ I
Q is given by Eq.(3.1) with i ∈ {ZQ, ZR}.

Then, the frequency of ZQ individuals in the full population follows

ḟQ = ∑
I

νI ḟ I
Q = ∑

I
νI f I

Q ∑
J

νJ

(
ΠJ

Q − Π̄J
)
= fQ ∑

J
νJ

(
1 − f J

Q

) (
ΠJ

Q − ΠJ
ZR

)
, (3.13)

where the last equality follows from the fact that Π̄J = f J
QΠQ

J + (1 − f J
Q)ΠR

J .

To determine when pQDISC can invade pRDISC, we first compute the partial

derivative of ḟQ with respect to fQ, evaluated at fQ = 0. Noting that ∂ f I
Q/∂ fQ

= (∂ fQ/∂ f I
Q)

−1 = ν−1
I and that fQ = 0 means f I

Q = 0 for all I, we have

∂ ˙fQ

∂ fQ

∣∣∣∣
fQ=0

= ∑
J

νJ

(
1 − f J

Q − ν−1
J fQ

) (
ΠQ

J − ΠR
J
) ∣∣∣∣

fQ=0
+ fQ ∑

J
νJ

(
1 − f J

Q

) ∂(ΠQ
J − ΠR

J)

∂ fQ

∣∣∣∣
fQ=0

= ∑
J

νJ

(
ΠQ

J − ΠR
J
) ∣∣∣∣

fQ=0

Thus, pQDISC will invade resident pRDISC if and only if

∂ ˙fQ

∂ fQ

∣∣∣∣
fQ=0

= ∑
J

νJ

(
ΠQ

J − ΠR
J
) ∣∣∣∣

fQ=0
> 0 . (3.14)

As in Eq.(3.2), the average fitness of pQDISC and pRDISC in group I are, respectively,

ΠQ
I = (1 − ue)

[
b ∑

J
νJ

{(
f J
Q(1 − pQ) + (1 − f J

Q)(1 − pR)
)

gI,J
Q +

(
f J
Q pQ + (1 − f J

Q)pR

)
gI,J

S

}
−c
(
(1 − pQ)g•,I + pQg⋆,I

) ]
− η(1 − pQ) ,

ΠR
I = (1 − ue)

[
b ∑

J
νJ

{(
f J
Q(1 − pQ) + (1 − f J

Q)(1 − pR)
)

gI,J
R +

(
f J
Q pQ + (1 − f J

Q)pR

)
gI,J

S

}
−c
(
(1 − pR)g•,I + pRg⋆,I

) ]
− η(1 − pR) .
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Evaluating these at fQ = 0 and substituting them into Eq.(3.14), we can express the

condition for invasibility as

(1 − ue)∑
I

νI

[
b ∑

J
νJ (1 − pR)

(
gI,J

Q − gI,J
R

)
− c(pQ − pR)

(
−g•,I + g⋆,I

) ]∣∣∣∣∣
fQ=0

+ η(pQ − pR) > 0 .

(3.15)

Equivalently, the critical benefit-to-cost ratio for invasibility is given by

(
b
c

)∗
=

(pQ − pR)
(

∑I νI
(

g⋆,I − g•,I)− η
c(1−ue)

)
(1 − pR)∑I ∑J νIνJ

(
gI,J

Q − gI,J
R

) ∣∣∣∣∣
fQ=0

. (3.16)

The direction of inequality (e.g., whether invasion is possible with b/c above or below

this quantity) depends on the sign of the denominator. The denominator corresponds to

the ‘benefit’ of switching from ZR to ZQ resulting from the increased probability that

others cooperate with the focal individual (i.e., viewed as having a good individual

reputation). The numerator corresponds to the ‘cost’ of this switch, given by (change in

probability of using individual reputations) × (difference in probability that a donor

sees a recipient as good when using stereotyped vs individual reputations—i.e., effective

reduction in cost when using the former instead of the latter).

This threshold provides some intuition for when ZQ can invade ZR:

• If the ‘benefit’ of switching from ZR to ZQ is positive, then ZQ can invade ZR iff

(b/c) < (b/c)∗, which requires pQ > pR. Invasibility is enhanced ((b/c)∗ is larger)

when

(a) invader ZQ uses individual reputations much more frequently relative to ZR

(larger pQ − pR);

(b) individual reputations are cheaper to access (smaller η); or

(c) resident ZR tends to use stereotypes more often (larger pR).
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• If the ‘benefit’ of switching from ZR to ZQ is negative, then ZQ can invade ZR iff

(b/c) > (b/c)∗.

Note that the stereotype term gI,J
S does not appear explicitly in Eq.(3.15) or Eq.(3.16).

This makes sense because switching strategies has no immediate impact on one’s

stereotype in the eyes of others—stereotypes are tied to group memberships, not

strategies.

Finding equilibrium reputations at fQ = 0. When evaluating the reputations at

fQ = 0, we can make several simplifications. First, the fraction of group J individuals

with a good individual reputation in the eyes of I is

gJ,I∣∣
fQ=0 = ∑

i
f J
i gJ,I

i

∣∣
fQ=0 = gJ,I

R , (3.17)

which implies g•,I
∣∣

fQ=0 = ∑J νJ gJ,I
∣∣

fQ=0 = ∑J νJ gJ,I
R . Also, in Eq.(3.6), we have

gJ,I
α,1 = ∑

L
νL ∑

i
f L
i gL,I

i gL,J
i = ∑

L
νLgL,I

R gL,J
R . (3.18)

This means that gJ,I
R appears nowhere in the equations for individual (Eq.(3.9)) and

stereotyped (Eq.(3.12)) reputations (which makes sense in the limit of negligibly few

invaders ZR). Hence, we only need to solve a system of eight equations for (gJ,I
R =)gJ,I

(Eq.(3.9)) and gJ,I
S (Eq.(3.12)) with I, J ∈ {1, 2} to find the equilibrium reputations. We

then substitute these values into Eq.(3.15) to numerically identify parameter conditions

under which ZQ can invade ZR.

3.7.4 Stochastic simulations

We also perform stochastic simulations in finite populations of N = 50 discriminators

(pDISC). We assume that, initially, all individuals are characterized by a single stereotype
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use propensity p, but allow for subsequent variation in p arising from the stochastic

evolutionary dynamics. Both individual and stereotyped reputations are initialized

randomly, i.e., each is either good or bad with equal probability. All individuals in a

given simulation follow the same prescribed social norm (Social norms) and adhere to the

prescribed monitoring systems for reputations (Monitoring systems for reputations).

In each generation, individuals undergo multiple rounds of games and reputation

updates. A round consists of two steps. First, every individual interacts with everyone

in the population (including herself), once as a donor and once as a recipient; whether

the donor cooperates with the recipient depends on the donor’s p, the recipient’s

individual or stereotyped reputation, and the execution error rate ue (see Games and

behavioral strategies). Second, all reputations are updated according to the monitoring

systems, taking into account possible assessment errors occurring at rate ua; for

simplicity, we assume all updates within a round occur synchronously. We then repeat

these steps over 2,500 rounds; that is, within each generation, every individual plays

2,500 games with N = 50 individuals in the population, for a total of 125,000 pairwise

games. This ensures that reputations equilibrate sufficiently before strategy updating,

approximating the time-scale separation assumed in the numerical treatment.

Strategy updating follows a pairwise comparison process. After all rounds in a

generation are complete, we compute payoff πi for each individual, with a fixed benefit

b and cost c of cooperation as well as a fixed access cost η of using reputations (Games

and behavioral strategies). Here we use per-generation average payoff (i.e., cumulative

payoff across 50 games in a generation, averaged over generations), a scaled version of

the per-game average payoff used in the numerical treatment (Replicator dynamics).

Then, 5 random pairs of individuals are chosen from the population. Within each pair i

and j, j adopts i’s strategy with probability 1/
(
1 + exp{−w(πi − πj)}

)
; parameter w
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denotes the intensity of selection (Traulsen et al., 2007), which captures the impact of the

game payoffs on relative success.

The population is also subject to recurring local mutations in p. In each generation,

the stereotype use propensity p of a randomly selected individual changes by some ∆p

with probability us = 10/N = 0.2. Since p is a continuous parameter, the deviation ∆p is

sampled from a normal distribution with mean 0 and standard deviation 0.05.
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Chapter 4

Emergence of hierarchy in

networked endorsement dynamics
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4.2 Abstract

Many social and biological systems are characterized by enduring hierarchies, including

those organized around prestige in academia, dominance in animal groups, and

desirability in online dating. Despite their ubiquity, the general mechanisms that explain

the creation and endurance of such hierarchies are not well understood. We introduce a

generative model for the dynamics of hierarchies using time-varying networks, in which

new links are formed based on the preferences of nodes in the current network and old

links are forgotten over time. The model produces a range of hierarchical structures,

ranging from egalitarianism to bistable hierarchies, and we derive critical points that
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separate these regimes in the limit of long system memory. Importantly, our model

supports statistical inference, allowing for a principled comparison of generative

mechanisms using data. We apply the model to study hierarchical structures in

empirical data on hiring patterns among mathematicians, dominance relations among

parakeets, and friendships among members of a fraternity, observing several persistent

patterns as well as interpretable differences in the generative mechanisms favored by

each. Our work contributes to the growing literature on statistically grounded models of

time-varying networks.

4.3 Introduction

Hierarchies—stable sets of dominance relationships among individuals (Fushing et al.,

2011; Hobson and DeDeo, 2015; Hobson et al., 2021)—structure many human and animal

societies. Among animals, hierarchical rank may determine access to resources such as

food, grooming, and reproduction (Holekamp and Strauss, 2016). Among humans, rank

shapes the epistemic capital and employment prospects of researchers (Clauset et al.,

2015; Morgan et al., 2018), susceptibility of adolescents to bullying (Garandeau et al.,

2014), messaging patterns in online dating (Bruch and Newman, 2018), and influence in

group decision-making (Cheng and Tracy, 2014).

A central question concerns how enduring hierarchies shape and are shaped by

interactions between individuals. Empirical studies have indicated the presence of a

winner effect: an individual who participates in a favorable interaction, such as winning

a fight or receiving an endorsement, increases their likelihood of being favored in future

interactions (Chase et al., 1994; Hogeweg and Hesper, 1983). Both theoretical work

(Ben-Naim and Redner, 2005; Bonabeau et al., 1995, 1996a; Hemelrijk, 1999; Hickey and

Davidsen, 2019; Miyaguchi et al., 2020; Pósfai and D’Souza, 2018; Sánchez-Tójar et al.,

2018; Vehrencamp, 1983) and controlled experiments in humans (Salganik et al., 2006)
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suggest that winner effects are sufficient (though not necessary) to form stable

hierarchies. Mechanistic explanations of winner effects vary. A common approach

postulates that each individual possesses an intrinsic strength, which may depend on

factors such as size, skill, or aggression levels. For instance, physiological mechanisms,

such as changes in hormone levels following confrontational interactions (Mehta and

Prasad, 2015), can alter an individual’s strength, causing the strong to get stronger.

However, intrinsic strengths are not necessary to produce winner effects. If a

politician endorses a rival candidate, the latter does not become intrinsically more fit for

office; instead, the endorsee builds support for their candidacy that may lead to future

endorsements. The fame of the endorser is key: the better-known the endorser, the more

valuable the endorsement. We refer to such prestige by proxy as transitive prestige.

Since transitive prestige enables hierarchical rank to flow through interactions between

individuals, networks provide a natural lens through which to study its role. Recent

empirical studies have emphasized the networked nature of hierarchy in biological and

social groups (Ball and Newman, 2013; Hobson and DeDeo, 2015; Hobson et al., 2021;

Pinter-Wollman et al., 2014; Shizuka and McDonald, 2015). Several theoretical studies

(Bardoscia et al., 2013; König and Tessone, 2011; König et al., 2014; Krause et al., 2013)

have also investigated reinforcing hierarchy using time-varying network models called

adaptive networks (Porter, 2020; Sayama et al., 2013). In this class of models, edges,

representing interactions, evolve in response to node states and vice versa. Edges tend to

accrue to important or highly central nodes, leading to self-reinforcing hierarchical

network structures. Despite their recent uses, adaptive networks are often difficult to

analyze analytically or compare to empirical data.

We present a flexible adaptive network model of social hierarchy that addresses these

challenges. Winner effects in our model are driven entirely by social reinforcement,

rather than intrinsic strengths. We allow arbitrary matrix functions to determine rank or
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prestige of nodes in the network and introduce parameters governing the behavior of

individuals in response to rank. A key feature of our model is that it is amenable both to

mathematical analysis and to statistical inference. We analytically characterize a critical

transition separating egalitarian and hierarchical model states for several choices of

ranking function. We also explore hierarchical patterns in four biological and social

datasets, using our model to perform principled selection between competing ranking

methods in each dataset, and highlight persistent macroscopic patterns. We conclude

with a discussion of potential model extensions and connections to recent work on

centrality in temporal networks.

4.4 Modeling emergent hierarchy

In our adaptive network model, new directed edges are formed based on existing,

node-based hierarchy, after which they decay over time. We conceptualize a directed

edge i → j as an endorsement, in which i affirms that j is fit, prestigious, or otherwise of

high quality. For example, endorsements could capture contests won by j over i,

retweets of j by i, or comparisons in which a third party ranks j above i. We collect

endorsements in a weighted directed network on n nodes summarized by its adjacency

matrix A ∈ Rn×n, where entry aij is the weighted number of interactions i → j. The

matrix A evolves in discrete time via the iteration

A(t + 1) = λA(t) + (1 − λ)∆(t) . (4.1)

Here, the update matrix ∆(t) contains new endorsements at time t. The memory

parameter λ ∈ [0, 1] represents the rate with which memories of old endorsements

decay; the smaller the value of λ, the more quickly previous endorsements are forgotten.
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The new endorsements in ∆(t) depend on previous endorsements through a ranking

of the n nodes, which we call the score vector (or simply score) s ∈ Rn. The score vector

is the output of a score function σ : A 7→ s ∈ Rn, which may be any rule that assigns a

real number to each node.

We consider three score functions chosen for analytical tractability and relevance in

applications. Let Din and Dout be diagonal matrices whose entries are the weighted in-

and out-degrees of the network, i.e., Din
ii = ∑j Aij and Dout

ii = ∑j Aji. First, the

Root-Degree score is the square root of the in-degree—the weighted number of

endorsements—of each node i, defined as si =
√

Din
ii . The Root-Degree score function

does not model transitive prestige, since only the number of endorsements is considered,

not the prestige of the agents from which they come. Second, PageRank (Brin and Page,

1998) is a recursive notion of rank in which high-rank nodes are those whose endorsers

are numerous, and themselves high rank. The foundational algorithm used by Google in

ranking webpages, PageRank computes a value for each node interpretable as the

proportion of time that a random surfer following the network of endorsements would

spend on that node. We define PageRank score s as the PageRank vector of AT, which is

the unique solution to the system

[
αpAT(Dout)−1 + (1 − αp)n−1e eT

]
s = s (4.2)

up to scalar multiplication. Here, αp ∈ [0, 1] is the so-called teleportation parameter, for

which we use the customary value αp = 0.85. We normalize the PageRank vector so that

eTs = n, where e is the vector of ones. Finally, SpringRank (De Bacco et al., 2018) is

another recursive definition of rank in which endorsers are ranked one unit below

endorsees, and disagreements are resolved using an analogy to a physical system of

springs: the ranking of nodes minimizes the total energy of the system. Mathematically,
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the SpringRank score s is the unique solution to the linear system (De Bacco et al., 2018)

[
Din + Dout − (A + AT) + αsI

]
s =

[
Din − Dout

]
e , (4.3)

with the identity matrix I and a regularization parameter αs > 0 which ensures the

uniqueness of s. Unlike the Root-Degree score, both PageRank and SpringRank scores

model transitive prestige: the impact of an endorsement depends on the prestige of the

endorser. These three score functions can all be interpreted as rankings or centrality

measures, although this property is not required of score functions in our model.

Given score vector s, new endorsements ∆ are chosen using a random utility model,

a standard framework in discrete choice theory which has recently been applied in

models of growing networks (Overgoor et al., 2019). At time step t, node i is selected

uniformly at random. We suppose that endorsing j has utility uij(s) for i, which depends

on the current scores. In this work, we focus on utilities of the functional form

uij(s) = β1sj + β2(si − sj)
2 , (4.4)

where we generally assume that β1 > 0 and β2 < 0. The parameter β1 captures a

preference for prestige; a positive value of β1 indicates a tendency to endorse others with

high scores. The parameter β2 captures a preference for proximity; a negative value of β2

indicates a tendency to endorse others with scores relatively similar to their own. Many

other choices of utility functions are possible; we prove a stability theorem for a large

class of these functions in Appendix D.1.

In the random utility model, node i observes all possible utilities subject to noise.

Traditionally, this noise is chosen to be Gumbel-distributed, in which case the probability
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Figure 4.1: Schematic illustration of our model dynamics. Nodes are initialized at
time t = 1 with a set of pre-existing endorsements logged in A (solid arrows) and
the score s = σ(A) is computed (vertical axis). Then, a new edge logged in ∆ is
added (dashed line). In the next time step t = 2, old interactions decay by a factor
of λ (gray arrows). The new endorsement and decay of previous endorsements lead
to an updated score function, which then informs the next time step.

that endorsing j yields the greatest utility is given by the multinomial logit (Train, 2009)

pij (s) =
euij(s)

∑n
j=1 euij(s)

. (4.5)

We collect m ∈ N endorsements in an update matrix ∆, where the entry ∆ij gives the

number of times that i endorses j in the time step. More complex random utility models

can lead to more realistic structures in networks with a growing number of nodes

(Gupta and Porter, 2020); we do not pursue these complications here because our model

does not focus on network growth, and because these complications obstruct analytical

insight.

Equation (4.5) can also be derived from an alternative model in which node i makes a

randomized choice among n nodes to endorse. In this model, the option to endorse j is

assigned a deterministically-observed weight proportional to euij(s). In this case, β1 and
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β2 signify inverse temperatures that tune the degree of randomness in this choice, with

lower values corresponding to greater randomness. Although this alternative model—in

which node i makes a noisy choice between deterministically-observed utilities—and

the random utility model—in which node i makes a deterministic choice between

noisily-observed utilities—are mathematically equivalent, the two formulations can lead

to different interpretations of system behavior. In the case of institutional faculty hiring

discussed below (see Hierarchies in data), the random utility model assumes that a hiring

committee makes imperfect observations of the utilities of the institutions from which

they could hire, and then deterministically chooses the highest of these

imperfectly-observed qualities. In contrast, the alternative framework assumes that the

committee makes a perfect observation of the utilities, but then chooses among them

with some degree of randomness, which may reflect dissension on the hiring committee,

search-specific priorities, or other factors.

Equations (4.1) and (4.5) capture key features of our model. First, the dynamics in

Eq.(4.1) imply that past interactions decay geometrically at rate λ. This global, gradual

decay contrasts with another rank-based relinking model in which single edges fully

disappear within each time step (König and Tessone, 2011). Second, Eq.(4.5) implies that

the likelihood of a node being endorsed at a given time step depends only on the

distribution of previous endorsements and not on intrinsic strength or desirability.

Those who receive more endorsements and therefore obtain higher scores are more

likely to be endorsed in the future—a mechanistic instantiation of winner effects via

social reinforcement.

Figure 4.1 schematically illustrates model dynamics with m = 1 endorsement per

time step. At time t = 1, the model is initialized with a small number of endorsements

logged in A. The score function takes A as an input and outputs the score vector s,

which, in turn, determines a new interaction according to Eq.(4.5). Logged in ∆, this new
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Figure 4.2: Representative dynamics of the proposed model. Each column shows a
population of n = 8 nodes simulated for 2,000 time steps using the SpringRank score
function with m= 1 update per time step, varying the preference parameters β1 and
β2. A, C, E, and G show the simulated rank vector γ over time; different colors
track the ranks of different nodes. B, D, F, and H show the adjacency matrix A at
time step t= 2000 for the corresponding parameter combinations. See Fig. D.1 for
additional examples with SpringRank; Fig.D.2 for examples PageRank; and Fig.D.3
for examples with Root-Degree. See Fig.D.4 for the dependence of rank variance on
β1 and β2 jointly. Parameters: λ= 0.995, αs = 10−8.

interaction is weighted by 1 − λ and added to the previous endorsements, which are

discounted by λ. This process repeats over time with new endorsements gradually

replacing old ones in the system’s memory, sequentially updating the score vector s.

Figure 4.1 also depicts in stylized fashion the operation of both a winner effect (β1 > 0),

in which endorsements tend to flow in the direction of increasing score, and a proximity

effect (β2 < 0), in which endorsements tend to flow between nodes of similar scores. The

net effect is that most endorsements are “short hops” up the hierarchy. As we will

discuss, this is a common pattern in empirical data.
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Despite its simplicity, the model displays a wide range of behaviors. To observe them,

we define a rank vector γ, whose jth entry γj = n−1 ∑i pij gives the likelihood that a new

endorsement flows to j. We say that the system state is egalitarian when all ranks γj are

equal and hierarchical otherwise. Figure 4.2 illustrates representative behaviors when

the SpringRank score is used. When β1 is relatively small, winner effects are overtaken

by noise, and the system settles into an approximately egalitarian state (Fig.4.2A and B).

When β1 is relatively large, persistent hierarchies emerge (Fig.4.2C–F). Moreover, the

distribution and stability of ranks depend on the strength of proximity effects, modeled

by the quadratic term in the utilities. For β2 = 0 (no proximity preference), a single node

garners more than half of endorsements in a hierarchy with significant fluctuations

(Fig.4.2C and D). Adding a proximity preference leads to a marginally more equitable

hierarchy with ranks that are nearly constant in time (Fig.4.2E and F).

4.5 The long-memory limit

The behavior observed in Fig.4.2 suggests the presence of qualitatively distinct regimes

depending on prestige preference β1. For small β1 (Fig.4.2A), the winner effect is weak,

and approximate egalitarianism prevails. For larger β1, a stronger winner effect enforces

a stable hierarchy. We characterize the boundary between these regimes analytically in

the long-memory limit λ → 1 by defining a function f, which is analogous to a

deterministic time-derivative for the dynamics of our discrete-time stochastic process.

Let

f (s, A) = lim
λ→1

E [σ (λA + (1 − λ)∆)]− s
1 − λ

(4.6)

where the expectation is taken with respect to ∆. If f(s, A) = 0 for all A, the score vector

s is a fixed point of the model dynamics in expectation. Our choices of Root-Degree,

PageRank, and SpringRank score functions admit closed-form expressions for f,
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allowing us to analytically derive the conditions for the stability of egalitarianism in the

limit of long memory.

Theorem 4.1. For each of the Root-Degree, PageRank, and SpringRank score functions, f has a

unique egalitarian root. This root is linearly stable if and only if β1 < βc
1, where

βc
1 =



2
√

n
m

Root-Degree,

1/αp PageRank,

2 + αs
n
m

SpringRank.

In Appendix D.1, we prove Theorem 4.1, as well as a generalization to arbitrary

smooth utility functions. In each case, the proof of uniqueness exploits the algebraic

structure of the score function, and the critical value βc
1 is obtained via the linearization

of f about the egalitarian state. Interestingly, only β1 plays a role in the stability of the

egalitarian root. While proximity preference β2 does not determine where the

hierarchical regime begins, it does influence the structure of and the transient dynamics

toward nonegalitarian equilibria (Fig.4.2E and G).

Figure 4.3 illustrates the destabilization of egalitarianism predicted by Theorem 4.1 in

the case of n = 8 nodes. Although not required by Theorem 4.1, we fix β2 = 0 for

simplicity. Curves show fixed points of the model dynamics in the long-memory limit.

We show only fixed points in which nodes separate into two groups, each of which have

identical rank. For β1 < βc
1, the egalitarian regime is stable and the long-run state

deviates from egalitarianism only slightly. For β1 > βc
1, in contrast, the long-run state

switches to an inegalitarian, stable fixed point.

In the Root-Degree and PageRank models, there is a single stable inegalitarian

equilibrium with one node absorbing nearly all endorsements (Fig.4.3A and B).

Interestingly, there is a bistable regime in which both egalitarian and inegalitarian states
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Figure 4.3: Bifurcations in models with Root-Degree (A), PageRank (B), and
SpringRank (C and D) score functions with β2 = 0 and m = 1 update per time
step. Points give the value of the rank vector γ averaged over the final 500 time-
steps of a 5 × 104-step simulation with n = 8 nodes, memory parameter λ = 0.9995,
and varying β1 specified by the horizontal axis. Solid curves show stationary
points of the long-memory dynamics obtained by numerically solving the equa-
tion f(s, A) = 0, subject to the restriction that nodes separate into two groups with
identical ranks in each. Black curves are linearly stable, while gray curves are un-
stable. Stability was determined by studying the spectrum of the Jacobian matrix of
f. Vertical lines give the critical value βc

1 at which the egalitarian solution becomes
linearly unstable according to Theorem 4.1. Parameters: αp = 0.85, αs = 10−8.

are attracting. Whether the system converges to one or the other depends on initial

conditions. The SpringRank model displays qualitatively distinct behavior (Fig.4.3C and

D). Past βc
1, we observe staggered multistable regimes. As β1 increases, equilibria with

multiple elite (i.e., highly ranked) nodes become sequentially unstable until eventually

only a single elite node remains. The long-term behavior of the system again depends on

initial conditions, but now there are many more possible stable states. This behavior

would seem to make the SpringRank score function especially appropriate for modeling
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empirical systems with multiple distinct hierarchical regimes and sensitivity to initial

conditions, an intuition which we confirm empirically in the following section.

4.6 Hierarchies in data

In addition to being amenable to analytical treatment, our model has a tractable

likelihood function, described in Appendix D.1. This allows us to study hierarchical

structures in empirical data using principled statistical inference. The likelihood

function not only supports maximum-likelihood parameter estimates of λ, β1, and β2,

but also enables direct comparisons of different score functions in a statistically rigorous

framework: score functions with higher likelihoods provide more predictive

low-dimensional summaries of observed interactions. This, in turn, allows us to explore

the relative value of competing mechanistic explanations of observed data.

Several mathematical features of the model facilitate the exploration of real data.

First, the predictive distribution Eq.(4.5) is in the linear exponential family, making the

estimation of β a convex optimization with a unique solution. Second, the estimation

problem in λ̂ is, in general, nonconvex, but can be tractably solved via first-order

optimization methods with multiple starting points. Finally, while model likelihoods

evaluated on training data may, in principle, be inflated due to overfitting, our model

uses only three parameters to fit hundreds or thousands of observations, suggesting that

overfitting is not a major concern.

We conducted a comparative study of model behavior on four datasets: an academic

exchange network in math, two networks of parakeet interactions, and a network of

friendships among members of a fraternity. The Math PhD Exchange dataset is extracted

from The Mathematics Genealogy Project (North Dakota State University Department of

Mathematics, 2003; Taylor et al., 2017a,b). Nodes are universities. An interaction i → j at

time t occurs when a mathematician who received their degree from university j at time
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t supervises one or more PhD theses at university i. This event is a proxy for university i

hiring a graduate from university j at a time near t. We view this as an endorsement by j

that graduates of i are of high quality (Clauset et al., 2015). We restricted our analysis to

the activity of the 70 institutions that placed the most graduates between 1960 and 2000.

Doing so helped to avoid singularities produced by institutions with no placements

early in the time period and to minimize temporal boundary effects associated with the

beginning and end of data collection.

The two Parakeet datasets (Hobson and DeDeo, 2015, 2016) record aggression events

in two distinct groups of birds studied over four observation quarters (weeks). An

interaction i → j at time t occurs when parakeet i loses a fight to parakeet j in period t.

Since there are just four observation periods, estimates of the memory parameter λ

should be approached with caution.

Lastly, the Newcomb Fraternity dataset was collected by the authors of

refs. (Newcomb, 1961; Nordlie, 1958) and accessed via the KONECT network database

(Batagelj and Mrvar, 2007; Kunegis, 2013). The dataset documents friendships among

members of a fraternity at the University of Michigan. Each week during a fall semester,

excluding a week for fall break, each of 17 cohabiting brothers ranked every other

brother according to friendship preference, with ranks 1 and 16 referring to that brother’s

most and least preferred peers, respectively. An endorsement i → j is logged when

brother i ranks j among his top k = 5 peers (small changes to k did not significantly alter

the results). While friendship is often viewed as a symmetric relationship, expressed

friendship preferences may be asymmetric (Carley and Krackhardt, 1996).

We studied these data using the Root-Degree, PageRank, and SpringRank score

functions. Table 4.1 summarizes our results, including parameter estimates, SEs

(obtained by inverting the numerically calculated Fisher information matrix), and

optimized log-likelihoods for each combination of score and dataset. Several features
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Root-Degree PageRank SpringRank

Math PhD λ̂ 0.87 (0.01) 0.96 (0.01) 0.91 (0.01)
Exchange β̂1 1.28 (0.02) 0.74 (0.01) 2.99 (0.04)
(N = 6,019) β̂2 -0.18 (0.01) -0.07 (0.00) -1.12 (0.04)

L -14,379 -15,001 -14,927

Parakeets (G1) λ̂ 0.97 (0.08) 0.59 (0.08) 0.67 (0.14)
(N = 838) β̂1 0.84 (0.05) 1.82 (0.08) 3.03 (0.16)

β̂2 -0.12 (0.01) -0.50 (0.03) -1.74 (0.12)

L -1,106 -1,053 -964

Parakeets (G2) λ̂ 0.42 (0.07) 0.13 (0.03) 0.40 (0.06)
(N = 961) β̂1 0.62 (0.03) 0.82 (0.04) 2.86 (0.14)

β̂2 -0.06 (0.01) -0.12 (0.01) -1.46 (0.12)

L -975 -1029 -924

Newcomb λ̂ 0.56 (0.13) 0.81 (0.19) 0.71 (0.14)
Fraternity β̂1 0.95 (0.05) 1.21 (0.07) 2.33 (0.14)
(N = 1,428) β̂2 -0.08 (0.03) -0.25 (0.05) -0.86 (0.16)

L -1,850 -1,865 -1,841

Table 4.1: Parameter estimates and likelihood scores using each of three score
functions for the four data sets described in the main text. Parenthetical values
are standard errors for each parameter estimate. For each data set, the largest log-
likelihood L is indicated in bold. All parameter estimates are statistically distinct
from zero at 95% confidence. N gives the total number of interactions in the data.
See Fig.D.5 for simulated trajectories with the inferred parameters.

stand out. In all four datasets and across all three score functions, we find β̂1 > 0 and

β̂2 < 0. This suggests a persistent pattern in time-dependent hierarchies: while

endorsements do flow upward (β̂1 > 0), nodes are more likely to endorse those close to

them in rank (β̂2 < 0). Endorsements tend to flow a few rungs up the laddernot directly

to the top. The reasons for this pattern likely vary across datasets. In the Math PhD

Exchange, this may indicate that low-ranked schools struggle to recruit graduates of

high-ranked ones due to a limited supply of elite candidates. In parakeet populations,

proximal aggression may facilitate inference of dominance hierarchies through transitive

inference (Hobson and DeDeo, 2015). In Newcomb’s Fraternity, we postulate that
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implicit social norms may encourage friendships between those of similar standing.

Similar results have been reported in static social-network data among adolescents (Ball

and Newman, 2013). Thus, while we do not attribute this pattern in the parameter

estimates to a universal mechanism, we suggest its persistence as an interesting

observation worthy of future study.

Because different score functions capture distinct qualitative features of the data,

quantitative comparisons yield insights into the generating mechanisms at work. In

general, parameters from models using differing score functions should not be directly

compared, since these parameters are sensitive to the scale of the score vector. However,

we can compare models on the basis of their likelihoods. In the Math PhD Exchange, the

Root-Degree model was strongly favored over either SpringRank or PageRank. In the

context of this dataset, the Root-Degree score is a measure of faculty production: a

school that places more candidates has a higher score, regardless of the prestige of the

institutions at which the candidates land. The strong fit from the Root-Degree score is

consistent with previous findings that raw faculty production plays a major role in

structuring the hierarchy of academic hiring within computer science, business, and

history (Clauset et al., 2015). But as Clauset et al. (2015) note, transitive prestige also

plays an important role. It would be of significant interest to extend our study to include

multiple score functions, enabling an inferential analysis of the relative roles of

production and transitive prestige.

In contrast, the SpringRank score was favored by large margins in both Parakeet

datasets and by a smaller margin in the Newcomb Fraternity dataset, suggesting that

transitive prestige plays a more prominent role. Among parakeets, it may matter not

only how many confrontations one wins, but also against whom, with victories over

high-ranking birds counting more toward one’s own prestige. This finding is consistent

with those of Hobson and DeDeo (2015), which found, using different methodology, that
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parakeet behavior suggests the ability to draw sophisticated, transitive inferences about

location in the hierarchy. Similarly, in Newcomb’s Fraternity, friendships with highly

ranked brothers may confer greater prestige than those with lower-ranked ones.

In addition to the likelihoods, we can also compare the memory estimate λ̂ across

models and datasets. Since the model assumes that the impact of past endorsements

decays at rate λ, the quantity t1/2 = − log(2)/ log(λ̂) represents the half-life of system

information according to the inferred dynamics, in units of observation periods. In the

Math PhD data, the favored Root-Degree score gave a half-life of t1/2 ≈ 5 years. In the

Parakeets data, the half-life estimated under SpringRank is t1/2 ≈ 1.7 weeks for the first

group and t1/2 ≈ 0.8 weeks for the second. The small number of observation periods

implies that these estimates should be approached with caution. Finally, in the

Newcomb Fraternity data, the SpringRank half-life was t1/2 ≈ 2 weeks. This suggests

that the friendships in this dataset evolved on timescales much shorter than the full

semester. This likely reflects the fact that the brothers did not know each other prior to

data collection, requiring them to form their social relationships from scratch. An

important caveat in interpreting these estimated half-lives is that the indirect influence

of an interaction may extend far beyond its direct influence. In the Math PhD data, for

instance, while the half-life indicates that only a quarter of hiring events will be directly

“remembered” in the system after a decade, those events will have influenced 10 cycles

of hiring, which may further reinforce the patterns established by the earlier events.

As described in Theorem D.1, in the long-memory limit, our model has distinct

egalitarian and hierarchical regimes, separated by a critical value βc
1. The model’s

estimate of β1 allows us to roughly locate empirical systems within these regimes. There

are two necessary points of caution. First, when the estimate λ̂ is far from the idealized

long-memory limit, hierarchical and egalitarian regimes may not be sharply

distinguished. Second, in the Math PhD and Parakeet data, the number of updates m
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Root-Degree PageRank SpringRank

Math PhD βc
1 1.36 1.18 2.00

Exchange β̂1 1.28∗ (0.02) 0.74∗ (0.01) 2.99* (0.04)

Parakeets (G1) βc
1 0.55 1.18 2.00

β̂1 0.84∗ (0.05) 1.82∗ (0.08) 3.03∗ (0.16)

Parakeets (G2) βc
1 0.49 1.18 2.00

β̂1 0.62∗ (0.03) 0.82∗ (0.04) 2.86∗ (0.14)

Newcomb βc
1 0.89 1.18 2.00

Fraternity β̂1 0.95 (0.05) 1.21 (0.07) 2.33∗ (0.14)

Table 4.2: Estimates of β1 (identical to those in Table 4.1) compared to the mean
critical value βc

1 for each system. βc
1 is calculated as in Theorem 4.1, using as m the

mean number of interactions per time-step in the observed data. As in Table 4.1,
the parameters corresponding to the highest log-likelihood are shown in bold. Esti-
mates shown with an upper asterisk (∗) exceed the approximate critical value by two
standard errors, while estimates shown with a lower asterisk (∗) are smaller than the
approximate critical value by two standard errors. See Fig.D.5 for simulated trajec-
tories using the inferred parameters.

varies between time steps. Here, a reasonable approximation is to use the average

number of updates m̄ per time step. Using this average and Theorem D.1, we computed

an approximate long-memory critical value βc
1 for each empirical system.

Comparing the data-derived preference estimates β̂1 to the approximate critical

values βc
1 reveals that all four empirical systems are in or near the hierarchical regime

(Table 4.2). The Root-Degree estimates of β1 tend to be very close to the approximate

critical point. For the Math PhD data, in which Root-Degree is the preferred model, the

estimate of β1 is slightly, but statistically significantly, below the critical value. In each of

the other three datasets, the estimate is slightly above the critical value, and significantly

so in the two Parakeet groups. Given the presence of a bistable regime in the

Root-Degree model (Fig.4.3A), the estimate of β1 for the Math PhD data is consistent

with persistent hierarchy, despite the fact that the estimate falls slightly below the critical

threshold. Indeed, simulations with the inferred parameters produce persistent

hierarchical structure similar to that observed in the data (Fig.D.5). The PageRank
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estimates behave similarly to Root-Degree, although the finding in Parakeets (G2) is

reversed. The presence of a bistable regime in the PageRank model (Fig.4.3B) indicates

that these findings are consistent with persistent hierarchy in any of these datasets (see

Fig.D.5 for simulated dynamics). Finally, in the SpringRank model, which obtains the

highest likelihood for both Parakeet datasets and the Newcomb Fraternity dataset, the

estimated values of β1 significantly exceed the estimated critical values and tend to lie in

or near the range [2, 3]. In summary, all three models suggest that the system

corresponding to each dataset is in or near the regime of self-reinforcing hierarchy.

Figure 4.4: Visualization of evolving ranking functions in the Math PhD Ex-
change. (A) Fraction of all placements (number of graduates hired) from each
school, shown as a moving average with bin-width 8 years for visualization pur-
poses. (B) Inferred rank vector γ as a function of time using the Root-Degree score
function. (C and D) As in B, with PageRank and SpringRank score functions, re-
spectively. Parameters for B–D are shown in the first section of Table 4.1.

Our model also assigns interpretable, time-dependent ranks to empirical data

(Fig.4.4). For the Math PhD Exchange network, for example, the raw placement share
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(Fig.4.4A) and Root-Degree model (Fig.4.4B) show strong qualitative agreement, with

institutions that place the most candidates occupying higher ranks. Due to the relatively

large estimates λ̂, both the Root-Degree and PageRank models (Fig.4.2B and C) produce

smoother rank trajectories than the purely descriptive placement share with 8-year

rolling average. In contrast, the SpringRank score generates qualitatively different

trajectories that are less sensitive to raw volume (Fig.4.4D). For instance, SpringRank

places Harvard at the top over most of the time period, while the other scores prefer

MIT. This difference reflects SpringRank’s sensitivity to where Harvard’s graduates were

placed, a consideration that Root-Degree entirely ignores. Similarly, SpringRank places

Chicago and Yale noticeably higher than Wisconsin-Madison, despite all three having

similar numbers of placements.

4.7 Discussion

We have proposed a simple and flexible model of persistent hierarchy as an emergent

feature of networked endorsements with feedback. When the preference for high status

exceeds a critical value, egalitarian states destabilize, and hierarchies emerge. The

location of this transition depends on the structure of the score function and of the

node’s preferences. Our findings emphasize that winner effects do not require internal,

rank-enhancing feedback mechanisms. Social reinforcement through prestige preference

is sufficient to generate social hierarchies.

Crucially, our model has a tractable likelihood function, supporting principled

statistical inference of parametersfor both preferences and memory strengthfrom

empirical data. In the four datasets analyzed, we found that links are typically formed in

alignment with the hierarchy (β̂1 > 0), but that they are preferentially created to other

nodes with similar ranks (β̂2 < 0). The likelihood also opens the door to model selection

to determine relevant score functions. We found that networked ranking methods that
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capture transferable prestige are preferred over nonnetworked methods in some, but not

all, systems. Due to its flexibility, our framework can be applied to additional datasets,

score functions, and/or preference models to test the generality of these empirical

observations.

There are limitations to our approach. First, we specified a fixed parametric form for

the utilities with Eq.(4.4) and Gumbel-distributed noise with Eq.(4.5). Other choices may

be more justified in particular applications, ideally informed by domain-specific

considerations. Importantly, our inferential framework allows for quantitative

evaluation and comparison of these choices. Taking advantage of this, future work could

systematically explore the most appropriate functional forms in systems from diverse

scientific domains. Second, our model assumes that all nodes use identical preference

parameters β1, β2 and score vector s when computing utilities. The latter is an especially

strong assumption, since it requires each node to have global knowledge of the

endorsement network, or at least of the score vector. This is unlikely to be true in real

systems and should be regarded as a modeling device. Future work, along the lines of

Hobson and DeDeo (2015), could explore the interplay between the cognitive

capabilities of individuals represented by nodes and the information available to them in

the formation of social hierarchies.

Our model points to several other avenues for further work. A crucial step would be

to extend extant network-based models (König and Tessone, 2011; König et al., 2014;

Krause et al., 2013) so that their parameters could be statistically learned from data. This

would enable comparative validation of different modeling frameworks. Studies of the

relationship between measures of time-dependent centralities (Liao et al., 2017; Taylor

et al., 2017b, 2019) and dynamic models of hierarchy would also be valuable. In

particular, the theory of time-dependent centralities faces an important methodological

issue: different reasonable ranking methods can yield directionally different orderings of
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nodes when applied to the same dataset (Mariani and Lü, 2020). Their performance on

external validation tasks, such as the prediction of central nodes in spreading processes

(Lü et al., 2016), may also vary significantly. Because the theories of centrality and

generative networks have evolved largely separately, evaluating the suitability of a

centrality metric for a given dynamic system can be difficult. Our inferential approach

offers a candidate validation task to overcome this challenge: good centrality metrics are

those that most effectively predict the future evolution of the system. This approach

enables us to not only compare different score and utility functions in a principled

manner, but also explore their relative importance in observed networks. For instance,

one could study the relative influence of degree-based and SpringRank scores by

incorporating both into our model and then analyzing their distinct coefficients. Further

work in this direction could reveal how different forms of centrality combine to govern

the evolution of interaction networks. We anticipate that a fruitful dialogue between

centrality theory and generative models of time-varying networks will deepen our

understanding of the feedback mechanism between local interactions and hierarchical

structures.

Data availability

A repository containing all data used in our analyses, model implementation, and

figure-generation scripts is available at GitHub

(https://github.com/PhilChodrow/prestige reinforcement). Raw data are available at

https://sites.google.com/site/danetaylorresearch/data (Math PhD Exchange),

https://datadryad.org/stash/dataset/doi:10.5061/dryad.p56q7 (Parakeets G1 and G2),

and http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#newfrat

(Newcomb Fraternity).
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Appendix A

Supplementary materials for Chapter 1

A.1 Supplementary analyses

A.1.1 Analytical treatment of the model

In addition to simulating the fixed threshold model (Theoretical model), we derive

analytical predictions for its long-term behavior.

Recall that the model considers a colony of N individuals performing M tasks; we

assume that there are two tasks (M = 2; see Theoretical model). Individuals can be of one

of two types, X or Y. To analytically study how individual behavior depends on the ratio

of the types, we define f and 1 − f to be the fractions of the colony consisting of

individuals of type X and Y, respectively.

The model assumes that individual i’s internal threshold θij is drawn from a normal

distribution with mean µj and normalized standard deviation σj. For our analytical

analysis, we assume that σj = 0 for all tasks. In other words, the type- and task-specific

thresholds are assumed to be given by the constant parameters, µX
j and µY

j . Under this

assumption, the probabilities PX
ij,t and PY

ij,t that inactive individuals i of types X and Y
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begin to perform task j at time t are, respectively,

PX
j,t
(
sj,t
)
=

sη
j,t

sη
j,t +

(
µX

j

)η , PY
j,t
(
sj,t
)
=

sη
j,t

sη
j,t +

(
µY

j

)η . (A.1)

Because we assume that there are two tasks (M = 2), the numbers of X and Y

individuals performing task j at time t + 1 are governed by the following equations, in

which j′ denotes the other task:

nX
j,t+1 − nX

j,t =
1
2

[
PX

j,t(sj,t) +
(

1 − PX
j′,t
(
sj′,t
))

PX
j,t
(
sj,t
)] (

f N − (nX
j,t + nX

j′,t)

)
− τnX

j,t

nY
j,t+1 − nY

j,t =
1
2

[
PY

j,t(sj,t) + (1 − PY
j′,t(sj′,t))PY

j,t(sj,t)
] (

(1 − f )N − (nY
j,t + nY

j′,t)

)
− τnY

j,t,

where nX
j,t and nY

j,t are the numbers of X and Y individuals performing task j at time t,

respectively, and τ is the probability of quitting a task. The sums in the larger

parentheses represent the pool of individuals who could possibly initiate task j—that is,

the total number of inactive individuals. The sums in square brackets then capture the

possible ways in which these inactive individuals can initiate task j: they can either

encounter the stimulus for task j immediately and begin performing that task, or they

can first encounter the stimulus for the other task j′, not perform that task, subsequently

encounter the stimulus for task j, and begin performing task j. Lastly, recall that the

dynamics of stimulus sj,t associated with task j is governed by Eq.(A.2):

sj,t+1 − sj,t = δj −
αX

j nX
j,t + αY

j nY
j,t

N
, (A.2)

where δj is the task-specific demand rate, and αX
j and αY

j are the task-specific

performance efficiencies of X and Y individuals, respectively.
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In the subsequent sections, we compute the long-term behavior of the system of six

difference equations in Eq.(A.2) (for nX
1 , nY

1 , nX
2 , nY

2 ) and Eq.(A.2) (for s1, s2) and compare

the results to simulations.

Theoretical maximum activity level. In the model, individuals have a latency

period of one time step between when they quit a task and when they recommence

working. This means that, on average, only a fraction of the colony can be working at

any given time.

To find this maximum activity level, let Zt = (nX
1,t + nY

1,t + nX
2,t + nY

2,t)/N be the

fraction of active individuals in a colony at time t. Note that 0 ≤ Zt ≤ 1. At time t + 1, on

average, a fraction τZt of the colony becomes inactive. Therefore, we have

(fraction active) + (fraction inactive) = Xt+1 + τZt ≤ 1. At steady state, the system

satisfies Xt+1 = Xt = Z∗. Thus, the theoretical maximum activity level is

Z∗ ≤ 1
1 + τ

. (A.3)

For example, when τ = 0.2 (Fig.1.3), at most 83.33% of colony members can be active at

steady state. A similar condition has been noted by Gautrais et al. (2002).

Pure colonies. Without loss of generality, we consider pure colonies that consist of

type X individuals only: let f = 1 and nY
j,t = 0 for all t. By setting Eq.(A.2) to zero, we

obtain the fraction of X individuals performing task j at steady state, given by

nX
j

N
=

δj

αX
j

. (A.4)

Notably, the steady-state values of nX
j are independent of the mean threshold (µX

j ) or the

quit probability (τX). This agrees with our simulation results in which differences in µ
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(Fig.1.1C) or τ (Fig.A.3) alone did not change the mean task performance levels in pure

colonies.

According to (A.3), this steady state is biologically possible only if

(Z∗ =)
nX

1
N

+
nX

2
N

=
δ1

αX
1
+

δ2

αX
2
≤ 1

1 + τ
.

If this condition is not met, then the stimuli are expected to continue growing (i.e.,

system would not reach a steady state).

Now, suppose that the demand rate and task performance efficiency are the same for

both tasks (δ1 = δ2 = δ, αX
1 = αX

2 = αX). Equation (A.4) implies that the fractions of X

individuals performing tasks 1 and 2 at steady state would be

nX
1

N
=

nX
2

N
=

δ

αX .

Similarly, in pure colonies of type Y, if δ1 = δ2 = δ and αY
1 = αY

2 = αY, then

nY
1 /N = nY

2 /N = δ/αY at steady state. Thus, in order for pure colonies of type X and

type Y to have different average task performance levels (i.e., δ/αX 6= δ/αY) under the

assumptions above—i.e., that the tasks are equally demanding and that a given type of

individual is equally efficient at both tasks—the two types must differ in task

performance efficiency (αX 6= αY) (see main text).

Mixed colonies with 1:1 mixes. We now consider mixed colonies consisting of X

and Y individuals in equal proportions ( f = 0.5). We assume that the mean thresholds

and the quit probabilities are identical for both tasks and ant types (µX
1 = µX

2 = µY
1 = µY

2

and τX = τY)1. Setting Eq.(A.2) equal to zero, we find that the steady-state numbers of

1The parameters µ and τ do not explicitly appear in Eq.(A.5) when we assume that the mean thresholds
are identical for all individuals and both tasks. However, based on Eq.(A.2), we expect the general form of
steady state fractions of active individuals to be explicit functions of µX

j and µY
j as well as τX and τY. While

the steady states can be computed numerically for the case when these parameters differ between types or
tasks, the analytical expressions are too complicated to write down.
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individuals performing task j are given by

nX
j = nY

j = N

(
δj

αX
j + αY

j

)
.

This quantity can also be expressed as a fraction of each type of individuals:

nX
j

(N/2)
=

nY
j

(N/2)
=

2δj

αX
j + αY

j
. (A.5)

Applying condition (A.3), this steady-state is only biologically relevant when

(Z∗ =)
2

∑
j=1

nX
j

N
+

nY
j

N
=

2

∑
j=1

2δj

αX
j + αY

j
≤ 1

1 + τ
. (A.6)

Again, if this condition is not met, then we would expect the stimuli to continue growing

over time (i.e., the colony is unable to keep up with the demand) and for the individuals

to be working at maximum capacity.

Mixed colonies with non-1:1 mixes. We now generalize to the case in which a

fraction f of individuals (0 ≤ f ≤ 1) in a mixed colony are of type X. In the simplified

case where µX
1 = µX

2 = µY
1 = µY

2 and τX = τY, the steady-state fractions of individuals

performing task j are

nX
j =

f nδj

f αX
j + (1 − f )αY

j
, nY

j =
(1 − f )nδj

f αX
j + (1 − f )αY

j
.

Since there are f n individuals of type X and (1 − f )n individuals of type Y, these

quantities can be expressed as fractions of individuals of type X and Y individuals

performing task j:

nX
j

f N
=

nY
j

(1 − f )N
=

δj

f αX
j + (1 − f )αY

j

(
=

nX
j + nY

j

N

)
. (A.7)
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The last equality highlights the fact that, at steady state, the fraction of individuals of

each type performing task j is identical to the fraction of the whole colony performing

that task, i.e., both X and Y perform task j at equal rates. As expected, the expressions

Eq.(A.7) reduce to Eq.(A.5) when f = 0.5 (1:1 mixes) and to Eq.(A.4) when f = 1 (pure

colonies with X individuals only). Again, we expect to see this equilibrium only when

condition (A.3) is satisfied. Moreover, from Eq.(A.7), we expect the steady-state task j

performance frequency to depend non-linearly on the fraction f of X individuals.

Mixed colonies with symmetric mean thresholds. So far we have assumed that the

mean task thresholds µX
j and µY

j are identical for both ant types and tasks

(µX
1 = µX

2 = µY
1 = µY

2 ). While Eq.(A.2) can be solved numerically when we introduce

between-type differences in µ, the steady-state expressions become too difficult to write

down. In the following special case, however, we can express the steady-state values

exactly. Assume that

1. colonies consist of type X and Y individuals in equal proportions ( f = 0.5);

2. task efficiency is the same for both ant types and tasks (αX
1 = αX

2 = αY
1 = αY

2 = α);

3. demand rate is the same for both tasks (δ1 = δ2 = δ); and

4. mean task thresholds are symmetric, such that one type has a low threshold for

one task and a high threshold for the other while this ordering is reversed in the

other type: µX
1 = µY

2 = a and µX
2 = µY

1 = b.

Importantly, the symmetry between the two tasks and between the two types imply

that the stimulus levels for the tasks would be identical at stead state (s1 = s2 = s∗).

Moreover, at steady state, the number of X individuals performing task 1 would be

identical to the number of Y individuals performing task 2 (nX
1 = nY

2 ); similarly, we

would expect that nY
1 = nX

2 . Substituting these conditions into Eq.(A.2) and setting it
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equal to zero, we find that, at steady state,

nX
1 + nY

1 = nX
2 + nY

2 = nX
1 + nX

2 = nY
1 + nY

2 = N
(

δ

α

)
.

By substituting this into Eq.(A.2) and following the symmetry argument above, we

derive an expression for the steady-state stimulus level s∗:

s∗(= s1 = s2) =

[
1
2

(
−(aη + bη)±

√
(aη + bη)2 + (aηbη) · 8δτ

α − 2δ(1 + τ)

)] 1
η

.

The corresponding steady-state fractions of X and Y individuals performing tasks 1 and

2 are, respectively,

nX
1

(N/2)
=

nY
2

(N/2)
=

1
τ

(
(s∗)η

(s∗)η + aη

) [
2 − (s∗)η

(s∗)η + bη

] (
1
2
− δ

α

)
,

nX
2

(N/2)
=

nY
1

(N/2)
=

1
τ

(
(s∗)η

(s∗)η + bη

) [
2 − (s∗)η

(s∗)η + aη

] (
1
2
− δ

α

)
.

(A.8)

When a = b (i.e., when all µ’s are identical), these expressions reduce to the steady states

predicted in Eq.(A.5).

Downward vs. upward convergence. Both our experiments (Fig.1.2A) and

theoretical analyses (Fig.1.3A–B) demonstrated patterns of asymmetric behavioral

convergence between the types, in which individuals of different types were

behaviorally more similar to each other when mixed. Here we combine our analytical

predictions for pure and mixed colonies to investigate conditions under which such

convergence patterns arise. Consider two pure colonies consisting of X and Y

individuals, respectively, and a third, mixed colony consisting of a 1:1-ratio of X and Y

individuals. Let us assume that each colony reaches a steady state (i.e., each colony

satisfies condition (A.3)). We show analytically that, under these conditions, if the ant
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types only differ in task efficiency (αX
j , αY

j ), then the system can exhibit a downward

convergence but not an upward convergence.

We can directly apply the steady-state fractions of active individuals in Eqs.(A.4)

and (A.5) because the mean threshold (µ) and the quit probability (τ) are assumed to be

identical across types. The behavioral convergence is downward if

1
2

(
δj

αX
j
+

δj

αY
j

)
>

2δj

αX
j + αY

j
(A.9)

and upward if the inequality is reversed (see also Fig.1.3a–b).

By manipulating the inequality (A.9), we see that the left-hand side is always at least

as large as the right-hand side:

1
2

(
δj

αX
j
+

δj

αY
j

)
−

2δj

αX
j + αY

j
=

δj

2

(
(αX

j − αY
j )

2

αX
j αY

j (α
X
j + αY

j )

)
≥ 0 .

The equality holds if and only if αX
j = αY

j , in which case the types are indistinguishable

with respect to task j. If αX
j 6= αY

j , then only downward convergence is possible under

our assumptions (in particular, we assume that condition Eq.(A.3) is satisfied). Note that

the threshold between upward and downward convergence, Eq.(A.9) is agnostic to

between-task differences in task efficiency or task demand; in other words, it holds even

when αX
1 6= αX

2 , αY
1 6= αY

2 , and δ1 6= δ2.

Contextualizing the analytical calculations. To put our analytical results into

context, consider scenarios (i) with two high-demand tasks (e.g., δ1 = δ2 = 1.3, as in

Fig.1.3a), (ii) with two low-demand tasks (e.g., δ1 = δ2 = 0.6, as in Fig.1.3b), and (iii)

with one high-demand task and one low-demand task (e.g., δ1 = 1.3, δ2 = 0.6). We

suppose that all type-specific parameters are identical across scenarios and that mean
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thresholds and quit probabilities are identical for both tasks and ant types (i.e.,

µX
1 = µX

2 = µY
1 = µY

2 , τX = τY, as in Mixed colonies with 1:1 mixes).

Equation (A.5) and condition (A.6) (or, equivalently, condition (A.3)) suggest that, in

the absence of differences in mean threshold, the total task performance frequency of all

ants in a colony (i.e., ∑2
j=1 2δj/(αX

j + αY
j )) would be highest in (i), lowest in (ii), and

intermediate in (iii); and that a colony is most likely to keep up with the demand in (iii),

less likely in (ii), and least likely in (i). In this sense, we predict that the outcome in (iii)

will be quantitatively intermediate between (i) and (ii). However, this would not alter

the possible qualitative outcomes of mixing: if condition (A.6) is satisfied under scenario

(iii), we would expect mixing to produce a downward convergence (see Downward

vs. upward convergence); if not, mixing could lead to either downward or upward

convergence depending on demand values. See also An expanded model of DOL in the

main text.

A.1.2 Theoretical predictions for mean task performance in non-1:1

mixes

We further explored expected patterns of task allocation in colonies with different ratios

of ant types. For the parameter combinations in Fig.1.3—which collectively captured all

experimentally observed patterns—we investigated how the mean task performance of

colonies changed as we varied the ratio of the two ant types.

Simulations predicted a striking range of patterns. For the parameter combination

that produced no effect in the mixed colonies with equal proportions of the two ant

types (‘1:1 mixes’), the model produced an approximately linear relationship between

mean task performance and the ratio of ant types (Fig.A.7A). In all other cases, the mean

task performance followed nonlinear functions the ratio of the types, but their shapes

differed among the cases. In the cases corresponding to behavioral convergence in the
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1:1 mixes, the relationship followed a convex decreasing function, so long as there were

enough individuals of the more efficient type such that the colony could keep up with

the demand (Fig.A.7B; Analytical treatment of the model); otherwise the colony performed

the tasks at a fixed maximum capacity that depended only on the average task duration

(Fig.A.7C). In the case corresponding to behavioral divergence, the relationship

followed a concave decreasing function (Fig.A.7D). Hence, despite one type being more

efficient than the other in all cases considered, replacing an individual of the former type

with one of the latter type would lead to qualitatively different outcomes depending on

the differences in mean threshold.

Regardless of the case studied, the ratio of the types did not alter the qualitative

effect of mixing on individual behavior (behavioral convergence, divergence, or no

effect); for example, the case that led to behavioral divergence in 1:1 mixes predicted

behavioral divergence for all non-1:1 mixes tested (Fig.A.7D).

A.2 Supplementary methods

A.2.1 Experimental design

Four experiments were performed to investigate the effect of genetic composition (2

experiments differing in the brood genotype used), age composition (1 experiment), and

morphological composition (1 experiment). Each experiment comprised three

treatments (2 with pure colonies, 1 with mixed colonies; Table A.1). All colonies within

one experiment were monitored in parallel, but the different experiments were

performed separately.

Experimental colonies were composed of workers of controlled age, genotype, and

morphology (Table A.1), as well as larvae of controlled genotype and age. Colonies were

housed in airtight Petri dishes 5 cm in diameter (corresponding to about 25 ant body
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lengths) with a plaster of Paris floor, in which the workers formed a nest by freely

choosing a location where they piled their larvae. To control individual genotype,

clonally related workers were sourced from the same stock colony. We used two

commonly used genotypes, A and B (Kronauer et al., 2012; Oxley et al., 2014; Teseo et al.,

2014; Ulrich et al., 2018). To control individual age, workers were sourced from a single

age cohort from the same stock colony. Owing to the synchronized reproduction of

O. biroi, all age-matched workers collected this way had eclosed within a day of each

other (Ravary and Jaisson, 2002). Young ants were 1 cycle old (approximately 1 month

old), and old ants were 3 cycles old (approximately 3 months old). The estimated life

span of workers of this species under laboratory conditions is approximately 1 year. To

control individual morphology, age-matched regular workers and intercastes from the

same stock colony were screened based on body size (small or large) and the absence or

presence of vestigial eyes, respectively. From the time they were collected (1 to 3 days

after eclosion) until the start of experiments, workers of a given type were kept as a

group. All workers were tagged with color marks on the thorax and gaster using oil

paint markers. Experimental colonies contained 16 (genetic composition and age

composition experiments) or 8 (morphological composition experiment) workers and a

matching number of age-matched larvae (4 to 5 days old). This 1:1 larvae-to-workers

ratio corresponds to the estimated ratio found in a typical laboratory stock colony. We

used 8 (genetic composition and age composition experiments) or 16 (morphological

composition experiment) replicate colonies for each group composition, for a total of 120

colonies.

Colony number and size varied across experiments due to constraints on the number

of available slots in the tracking system at the time each experiment was performed.

However, all colony sizes employed here were previously shown to have high fitness

and stable DOL (Ulrich et al., 2018), and all experiments were analyzed separately so

that variation in colony size should not impact the results.
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The experiments took place in a climate room at 25C and 75% relative humidity

under constant light (O. biroi is blind, and its behavior is not affected by light). Every

three days, we cleaned and watered the plaster and added one prey item (live pupae of

fire ant minor workers) per live O. biroi larva at a random location within the Petri dish.

A.2.2 Behavioral data acquisition and analysis

Image acquisition and analysis were performed as in Ulrich and colleagues (Ulrich et al.,

2018). We used an automated scan sampling approach, in which a picture of each colony

was acquired every approximately 400 seconds throughout the experiment by a custom

setup comprising 28 webcams (B910 or C910; Logitech, Lausanne, Switzerland) and

controlled LED lighting. Each webcam acquired images (5 megapixels, RGB) of 4

colonies, and the position of colonies within the setup was randomized. Custom

software (available at https://doi.org/10.5281/zenodo.1211644) was used to detect

individual ants in images. For all behavioral analyses, ants were excluded from the

dataset if they were detected in less than 30% of the frames acquired within the

considered time frame (brood care phase or day); for ants that died during the brood

care phase, the considered time frame was the portion of the brood care phase preceding

death.

O. biroi colonies switch between reproductive phases (of approximately 18 days), in

which all workers stay in the nest and lay eggs, and brood care phases (of approximately

16 days), in which workers nurse the larvae in the nest but also leave the nest to scout,

forage, or dispose of waste. For each colony, behavioral analyses were restricted to the

brood care phase, which started at the beginning of the experiment and ended when all

larvae had either reached the nonfeeding prepupal stage or died.

For each colony or subcolony, mean behavior was computed as the average of

individual r.m.s.d. values, and behavioral variation was computed as the standard
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deviation of individual r.m.s.d. values. Both metrics were then compared across

treatments.

To quantify specialization, we use a metric appropriate for use on continuous

behavioral data (here, r.m.s.d.). For each colony, specialization was defined as the

Spearman correlation coefficient between individual r.m.s.d. ranks on consecutive days

of the brood care phase, averaged over days. Mean rank-correlation coefficients were

then compared across treatments.

A.2.3 Statistical analyses

Statistical analyses were performed in R (R Core Team, 2019) separately for each of the

four experiments. As the experiments were performed at different times using different

cohorts of ants, we cannot rule out batch effects and therefore avoid any statistical

analyses comparing treatments across experiments.

Effects of individual traits on behavior. To evaluate whether type-specific behavior

depended on colony composition, we tested for a statistical interaction between the

effects of individual attributes (genotypes A vs. B, Young vs. Old, or Regular worker

vs. Intercaste) and of colony composition (pure vs. mixed) on individual behavior

(individual r.m.s.d.) using linear mixed effects (LMEs, function lmer of package lme4

(Bates et al., 2015)) models with colony as a random factor. If a significant interaction

between colony composition and individual attributes was detected, we then used a

second LME model with a four-level independent fixed variable combining colony

composition and individual attributes (Xp, Yp, Xm and Ym, where Xk and Yk are the mean

behavior of ant types X and Y, respectively, in pure (k = p) or mixed colonies (k = m)),

followed by a Tukey post hoc test with Bonferroni-Holm correction (function glht of

package multcomp (Hothorn et al., 2008)) for the following planned pairwise

comparisons: Xp vs. Xm, Yp vs. Ym, Xp vs. Yp, and Xm vs. Ym. The two models are
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functionally equivalent but were used to test different hypotheses regarding interaction

between terms (first model) and pairwise differences between groups (second model).

When needed, the response variable was transformed (r.m.s.d.2 in the genotype

experiment with brood of genotype A and the age experiment, r.m.s.d3/5 in the genotype

experiment with brood of genotype B; no transformation for the morphology

experiment) to satisfy model assumptions. We evaluated the significance of terms by

comparing pairs of nested models using χ2 log-likelihood ratio tests following deletion

of the term of interest (the interaction in the first model and the four-level variable

combining colony composition and individual attributes in the second model) using the

function drop1 in R.

Effects of genetic, demographic, and morphological mixing on DOL. The effects of

the treatment (a three-level variable: pure X, pure Y, and mixed XY on colony-level DOL

(behavioral variation and specialization) were investigated using generalized linear

models (GLMs). The significance of treatment was evaluated as above. Pairwise

comparisons between treatments were evaluated using Tukey post hoc tests with

Bonferroni-Holm correction. Behavioral variation was square root-transformed in the

genotype experiment with B larvae to satisfy model assumptions.

Effects of genetic, demographic, and morphological mixing on individual

behavior. To assess how type-specific behavior was affected by mixing, and more

specifically, whether the difference in behavior between types of ants was affected by

mixing, we compared the difference in mean behavior (type-specific mean r.m.s.d. in

each colony) between types across pure colonies to the difference in mean behavior

between the same types within mixed colonies (i.e., Yp − Xp vs. Ym − Xm, where Yp > Xp

and Ym > Xm; see below for definitions of behavioral patterns), using unpaired t tests,

after verifying assumptions of normality. In mixed colonies, the difference in mean

behavior was calculated between types of ants within a colony (e.g., old and young
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workers from the same colony); in pure colonies, the difference in mean behavior was

calculated between arbitrary pairs of pure colonies (e.g., old workers from the pure

colony #1 and young ants from pure colony #1, where 1 is a replicate number assigned

randomly at the beginning of the experiment). We further tested whether the amplitude

of the effect differed across types by comparing the magnitude of change in type-specific

behavior between pure and mixed colonies across the 2 ant types (i.e.,

|Xm − Xp| 6= |Ym − Yp|) with unpaired t tests, after verifying assumptions of normality.
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A.3 Supplementary tables and figures

Table A.1: Parameter settings for model simulations.

Parameter Description Baseline
values

T Simulation length in time steps 10,000

N Number of individuals 16

M Number of tasks 2

δj = δ
Brood-specific rate of stimulus increase (i.e., de-
mand rate); taken to be the same for all tasks 0.6

αX
j = αX,

αY
j = αY

Type-specific performance efficiency of active
individuals for task j; taken to be the same for
all tasks

2

µX
j = µX,

µY
j = µY

Mean of the type-specific threshold distribution
for task j; taken to be the same for all tasks 10

σX
j = σX,

σY
j = σY

Variance of the type-specific threshold distribu-
tion for task j as a fraction of the corresponding
mean; taken to be the same for all tasks

0.1

η Threshold stochasticity 7

τX
j = τX,

τY
j = τY

Type-specific probability of quitting task j once
active (inverse of average task performance du-
ration); taken to be the same for all tasks

0.2
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Table A.2: List of experimental treatments. Text in bold denotes the variable of
interest for each experiment. All mixed colonies contained a 1:1 ratio of each ant
type.

Experiment Worker
genotype

Brood
genotype

Age
(cycles) Subcaste Colony

size N

n replicates
/ composi-

tion

#
colonies

Genetic
composition 1

A, B,
mixed A 1 Regular

workers 16 8 24

Genetic
composition 2

A, B,
mixed B 1 Regular

workers 16 8 24

Age
composition B B 1, 3,

mixed
Regular
workers 16 8 24

Morphological
composition B B 1

Regular
workers,

intercastes,
mixed

8 16 48
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Figure A.1: Theoretical predictions with differences in threshold variance. Task
performance frequency for a single task as a function of colony composition.
Opaque circles represent individual replicate colonies (N = 16; n = 100 replicates
per composition); solid circles represent average value (±SE) across replicates. Hor-
izontal gray lines represent the average of the pure colonies (first two columns).
Types X and Y differ in threshold variance: σX = 0.1, σY = 0.5; all other parameters
are identical (see Table A.1).
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Gen. A
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Intercaste
(n=16)

Regular
Worker (n=16)

Mixed
(n=16)

Old
(n=8)

Young
(n=8)

Mixed
(n=8)

Figure A.2: Behavioral variation (standard deviation in r.m.s.d. across colony
members) as a function of colony composition. Small opaque circles represent
individual colonies; large solid circles represent the average values across n repli-
cate colonies. Identical colors across panels indicate ants of the same genotype,
age, and morphological types. (a) Behavioral variation as a function of colony ge-
netic composition in colonies with A brood (N = 16; Bhom vs. Mixed: z = −2.85,
p = 0.013; Ahom vs. Mixed: z = 0.81, p = 0.421). (b) Behavioral variation as a
function of colony genetic composition in colonies with B brood (N = 16; Bhom
vs. Mixed: z = −2.76, p = 0.012; Ahom vs. Mixed: z = −0.81, p = 0.419). (c)
Behavioral variation as a function of colony age composition (N = 16; Younghom
vs. Mixed: z = 2.01, p = 0.090; Oldhom vs. Mixed: z = 3.89, p = 3.07 · 10−04). (d)
Behavioral variation as a function of colony morphological composition (N = 8;
Regular Workerhom vs. Mixed: z = −2.85, p = 0.013, Intercastehom vs. Mixed:
z = 1.53, p = 0.254). n.s.: non-significant, *:p < 0.05, **:p < 0.01, ***:p < 0.001.
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Figure A.3: Colony-level specialization (day-to-day rank correlation in r.m.s.d.) as
a function of colony composition. Small opaque circles represent individual
colonies; large solid circles represent the average values across n replicate colonies.
Identical colors across panels indicate ants of the same genotype, age, and mor-
phological types. (a) Specialization as a function of colony genetic composition in
colonies with A brood (N = 16; GLM post hoc tests; Bp vs. mixed: z = −2.78,
p = 0.017; Ap vs. mixed: z = 1.25, p = 0.256). (b) Specialization as a function
of colony genetic composition in colonies with B brood (N = 16; Bp vs. mixed:
z = −2.41, p = 0.048; Ap vs. mixed: z = 0.88, p = 0.378). (c) Specialization as a
function of colony age composition (N = 16; Youngp vs. mixed: z = 3.01, p = 0.005;
Oldp vs. mixed: z = 5.01, p = 1.63 · 10−06). (d) Specialization as a function of
colony morphological composition (N = 8; Regular Workerp vs. mixed: z = −4.35,
p = 4.07 · 10−05, Intercastep vs. mixed: z = 2.73, p = 0.013). n.s.: non-significant,
*:p < 0.05, **:p < 0.01, ***:p < 0.001.
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Figure A.4: Dynamics of stimulus levels in pure and mixed colonies. Each point
shows the simulated stimulus level for the two tasks (task 1 on the horizontal axes,
task 2 on the vertical axes) in the generation indicated by its color. Each of panels
a, b, d, and e shows a pure colony of the type indicated; each of panels c and f
shows a mixed colony of Types X and Y. Panels a–c (δ = 1.3) correspond to Fig.1.3A
and d–f (δ = 0.6) to Fig. 1.3b. (a–c) When the demand is higher (δ = 1.3), the
more efficient type (Type X) can keep up with the demand on its own (a) but the
less efficient type (Type Y) cannot, as demonstrated by the continual growth of the
stimuli (b); however, mixed colonies can keep up with the higher level of demand
(c). (d–f) When the demand is lower (δ = 0.6), the stimulus levels grow quickly at
first but then stabilizes to an oscillatory pattern around a point, demonstrating that
both pure and mixed colonies can keep up with the demand. Each simulation ran
for 1000 time steps; all other parameters are identical to those in the corresponding
Fig.1.3 panels.
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Figure A.5: Theoretical predictions of the expanded model on behavioral varia-
tion. Behavioral variation was quantified as the standard deviation of task perfor-
mance frequency across individuals in a colony. Opaque circles represent individual
replicate colonies (N = 16; n = 100 replicates per composition); solid circles repre-
sent the average value (mean ±SE) across replicates. Types X1, X2, X3, Y and their
corresponding parameters are identical to those in Fig. 1.3. See Table A.1 for other
parameters.

151



●

●
●

0.0

0.2

0.4

0.6

0.8

1.0

Type X Type Y Mixed
Sp

ec
ia

liz
at

io
n,

 m
ea

n 
± 

s.
e.

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Type X Type Y Mixed

Sp
ec

ia
liz

at
io

n,
 m

ea
n 

± 
s.

e.

●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

Type X3 Type Y Mixed

Sp
ec

ia
liz

at
io

n,
 m

ea
n 

± 
s.

e.

●

● ●

0.0

0.2

0.4

0.6

0.8

1.0

Type X2 Type Y Mixed

Sp
ec

ia
liz

at
io

n,
 m

ea
n 

± 
s.

e.
ba

c d

Figure A.6: Theoretical predictions of the expanded model on behavioral special-
ization. Colony-level specialization was quantified using Spearman rank correla-
tion on consecutive windows of 200 time steps. Opaque circles represent individual
replicate colonies (N = 16; n = 100 replicates per composition); solid circles repre-
sent the average value (mean ±SE) across replicates. Types X1, X2, X3, Y and their
corresponding parameters are identical to those in Fig. 1.3. See Table A.1 for other
parameters.
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Figure A.7: Model predictions for non-1:1 mixes. Colonies with varying ratios of
X and Y individuals were simulated under different conditions of threshold values,
task-performance efficiency, and task demand (n = 100 replicates per colony com-
position). Each large circle represents the mean task performance (task 1) for that
mix of X and Y individuals; the neighboring smaller circles represent the means of X
and Y individuals, respectively, within that mix. Dashed lines indicate the null hy-
pothesis of linear behavioral effects of mixing types. The boxes highlight the behav-
ioral patterns characterizing the 1:1-mixes, and their labels indicate correspondence
with Fig.1.3 (a: Fig.1.3e, b: Fig.1.3b, c: Fig.1.3a, d: Fig.1.3d). Types X1, X2, X3, Y and
their corresponding parameters are identical to those in Fig. 1.3. See Table A.1 for
other parameters.
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Appendix B

Supplementary materials for Chapter 2

B.1 Supplementary analyses

B.1.1 Selection-mutation equilibrium in the limit of weak selection

Our model considers a population of N individuals distributed over M potentially

overlapping groups, each representing a political issue of interest. Let

hi = [hi1, hi2, · · · , hiM] ∈ {−1, 0, 1}M denote the M-element opinion vector of individual

i, where hik represents i’s opinion on issue k: liberal (−1), neutral (0), or conservative

(+1). We say that individual i cares about issue k if she takes either a liberal or

conservative position on it and that she does not care about issue k if she takes a neutral

position. We assume that every individual cares about exactly K issues, i.e.,

∑M
k=1 |hik| = K for all i ∈ {1, . . . , N}.

Individuals also have political affiliations. Let ai ∈ {0, · · · , P} denote the party

affiliation of individual i. For simplicity, we focus on a two-party system (P = 2), i.e.,

ai ∈ {1, 2}, with individuals distributed equally across the parties.
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Interactions and fitness. In each round, two individuals play one-shot pairwise

donation games as many times as the number of issues they both care about. In a given

game, the donor can choose to either cooperate (C), incurring a cost c to provide a

benefit b to the recipient, or defect (D), incurring no cost and providing no benefit to the

recipient. Individual i’s strategy is given by si = [sia, sid] ∈ {0, 1}2, where 0 corresponds

to D and 1 to C. When i interacts with j in group k, i plays strategy sia if i and j agree on

issue k (hik = hjk) and sid if they disagree (hik 6= hjk). We refer to sia and sid as agreement

strategy and disagreement strategy, respectively.

The fitness of individual i in a given round is given by fi = 1 + βπi, where πi is the

total payoff accrued by individual i in that round:

πi =
N

∑
j=1
j 6=i

M

∑
k=1

|hikhjk|
[

δk
ij
[
−csia + bsja

]
+ (1 − δk

ij)
[
−csid + bsjd

] ]

= −Ksia(b − c) +
N

∑
j=1

M

∑
k=1

|hikhjk|
[

δk
ij
[
−csia + bsja

]
+ (1 − δk

ij)
[
−csid + bsjd

] ]
,

(B.1)

where |hikhjk| filters the shared issues (|hikhjk| = 1 if hik, hjk = 1 or −1, |hikhjk| = 0

otherwise). The function δk
ij indicates whether i and j agree on a given issue:

δk
ij = 1{hik = hjk} = 1

2(1 + hikhjk) = 1 if hik = hjk (that is, if i and j both care about issue k

and have the same opinion) and 0 if hik = −hjk (that is, if i and j both care about issue k

but have opposing opinions). Note that, when M = K, |hikhjk| = 1 for every

k ∈ {1, . . . , M}.

Frequencies of strategies. Let xs be the frequency of strategy

s = [sia, sid] ∈ {CC, CD, DC, DD}, satisfying ∑s xs = 1. The frequency of each strategy
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can be expressed in terms of sia, sid as

xCC =
1
N

N

∑
i=1

siasid , xCD =
1
N

N

∑
i=1

sia(1 − sid) ,

xDC =
1
N

N

∑
i=1

(1 − sia)sid , xDD =
1
N

N

∑
i=1

(1 − sia)(1 − sid) .

Evolutionary updating for p < 1. The population evolves according to the Moran

process. In each generation, a learner is selected uniformly at random, and the learner

randomly chooses a role model with probability proportional to her relative fitness. The

average probability with which the learner considers imitating the role model depends

on their party affiliations and the partisan bias p. Let this probability be Q(p).

When the learner attempts to imitate, she either adopts the strategy of the role model

with probability 1 − u (selection) or a random strategy with probability u (mutation).

• The average change in xs due to mutation is given by

∆xmut
s = 1

N

(
1
4(1 − xs)− 3

4 xs

)
= 1

N

(
1
4 − xs

)
, where the number 4 in the

denominator corresponds to the number of possible strategies.

• The average change in xs due to selection is given by ∆xsel
s = 1

N ∑i 1si=s(ωi − 1),

where ωi is the expected number of copies of individual i after one generation.

When p < 1, this quantity is given by

ωi = 1 − 1
N

+
fi

∑j f j
.

In the limit of weak selection (β small), we can linearize ∆xsel
s to the leading order

in β:

∆xsel
s =

1
N

· β

N ∑
i
1si=s

(
πi −

1
N ∑

j
πj

)
+O(β2) .
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Thus, at the mutation-selection equilibrium, we have

Q(p)
(

u
〈
∆xmut

s
〉
+ (1 − u)

〈
∆xsel

s

〉)
= 0 =⇒ u

N

〈
1
4
− xs

〉
+ (1 − u)

〈
∆xsel

s

〉
= 0 ,

(B.2)

where the average 〈·〉 is taken over the stationary population state. In particular, in the

weak selection limit, we can approximate
〈
∆xsel

s
〉
—the expected change in frequency of

strategy s due to selection—by taking the average over the neutral stationary state (i.e.,

with β = 0) (Antal et al., 2009a,b; Tarnita et al., 2009a):

〈
∆xsel

s

〉
= β

〈
∆xsel

s

〉
0
+O(β2) ,

with
〈

∆xsel
s

〉
0
=

〈
1
N ∑

i
1si=s

dωi

dβ

〉
0

=

〈
1

N2 ∑
i
1si=s

(
πi −

1
N ∑

j
πj

)〉
0

,

where the subscript 0 refers to neutral drift (β = 0). Thus, to compute the stationary

distribution of strategies in the weak selection limit (β small), we only need to consider

selection under neutrality; we refer the reader to (Antal et al., 2009a,b; Tarnita et al.,

2009a) for a full justification of this approach.

Solving (B.2) for 〈xs〉, we obtain the stationary frequency of strategy s in the weak

selection limit as

〈xs〉 =
1
4
+

(
1 − u

u

)
· Nβ

〈
∆xsel

s

〉
0

. (B.3)
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Thus a strategy s is favored by selection if 〈xs〉 > 1/4, i.e., if
〈
∆xsel

s
〉

0 > 0. Hence, our

objective is to compute the following quantities:

〈
∆xsel

CC

〉
0
=

〈
1

N2

N

∑
i=1

siasid

(
πi −

1
N ∑

j
πj

)〉
0

,

〈
∆xsel

CD

〉
0
=

〈
1

N2

N

∑
i=1

sia(1 − sid)

(
πi −

1
N ∑

j
πj

)〉
0

,

〈
∆xsel

DC

〉
0
=

〈
1

N2

N

∑
i=1

(1 − sia)sid

(
πi −

1
N ∑

j
πj

)〉
0

,

〈
∆xsel

DD

〉
0
=

〈
1

N2

N

∑
i=1

(1 − sia)(1 − sid)

(
πi −

1
N ∑

j
πj

)〉
0

.

(B.4)

B.1.2 Computing the expected change in strategy frequency due to se-

lection

To compute expected change in strategy frequencies due to selection, we begin by

substituting Eq.(2.2) into Eq.(B.4) (see Mathematica scripts in the accompanying Github

repository at https://github.com/marikawakatsu/CooperationPolarization2 for

detailed calculations). We obtain:

〈
∆xsel

CC

〉
0
= −

〈
∆xsel

DD

〉
0
=

1
4

M(b(g′ − h′) + c(h′ − z′)) , (B.5)〈
∆xsel

CD

〉
0
= −

〈
∆xsel

DC

〉
0
=

1
4

M(b(g − h) + c(h − z)) , (B.6)
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where, for convenience, we have defined the following correlations (see, e.g., Tarnita

et al., 2009a):

y = P
(
sia = sja | i 6= j

)
,

z =
〈

hikhjk | i 6= j
〉

0 ,

g =
〈

hikhjk1sia=sja | i 6= j
〉

0
,

h =
〈

hikhjk1sia=sℓa | i 6= j 6= ℓ
〉

0 , (B.7)

z′ =
〈
|hikhjk| | i 6= j

〉
0 ,

g′ =
〈
|hikhjk|1sia=sja | i 6= j

〉
0

,

h′ =
〈
|hikhjk|1sia=sℓa | i 6= j 6= ℓ

〉
0 .

When M = K, every individual cares about every issue (|hik| = 1 for all i, k). This means

z′ = 1 and g′ = h′ = y, which reduce Eq.(B.5) to

〈
∆xsel

CC

〉
0
= −

〈
∆xsel

DD

〉
0
= −1

4
Mc(1 − y) < 1 , (B.8)

meaning that, when M = K, selection never favors CC and always favors DD.

Time to most recent common ancestor (MRCA). To compute (B.7), we use

coalescent theory as described in (Antal et al., 2009a,b; Fu et al., 2012; Tarnita et al.,

2009a). The key idea of this approach is that, given two or more individuals, we can

always find their most recent common ancestor (MRCA) by tracing back their lineages.

We first compute the probability that two randomly chosen individuals i and j have

their MRCA at time ∆ij = t. Following the derivation in (Antal et al., 2009b), the

probability that i and j share an ancestor in the step immediately prior (i.e., “parent”) is

P
(
∆ij = 1

)
=

(
1 − 1

N

)
· 2 · 1

N
· 1

N − 1
· γ =

2γ

N2 ,
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where γ = γ(N, p) is the probability that an imitation event occurs between i and j.

Specifically, an imitation event occurs with probability 1 if i and j are in the same party

or with probability 1 − p if they are in different parties. Thus we have

γ(N, p) = 1 · N/2 − 1
N − 1

+ (1 − p) · N/2
N − 1

= 1 − Np
2(N − 1)

.

Note that 1 ≥ γ(N, p) ≥ 1 − Np
2(N−1) , with the lower bound approaching 0.5 as N → ∞.

Then the probability that i and j have their MRCA at time ∆ij = t is

P (∆ = t) =
(

1 − 2γ

N2

)t−1 2γ

N2 .

Let τ2 = t/
(

N2/2γ
)

be the rescaled time and ρ2(τ2) be its probability density function.

By change of variables, the distribution of coalescence times τ2 in the continuous time

limit (N → ∞) is given by

ρ2(τ2) = e−τ2 .

Similarly, the density function ρ3(τ3, τ2) for the coalescence time among three

randomly chosen individuals (Antal et al., 2009b; Tarnita et al., 2009a) is,

ρ3(τ3, τ2) = 3e−3τ3e−τ2 .

Here, two of the three individuals coalesce first in time τ3 = t3/(N2/2γ), and then this

lineage coalesces with the remaining individual after additional time τ2 = t/(N2/2γ).

In the rescaled time, i.e., τ = t/(N2/2γ), the opinion mutation and issue/opinion

rates rescale to µ = Nu and ν = Nv, respectively.

Probability that two individuals have the same agreement strategy. We begin by

computing y, the probability that two randomly selected individuals i and j have the

same agreement strategy (s∗a).

160



Starting from the MRCA, each lineage mutates with rate µ/2. If neither lineage has

mutated after time τ2 since the MRCA (which occurs with probability e−µτ2), i and j have

the same agreement strategy (i.e., sia = sja). If at least one has mutated (which occurs

with probability 1 − e−µτ2), i and j have the same agreement strategy with probability

1/2. Thus, the probability that two randomly chosen individuals have the same

agreement strategy after time τ2 since their MRCA is

y(τ2) = P
(
sia = sja | i 6= j, ∆ij = τ2

)
= e−µτ2 +

1
2
(
1 − e−µτ2

)
=

1
2
(
1 + e−µτ2

)
. (B.9)

Using the distribution of coalescence times τ2 computed above, we obtain

y =
∫ ∞

0
ρ2(τ2)y(τ2) dτ2 =

∫ ∞

0
e−τ2 · 1

2
(
1 + e−µτ2

)
dτ2 =

µ + 2
2(µ + 1)

in the continuous time limit (N → ∞).

Average opinion agreement between two individuals. The quantity

z =
〈

hikhjk | i 6= j
〉

0 represents the average opinion agreement between two randomly

selected individuals i and j on a randomly selected issue k. To compute z, we first

compute z(τ2), the average opinion agreement between i and j at time τ2 from their

MRCA.

At the MRCA, the probability that i and j both care about and agree on a randomly

selected issue k (i.e., hikhjk = 1) is K/M; this is because each individual cares about

exactly K of the M issues. From there, each lineage mutates with rate ν/2. If neither

lineage has mutated after time τ2 since the MRCA (with probability e−ντ2), i and j agree

on a given issue k (i.e., hik = hjk, which gives hikhjk = 1). If at least one has mutated, i

and j still care about issue k with probability K/M, but can have either the same opinion

(hik = hjk) or opposite opinions (hik = −hjk) with equal probability. Hence, we can write
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z(τ2) as

z(τ2) =
〈

hihj | i 6= j, ∆ij = τ2
〉

0

=
K
M

(
e−ντ2 +

(
1 − e−ντ2

) ( K
2M

− K
2M

))
=

K
M

e−ντ2 .
(B.10)

Finally, integrating over all possible coalescence times,

z =
∫ ∞

0
ρ2(τ2)z(τ2) dτ2 =

∫ ∞

0
e−τ2 · e−ντ2 dτ2 =

K
M

(
1

ν + 1

)
.

Average opinion agreement between two individuals with the same agreement

strategy. Next, g =
〈

hikhjk1sia=sja |i 6= j
〉

can be interpreted as the average opinion

agreement between two randomly selected individuals on a randomly selected issue

given that they have a non-zero contribution to the average only if they have the same

agreement strategy.

To compute g, we first fix the time to MRCA: g(τ2) =
〈

hikhjk1sia=sja | i 6= j, ∆ij = τ2

〉
0
.

Since opinion mutations and strategy mutations are independent from ∆ij = τ2 onward,

we can write g(τ2) =
〈

hikhjk | i 6= j, ∆ij = τ2
〉

0 P
(
sia = sja | i 6= j, ∆ij = τ2

)
= z(τ2)y(τ2).

Thus, in the continuous limit, we substitute in the expressions in Eq.(B.9) and Eq.(B.10)

to obtain

g =
∫ ∞

0
ρ2(τ2)z(τ2)y(τ2) dτ2

=
∫ ∞

0
e−τ2 · 1

2
(
1 + e−µτ2

)
· K

M
e−ντ2 dτ2 =

K
2M

(
1

µ + ν + 1
+

1
ν + 1

)
.

Average opinion agreement between two out of three individuals, provided that a

different pair shares the agreement strategy. The quantity

h =
〈

hikhjk1sia=sℓa | i 6= j 6= ℓ
〉
, can be interpreted as follows: given three randomly

selected individuals i, j, and ℓ, h is the average agreement between i and j on a randomly
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selected issue k, provided that they have a non-zero contribution to the average only if i

and ℓ have the same agreement strategy. Mathematically, this is identical to the scenario

worked out in (Tarnita et al., 2009a), which considers the three different orders in which

i, j, and ℓ can coalesce. In this case, we can write

h(τ3, τ2) =
1
3
(y (τ3) z (τ3 + τ2) + y (τ3 + τ2) z (τ3) + y (τ3 + τ2)z(τ3 + τ2)) .

Integrating this expression, we obtain

h =
∫ ∞

0

∫ ∞

0
h (τ3, τ2) dτ3 dτ2

=
K

2M

[
µ + 3

(µ + 2)(ν + 1)
− µ(µ + 3)

2(µ + 1)(µ + 2)(µ + ν + 3)
+

1
2(µ + ν + 1)

]
.

Probability that two individuals care about a given issue. The quantity

z′ =
〈
|hikhjk| | i 6= j

〉
0 represents the probability that two randomly selected individuals i

and j both care about a randomly selected issue k.

At the MRCA, the probability that i and j both care about a given issue k (i.e.,

|hik| = |hjk| = 1) is K/M. From there, each lineage mutates with rate ν/2. If neither

lineage has mutated after time τ2 since the MRCA, then |hik| = |hjk| = 1. If at least one

has mutated, i and j still care about issue k with probability K/M. Hence, we can write

z′(τ2) as

z′(τ2) =
K
M

(
e−ντ2 +

(
1 − e−ντ2

) K
M

)
. (B.11)

Finally, integrating over all possible coalescence times,

z′ =
∫ ∞

0
ρ2(τ2)z′(τ2) dτ2 =

K
M

[
K
M

+
M − K

M
· 1

ν + 1

]
.
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Probability that two individuals care about a given issue and have the same

agreement strategy. The quantity g′ =
〈
|hikhjk|1sia=sja |i 6= j

〉
can be interpreted as the

probability that two randomly selected individuals both care about a randomly selected

issue and have the same agreement strategy. We compute g′ by first fixing the time to

MRCA:

g′(τ2) =
〈
|hikhjk| | i 6= j, ∆ij = τ2

〉
0 P
(
sia = sja | i 6= j, ∆ij = τ2

)
= z′(τ2)y(τ2).

Substituting Eq.(B.9) and Eq.(B.10) and integrating over coalescence times τ2, we obtain

g′ =
∫ ∞

0
ρ2(τ2)z′(τ2)y(τ2) dτ2 =

K
2M

[
K
M

· 2 + µ

1 + µ
+

M − K
M

·
(

1
µ + ν + 1

+
1

ν + 1

)]
.

Probability that two out of three individuals care about a given issue, provided

that a different pair shares the agreement strategy. The last quantity

h′ =
〈
|hikhjk|1sia=sℓa | i 6= j 6= ℓ

〉
can be interpreted as follows: given three randomly

selected individuals i, j, and ℓ, h′ is the probability that i and j both care about a

randomly selected issue k, provided that i and ℓ share the agreement strategy. Similarly

to h, we can write

h′(τ3, τ2) =
1
3 (y (τ3) z′ (τ3 + τ2) + y (τ3 + τ2) z′ (τ3) + y (τ3 + τ2)z′(τ3 + τ2)) . Integrating

this expression, we obtain

h′ =
∫ ∞

0

∫ ∞

0
h′ (τ3, τ2) dτ3 dτ2

=
K

2M

[
K
M

· 2 + µ

1 + µ
+

M − K
M

·
(

µ + 3
2(µ + 2)(ν + 1)

− µ(µ + 3)
2(µ + 1)(µ + 2)(µ + ν + 3)

+
1

2(µ + ν + 1)

)]
.
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Summary: computing the correlations. For p < 1, we have obtained

y =
µ + 2

2(µ + 1)
, (B.12)

z =
K
M

(
1

ν + 1

)
, (B.13)

g =
K

2M

(
1

µ + ν + 1
+

1
ν + 1

)
, (B.14)

h =
K

2M

(
µ + 3

(µ + 2)(ν + 1)
− µ(µ + 3)

2(µ + 1)(µ + 2)(µ + ν + 3)
+

1
2(µ + ν + 1)

)
, (B.15)

z′ =
K
M

[
K
M

+
M − K

M
· 1

ν + 1

]
=

K2

M2 +
M − K

M
· z , (B.16)

g′ =
K

2M

[
K
M

· 2 + µ

1 + µ
+

M − K
M

(
1

µ + ν + 1
+

1
ν + 1

)]
=

K2

M2 · y +
M − K

M
· g , (B.17)

h′ =
K

2M

[
K
M

· 2 + µ

1 + µ
+

M − K
M

(
µ + 3

2(µ + 2)(ν + 1)
− µ(µ + 3)

2(µ + 1)(µ + 2)(µ + ν + 3)
+

1
2(µ + ν + 1)

)]
=

K2

M2 · y +
M − K

M
· h , (B.18)

where µ = Nu and ν = Nv are the rescaled strategy mutation and issue/opinion

exploration rates, respectively. We note that the quantity y is independent of K and M.

Figures B.6 and B.7 compare numerical evaluations of these quantities with simulated

quantities (for M = K = 1 and M = 3, K = 2, as in Fig.B.3), showing excellent

agreement.

B.1.3 Computing the stationary strategy frequencies

Substituting Eqs.(B.12)–(B.18) into Eqs.(B.5) and (B.6), we obtain the change in frequency

of each strategy due to selection under neutrality:

〈
∆xsel

CC

〉
0
= −

〈
∆xsel

DD

〉
0

= −
Kµ
(
−bν(M − K)(µ + ν + 2) + cKν(µ + ν + 2)2 + cM

(
µ2 + 2µ(ν + 2) + ν(ν + 3) + 3

))
8(µ + 1)(ν + 1)M(µ + ν + 1)(µ + ν + 3)

,〈
∆xsel

CD

〉
0
= −

〈
∆xsel

DC

〉
0

= −
Kµ
(
−bν(µ + ν + 2) + c

(
µ2 + 2µ(ν + 2) + ν(ν + 3) + 3

))
8(µ + 1)(ν + 1)(µ + ν + 1)(µ + ν + 3)

.
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In the limit of small µ (µ � 1), these simplify to

〈
∆xsel

CC

〉
0
= −

〈
∆xsel

DD

〉
0

= −K ·
µ
(
−(1 − K/M)bν(ν + 2) + (K/M)cν(ν + 2)2 + c(ν(ν + 3) + 3)

)
8(ν + 1)2(ν + 3)

, (B.19)〈
∆xsel

CD

〉
0
= −

〈
∆xsel

DC

〉
0

= −K · µ(−bν(ν + 2) + c(ν(ν + 3) + 3))
8(ν + 1)2(ν + 3)

. (B.20)

Substituting these expressions into Eq.(B.3) completes the computation of the stationary

strategy frequencies 〈xs〉, which are plotted against simulation data in Fig.2.3D–E and

Fig.B.3F–I.

Moreover, we can deduce the following:

1. We can rewrite Eq.(B.19) and Eq.(B.20) as

〈
∆xsel

CC

〉
0
= −

〈
∆xsel

DD

〉
0
= µK · R(ν, b, c)− µ

K2

M
· S(ν, b, c) , (B.21)〈

∆xsel
CD

〉
0
= −

〈
∆xsel

DC

〉
0
= µK · R(ν, b, c) , (B.22)

where

R(ν, b, c) =
bν(ν + 2)− c(ν(ν + 3) + 3)

8(ν + 1)2(ν + 3)
,

S(ν, b, c) =
ν(ν + 2)(b + c(ν + 2))

8(ν + 1)2(ν + 3)
.

(B.23)

These expressions also provide insight into the relative effects of M and K on

effective cooperation (see Fig.2.2). Whereas K affects the frequencies of both

unconditional (CC) and conditional (CD, DC) cooperators, M only affects the

former. In fact, since ν, b, c > 0 and therefore S > 0, Eq.(B.21) reveals that

increasing M always increases the frequency of CC (and decreases that of DD).
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However, the positive effect of increasing M is vanishingly small, as it affects CC

(and DD) via the term proportional to 1/M. In contrast, K impacts all frequencies

at least linearly, which helps explain why the effects of varying K are much

stronger than those of varying M in Fig.2.2.

2. When M = K, Eq.(B.19) reduces to
〈
∆xsel

CC
〉

0 = −
〈
∆xsel

DD
〉

0 = −cMµ/8 < 0,

meaning that (1) selection never favors CC and always favors DD (see also

Eq.(B.8)) and that (2) the frequencies of CC and DD are independent of

issue/opinion exploration rate ν (v).

When M > K, selection favors CC (and disfavors DD) when

b/c > (z′ − h′)/(g′ − h′) (see Eq.(B.5)). Substituting in Eqs.(B.12)

and (B.16)–(B.18), we can express this condition as

(
b
c

)
>

(
b
c

)∗
=

(K/M)ν(ν + 2)2 + (ν(ν + 3) + 3)
(1 − K/M)ν(ν + 2)

, (B.24)

where the RHS is (1) a U-shaped function of ν (ν > 0) and (2) an increasing

function of K/M (0 < K/M ≤ 1). Hence, CC is favored for intermediate values of

v if M is sufficiently large relative to K (i.e., K/M is sufficiently small) such that

(b/c) > (b/c)∗.

3. CD is favored by selection (and DC is disfavored) when b/c > (z − h)/(g − h)

(Eq.(B.6)), where the fraction on the RHS is decreasing in ν. Substituting

Eqs.(B.12)–(B.15) into Eq.(B.6) and solving for ν, we can express this condition in

the limit of small µ as

ν > ν∗CD = Nv∗CD =
−2(b/c) + 3 +

√
4(b/c)2 − 3

2(b/c − 1)
. (B.25)
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Note that, unlike Eq.(B.24), this condition depends only on b and c; in other words,

for fixed b and c, the value of v beyond which CD is favored by selection is

independent of M and K. For b = 1, c = 0.2, the critical threshold v∗CD is 0.00890268.

168



B.2 Supplementary tables and figures

Table B.1: Parameter settings for model simulations. Baseline values are those
used in the simulations unless otherwise indicated.

Parameter Description Values (Baseline)

N Number of individuals 40

M Number of available issues 1–5 (1)

K Number of issues each individual
cares about (K≤M) 1–5 (1)

P Number of parties 2

β Strength of selection 0.001

p Partisan bias in mutation 0–1 (0)

u Strategy mutation rate 0.001

v Issue and opinion exploration rate 0.001–0.625 (0.001)

ε
Bias attenuation in opinion muta-
tion 1
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Table B.2: Effect of changing M on effective cooperation. Values shown corre-
spond to the simulated data shown in Fig.2.2A, for each value of K and v, we com-
pute the relative change (%) in effective cooperation between extreme values of M
as (cooperationMmax

− cooperationMmin
)/cooperationMmin

× 100.

v K Mmin cooperationMmin
Mmax cooperationMmax

% change

1 1 0.432 5 0.428 -1.0

2 2 0.363 5 0.364 0.3

0.001 3 3 0.298 5 0.304 2.1

4 4 0.253 5 0.254 0.5

5 5 0.211 5 0.211 0

1 1 0.452 5 0.461 2.0

2 2 0.402 5 0.414 3.0

0.005 3 3 0.358 5 0.378 5.4

4 4 0.322 5 0.329 2.0

5 5 0.280 5 0.280 0

1 1 0.474 5 0.520 9.6

2 2 0.447 5 0.509 14.0

0.025 3 3 0.414 5 0.480 15.9

4 4 0.385 5 0.422 9.7

5 5 0.358 5 0.358 0
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Table B.3: Effect of changing K on effective cooperation. Values shown correspond
to the simulated data shown in Fig. 2.2B. For each value of M and v, we compute
the relative change (%) in effective cooperation between extreme values of M as
(cooperationKmax

− cooperationKmin
)/cooperationKmin

× 100.

.

v M Kmin cooperationKmin
Kmax cooperationKmax

% change

1 1 0.432 1 0.432 0

2 1 0.430 2 0.363 -15.7

0.001 3 1 0.430 3 0.298 -30.8

4 1 0.434 4 0.253 -41.7

5 1 0.428 5 0.211 -50.8

1 1 0.452 1 0.452 0

2 1 0.461 2 0.402 -12.9

0.005 3 1 0.463 3 0.358 -22.6

4 1 0.468 4 0.322 -31.0

5 1 0.461 5 0.280 -39.4

1 1 0.474 1 0.474 0

2 1 0.503 2 0.447 -11.1

0.025 3 1 0.507 3 0.414 -18.5

4 1 0.516 4 0.385 -25.5

5 1 0.520 5 0.358 -31.2
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Figure B.1: Change in xCD due to selection as a function of the benefit-to-cost ratio
and issue/opinion exploration (M = K = 1). We plot Eq.(B.20) as a function of b/c
and ν = Nv, fixing c = 1 and µ = 1. Colors correspond to the values of

〈
∆xsel

CD
〉

0.
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Figure B.2: Opinion and interest alignment as a function of partisan bias. An
extended version of Fig. 2.4 with identical metrics. For each parameter setting, we
ran an ensemble of 150 simulations with population size N = 40, each lasting 2× 107

generations. First 10% of each simulation were disregarded to account for potential
initialization effects. Each circle within a panel represents the mean value (±SD)
of the corresponding metric averaged across generations and across the ensemble.
Solid lines indicate values computed for the full population; dotted and dashed lines
indicate values within and between parties, respectively. Values of M and K are as
indicated. Values of M, K, and v are as indicated. See Table B.1 for other parameter
values.
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Figure B.3: Interplay between issue/opinion exploration and partisan bias. An
extended version of Fig. 2.3. A, C, E and K, M, P are identical to Fig. 2.3A–C and
Fig. 2.3D–F, respectively, with M = 3, K = 2. The middle column (F–J) show cases
with M = 1, K = 1. For each parameter setting, we ran an ensemble of 150 simula-
tions with population size N = 40, each lasting 2× 107 generations. We disregarded
the first 10% of the generations in each simulation to account for potential initializa-
tion effects. All other parameters and the quantities plotted are as in Fig.2.3.
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Figure B.4: Evolutionary dynamics of cooperation. An extended version of Fig.2.2,
with A–D mirroring Fig. 2.2A–D, respectively, but with p = 1. For each parameter
setting, we ran an ensemble of 150 simulations with population size N = 40, each
lasting 2 × 107 generations. We disregarded the first 10% of the generations in each
simulation to account for potential initialization effects. All other parameters and
the quantities plotted are as in Fig.2.2.
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Figure B.5: Opinion and interest alignment as a function of partisan bias. Average
opinion distance (A) and average interest distance (B) measured in the full popula-
tion. Values shown are computed from the same set of simulations as in Fig. 2.4.
Each circle within a panel represents the mean value (±SD) of the corresponding
metric averaged across generations and across the ensemble. See Materials and meth-
ods for definitions and the normalization procedure and Table B.1 for parameter
values.
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Figure B.6: Comparison between simulated and analytically derived values of y,
z, g, and h at neutrality (M = K = 1). For each parameter setting, we ran an ensem-
ble of 200 simulations under neutral selection (β = 0) with population size N = 40,
each lasting 2 × 107 generations. Each circle represents the mean value (±SD) the
quantity indicated in the corresponding title, averaged across the ensemble. Colors
indicate values of partisan bias p; see Table B.1 for all other parameters. Each solid
line represents the theoretical prediction for the corresponding quantity (see Com-
puting the expected change in strategy frequency due to selection).
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Figure B.7: Comparison between simulated and analytically derived values of y,
z, g, h, z′, g′, and h′ at neutrality (M = 3, K = 2). For each parameter setting, we
ran an ensemble of 75 simulations under neutral selection (β = 0) with population
size N = 40, each lasting 2 × 107 generations. Each circle represents the mean value
(±SD) the quantity indicated in the corresponding title, averaged across the ensem-
ble. Colors indicate values of partisan bias p; see Table B.1 for all other parameters.
Each solid line represents the theoretical prediction for the corresponding quantity
(see Computing the expected change in strategy frequency due to selection).
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Appendix C

Supplementary materials for Chapter 3

C.1 Supplementary figures
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Figure C.1: Cooperation in monomorphic populations of pDISC under Scoring.
Same as in Fig.3.1 but under the Scoring norm.
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Figure C.2: Cooperation in monomorphic populations of pDISC under Simple
Standing. Same as in Fig.3.1 but under the Simple Standing norm.
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Figure C.3: Cooperation in monomorphic populations of pDISC under Shunning.
Same as in Fig.3.1 but under the Shunning norm.
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Figure C.4: Pairwise invasibility of pDISC strategies under Stern Judging. An
expanded version of Fig.3.2; C, E, and G correspond to Fig.3.2A, B, C, respectively.
Each panel corresponds to a combination of monitoring systems for individual rep-
utations (rows) and stereotyped reputations (columns). Parameters are as in Fig.3.2.
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Figure C.5: Stochastic evolutionary dynamics of pDISC strategies under Stern
Judging. An expanded version of Fig.3.2; C, E, and G correspond to Fig.3.2D, E, and
F, respectively. Each panel corresponds to a combination of monitoring systems for
individual reputations (rows) and stereotyped stereotypes (columns). Parameters
are as in Fig.3.2.
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Appendix D

Supplementary materials for Chapter 4

D.1 Supplementary analyses

In this section, we prove a set of linear stability results that generalize Theorem 4.1 in the

main text. Our generalizations account for (a) nonlinear features and (b) multiple

updates per round.

Throughout this section, we consider a utility function of the form

uij(s) =
k

∑
ℓ=1

βℓϕ
ℓ
ij(s) , (D.1)

where each ϕℓ : Rn 7→ Rn×n is a smooth feature map; βℓ ∈ R is a preference parameter

indicating relative importance of the ℓth feature; and ϕℓ
ij(s) is the ijth entry of ϕℓ(s). We

collect the parameters β in a vector β ∈ Rk. The utility function in Eq.(4.4) from the main

text is a special case with linear feature map ϕ1
ij(s) = sj, and quadratic feature map,

ϕ2
ij(s) = (si − sj)

2. We also define the rate matrix G = [n−1pij], whose (i, j)th entry gives

the probability that, in a given time step, node i chosen uniformly at random endorses

node j (see Eq.(4.5) in the main text for the definition of pij).

186



Since we aim to characterize the linear stability of egalitarian fixed points, we will

consider the Jacobian of the rank vector γ evaluated at egalitarian fixed points. We will

therefore evaluate the Jacobian at s0 = θe, where θ ∈ R. By definition,

γ = n−1GTe = n−1 ∑i γi, where γi is the ith column of G. Differentiating and applying

the chain rule, we have

∂γ(s0)

∂s
= ∑

i

(
Γi − γiγ

T
i

) k

∑
ℓ=1

βℓ
∂ϕℓ

i
∂s

,

where Γi = diagγi and ϕℓ
i·(s0) is the ith row of the ℓth feature map evaluated at s0. At

s0 = θe, G = n−1E. It follows that γi = n−1e and Γi = n−1I. We thus have

∂γ(s0)

∂s
= n−1(I − n−1E)

n

∑
i=1

k

∑
ℓ=1

βℓ
∂ϕℓ

i·(s0)

∂s
≜ M(s0; β) . (D.2)

We will express our primary results in terms of this matrix.

When writing proofs involving dynamics, we will typically repress the

time-argument of quantities like s and A. When time step t is implied, we will use the

somewhat informal notation δs = s(t + 1)− s(t) and δA = A(t + 1)− A(t) to denote the

increments of these and other quantities in the current time step.

D.1.1 Degree scores

Theorem D.1 (Stable Egalitarianism with Degree Scores). When σ(A) = s = ATe, the

vector s0 = de is a root of f, where d = m
n , and is the only egalitarian root. Furthermore, s0 is

linearly stable in the long-memory limit if and only if M(s0; β) has eigenvalues strictly smaller

than 1
m .
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Proof. We first derive the functional form of f. We can write

E[s(t + 1)|A(t)] = E[A(t + 1)|A(t)]Te

= λA(t)e + (1 − λ)E[∆(t)]Te

= λA(t)e + (1 − λ)mn−1G(t)Te .

Inserting this expression into Eq.(4.6), and recognizing n−1G(t)e = γ(t), we have

f(s) = mn−1E[G]e − A(t)e = mγ − s .

We can now check that s0 is indeed the unique egalitarian root of f. Suppose that s = se

for some scalar s. Then,

f(s) = mγ(s)− s = (mn−1 − s)e ,

which is only equal to zero when s = m
n , as needed.

Now computing derivatives, we have

∂f(s)
∂s

= mM(s; β)− I .

This matrix has strictly negative eigenvalues provided that the eigenvalues of M(s0; β)

are strictly smaller than 1
m , completing the proof.

Corrolary 1. Using the Root-Degree score function, s0 = m
n e is a linearly stable fixed point of f

if and only if β < 2
√ n

m .

Proof. It is convenient to treat the operation of taking the square root as part of the

feature map, rather than part of the score function. We therefore suppose that sj is the
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in-degree of node j and that ϕj(s) =
√sj. Computing from (D.2), we obtain

M(s0; β) =
1
2

n−1
√

d
β(I − n−1E) .

This matrix again has a zero eigenvalue associated with the direction e. For any

direction v ⊥ e, there is an eigenvalue 1
2

n−1
√

d
β. From Theorem D.1, s0 will be linearly

stable provided that

1
m

>
1
2

n−1
√

d
β .

or

β < 2
√

d
n
m

= 2
√

n
m

,

as required.

D.1.2 PageRank scores

The PageRank score (Brin and Page, 1998; Page et al., 1999) is the solution s of the linear

system

[
αAT(Do)−1 + (1 − α)n−1E

]
s = s , (D.3)

where Do = diag(Ae). The Perron-Frobenius Theorem (Horn and Johnson, 2012)

ensures that s is strictly positive entrywise. We assume s to be normalized so that

sTe = n, which is contrary to the usual normalization sTe = 1. This choice amounts to a

rescaling of the parameters β, and does not otherwise impact the analysis.

In the case of PageRank, it is difficult to derive a result for general features and we

therefore work directly with the PageRank model with linear features.
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Theorem D.2. The vector s0 = e is the unique egalitarian root of f under PageRank scores. In

the PageRank-Linear model, the egalitarian root is linearly stable if and only if β < 1
α .

Proof. Uniqueness is a direct consequence of normalization: if s = θe and eTs = n, then

we must have θ = 1.

We next obtain a necessary condition describing roots of f. We start with a useful

simplification. At any fixed point of f, we must have Do = mI. This is because, at any

such fixed point, we must have A = mG, and nG is row-stochastic. For the purposes of

analysis in the long-memory limit, we can therefore consider s to be defined by the

simplified equation

[
αm−1nAT + (1 − α)n−1E

]
s = s . (D.4)

In the next time step, we will have

[
αm−1n(AT + δAT) + (1 − α)n−1E

]
(s + δs) = s + δs .

Expanding and canceling yields

[
αm−1nAT + (1 − α)n−1E

]
δs + αm−1n(δAT)s + o(1 − λ) = δs .

The term o(1 − λ) includes terms involving the product (δAT)(δs), and relies on the fact

that δs is a smooth function of A. Rearranging and dropping the asymptotic term, we

obtain, in the long memory limit,

[
I − αm−1nAT − (1 − α)n−1E

]
δs = αm−1n(δAT)s . (D.5)

This expression gives an implicit representation of f via the relation

f(s, A) = limλ→1
E[δs]
1−λ . We can therefore enforce f(s, A) = 0 by setting E[δs] = 0,
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obtaining the necessary condition E[δAT]s = 0 for roots of f. Expanding this condition

yields,

0 = E[δAT]s = (1 − λ)(GT − AT)s .

Inserting (D.4) and rearranging yields the nonlinear system

[
GT + α−1(1 − α)n−2E

]
s = α−1n−1s . (D.6)

The largest eigenvalue of the matrix on the lefthand side is α−1n−1. This allows us to

numerically solve (D.6) iteratively, by alternating between solving for s via a standard

eigenvalue solver and updating G with the new value of s. This is the method

implemented in the accompanying software and used to generate equilibria in Fig.4.3.

In order to derive the linear stability criterion, we divide both sides of (D.5) by 1 − λ

and differentiate with respect to s, obtaining

[
I − αm−1nAT − (1 − α)n−1E

]
J(s) = αm−1n

∂

∂s

[
GTs − ATs

]
.

After inserting (D.4) and simplifying, we have

[
I − αm−1nAT − (1 − α)n−1E

]
J(s)

= αm−1n
∂

∂s

[
GTs − α−1mn−1s + α−1(1 − α)mn−2Es

]
= αm−1n

∂

∂s

[
GTs − α−1mn−1s

]
.

The second line follows from the normalization of s, which implies that Es = ne, a

constant vector which does not depend on s. Differentiating the righthand side then
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yields

[
I − αm−1nAT − (1 − α)n−1E

]
J(s) = αm−1n

[
GT + (eTs)mn−1 ∂γ

∂s

]
− I

= αm−1n
[

GT + m
∂γ

∂s

]
− I .

Evaluated at the egalitarian solution s0 = e, this becomes

[
I − αm−1nAT − (1 − α)n−1E

]
J(s0) = αm−1n−1E + αM(s0; β)− I .

To complete the argument, we note that, at the egalitarian solution of our model

dynamics, A = n−2E. Inserting and simplifying, we have

[
I − αm−1n−1E

]
J(s0) = αn−1m−1E + αnM(s0; β)− I .

Provided that α < 1, the premultiplying matrix on the lefthand side is invertible, and[
I − αm−1n−1E

]−1
= I + α(m − α)−1n−1E. This matrix has a single eigenvalue

1 + α(m − α)−1 with eigenvector e, and additional eigenvalues equal to unity in

orthogonal directions. We then have

J(s0) = αm−1(1 + α(m − α)−1)E + αn
[
I + α(m − α)−1n−1E

]
M(s0; β)− I .

In the PageRank-Linear model, M(s0; β) = βn−1(I − n−1E), and we therefore have

J(s0) = αm−1(1 + α(m − α)−1)E + αβ
[
I + α(m − α)−1n−1E

]
(I − n−1E)− I .

We can now read off the eigenvalues of J(s0) analytically. The eigenvector e has

eigenvalue −1, while any vector orthogonal to e has eigenvalue αβ − 1. This latter

eigenvalue is strictly negative if and only if β < 1
α , as was to be shown.
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D.1.3 SpringRank scores

We return to the general formalism of score functions and features introduced at the

beginning of this section.

A SpringRank vector s for a matrix A with regularization α ∈ R is a solution to the

linear system

[
Di + Do − (A + AT) + αI

]
s = di − do. (D.7)

where, di = eTA, do = ATe, Di = diag(di), and Do = diag(do). When α > 0, (4.3) is

invertible and s is therefore unique. Thus, throughout this section we will assume that

α > 0, and correspondingly refer to s as “the” SpringRank vector of A. It is convenient to

define Lα = Di + Do − (A + AT) + αI and Λ = Di − Do, in which case the SpringRank

relation reads Lαs = Λe.

Theorem D.3 (Stable Egalitarianism with SpringRank Scores). When σ is the SpringRank

map, the vector s0 = 0 is a fixed point of f, and is the only egalitarian fixed point of the dynamics.

This fixed point is linearly stable in the long-memory limit if and only if the matrix

M(0; β)− 2n−1(I − n−1E)

has eigenvalues strictly smaller than αn
m .

We will break the proof into a series of three lemmas. The first lemma calculates the

analytical form of f. The second shows that s0 = 0 is the unique egalitarian fixed point of

the long-memory limiting dynamics f. The third gives the criterion for linear stability.

Lemma 1. The deterministic approximant f for the SpringRank vector is given by

f(s, A) = s + L−1
α

(
−αs − m

(
n−1LGs − (n−1e − γ)

))
, (D.8)
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where LG = Γ + n−1I − (G + GT).

Proof. Let us fix an implicit time step t. Here and below, we use the notational template

δM = M(t + 1)− M(t) to refer to increments in various quantities under the dynamics

(4.1). For example, δA = A(t + 1)− A(t) refers to the increment in A under the

dynamics. We compute directly

δA = (λ − 1)(A − ∆)

δDo = (λ − 1)(Do − diag(∆e))

δDi = (λ − 1)(Di − diag(∆Te)) .

We can also explicitly write out formulae for the increments in Lα and Λ:

δΛ = δDi − δDo

= (λ − 1)
[
Di − Do + diag((∆ − ∆T)e)

]
= (λ − 1)

[
Λ + diag((∆ − ∆T)e)

]
, (D.9)

δLα = δDi + δDo − (δA + δAT)

= (λ − 1)
[
Di + Do − diag(∆Te + ∆e)− (A + AT) + ∆ + ∆T

]
= (λ − 1)

[
L − diag(∆Te + ∆e) + ∆ + ∆T

]
≜ (λ − 1) [L − L∆] , (D.10)

where we have given a name to the Laplacian L∆ = diag(∆Te + ∆e)− ∆T − ∆ of ∆. Note

that δLα does not depend on α, and we therefore simply write δL = δLα.

We can now formulate a simple condition for equilibrium in expectation. We have

(Lα + δL)(s + δs) = (Λ + δΛ)e .
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Subtracting the SpringRank relation Lαs = Λe from each side of this expression, we

obtain

(Lα + δL)δs = (δΛ)e − (δL)s .

Since δL = O(1 − λ), the lefthand matrix is invertible in for small λ provided that α > 0.

We therefore obtain

δs =
(

L−1
α + O(1 − λ)

)
((δΛ)e − (δL)s)

= L−1
α ((δΛ)e − (δL)s) + O((1 − λ)2) .

The term O((1 − λ)2) arises from the product of O(1 − λ) and the copy of (λ − 1) within

δΛ and δL. Taking expectations,

E[δs] = L−1
α (E[δΛ]e − E[δL]s) + O((1 − λ)2) .

We next insert the expressions (D.9) and (D.10) and use the fact that E[∆] = mG. This

gives

E[δs] = (1 − λ)L−1
α

(
[L − mLG] s −

[
Λ + m · diag((G − GT)e)

]
e
)
+ O((1 − λ)2) .

We can simplify this expression by recalling that (L + αI)s = Λe by definition, as well as

the identities Ge = n−1e and GTe = γ. Inserting these identities and simplifying yields

= (1 − λ)L−1
α

(
−αs − m

(
LGs + (n−1e − γ)

))
+ O((1 − λ)2) .
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We now construct f, obtaining Since E[δs] = E[σ(λA + (1 − λ)∆)], we can write

f(s, A) = s + lim
λ→1

E[δs]
1 − λ

= s − L−1
α

[
αs + m

(
LGs + (n−1e − γ)

)]
,

as was to be shown.

Lemma 2. When σ is the SpringRank map, the vector s0 = 0 is a root of f, and is the only

egalitarian fixed point.

Proof. To show that s0 = 0 is a fixed point of f, it suffices to insert this solution into (D.8)

and simplify, noting that, when s = 0, γ = n−1e. To show that it is the unique egalitarian

root realizable as a SpringRank score, suppose that se were a SpringRank score for some

s 6= 0. Inserting this into (4.3) and using the fact that e is a zero eigenvector of the

unregularized Laplacian, we would have

αse = di − do .

The total in-degree must equal the total out-degree. Pre-multiplying by e therefore zeros

out the righthand, leaving:

αseTe = αsn = 0 ,

which is a contradiction unless s = 0.

Lemma 3. The egalitarian root s = 0 is a linearly stable root of the SpringRank dynamics in the

long-memory limit if and only if the matrix

M(0; β)− 2n−1(I − n−1E)
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has eigenvalues strictly smaller than α
m .

Proof. We need to compute J(s0), the Jacobian matrix of f at s0 = 0. The fixed point will

be stable provided that J(s0) has strictly negative eigenvalues. To compute this Jacobian,

we compute derivatives in (D.8). Doing so and applying the product rule, we have

∂ f (s)
∂s

= I − L−1
α

(
αI + m

(
n−1 ∂(LGs)

∂s
− ∂γ

∂s

))
.

We calculate ∂LG
∂s in Equation (D.11), now obtaining

∂ f (s)
∂s

= I − L−1
α

(
αI + m

(
n−1

[
LG + Σ

∂γ

∂s
− ∂γ

∂s
(ST + (eTs)I)

]
− ∂γ

∂s

))
.

Evaluating this expression at s = 0, we have

J(0) = −L−1
α

(
αI + m

(
n−1LG − ∂γ(0)

∂s

))
,

where LG must also be evaluated at s = 0. We have G(0) = n−1E, which implies

LG = 2(I − n−1E). We insert this expression and the formula for ∂γ
∂s given in (D.2),

obtaining

J(0) = −L−1
α

[
αI + mn−1(I − n−1E)

(
2I −

n

∑
i=1

k

∑
ℓ=1

βℓ
∂ϕℓ

i (s0)

∂s

)]
.

Since Lα is symmetric and positive-definite, L−1
α is as well. The stability of the egalitarian

fixed point is therefore determined by the eigenvalues of the matrix inside the brackets.

Multiplying by nm−1, we find that a necessary and sufficient condition is that the matrix

(I − n−1E)

(
2I −

n

∑
i=1

k

∑
ℓ=1

βℓ
∂ϕℓ

i (s0)

∂s

)
= M(0; β)− 2n−1(I − n−1E)

have eigenvalues no larger than α
m , completing the proof.
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Corrolary 2. In the SpringRank-Linear model, s0 = 0 is a linearly stable fixed point of f if and

only if β < 2 + αn
m .

Proof. It suffices to specialize Theorem D.3 to the case of linear features. In particular, we

have M(0; β) = βn−1(I − n−1E). We therefore require that the matrix

βn−1(I − n−1E)− 2n−1(I − n−1E) = n−1(β − 2)(I − n−1E)

have eigenvalues smaller than α
m . We can compute the eigenvalues of this matrix

analytically – there is a zero eigenvalue corresponding to the vector e. Then, any vector

v ⊥ e is also an eigenvector with eigenvalue n−1(β − 2). We therefore require

n−1(β − 2) < α
m , or β < 2 + αn

m , completing the argument.

Lemma 4. We have

∂LGs
∂s

= LG + Σ
∂γ

∂s
− ∂γ

∂s
(ST + (eTs)I) . (D.11)

Proof. We first compute the derivatives ∂(Gs)
∂s and ∂(GTs)

∂s . The ith component of Gs is

vi = ∑j γjsj. The product rule for scalar functions of vectors gives the ith row of the

derivative:

∂Gsi

∂s
= ∑

j
γjej + ∑

j
sj

∂γj

∂s
= γ + ∑

j
sj

∂γj

∂s
.

Written in matrix notation, the first term is G. To write the second term in matrix form,

note that we need to multiply ∂γ
∂s by the matrix each of whose columns is a copy of s.

This matrix is ST. We therefore obtain

∂(Gs)
∂s

= G +
∂γ

∂s
ST .
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To compute the second derivative, note that GTs = γ(eTs), with ith component γieTs.

Using the product rule for scalar functions of vectors, we have

∂

∂s
γieTs = γie + (eTs)

∂γi

∂s
.

The first term will become the matrix whose ith row is γi, i.e. GT. This yields

∂(GTs)
∂s

= GT + (eTs)
∂γ

∂s
.

Combining these expressions yields our formula for ∂LGs
∂s :

∂LGs
∂s

=
∂

∂s

[
Γs + s − Gs − GTs

]
= Γ + Σ

∂γ

∂s
+ I −

(
G +

∂γ

∂s
ST + GT + (eTs)

∂γ

∂s

)
= LG + Σ

∂γ

∂s
− ∂γ

∂s
(ST + (eTs)I) ,

as was to be shown.
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D.2 Supplementary figures
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Figure D.1: Example dynamics of the model with SpringRank. Populations of n =
8 agents were simulated for 2000 time steps using the SpringRank score with linear
and quadratic features, varying the preference parameters β1 and β2 as indicated in
the panels. The memory parameter was fixed at λ = 0.995. In each panel, the plot
on the left shows the simulated rank vector γ over time; different colors track the
ranks of different agents. The heatmap on the right shows the adjacency matrix A
at time step t = 2000 for the corresponding parameter values.
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Figure D.2: As in Fig.D.1, using the PageRank score function.
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Figure D.3: As in Fig.D.1, using the Root-Degree score function.
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Figure D.4: Variance in the rank vector s over the final 500 iterations of a series of
simulations with n = 8 and λ = 0.995 (as in Fig.4.2). The parameters β1 and β2 are
allowed to vary. Higher variances correspond to more strongly hierarchical states.
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Figure D.5: Simulated dynamics of the model using inferred parameters λ̂, β̂1, β̂2
in Table 4.1. The value of m for each row of panels corresponds to the average num-
ber of updates per time step in the corresponding data set, indicated in the panel
title (m = 150 for Math PhD, m = 279 for Parakeets (G1), m = 320 for Parakeets
(G2), and m = 85 for Newcomb Fraternity). Furthermore, the simulations in each
row were initialized using the network at the relevant initial time step in the corre-
sponding data set: the network of endorsements aggregated up to year 1960 for the
Math PhD data set, and the network at time step 0 in each of the Parakeet and New-
comb Fraternity data sets. The traces in color correspond to nodes that rank among
the top 8 on average over time; those in light gray track all other nodes. Other pa-
rameters: αp = 0.85, αs = 10−8.
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