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Abstract

Many self-organized collective behaviors in natural, social, and technological groups require coor-

dinated decision-making on multiple alternatives. For example, groups must reach consensus on a

movement direction to navigate through space in unison or allocate members across different tasks

to forage and explore their environment. In this dissertation we present a new modeling framework

for the study of multi-alternative collective decision-making in social systems in nature and society,

and for the design of such decision-making in technological teams.

First, we describe a new model of social belief and opinion formation as a dynamic and nonlinear

process in a multi-agent system. When the agents are identical, the model has a small number of

interpretable parameters that characterize intrinsic properties and biases of the networked agents.

Belief formation is synthesized through a communication graph that describes a structured set of

cooperative and antagonistic relationships between agents, and a belief system graph that describes

the logical alignment between options or topics.

We present this model alongside analysis grounded in the theory of nonlinear dynamical systems.

We establish that the network generically exhibits a sharp transition from a state of indecision

among agents to their commitment to strong beliefs or opinions as the amount of attention to social

interactions is increased. We investigate how the model parameters, the communication graph, and

the belief system graph inform the allocation of agents across options in this transition and the how

relative influence of different agents’ biases informs the network decision. We prove conditions under

which the belief formation dynamics yield agreement, disagreement, multi-stability of equilibria, and

oscillations.

Finally, we illustrate how this modeling framework can be utilized for the design of sensitive

and adaptable collective behaviors when model parameters are allowed to be dynamic. First, we

introduce tunable dynamic feedback laws for agents’ attention to social interactions which provably

trigger cascades of strong opinion formation that spread across the entire network in response to

a local input. Next, we prove that individual nodes can adapt their decision state locally without

affecting the state of the rest of the network through altering the sign of their social interactions.
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Chapter 1

Introduction

1.1 Overview and motivation

In this dissertation we explore how a group of social decision-makers can form beliefs and reach a

decision in evaluating multiple alternatives, accounting for locally available information and social

relationships. Such capacity for dynamic belief formation and autonomous decision-making is a

key component of swarm intelligence. The term “swarm intelligence” is often used to describe the

ability of collectives in nature and technology to self-organize and perform complex tasks without a

centralized coordination mechanism [26]. Self-organizing systems have the following key properties,

identified in [76]:

1. They are dynamic entities, evolving in time through a variety of complex positive and negative

feedback mechanisms;

2. They have localized nonlinear interactions which lead to emergence of macroscopic properties

in the group which are more sophisticated than the properties of any given individual;

3. Emergent properties in these systems arise from bifurcations, or parametrized transitions char-

acteristic to a nonlinear system;

4. The characteristic emergent properties of these systems are often multi-stable, which means

that given the same set of parameters, the system can converge to one of several different

behaviors.

Common examples of emergent behaviors in self-organizing systems in nature include flocking in

starling murmurations [17, 85, 222], honeybee house-hunting [179–181], ant foraging [46, 155, 172],
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and spatial decision-making in fish schools [40,121,189,204] among many others. Principles of self-

organization are also widespread features of human societies [42]. People organize into communities

[91], move through space in complex traffic patterns [56], vote in elections to select their laws

and leaders [59], and make financial transactions to participate in the global economy [7]. In online

social networks interactions between people can yield unwanted effects - emergence of echo chambers

[37], political polarization [141], and descent of individuals into extremism [3]. Understanding the

fundamental mechanisms that lead to these emergent features of social systems is an important step

towards their mitigation, and therefore towards ensuring the healthy functioning of modern society.

Self-organization is also an important design principle for many technologies such as robotic

swarms [16, 29, 164], smart electric power grids [129, 203], and mobile sensor networks [53, 176].

These technologies share many similarities with human and animal social groups, in that they are

made up of many individual nodes or agents which can interact through communication or sensing

and make autonomous decisions. Design of decentralized networked technologies can be a tricky

task, as it requires engineers to develop simple rules that individuals can follow to achieve a desired

behavioral outcome at the level of the group. In other words it requires design of emergent properties

in a self-organized system.

While the literature on flocking, formation control, consensus formation, task allocation, and

other collective behaviors in distributed technological systems is exceptionally broad – see for ex-

ample the surveys [29,55,150,151,219] – autonomous swarm technology is nevertheless in a nascent

stage of development. In designing swarm behavior algorithms researchers often derive behavioral

rules for technological units from studies of social animals and human social systems. Such design

techniques have seen great success in generating self-organized behaviors in laboratory settings for

decades. However despite this success, deployment of swarm technologies in real-world industrial

applications is minimal at best [50, 51, 173, 178]. Among the many reasons which contribute to this

technological lag are the following:

1. Lack of theoretical guarantees for the emergent behavior of the collective [178]. When designing

a self-organizing system it is important to ensure not only that a desired property will emerge,

but also that unwanted properties will not emerge. Ideally, collective behavior algorithms need

to be developed alongside rigorous theory. This is a challenging task because self-organizing

systems by their nature are highly nonlinear.

2. Inability of generated collective behaviors to adapt to meaningful environmental cues [51]. Many

examples of collective behavior in the literature are built with a particular objective in mind

3



- for example, formation of a specific shape in space or allocation of agents across tasks in

a pre-determined distribution. However in real world settings objectives may change, and

autonomous swarms need the capacity to adapt their behavior in response to changes in their

environment or to input from human collaborators.

These shortfalls of existing design methods impede widespread adoption of decentralized autonomous

swarm technologies especially because such systems are often safety-critical, with potentially catas-

trophic failure consequences [213]. For example, unpredictable or inflexible behavior in a group of

autonomous vehicles on the road can lead to a collision or a traffic jam. It is imperative to develop

new design techniques grounded in rigorous theory which enable technological teams to self-organize

in a robust and reliable manner, yet allow for sensitivity to meaningful cues and adaptation of the

group behavior. In this dissertation, we take a first step towards addressing this challenge by pre-

senting a new mechanistic modeling framework which describes how a group reaches a decision on

multiple interconnected topics or options. This model is presented alongside with analysis which de-

scribes the group’s emergent properties in terms of its social network, belief system, and the intrinsic

properties of the agents.

We are interested in modeling belief formation in particular because evaluating and making

decisions on context-dependent options is a fundamental building block of almost any collective

behavior. Formal taxonomies of swarm behaviors typically distinguish between collective decision-

making such as consensus formation [206] and task allocation [77, 114], and other swarm behaviors

such as collective navigation, foraging, and flocking [16, 29]. However at their core, many of these

behaviors can be viewed abstractly as a sequence of collective decisions on spatially embedded

options. This view is consistent with findings in the literature on collective behavior in animals.

For example, spatial movement patterns in various animal groups have been linked to outcomes of

social decisions [40, 189, 194]. Theory developed for collective belief formation and decision-making

therefore has potential to be used in a wide variety of contexts. We envision the modeling and analysis

presented in this dissertation as a tool both for understanding how various emergent properties arise

in groups of biological and socio-political decision-makers, and for development of new collective

behavior algorithms for coordination of robotic teams and other autonomous swarm technologies.

1.2 Outline of contributions

Motivated by the above discussion, the following contributions are presented in Part I of this dis-

sertation:
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1. In Chapter 2 we review some mathematical ideas which are utilized throughout the dissertation.

The topics we review include fundamental definitions from the theory of signed graphs and an

overview of nonlinear dynamical systems with a focus on local bifurcation theory.

2. In Chapter 3 we motivate and present a new model which describes how a network of commu-

nicating agents forms beliefs on several interconnected topics. The belief formation mechanism

captured by this model combines nonlinear integration of social evidence with the capacity of

agents to have intrinsic biases or access to task-relevant information. These features in our

model capture the abstract features of a broad class of biological and technological decision-

makers. A fundamental mechanism behind formation of strong beliefs on a network according

to this model is a sharp transition from indecision to decision, which is parametrized by the

amount of attention individuals allocate towards information obtained from their social inter-

actions. We refer to this transition as an indecision-breaking or belief-forming bifurcation.

3. In Chapters 4 and 5 we present a body of rigorous analysis of this model, grounded in the

theory of nonlinear dynamical systems. This analysis characterizes the properties of beliefs

formed on the network at the onset of the indecision-breaking bifurcation. We show that

this bifurcation can result in a wide variety of outcomes, including appearance of multi-stable

opinionated equilibria and onset of periodic oscillations of beliefs. We establish how the com-

munication graph between agents and a belief system graph, which describes the alignment

between different options, inform patterns of equilibrium beliefs that emerge on the network,

as well as relationships between agents’ beliefs in the periodic oscillations. Specifically we

identify several spectral properties of these graphs that determine the amount of attention

necessary for onset of bifurcation, how the agents distribute themselves across the options

post-bifurcation, and which agents are the most influential in swaying the group belief forma-

tion outcome. We present a simple synthesis procedure that can be used to realize a desired

pattern of beliefs on any network through manipulating signs of local interactions between

agents. Importantly, we show that formation of beliefs according to this model can lead both

to agreement and disagreement solutions on the network. This provides a unified framework

for consensus formation and task allocation, which are traditionally treated as separate design

objectives [206].

4. In Chapter 6 we illustrate how this modeling framework can be used for design of flexible

and adaptable behaviors by allowing model parameters to be dynamic, through instantaneous

updates or through dynamic feedback of network states. First we show how dynamic attention
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to social interactions results in sensitive cascades of opinion formation in which the entire group

state transitions from indecision to decision in response to an input or a sensor measurement

introduced locally at one or more nodes. Next we show how individual agents can change

their belief state dynamically without affecting the behavior of the rest of the network through

updating the sign of interactions with their neighbors on the communication network.

5. In Chapter 7 we conclude with an overview of applications and future extensions of the mod-

eling framework presented in this dissertation.
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Chapter 2

Background: mathematical

preliminaries

In this chapter we review fundamental concepts from the theory of nonlinear dynamical systems and

from the theory of graphs. Both of these subjects are vast, and the overview in this chapter is not

meant to be a comprehensive summary. For a thorough development of dynamical systems theory, see

[82–84,90,109,117]. For a detailed treatment of graphs and signed graphs, see [41,137,207,223,224].

2.1 Basic notation

In this dissertation we use the symbol R to denote the real numbers and the symbol C to denote

the complex numbers. For a complex number x = a + ib = reiϕ, x = a − ib = re−iϕ signifies

the complex conjugate, |x| =
√
xx = r signifies the modulus, and arg(x) signifies its argument ϕ.

Matrices are represented by capital letters, e.g. A, and vectors are represented by boldface symbols,

e.g. v. The inner product of two vectors v,w is ⟨w,v⟩ = wTv. We define 0 ∈ RN as the zero vector

and diag(v) as a diagonal matrix whose diagonal entries are components of v. The standard N − 1

simplex ∆N−1 is the set of all vectors x = (x1, . . . , xN ) ∈ RN which satisfy
∑N

i=1 xi = 1, xi ≥ 0 for

all i = 1, . . . , N .

We denote the spectrum of a square matrix A as σ(A) = {λ1, . . . , λN} and its spectral radius

ρ(A) = max{|λi|, λi ∈ σ(A)}. We say an eigenvalue λ ∈ σ(A) is a leading eigenvalue of A if

Re(λ) ≥ Re(µ) for all µ ∈ σ(A). We say a leading eigenvalue λ of A is a dominant eigenvalue if

λ = ρ(A). A right eigenvector vi of A corresponding to λi satisfies Avi = λivi, and a left eigenvector
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wi of A corresponding to λi satisfies wiA = λiwi. Given two vectors v,w or two matrices M,N ,

we say v ⪰ w whenever vi ≥ wi for all i (similarly M ⪰ N whenever Mij ≥ Nij for all i, j).

Analogously, v ≻ w whenever vi > wi for all i (similarly M ≻ N whenever Mij > Nij for all i, j).

For two matrices M,N ∈ Rm×n we define the element-wise Hadamard product M ⊙N ∈ Rm×n as

(M ⊙N)ij = MijNij . For two matrices M ∈ Rm×n, N ∈ Rk×l we define the Kronecker product, or

direct product, M ⊗N ∈ Rmk×nl as matrix

M ⊗N =



M11N M12N . . . M1nN

M21N M22N . . . M2nN

...
...

. . .
...

Mm1N Mm2N . . . MmnN


.

We say a real square matrix A has the Perron-Frobenius property if it has a dominant eigenvalue

λ = ρ(A) and a corresponding eigenvector satisfying v ⪰ 0; A has the strong Perron-Frobenius

property if the dominant eigenvalue is unique and satisfies λ ≥ |λi| for all λi ̸= λ in the spectrum

σ(A) and its corresponding eigenvector satisfies v ≻ 0. A real square matrix is irreducible if it

cannot be transformed into an upper triangular matrix through similarity transformations. A real

square matrix A is eventually positive (eventually nonnegative) if there exists a positive integer k0

such that Ak ≻ 0N×N (Ak ⪰ 0N×N ) for all integers k > k0. Several results in this dissertation take

advantage of the following proposition.

Proposition 2.1.1. [149, Theorem 2.2] The following statements are equivalent for a real square

matrix A: (1) A and AT have the strong Perron-Frobenius property; (2) A is eventually positive;

(3) AT is eventually positive.

2.2 Networked multi-agent systems and graph theory

The mathematical framework of multi-agent systems captures the common features shared by many

natural and technological collectives. An agent in a multi-agent system is a dynamic unit which

takes autonomous actions and exchanges information with other agents through local interactions

[137,216]. Interactions between agents can be grouped into two broad categories. The first of these

is direct communication, or sending and receiving of signals and messages. The second category is

sensing, which captures information exchange through vision, sound, pheromone signals, and other

environment-mediated interactions. Prominent examples of multi-agent systems include robotic
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teams, mobile sensor networks, power grids, ensembles of neurons, groups of social animals, and

human social networks. The actions of individual agents in such systems can add up to complex

emergent behaviors at the level of the group. Some collective phenomena which have been extensively

studied through the lens of multi-agent systems include consensus formation [5, 45, 153, 182], task

allocation [6, 110,122,130], synchronization [2, 140,196], and collective movement [146,152].

Local interactions between agents together make up an interaction network. This network is a

fundamental feature of a multi-agent system and often plays a key role in defining its global emergent

behavior. Mathematically, interaction geometry of networked agents is captured by a graph. A graph

G = (V, E) is a mathematical object made up of a set of N vertices or nodes V = {1, . . . , N} and a

set of edges E . Each node in V represents an agent, and whenver an edge eik belongs to the edge set

E we say agent i receives information about agent k - i.e. there is an arrow from node i to node k. In

this dissertation we assume that all graphs are simple, meaning that for any two nodes i, k ∈ V there

is at most one edge eik that starts at i and ends at k. The structure of a simple graph G is captured

by its adjacency matrix A = (aik) where aik = 0 whenever eik ̸∈ E and aik ̸= 0 otherwise. Most

generally, an adjacency matrix can be weighted, meaning the nonzero entries aik can take on any real

value that represents the sign and strength of influence from agent k on agent i. In this dissertation

we will typically consider graphs with unweighted adjacency matrices for which aik ∈ {0, 1} or signed

unweighted adjacency matrices for which aik ∈ {0, 1,−1} for all i, k ∈ V. The graph is undirected

whenever aik = aki for all i, k ∈ V, and directed otherwise. Both directed and undirected networks

naturally arise in various multi-agent systems. For example, in human social networks face-to-face

interactions are typically undirected, whereas online interactions through social media are typically

directed.

Consider an unsigned graph G = (V, E) that consists of sets of nodes or vertices V and edges E .

The in-degree of vertex i on a graph G is the number of edges that end in node i, i.e.
∑

k aik. A

walk or path on a graph is a finite or infinite sequence of edges that joins a sequence of vertices, for

example e12, e25, e53 is a walk of length 3 that visits nodes 1, 2, 5, 3 in that order. A graph G is said

to be strongly connected if in its topology there exists a path from any vertex to any other vertex.

A graph is strongly connected if and only if its adjacency matrix is an irreducible matrix with the

strong Perron-Frobenius property. A closed path is a walk of positive length that starts and ends at

the same vertex. Finally, G is bipartite if its vertex set V can be partitioned into two disjoint subsets

V1,V2 such that for any edge eik ∈ E , either i ∈ V1 and j ∈ V2 or i ∈ V2 and j ∈ V1.

In this dissertation we frequently consider signed graphs G = (V, E , s) where s : E → {−1, 1} is

the signature function for the graph. A signed adjacency matrix A has positive and negative entries,
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defined as aik = s(eik) if eik ∈ E and aik = 0 otherwise. The sign of a walk on a signed graph is the

product of the signatures of all of the edges passed on the walk, e.g. s(e12)s(e25)s(e53). A signed

graph has a property called structural balance when the sign of every closed path on the graph is

positive.

The remaining paragraphs this section are taken verbatim from [18]. Let W ⊂ V be a subset of

nodes on a signed graph G. Switching a set W on the graph G refers to a mapping of the graph G

to GW = (V, E , sW) where the signature of all the edges in E between nodes in W and nodes in its

complement V \ W reverses sign. We introduce the switching function θ : V → {1,−1}, where for

any i ∈ V, θ(i) = −1 if i ∈ W and θ(i) = 1 otherwise. Then the signature of the switched graph GW

is generated as

sW(eik) = θ(i)s(eik)θ(k) (2.1)

for all eik ∈ E . From (2.1) we see that the signature update for an edge between agents i and k

depends only on their membership in the switching set W. Thus, the edges between i and k flip

sign if and only if exactly one of i, k is in the switching set W, and does not change sign if i, k are

both in W or in V \W. Importantly, switching a set W all at once generates the same graph GW

as sequentially switching individual vertices in W. If G can be transformed into GW by switching, G

and GW are switching equivalent graphs. A switching transformation preserves the sign of all closed

paths, and therefore preserves structural balance.

Let θ be the function for switching from graph G to GW , with adjacency matrices A and AW ,

respectively. Define the switching matrix Θ = diag(θ(1), θ(2), . . . , θ(N)). The adjacency matrices of

G and its switching GW are related as

AW = Θ−1AΘ. (2.2)

Since Θ is diagonal and θ(i) = ±1, Θ−1 = Θ; we write Θ−1 in (2.2) to emphasize that the matrices

A and AW are similar. We refer to (2.2) as a switching transformation of the adjacency matrix A,

and A and AW as switching equivalent adjacency matrices. The following proposition is adapted

from [224, Proposition II.5].

Proposition 2.2.1. [18] Suppose G, GW are switching equivalent with adjacency matrices A and

AW and associated switching matrix Θ. Then 1) A and AW are isospectral, i.e. have the same set

of eigenvalues; 2) v (w) is a right (left) eigenvector of A corresponding to eigenvalue λ if and only

if Θv (Θw) is a right (left) eigenvector of AW with the same eigenvalue.
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2.3 Dynamical systems theory

A dynamical system is a mathematical object which describes the deterministic evolution of one or

more variables in discrete or continuous time. In continuous time a dynamical system is typically

represented by a system of ordinary differential equations (ODEs). In this dissertation we study

autonomous, continuous time dynamical systems of the form

dx

dt
=: ẋ = f(x,p) (2.3)

where x = (x1, . . . , xn) ∈ Rn is the system state, p = (p1, . . . , pnp
) ∈ Rnp is the set of system

parameters, and f : Rn × Rp → Rn is a smooth vector field f(x,p) = (f1(x,p), . . . , fn(x,p)). By

smoothness we mean that the vector field f is continuously differentiable with respect to the variables

and the parameters as many times as necessary for the methods we will discuss. When convenient,

we may omit the explicit mention of the vector field dependence on the parameters p and simply

state ẋ = f(x). The flow generated by (2.3) is the operator φt : Rn → Rn which satisfies (2.3),

meaning d
dt (φ

t(x))
∣∣
t=τ

= f(φτ (x)). The flow operator φτ thereby maps any initial condition x(0) to

some point x(τ) at time τ . The set φt(x(0)) := x(t) parametrized by time t is often referred to as a

trajectory or an orbit of the dynamical system (2.3) based at x(0). For the remainder of this section,

we assume that (2.3) is defined on a compact forward-invariant trapping region W ⊂ Rn, meaning

that for any initial condition x(0) = x0 ∈ W the associated solution trajectory x(t) remains in W

for all t ≥ 0. Existence and uniqueness of solutions to (2.3) is guaranteed for all t ≥ 0 as long as the

system is defined on W [109, Theorem 3.3]. With this established, one of the of the primary aims

of dynamical systems theory is to rigorously describe features of (2.3) qualitatively, without finding

explicit expressions for the general solutions x(t). At the core of such qualitative descriptions lies

the notion of topological equivalence, which we now formally define. Recall that a homeomorphism

is a continuous and invertible map with a continuous inverse.

Definition 2.3.1 (Topological equivalence). [117, Definition 2.1] Let x,y ∈ Rn, f : Rn → Rn,

g : Rn → Rn. The dynamical system ẋ = f(x) is topologically equivalent to the dynamical system

ẏ = g(y) if there exists a homeomorphism h : Rn → Rn which maps the trajectories x(t) onto the

trajectories y(t) and which preserves the direction of time.
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2.3.1 Equilibria and their stability

Given a choice of parameters p, an important class of solutions of (2.3) are the equilibria or fixed

points defined as points x∗ ∈ W at which the vector field vanishes, f(x∗,p) = 0. We say an

equilibrium x∗ is

• stable if for every neighborhood U ⊂ W of x∗, there exists a neighborhood U1 ⊂ U of x∗ so

that for all initial conditions x0 ∈ U1, the associated solution x(t) is in U for all t ≥ 0;

• locally asymptotically stable if it is stable and we can find U1 for which x(t) → x∗ as t → ∞;

• locally exponentially stable if it is locally asymptotically stable, and there exist positive con-

stants K,λ for which ∥x(t)∥ ≤ Ke−λt∥x0∥ for all x0 ∈ U1;

• unstable if it is not stable.

If the asymptotic or exponential stability definition is satisfied for all neighborhoods in W , we say

the equilibrium is globally asymptotically or exponentially stable.

At an equilibrium x∗, the linearization of (2.3) is the set of linear ODEs

ẏ = Df(x∗,p)y (2.4)

where y = x− x∗ and Df(x∗,p) ∈ Rn×n is the Jacobian matrix of the linearization, with (Df)ij =

∂fi
∂xj

. An equilibrium x∗ is called hyperbolic if none of the eigenvalues of its Jacobian matrix Df(x∗,p)

are zero or purely imaginary. By the Hartman-Grobman theorem [90, Theorem 1.3.1], near a hyper-

bolic equilibrium x∗, the nonlinear system (2.3) is topologically equivalent to its linearization (2.4).

As a consequence, the stability of a hyperbolic equilibrium x∗ can be directly inferred from the

stability of the origin in the linear system (2.4). Specifically, whenever all eigenvalues of Df(x∗,p)

have a negative real part the equilibrium is locally exponentially stable, and it is unstable if at least

one of the eigenvalues has a positive real part [95, Theorems 8.5 and 8.6]. When all eigenvalues of

Df(x∗,p) have a negative real part we say the matrix is Hurwitz.

2.3.2 Invariant manifolds

Existence and local geometry of invariant manifolds near an equilibrium x∗ for the flow of (2.3) can

also be inferred from the linearization (2.4). In general, an invariant set for a flow φt is a subset

S ⊂ W which satisfies φt(x(0)) ∈ S whenever x(0) ∈ S, for all t ∈ R. Eigenspaces of the Jacobian

matrix Df(x∗,p) are invariant for the flow of the linear system (2.4). The stable eigenspace Es, the
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unstable eigenspace Eu, and the center eigenspace Ec are direct products of all of the (generalized)

eigenspaces of Df(x∗,p) corresponding to eigenvalues with negative, positive, and zero real parts

respectively. As implied by the names of these sets, whenever y(0) ∈ Es, y(t) → 0 at an exponential

rate as t → ∞ and whenever y(0) ∈ Eu, y(t) → 0 at an exponential rate as t → −∞. The behavior

of trajectories of (2.4) along Ec is characterized neither by exponential growth nor by exponential

decay. In the simplest case when Ec corresponds to a simple zero eigenvalue, all points in Ec are

fixed points for the dynamics (2.4), and when Ec corresponds to a complex-conjugate eigenvalue

pair the trajectories oscillate at a constant amplitude [90, Chapter 1.2].

Suppose x∗ is a hyperbolic equilibrium of the nonlinear system (2.3) and its linearization about

x∗ (2.4) has dimEs = ns and dimEu = nu. By the (un)stable manifold theorem [90, Theorem 1.3.2]

there exist a local stable manifold W s
loc(x

∗) and a local unstable manifold Wu
loc(x

∗) of dimensions

ns and nu respectively which are invariant under the flow of (2.3) and tangent to Es, Eu at x = x∗.

Global stable and unstable manifolds W s(x∗),Wu(x∗) can be obtained by following trajectories in

W s
loc(x

∗),Wu
loc(x

∗) backwards and forwards in time. Furthermore these manifolds are unique and

as smooth as the vector field f . Whenever x(0) ∈ W s(x∗), x(t) → x∗ at as t → ∞ and whenever

x(0) ∈ Wu(x∗), x(t) → x∗ as t → −∞. Trajectories starting near x∗ decay towards x∗ along

W s(x∗) and evolve away from x∗ along Wu(x∗).

Furthermore we cannot infer the behavior of the trajectories along Wc(x
∗) from the flow of the lin-

earized system along Ec. When x∗ is a non-hyperbolic equilibrium, the Hartman-Grobman theorem

does not apply and the flow of the nonlinear system (2.3) is not topologically equivalent to the flow

of its linearization. However we can still use the linearized system (2.4) to infer information about

the behavior of its trajectories near x∗. Suppose x∗ is a non-hyperbolic equilibrium of the nonlinear

system (2.3) and its linearization about x∗ (2.4) has dimEs = ns, dimEu = nu, and dimEc = nc.

By the center manifold theorem [90, Theorem 3.2.1] there exist manifolds W s(x∗),Wu(x∗),W c(x∗)

which are invariant under the flow of (2.3), with the stable and unstable manifolds W s(x∗),Wu(x∗)

defined as before and a center manifold W c(x∗) which is tangent to Ec at x = x∗. Analogously to

the hyperbolic case, W s(x∗) and Wu(x∗) are unique; however W c(x∗) may not be unique.

2.3.3 Reduction principle and parameter dependence

An important consequence of the center manifold theorem is sometimes referred to as the reduction

principle [117, Theorem 5.2], [90, p.130]. By this principle, in a neighborhood of a non-hyperbolic

13



equilibrium x∗, the nonlinear system (2.3) is topologically equivalent to the system

ẏs = −ys (2.5a)

ẏu = yu (2.5b)

ẏc = g(yc,p) (2.5c)

with (ys,yu,yc) ∈ W s(x∗) ×Wu(x∗) ×W c(x∗). While the trajectories along stable and unstable

manifolds are characterized by decay and growth, respectively, more complex dynamics can happen

along a center manifold W c(x∗). Furthermore in many systems of interest nu = 0 and all nearby

trajectories decay to W c(x∗) as t → ∞. Characterizing the qualitative properties of the flow of

the n-dimensional system (2.3) near x∗ boils down to studying the reduced nc-dimensional system

(2.5c), the restriction of (2.3) to a center manifold at x∗.

Since W c(x∗) is typically nonlinear and not necessarily unique, deriving a reduced system of the

form (2.5c) poses a challenge. For many systems, the task of finding a closed-form expression for

g(yc,p) is not analytically tractable. A technique referred to as center manifold reduction is often

used to find a truncated series approximation for the dynamics along a center manifold. Suppose

the system (2.3) is written in the block diagonal form

ẋs = Asxs + fs(xs,xu,xc) (2.6a)

ẋu = Auxu + fu(xs,xu,xc) (2.6b)

ẋc = Acxc + fc(xs,xu,xc) (2.6c)

where (xs,xu,xc) ∈ Rns×Rnu×Rnc , As ∈ Rns×ns has negative real-part eigenvalues, Au ∈ Rnu×nu

has positive real-part eigenvalues, and Ac ∈ Rnc×nc has eigenvalues on the imaginary axis. We can

always express a system in the form (2.6) using a suitable change of variables, typically by choosing

a coordinate system that transforms the linear part of (2.3) into its Jordan normal form. Without

loss of generality assume that x∗ = 0 and the functions fs, fu, fc vanish at the origin along with their

partial derivatives (meaning all of the linear terms in the dynamics are captured by As, Au, Ac).

Near x = 0, a center manifold can be represented as a local graph over the coordinates xc due

to its tangency to Ec at the origin,

W c(0) =
{

(xs,xu,xc)
∣∣ xs = hs(xc), xu = hu(xc)

}
. (2.7)
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Then the restriction of (2.3) to a center manifold near x = 0 is captured by the reduced system

ẋc = Acxc + fc
(
hs(xc),hu(xc),xc

)
. (2.8)

To approximate the graphs hs and hu we observe that on a center manifold (2.7) ẋs = Dhs(xc)ẋc,

and ẋu = Dhu(xc)ẋc. Since a center manifold is invariant under the dynamics (2.6) yields a system

of ns + nu equations which implicitly define the graphs hs, hu:

Dhs(xc)
(
Acxc + fc

(
hs(xc),hu(xc),xc

))
= Ashs(xc) + fs

(
hs(xc),hu(xc),xc

)
, (2.9a)

Dhu(xc)
(
Acxc + fc

(
hs(xc),hu(xc),xc

))
= Auhu(xc) + fu

(
hs(xc),hu(xc),xc

)
. (2.9b)

Then by taking out Taylor series expansions for hs, hu, fs, fu, fc and matching up coefficients in

(2.9) we can recover approximate expressions that define a center manifold (2.7) and the reduced

dynamics along it (2.8). For a detailed treatment of center manifold reduction with several worked

out examples of computing these approximations, see [90, Chapter 3.2].

In studying the flow of (2.3) we are often interested in how its qualitative features depend on

the set of model parameters p. Suppose x∗ is an equilibrium (2.3) for some choice of parameters

p = p∗. To account for the parameter vector, we append to (2.3) the trivial system of ODEs ṗ = 0.

With this amendment, a center manifold W c(x∗,p∗) has dimension nc + np, and the restriction of

the extended system to its center manifold is of the form

ẋc = g(xc,p) (2.10a)

ṗ = 0. (2.10b)

Following the center manifold reduction procedure for this extended system yields a reduced system

of equations of the form (2.10) in which the evolution of state variables explicitly depends on the

parameters p. Furthermore, this reduced system inherits symmetries from the original dynamical

system [36].

2.3.4 Bifurcation problems and Lyapunov-Schmidt reduction

Consider a parametrized system (2.3). It is often the case that varying one or more of the system

parameters changes the topological features of its flow. For example equilibria and invariant sets

may appear, disappear, change in structure, or change in stability. These parametrized topological
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changes in the flow are called bifurcations. Characterizing bifurcations in a nonlinear system is a

major focus of dynamical systems theory. In this dissertation we are interested in particular in local

bifurcations which arise when the stability of an equilibrium point, periodic orbit, or some other

invariant set of (2.3) changes. Global bifurcations are another category of topological changes in the

flow which cannot be fully described through local analysis. Global bifurcations are outside of the

scope of this dissertation, and we refer the reader to [90, Chapter 6] for a treatment of this topic.

Equilibria of (2.3) correspond to choices of (x,p) which form the level sets

f(x,p) = 0. (2.11)

Suppose (x∗,p∗) is a solution to (2.11) which corresponds to a hyperbolic equilibrium of the dynamics

(2.3). By the implicit function theorem [82, Appendix 1] there exist neighborhoods U ⊂ W of x∗

and V ⊂ Rnp of p∗ as well as a smooth function X : V → U such that for every p ∈ V , there is a

unique x = X(p) ∈ U which satisfies f
(
X(p),p

)
= 0. However if (x∗,p∗) has a zero eigenvalue, the

implicit function theorem does not apply. Intuitively this means that a necessary condition for the

number of equilibria of (2.3) to change as one or more of the parameters p is varied is the existence

of a solution (x∗,p∗) to (2.11) at which the Jacobian matrix Df(x∗,p∗) is not invertible, i.e. has

at least one zero eigenvalue. When such a point exists, it is referred to as a singular point or a

singularity. The field of singularity theory is concerned with the study of properties of differentiable

manifolds near their singular points [9]. In a dynamical systems context these manifolds are the sets

of equilibria defined by (2.11), their singular points (x∗,p∗) are called bifurcation points, and the

parameters which are varied are the bifurcation parameters [82]. At a bifurcation point the system

(2.3) is not structurally stable, which means that under arbitrarily small perturbation it can generate

flow that is not topologically equivalent to the flow of the original unperturbed system. The set of

all values (x,p) which satisfy (2.11) is referred to as the solution set or the bifurcation diagram of f .

Suppose the system (2.3) has a bifurcation point (x∗,p∗). As established in Section 2.3.3, any

nontrivial dynamics that emerge near this bifurcation point will happen along a nc-dimensional

center manifold. When the system dimension n is greater than nc, to study its bifurcations we must

first derive an (nc+np)-dimensional reduced representation of the system that captures the behavior

we are interested in describing. Center manifold reduction is a popular method that can be used

for this purpose. However for high-dimensional systems it is easy to see how this approach becomes

analytically inconvenient. For example, consider a system with one zero eigenvalue, ns = n − 1

stable eigenvalues, and one parameter p. The local graph approximation of its center manifold (2.7)
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reads

hs(xc, p) =


a11p + b11p

2 + b12pxc + b13x
2
c + c11p

3 + c12p
2xc + c13px

2
c + c14x

3
c + O(4)

...

ans1p + bns1p
2 + bns2pxc + bns3x

2
c + cns1p

3 + cns2p
2xc + cns3px

2
c + cns4x

3
c + O(4)


where aij , bij , cij are first, second, and third order coefficients which must be solved using the

relationship defined in (2.9). Approximating a center manifold through third order thus involves

solving for 8(n−1) coefficients from several nested series expansions, which is a cumbersome task for

systems with large n. This task is complicated even further when the function f(x,p) depends on

arbitrary network structure, as will be the case for the models we consider in later chapters of this

dissertation. For these reasons an alternative reduction method, the so-called Lyapunov-Schmidt

reduction, often proves useful [208].

A center manifold reduction finds a subsystem of the original dynamics (2.3) which captures the

local features of the flow we are interested in studying. In contrast, a Lyapunov-Schmidt reduction

is a static reduction method which applies to the the solution sets of (2.11). Let P ∈ Rn×n be the

projection matrix P : Rn → range(Df(x∗,p∗)) and I − P the projection onto its complement in

Rn. In a Lyapunov-Schmidt reduction we split the system (2.11) into the equivalent pair

P f(x,p) = 0, (2.12a)

(I − P )f(x,p) = 0. (2.12b)

Restricted to the range of Df(x∗,p∗), (2.12a) is invertible and the implicit function theorem ap-

plies. We can solve for n − nc of the variables using a restriction (2.12a), and substitute for these

variables in (2.12b). This eventually results in an nc-dimensional parametrized system g(y,p) = 0

whose bifurcation diagram near its bifurcation point (y∗,p∗) is in one-to-one correspondence with

the bifurcation diagram of (2.11) near its bifurcation point (x∗,p∗). For a general treatment of

Lyapunov-Schmidt reduction including its development for infinite-dimensional systems and for sys-

tems with symmetries see [82, Chapter VII].

In the simplest possible case, consider a dynamical system with one parameter ẋ = f(x, p) with

bifurcation diagram f(x, p) = 0 and suppose the system has a bifurcation point (x, p) = (0, 0) at

which the Jacobian matrix Df(0, 0) has a simple zero eigenvalue and no other eigenvalues on the

imaginary axis. Let v,w ∈ R be the right and left null eigenvectors of Df(0, 0), respectively and
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define the k-th order directional derivative of f along the ordered set of vectors {v1, . . . ,v2} as

(dkf)x,p(v1, . . . ,vk) =
∂

∂t1
. . .

∂

∂tk
f

(
x +

k∑
i=1

tivi, p

)∣∣∣∣∣
t1=···=tk=0

=

n∑
i,...,j=1

∂kf

∂xi . . . ∂xj
(x, p)(v1)i . . . (vk)j . (2.13)

For compactness of notation, define J = Df(0, 0), let J−1 be the inverse of the restriction of J to

its range, and let P = I − 1
∥w∥wwT be the projection onto the range of J . Typically we cannot

derive a closed-form expression for a Lyapunov-Schmidt reduction, and instead we approximate a

Lyapunov-Schmidt reduction of f(x, p) with a truncated series expansion

f(x, p) = ap + bpx + cx2 + dx3 + h.o.t. (2.14)

with the coefficients of (2.14) defined as

a =

〈
w,

∂f

∂p
(0, 0)

〉
, b =

〈
w,

(
d
∂f

∂p

)
0,0

(v) − (d2f)0,0

(
v, J−1P

∂f

∂p
(0, 0)

)〉
, (2.15a)

c =
〈
w, (d2f)0,0(v,v)

〉
, d =

〈
w,
(
d3f
)
0,0

(v,v,v) − 3(d2f)0,0
(
v, J−1P (d2f)0,0(v,v)

)〉
. (2.15b)

Computing a Lyapunov-Schmidt reduction approximation through third order for a particular system

with a simple eigenvalue crossing therefore involves evaluating the four coefficients (2.15). This

computation is often easier to carry out than solving for the 8(n−1) coefficients involved in a third-

order center manifold approximation discussed in the previous section. The series (2.14) can be

expanded to account for more higher-order terms following the procedure outlined in [82, Chapter

I.3]. However for many problems, the terms described above are sufficient to capture the local

topological features of the bifurcation diagram. The exact number of terms required in the expansion

depends on the codimension of the bifurcation, see [82, Chapter II] for a detailed development.

The computation of the coefficients (2.15) is further simplified when f(x, p) has certain commonly

encountered properties. For example, if x = 0 is an equilibrium for all values of the parameter

p, then a = 0 and the second-order dependence in d disappears. If f has an odd symmetry in

the state variable, i.e. f(−x, p) = −f(x, p) then a = 0, c = 0, and the quadratic dependence in d

similarly disappears. Computing a Lyapunov-Schmidt reduction in these cases mostly boils down

to projecting several directional derivatives of f onto the left null eigenspace of J . Furthermore if

we choose v,w satisfying ⟨v,w⟩ > 0, then stability of equilibria of the original system ẋ = f(x, p)
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is the same as the stability of the corresponding equilibria of ẋ = f(x, p) [82, Theorem I.4.1]. A

Lyapunov-Schmidt reduction therefore captures much of the same information about the original

system as a center manifold reduction.

One disadvantage of a Lyapunov-Schmidt reduction is that we do not learn anything about the

shape of a center manifold on which the bifurcating branches will appear, or about the dynamics

of the system away from the equilibria. However, we can still infer the local structure of a center

manifold close to the bifurcation point since it will be arbitrarily close to span(v) by the center

manifold theorem [90, Theorem 3.2.1]. More generally, the Lyapunov-Schmidt reduction can always

be performed in a way which ensures that the reduced system of equations inherits the symmetries

from the full system [82, ChapterVII, §3].

2.3.5 Elementary bifurcations

Once a reduced system is obtained, either through center manifold reduction or through Lyapunov-

Schmidt reduction, we are ready to analyze the local bifurcation. Local bifurcations are typically

classified by their codimension. In the singularity theory literature, the codimension of a bifurcation

problem is defined as the number of parameters in its universal unfolding [82, Definition III.1.3] -

see Section 2.3.6 for a discussion of unfoldings.1 By this definition, the codimension of a bifurcation

problem also coincides with the number of defining conditions for identifying the bifurcation, minus

two [82, Corollary III.2.6]. We will elaborate on this connection further in this chapter. Bifurcations

with a low codimension are most likely to be observed in models of realistic systems [82, Chapter

IV]. In this section we describe several of the simplest possible bifurcations of codimension zero,

one, and two, which are sometimes referred to as elementary bifurcations. The first three elementary

bifurcations we will consider are bifurcations of equilibria, for which we will assume without loss

of generality that the system ẋ = f(x, p) has a bifurcation point at (x, p) = (0, 0), nc = 1, and a

one-dimensional reduced system has been obtained whose bifurcation diagram is described by

f(x, p) = 0 (2.16)

with a smooth function f : R × R → R for which f(0, 0) = 0. Recall that a diffeomorphism is a

homeomorphism where the map and its inverse are both differentiable.

1In the classic presentation of dynamical systems theory in [90], the codimension of a bifurcation is defined to be
the smallest number of parameters which must be varied to capture the bifurcation. This definition is different from
the one presented in the text. By the definition of [90], all of the elementary bifurcations discussed in this chapter have
codimension one; however by the definition in the text a saddle-node bifurcation has codimension zero, a transcritical
bifurcation has codimension one, and a pitchfork bifurcation has codimension two.
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(a) (b) (c)

Figure 2.1: Bifurcation diagrams for the system ẋ = g(x, p) defined by a normal form of (a) saddle-node
bifurcation with ε1 = 1, ε2 = −1; (b) transcritical bifurcation with ε = −1; (c) pitchfork bifurcation with
ε1 = 1, ε2 = −1. Blue lines are curves of stable equilibria, red lines are curves of unstable equilibria, and
gray arrows indicate direction of the flow of the dynamics ẋ = g(x, p) forward in time.

Definition 2.3.2 (Equivalence of bifurcation diagrams). Bifurcation diagrams f(x, p) = 0 and

g(x, p) = 0 with f(0, 0) = g(0, 0) = 0 are equivalent if they can be related locally near the origin

through

G(x, p)f(X(x, p), P (p)) = g(x, p)

where G : R × R → R is a nonzero and positive function, and (X,P ) : R × R → R × R is a

local diffeomorphism which preserves the orientation of x and p. They are strongly equivalent if in

addition, P (p) = p [82, p.5].

This definition of equivalence is slightly more restrictive than the topological equivalence of Definition

2.3.1 since the bifurcation parameter cannot be transformed. Next we will state for each of the three

elementary steady-state bifurcations a normal form g(x, p), i.e. a simple equation that captures all

of the “interesting” topological features of the bifurcation diagram. Furthermore we will describe

conditions for the bifurcation diagram of the reduced system f(x, p) = 0, and therefore for the

original system f(x, p) = 0, to be strongly equivalent to the bifurcation diagrams g(x, p) = 0 of

each of these normal forms in the sense of Definition 2.3.2. For equivalence conditions for several

other, more degenerate bifurcation problems see [82, Chapter IV.2] where the various equivalence

conditions are discussed in the text and summarized in Table 2.3.2 In general, a local bifurcation

is referred to as supercritical if new topological features (e.g. new equilibria) appear in the flow of

the dynamics for values of the bifurcation parameter p above its bifurcation value, it is subcritical if

these features appear for p below its bifurcation value. When new features appear on both sides of

the bifurcation point, the phenomenon is transcritical.

2An alternative analysis approach involves transforming a reduced system on a center manifold into its normal
form through application of nonlinear coordinate transformations. For details of normal form theory, see [90, Chapter
3.3].
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Saddle-node bifurcation

A saddle-node bifurcation, sometimes also called a fold or a limit point bifurcation, has a normal

form

g(x, p) = ε1p + ε2x
2 (2.17)

where ε1, ε2 ∈ {1,−1}. For example when ε1 = 1 and ε2 = −1 for p < 0, (2.17) has no solutions, and

two solutions appear for p > 0; see Figure 2.1(a) for a bifurcation diagram. A bifurcation diagram

of f(x, p) is equivalent to the bifurcation diagram of (2.17) if and only if at x = p = 0 it satisfies

the following conditions [82, Chapter II, Proposition 9.1]:

f(0, 0) =
∂f

∂x

∣∣∣∣
(0,0)

= 0, ε1 = sign

(
∂f

∂p

∣∣∣∣
(0,0)

)
̸= 0, ε2 = sign

(
∂2f

∂x2

∣∣∣∣
(0,0)

)
̸= 0. (2.18)

In terms of the Lyapunov-Schmidt reduction coefficients (2.15), this means a saddle-node bifurcation

is observed whenever a ̸= 0 and b ̸= 0, with criticality and stability of the solution branches

determined by the signs of a, b. Recall that f(0, 0) = ∂f
∂x

∣∣∣
(0,0)

= 0 are general conditions that

establish existence of a bifurcation point. The rest of the conditions in (2.18) are the defining

conditions for a Saddle-Node bifurcation. There are two defining conditions, ε1 ̸= 0 and ε2 ̸= 0,

which means that the saddle-node bifurcation is codimension zero.

Transcritical bifurcation

A transcritical bifurcation, sometimes also called a simple bifurcation is characterized by the exchange

of stability properties between two intersecting branches of equilibria. It is called transcritical

because it is neither supercritical nor subcritical, as the solution branches persist for p above and

below the bifurcation point. A normal form for the transcritical bifurcation is

g(x, p) = px + εx2 (2.19)

where ε ∈ {1,−1}. For example when ε1 = 1 and ε2 = −1, the solution x = 0 is stable for p < 0

and unstable for p > 0, and the solution x = p is unstable for p < 0 and stable for p > 0; see Figure

2.1(b) for a bifurcation diagram. A bifurcation diagram of f(x, p) is equivalent to the bifurcation

diagram of (2.17) if and only if at x = p = 0 it satisfies the following conditions [82, Chapter II,

21



Proposition 9.3]:3

f(0, 0) =
∂f

∂x

∣∣∣∣
(0,0)

=
∂f

∂p

∣∣∣∣
(0,0)

= 0, det

 ∂2f
∂x2

∂2f
∂x∂p

∂2f
∂x∂p

∂2f
∂p2


∣∣∣∣∣∣∣
(0,0)

< 0, ε = sign

(
∂2f

∂x2

∣∣∣∣
(0,0)

)
̸= 0.

(2.20)

Assuming no quadratic dependence of f(x, p) on the bifurcation parameter p the Hessian determinant

condition simplifies to require ∂2f
∂x∂p

∣∣∣
(0,0)

̸= 0, and thus in terms of the Lyapunov-Schmidt reduction

coefficients (2.15), a transcritical bifurcation is observed whenever a = 0, b ̸= 0, and c ̸= 0 with

criticality and stability of the solution branches determined by the signs of b, c.4 Identifying a

transcritical bifurcation requires three defining conditions in (2.20), in addition to the two general

conditions f(0, 0) = ∂f
∂x

∣∣∣
(0,0)

= 0. Therefore a transcritical bifurcation has codimension one.

Pitchfork bifurcation

A pitchfork bifurcation gets its name from the distinctive shape of its solution branches. A normal

form for the pitchfork bifurcation is

g(x, p) = ε1px + ε2x
3 (2.21)

where ε1, ε2 ∈ {1,−1}. For example, when ε1 = 1 and ε2 = −1, for p < 0 there is a single stable

equilibrium at x = 0. For p > 0, the equilibrium at the origin is unstable and two stable solution

branches appear which are reflection-symmetric about zero - see Figure 2.1(c). A bifurcation diagram

of f(x, p) is equivalent to the bifurcation diagram of (2.17) if and only if at x = p = 0 it satisfies

the following conditions [82, Chapter II, Proposition 9.2]:

f(0, 0) =
∂f

∂x

∣∣∣∣
(0,0)

=
∂f

∂p

∣∣∣∣
(0,0)

=
∂2f

∂x2

∣∣∣∣
(0,0)

= 0, (2.22)

ε1 = sign

(
∂2f

∂p∂x

∣∣∣∣
(0,0)

)
̸= 0, ε2 = sign

(
∂3f

∂x3

∣∣∣∣
(0,0)

)
̸= 0.

In terms of the Lyapunov-Schmidt reduction coefficients (2.15), this means a pitchfork bifurcation

is observed whenever a = c = 0, b ̸= 0, and d ̸= 0, with criticality and stability of the solution

3In [82] the equivalence conditions are derived for a normal form ε(x2 − p2) which is strongly equivalent to (2.19)
with the same choice of ε. We state (2.19) in the text as it is a more commonly encountered normal form for a
transcritical bifurcation.

4When there is a possible quadratic dependence on the bifurcation parameter in the general system, to compute the
Hessian determinant in the equivalence conditions one must compute the coefficient of p2 in the Lyapunov-Schmidt
reduction. We did not include this coefficient in the terms we elected to show in (2.15), however the formula for this
coefficient can be easily computed following the reduction procedure outlined in [82, Chapter I.3].
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branches determined by the signs of b, d. Identifying a pitchfork bifurcation requires four defining

conditions in (2.22), in addition to the two general conditions f(0, 0) = ∂f
∂x

∣∣∣
(0,0)

= 0. Therefore a

pitchfork bifurcation has codimension two.

Hopf bifurcation

The final elementary bifurcation we will consider is a Hopf bifurcation in which a limit cycle, i.e.

a periodic solution, appears as a parameter is varied. Since this bifurcation is not a bifurcation

of equilibria, it doesn’t correspond to a zero eigenvalue in the Jacobian matrix of f(x, p). Assume

without loss of generality that (x, p) = (0, 0) is an equilibrium of the system ẋ = f(x, p). Then (0, 0)

is a Hopf bifurcation point if it satisfies the following properties:

• The Jacobian matrix Df(0, 0) has a complex conjugate pair of eigenvalues ±iω(0);

• No other eigenvalues of Df(0, 0) lie on the imaginary axis;

• Let λ(p) = r(p) + iω(p), λ(p) = r(p)− iω(p) be the eigenvalues of Df(x, p) which are smoothly

parametrized by p for which r(0) = 0; then ∂r
∂p

∣∣∣
(0,0)

̸= 0.

These conditions establish that at (0, 0), a pair of complex conjugate eigenvalues of Df(x, p) crosses

the imaginary axis with nonzero speed as the bifurcation parameter p is varied. Showing that a

system satisfies these properties is sufficient to conclude the emergence of a family of periodic orbits

of ẋ = f(x, p) in a Hopf bifurcation [90, Theorem 3.4.2]. A condition for criticality and stability of the

resulting branches of periodic orbits is presented in [90]. This condition relies on first computing a

reduction of the system to a center manifold, and then transforming it into normal form. Computing

the necessary coefficient can be cumbersome for many systems, since it involves approximating the

dynamics on a center manifold to third order. Here we present an alternative approach to classify

the criticality and stability of the Hopf bifurcation which relies on Lyapunov-Schmidt reduction and

singularity results developed in [82, Chapter VIII]. Before continuing this discussion, we establish a

modified definition of equivalence for bifurcation diagrams that is restricted to bifurcation diagrams

which have an odd symmetry.

Definition 2.3.3 (Z2-equivalence of bifurcation diagrams). Bifurcation diagrams f(x, p) = 0 and

g(x, p) = 0 with f(0, 0) = g(0, 0) = 0 are Z2− equivalent if they can be related locally near the origin

through

G(x, p)f(X(x, p), P (p)) = g(x, p)
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where G : R × R → R is a nonzero and positive function, and (X,P ) : R × R → R × R is a local

diffeomorphism which preserves the orientation of x and p. Additionally, the functions X is odd in

x and the function G is even in x [82, Chapter VI, Definition 2.5].

As it turns out, whenever the eigenvalues of Df(0, 0) satisfy the stated Hopf hypotheses, for values

of (x, p) near the bifurcation point there exists a one-to-one correspondence between orbits of small

amplitude periodic solutions of ẋ = f(x, p) with period near 2π/ω(0) and solutions on a reduced

bifurcation diagram f(x, p) = 0 where x ∈ R and the function f(x, p) has an odd symmetry in x [82,

Chapter VIII, Theorem 2.1]. Furthermore, this reduced bifurcation equation f(x, p) is Z2-equivalent

to a pitchfork normal form g(x, p) = ε1px + ε2x
3 where ε1 = sign

(
∂2f
∂x∂p

∣∣∣
(0,0)

)
= sign(r(0)) and

ε2 = sign

(
∂3f
∂x3

∣∣∣
(0,0)

)
[82, Chapter VIII, Theorem 3.2].

We can use Lyapunov-Schmidt reduction to compute the necessary coefficients in the approxima-

tion of f(x, p). Specifically, let f(x, p) = apx + bx3 + h.o.t.. Then by [82, Chapter VIII, Proposition

3.3] the coefficients a, b are defined as

a =
1

2
Re

(〈
w,

(
d
∂f

∂p

)
0,0

(v)

〉)
(2.23a)

b =
1

4
Re

(〈
w, (d2f)0,0(v,b1) + (d2f)0,0(v,b2) +

1

4
(d3f)0,0(v,v,v)

〉)
(2.23b)

where b1, b2 are defined through the relationships

Df(0, 0)b1 = −1

2
(d2f)0,0(v,v), (Df(0, 0) + 2iI)b2 = −1

4
(d2f)0,0(v,v) (2.24)

and the complex-valued eigenvectors v,w are defined as

Df(0, 0)v = −iv, wDf(0, 0) = iw (2.25)

and normalized to satisfy wTv = 2, wTv = 0 which is always possible due to biorthogonality of

right and left eigenvectors [82, Lemma 2.4]. Whenever the second derivatives in f(x, p) vanish, such

as when it is odd in the state variable, the coefficient b in (2.23) simplifies to

b =
1

16
Re
(〈
w, (d3f)0,0(v,v,v)

〉)
and the cumbersome computation of b1,b2 is not necessary.

Once we have computed coefficients a and b, we can easily establish stability of periodic orbits
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of ẋ = f(x, p) due to the one-to-one correspondence between these periodic orbits and the zeros of

f(x, p). Specifically, suppose the origin x = 0 is stable for p < 0 and unstable for p > 0, which means

a > 0. If the nontrivial branches of the pitchfork bifurcation in the reduced bifurcation equation

f(x, p) appear supercritically (b < 0), then the periodic orbits in the original system also bifurcate

supercritically and are stable. If instead the nontrivial bifurcation branches of the pitchfork bifurca-

tion appear subcritically, then the periodic orbits in the original system also bifurcate subcritically

and are unstable [82, Chapter VIII, Theorem 4.1]. In summary, to establish the criticality and the

stability of a Hopf bifurcation, it is sufficient to compute the coefficient b in (2.23).

2.3.6 Unfolding theory and universal unfolding of a pitchfork bifurcation

The discussion in this section is a summary of some ideas developed in Chapters I and III of [82].

Unfolding theory aims at classifying the various ways in which different bifurcation diagrams change

in response to perturbations or changes in parameters. Consider a bifurcation diagram g(x, p) = 0,

and suppose there exists a function G(x, p, r) with r ∈ Rk, G : R×R×Rk → R which satisfies

G(x, p,0) = g(x, p). (2.26)

Then we refer to G as a k-parameter unfolding of g, and to r as unfolding parameters. An unfolding

is thereby a parametrized perturbation of the original system. Suppose G(x, p, r), H(x, p, s) are

unfoldings of g, with r ∈ Rk and s ∈ Rl where k and l can be distinct, and suppose that for every

choice of s ∈ Rl the bifurcation diagram of H (with bifurcation parameter p) is equivalent to a

bifurcation diagram of G for some choice of parameters r ∈ Rk. Then we say that H factors through

G. For a more mathematically precise definition of this idea, see [82, Chapter III, Definition 1.1].

An unfolding G(x, p, r) of g is said to be versal if every other unfolding of g factors through it,

i.e. if for various choices of the parameters r, the bifurcation diagram of G(x, p, r) reproduces all of

the topologiclally distinct bifurcation diagrams which are possible to obtain through a perturbation

of g(x, p). An unfolding is then said to be universal if it is versal and the set of perturbation

parameters r has the smallest possible cardinality. Although not every bifurcation problem admits a

universal unfolding, most bifurcation problems do. A key result of unfolding theory is the Universal

Unfolding Theorem which establishes a criterion to identify the number of parameters required for

a versal unfolding of a bifurcation problem to be universal [82, Chapter III, Theorem 2.3]. Universal

unfoldings of the various elementary bifurcations of equilibria are summarized in [82, Chapter IV.3].

We conclude this chapter with a discussion of an unfolding problem which is particularly relevant
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(a)

(c)

(b)

(d)

Figure 2.2: Four regions in a−b parameter plane which generate topologically distinct persistent bifurcation
diagrams in the pitchfork bifurcation universal unfolding (2.28); points labeled (a)-(d) correspond to the
parameter combinations that generate the corresponding bifurcation diagrams shown in Figure 2.3.

to the analysis contained in this dissertation, unfolding of a pitchfork bifurcation. A universal

unfolding of a pitchfork bifurcation contains two parameters. First we state a necessary and sufficient

condition for an unfolding of a pitchfork bifurcation to be universal, found in [82, Chapter III,

Proposition 4.4]. Suppose f(x, p) = 0 is a bifurcation diagram which is equivalent to a pitchfork

bifurcation g(x, p) = ±px ± x3. Suppose that F (x, p, a, b) is a two-parameter unfolding of f(x, p)

with unfolding parameters a, b. Then F is a universal unfolding of f if and only if the following

condition is satisfied at x = p = a = b = 0:

det



0 0 fxp fxxx

0 fxp fpp fpxx

Fa Fax Fap Faxx

Fb Fbx Fbp Fbxx


̸= 0 (2.27)

where subscripts indicate partial derivatives.

Finally we describe the topologically distinct persistent bifurcation diagrams that can be re-

covered in a universal unfolding of a pitchfork bifurcation. To do this, we consider a supercritical

pitchfork bifurcation normal form g(x, p) = px− x3 and a universal unfolding of this normal form

G(x, p, a, b) = px + ax2 − x3 + b. (2.28)
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(a)

(c)

(b)

(d)

Figure 2.3: Four representative persistent bifurcation diagrams in a universal unfolding of a pitchfork normal
form (2.28). (a) a = 0, b = 0.1; (b) a = 0, b = −0.1; (c) a = 1.4, b = 0.01; (d) a = −1.4, b = −0.01. Blue
points are stable equilibria, red points are unstable equilibria, and gray arrows indicate direction of the flow
of the dynamics ẋ = G(x, p, a, b) forward in time.

There are four possible persistent bifurcation diagrams. Each of the topologically distinct bifurcation

diagrams corresponds to parameter combinations in one of four regions of the a− b parameter plane

separated by the curves b = 0, b = a3/27 - see Figure 2.2. In all four bifurcation diagrams,

the symmetric pitchfork of Figure 2.1(c) breaks up into two continuous branches of equilibria, see

Figure 2.3. One of these branches exists for all values of p, which we refer to as the primary

branch; the second branch of equilibria appears in a saddle-node bifurcation at some bifurcation

value p > 0. In a small neighborhood of the bifurcation point p = 0 of the unperturbed system,

there is a unique nonzero stable equilibrium which belongs to the primary solution branch. When

b > 0 the primary branch of solutions is positive, and when b < 0 it is negative. Furthermore when

−|a3/27| < b < |a3/27| and sign(a) = sign(b), the primary solution branch exhibits two saddle-node

bifurcations. In the first bifurcation, the equilibria lose stability and the branch folds back onto

itself. At a second bifurcation point the branch regains stability and continues forward in p - see

Figure 2.1(c) and (d).
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Chapter 3

Social formation of beliefs as a

nonlinear dynamical system

In this chapter we introduce the nonlinear model of belief and opinion formation whose formulation

and analysis are the primary contributions of this dissertation. This chapter summarizes and expands

on the work presented in [19], also contained in Chapter 9. The following parts of this chapter are

modified directly from [19], with some sentences stated verbatim: section 3.1.2 and section 3.1.3.

3.1 Motivation

3.1.1 Formation of opinions and beliefs is a nonlinear process

Collective decision-making and belief formation in social and biological systems is the emergent

outcome of many simultaneous distributed computations. In order to reach a decision about one or

more options, topics, or candidates, individuals accumulate social and perceptual evidence about the

value of these alternatives over time [79, 107]. This evidence accumulation process is typically un-

derstood to be nonlinear. For example, biologically plausible models of perceptual decision-making

feature nonlinearities that mimic layers of processing in the brain [4, 24, 174, 205]. Nonlinearity is

also necessary to capture critical phase transitions in behavior of animals on the move which make

decisions among spatially embedded alternatives [39, 40, 189]. In human social systems, emergence

of political polarization has recently been linked to irreversible tipping points in the dynamics of

political opinions through a number of independently developed nonlinear models [11, 131, 201].

Adoption of new social norms is also characterized by nonlinear tipping points. Consensus in fa-
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vor of a new social norm emerges spontaneously when the number of individuals who conform to

this norm crosses a critical threshold [34, 89]. In similar vain, nonlinear models have been shown

to capture the qualitative dynamics of echo chamber formation in Twitter debates [14], of opinion

polarization on politically charged topics in survey data [15], of post-election government negotia-

tions in parliamentary democracies [64], and of transitions between peace and war in international

relationships between governments [142]. Informed by these observations, we argue that formation

of opinions and beliefs in a group is best understood as a dynamic self-organizing process which is

necessarily nonlinear.

In this dissertation we develop and analyze a mechanistic agent-based model of the process

through which a group evaluates multiple alternatives to form opinions and make decisions. Moti-

vated by our understanding of natural and sociopolitical decision-makers, we model this process as

a nonlinear multi-agent dynamical system in which individuals accumulate evidence about options

or topics over time through a social network. In our modeling we are also guided by recently devel-

oped theory which describes general properties of multi-agent, multi-option decisions in networked

dynamical systems [68],[69]. According to this theory, the transition from indecision to decision in

a group corresponds to a synchrony-breaking bifurcation in a nonlinear, multi-agent model. Agree-

ment and disagreement decisions are both possible and general outcomes of social opinion formation,

which are expected even when the communication graph is all-to-all. Furthermore, many properties

of these emergent decisions are informed by the symmetries and the architecture of the influence

network among the agents. The model we present allows for the study and design of emergent

self-organizing features of social systems in nature and technology.

3.1.2 Classic models of social opinion formation

In developing a new agent-based model, we build on a multidisciplinary literature of opinion dynam-

ics models. Opinion formation in a social network is classically modeled as a weighted-averaging

process, as originally introduced by DeGroot [45]. In this framework an agent’s opinion xi ∈ R

reflects how strongly the agent supports an issue or topic of interest. The real-valued opinion is

updated in discrete time as a weighted average of the agent’s own and other agents’ opinions, i.e.,

xi(T + 1) = ai1x1(T ) + · · · + aiNa
xNa

(T ) (3.1)

where ai1 + · · ·+aiNa
= 1 and aik ≥ 0. The weight ai describes the influence of the opinion of agent

k on the opinion of agent i.
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A key drawback of linear weighted-average models is that consensus among the agents is the

only possible macroscopic outcome on a strongly connected network. As observed in [135], this

necessarily happens because the attraction strength of agent i’s opinion toward agent k’s opinion

increases linearly with the difference of opinions between the two agents. In other words, the more

divergent the two agents’ opinions are, the more strongly they are attracted to each other, which

is paradoxical from an opinion formation perspective. Classical weighted-average opinion dynamic

models therefore cannot explain emergence of persistent disagreement in social networks. In fact,

a recent review notes that agreement is the inevitable outcome according to most formal models

of social opinion formation [12]. However in real-world social systems disagreement is commonly

encountered. In some cases disagreement can be an unwanted feature, such as partisan polarization

on political issues. Disagreement can also be a desired outcome for the group, for example when

individuals need to distribute themselves among different alternatives to forage or perform separate

tasks.

To overcome these limitations of averaging models, a number of prominent variations on these

models have been proposed. For example in “bounded confidence” models, agents average network

opinions but delete communication links to any neighbors whose opinions are sufficiently divergent

from their own [22,44,93,94]. In a similar spirit, “biased assimilation” models instead incorporate a

self-feedback into the interaction weights of an averaging model [43,218]. This self-feedback accounts

for an individual’s bias towards evidence that conforms with its existing beliefs. The linear model

and its variations have also been extended to the case of signed networks, where the weights aik

can be negative [5, 127, 184]. Linear averaging dynamics on signed networks can support persistent

disagreement, however these disagreement solutions require fine-tuned network architecture and

distribution of weights. Small perturbations to the network weights in a signed network typically

collapse disagreement solutions to a trivial consensus with xi = 0 for all i, i.e. disagreement is not a

structurally robust feature of these systems. In this chapter our goal is to derive a novel nonlinear

extension of classical opinion dynamics models that captures consensus formation and persistent

disagreement as general and robust outcomes of the opinion formation process, without the need to

fine-tune network structure or to delete communication links.
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3.1.3 Defining properties of nonlinear opinion formation model

We model opinion formation as a continuous-time dynamical system. The linear weighted-average

discrete-time opinion dynamics (3.1) can equivalently be written as

xi(T + 1) = xi(T ) +
(
− xi(T ) + ai1x1(T ) + · · · + aiNa

xNa
(T )
)
.

This discrete-time update rule is the unit time-step Euler discretization of the continuous time linear

dynamics

ẋi = −xi + ai1x1 + · · · + aiNa
xNa

. (3.2)

Observe that (3.1) and (3.2) have exactly the same steady states with the same (neutral) stability.

These linear consensus dynamics (3.2) are determined by two terms: a weighted-average opinion-

exchange term, modeling the pull felt by agent i toward the weighted group opinion, and a linear

damping term, which can be interpreted as the agent’s resistance to changing its opinion.

Our nonlinear extension of (3.2) incorporates the following features.

1. Opinion exchanges are saturated. We assume that there is a limit on the amount of

influence that can be exerted on each agent by its social network. A natural way to incorporate

this assumption mathematically is by allowing agents to apply a bounded saturating nonlinearity to

the social information they accumulate about each option. This modeling assumption is also sup-

ported by the general features which appear in models of complex behavior in nature and technology.

Saturating nonlinearities appear in virtually every natural and artificial signaling network due to

bounds on action and sensing. For example, dynamics that evolve according to saturating inter-

actions appear in spatially localized and extended neuronal population models of thalamo-cortical

dynamics [211,212], in Hopfield neural network models [98,99,145], in models of perceptual decision

making [23, 205], and in control systems with sensor and actuator saturations [103, 126]. Saturated

interactions between decision-makers also effectively bound the attraction between opinions, thus

overcoming the linear weighted-average model paradox discussed in section 3.1.2.

2. Evaluation of multiple interdependent options. Classic models of opinion formation

typically capture dynamics of opinions on a single topic or two options. Allowing for an arbitrary

number of options in our model makes it relevant to a wide range of applications, for example, in task

allocation problems where options represent tasks or in strategic settings where options represent

strategies. We extend the model to multiple options by suitably generalizing the agent’s opinion state

space, analogous to existing multi-option averaging models such as [65,72,125,147,157,160,221].
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3. Agents have allocable attention. Because an agent’s attention to exchanged opinions

may be variable, we introduce, for each agent i, two parameters, di > 0 and ui ≥ 0, that weight the

relative influence of the linear resistance term and the nonlinear opinion-exchange term, respectively.

When the resistance parameter di dominates the attention parameter ui, the agent is weakly attentive

to other agents’ opinions. When ui dominates di, the agent is strongly attentive to other agents’

opinions. A shift from a weakly attentive to a strongly attentive state can be induced, for instance,

by a time-urgency (election day approaching) or a spatial-urgency (target getting closer) to form

an informed collective opinion. The attention parameter ui can also be used to model social effort,

excitability, or susceptibility of agent i to social influence.

4. Agents have exogenous inputs. For each agent, we introduce an input parameter bij ,

which represents an input signal from the environment or a bias or predisposition that directly affects

agent i’s opinion of option j. For example, the input bij can be used to model the exogenous influence

of agent i’s initial opinions, as in [71], where agents hold on to their initial opinions (sometimes called

“stubborn” agents as in [78]).

3.2 New model for dynamics of beliefs and opinions

In this section we formally introduce the nonlinear extension of classic opinion formation models

which incorporates the features described in Section 3.1.3.

We extend the state space of each agent to account for multiple options in two complementary

ways. First, consider a network of Na agents. In scalar averaging models, the opinion state xi ∈ R

of agent i can represent favoring (xi > 0) or disfavoring (xi < 0) a single topic or option. Whenever

xi = 0, the agent is neutral on the topic, and the strength of favoring or disfavoring is proportional to

the magnitude |xi|. In the same spirit, in order to account for No topics or options we define the belief

state or value state of agent i to be Zi = (zi1, . . . , ziNo) ∈ RNo , where zij is the belief or valuation

of agent i on option j. As in the scalar case, zij > 0 (< 0) corresponds to favoring (disfavoring) an

option, with zij = 0 representing neutrality. The total system state is Z = (Z1, . . . ,ZNa
) ∈ RNaNo .

In addition to attention ui, resistance di, and bias bij parameters introduced in Section 3.1.3, we

consider four classes of coupling weights between options:

1. Intra-agent, same-option coupling αi
j ;

2. Intra-agent, inter-option coupling βi
jl, with j ̸= l;

3. Inter-agent, same-option coupling γik
j , with i ̸= k;
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4. Inter-agent, inter-option coupling δikjl , with i ̸= k, j ̸= l.

In this notation, upper indices in the gains αi
j , β

i
jl, γ

ik
j , δikjl correspond to agents, and lower indices

correspond to options. These four classes of interactions are illustrated in Figure 3.1, with dashed

lines used for intra-agent couplings and solid lines used for inter-agent couplings.

The function Fij(Z) captures the net information about option j gathered by agent i, accounting

for social interactions, external information and biases captured in bij , and its linear resistance to

forming strong opinions:

Fij(Z) = −dizij + ui

(
S1

(
αi
jzij +

∑Na

k ̸=i
k=1

γik
j zkj

)
+
∑No

l ̸=j
l=1

S2

(
βi
jlzil +

∑Na

k ̸=i
k=1

δikjl zkl

))
+ bij . (3.3)

Agents form beliefs about options by integrating information about each option according to

żij = Fij(Z). (3.4)

The functions S1,S2 in (3.3) are generic bounded sigmoidal saturating functions satisfying Sq(0) =

0, S′
q(0) = 1, q ∈ {1, 2}.1 S1 is applied to information along the same option dimension, and

S2 saturates cross-option influence. In principle, S1 and S2 can be the same function; however

distinguishing between the two allows for the agents to have a different level of response to these two

sources of influence. In all of the simulations shown in this dissertation we use saturating functions

of the form

Sq(y) = Aq tanh

(
1

Aq

(
y + εq tanh

(
y2
)))

(3.5)

with Aq > 0, εq ≥ 0; however all of the results and discussion hold for generic saturating functions.

In the dynamics (3.4), the coupling gains αi
j , β

i
jl, γ

ik
j , δikjl characterize the qualitative properties

of the interactions. To avoid redundancy between the self-coupling weight αi
j and the resistance di,

we assume that αi
j ≥ 0. This means that whenever αi

j is nonzero, it represents self-reinforcement of

agent i about option j. The same-option coupling weight γik
j captures the strength of the drive for

social imitation of agent i towards agent k on option j; γik
j > 0 represents a cooperative interaction

in which agent i seeks to mimic agent k, and γik
j < 0 represents a competitive or antagonistic

interaction in which agent i seeks to take on the opposite opinion of agent k. The inter-option

coupling weights βi
jl, δ

ik
jl capture interdependence between options that can arise, for example, from

1The stated conditions are generic, as they can be imposed through rescaling and translation of variables. Addi-
tional nondegeneracy conditions (in the sense of [82]), such as S′′

q (0) ̸= 0, S′′′
q (0) ̸= 0, can be imposed when necessary

to allow for the most general outcomes of opinion-formation dynamics, since symmetries in the saturation function
impose additional restrictions on solutions of the dynamics (3.4),(3.7); the condition S′′

q (0) ̸= 0 is not necessary when
No = 1 for the value dynamics (3.4) or when No = 2 for the constrained opinion dynamics (3.7).
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Figure 3.1: Illustration of the four classes of coupling weights in the model (3.3). The arrow directions use
the sensing convention: a connection from zij to zkl means Fij(Z) depends on zkl, modulo the labeled gain.

a structured belief system, or from some logical or environmental constraints on the options. The

role and interpretation of βi
jl, δ

ik
jl will be explored in more detail in Chapter 5.

Next we present a second way to extend the state space of scalar opinion dynamics to multiple

options. In scalar opinion dynamics, the state xi can be alternatively interpreted as the decision

variable for choosing between two “mutually-exclusive” options - for example in [43,87]. Then when

xi = 0, agent i is undecided. When xi > 0(< 0) agent i favors option 1 (2) and disfavors option

2 (1). This formalism is equivalent to the agent’s state space consisting of two scalar variables z̃i1

and z̃i2 constrained by a condition z̃i1 + z̃i2 = 0. Extending this convention to No options, we define

each agent’s opinion state Z̃i = (z̃i1, . . . , z̃iNo), which satisfy the constraint

z̃i1 + · · · + z̃iNo
= 0 (3.6)

for all i = 1, . . . , Na. The constraint (3.6) allows us to interpret each agent’s state space as the (No−

1)-dimensional simplex. This is because bounded dynamics on a trapping region inthe affine subspace

defined by (3.6) that contains the origin can be mapped to the standard simplex through a simple

translation of the midpoint and a rescaling of the trajectories. For details on this interpretation and

a formal statement mapping the dynamics constrained by (3.6) to the simplex, see [19, Appendix A].

Define P0 = INo − 1
No

1No1
T
No

to be the projection onto this affine subspace 1⊥
No

⊂ RNo . The total

opinion state of the system is Z̃ = (Z̃1, . . . , Z̃Na
) ∈ V where the state space V = 1⊥

No
× · · · × 1⊥

No︸ ︷︷ ︸
Na times

⊂

RNaNo . Then the dynamics of the opinion state of each agent are given by the projection of the

evidence in favor of each option onto the opinion space V :

˙̃Zi = P0Fi(Z̃) (3.7)
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where Fi(Z̃) =
(
Fi1(Z̃), . . . , FiNo

(Z̃)
)
. The system (3.7) is well-defined in the sense that it V is

forward-invariant for the dynamics, its trajectories are bounded, and there exists a simple linear

rescaling that reinterprets the dynamics of each agent’s opinion state on a classical simplex ∆No−1

where y ∈ ∆No−1 satisfies yj ≥ 0,
∑No

j=1 yj = K > 0. For a detailed development of this well-

definedness, see [19, Appendix A]. We show in [19, Section 3.4] that several prominent linear and

nonlinear models of opinion formation are recovered from (3.7) with various constraints on the model

parameters.

The model (3.3), (3.4), (3.7) can also be used more coarsely, with each belief state zij model-

ing average belief on option j in a subset of the agents on the network. Formally this is a valid

generalization whenever the structure of the coupling weights partitions the agent vertices into ap-

proximately synchronized clusters. We do not develop this theory here and instead refer the reader

to [2, 75, 154, 177, 188, 191] for a detailed treatment of cluster synchronization on dynamic networks

and to [19, Section III-E] for a model reduction of (3.7) to a clustered manifold. These observations

illustrate the versatility in the potential applications of our model to capture dynamics of opinion

formation at different scales. For example, in [120] we use the belief states in this model to represent

average ideological positions among the elite members of the two political parties in the United

States Congress.

Finally, we state the following observation which connects the dynamics of beliefs (3.4) to the

dynamics of constrained opinions (3.7).

Proposition 3.2.1. If Z(t) is a solution of (3.4), then Z̃(t) = P0Z(t) is a solution of (3.7).

Proposition 3.2.1 follows trivially from comparing (3.4) and (3.7). This observation allows us to

focus our analysis on the unconstrained value dynamics (3.4), and interpret the results on the

opinion simplex when necessary via a simple projection.

3.3 Indecision-breaking bifurcations

According to the model-independent theory [68],[69], one of the key features of nonlinear value-

formation and decision-making models is the bifurcation of opinionated solution branches from

a fully synchronous state of network indecision. In the models (3.4),(3.7) this fully synchronous

state corresponds to the trivial neutral state Z = 0 (Z̃ = 0, respectively) which is an equilibrium

of the dynamics whenever b = 0 (P0b = 0). In this section we illustrate that such indecision-

breaking bifurcations are indeed a feature of our proposed model which can be observed robustly
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across network architectures and specific parameter selections, and for any number of options under

evaluation. Without loss of generality we focus our discussion on belief or value formation according

to (3.4).

First, we present two motivating simulations that illustrate the network indecision-breaking be-

havior for a Na = 5 agents evaluating several options according to (3.4). In Figures 3.2 and 3.3

we show the trajectories over time of the value states zij(t) for agents evaluating 3 and 8 options,

respectively, for 200 time steps of a simulation. Let N (a, b) denote the normal distribution centered

at a, with standard deviation b. The following list summarizes the choice of parameters for these

simulations:

• The communication weights between agents were generated randomly, with each αi
j drawn

from N (1, 0.1), and each βi
jl, γ

ik
j , δijlk was randomly drawn from N (0, 0.1);

• The resistance di for each agent was randomly drawn from N (1, 0.05);

• Agents have randomly generated small biases, with each bij drawn from N (0, 0.01);

• Initial conditions are randomized, with each zij(0) drawn from N (0, 0.01);

• Each attention parameter ui was drawn randomly from N (u0, 0.01), with u0 = 0.57 for part

(a), and u0 = 0.6 for part (b) in both figures;

• For the two saturation functions (3.5), A1 = 1, A2 = 0.5, ε1 = 0.5, ε2 = 0.5.

The same initial conditions and parameter selections were used to generate plots in part (a) and (b)

of the two figures, with the exception of the value of u0 as described.

In Figures 3.2 and 3.3 we observe a similar phenomenon. When the attention to social interactions

u0 is at its lower value in part (a), network beliefs zij remain small over time, slightly offset from zero

due to the small additive biases. When u0 is increased by a small amount in part (b) the network

opinions evolve away from zero and settle on an equilibrium state in which many of the agents

form strong beliefs. At this equilibrium, the final belief states of most agents are much greater in

magnitude than their small biases bij . Relatively weak coupling of agents’ belief states is sufficient

to generate this transition. These simulations illustrate that whenever the average attention on the

network is below some threshold, the linear resistance in (3.3) dominates and agents do not form

strong opinions. Once this threshold is crossed, the influence of the social interactions dominates. In

the following theorem we prove that these observations hold in general for the dynamics (3.3),(3.4)

by analyzing stability of the indecision equilibrium Z = 0. This theorem generalizes [19, Theorem

IV.1] and motivates the rest of the analysis presented in this dissertation.
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Figure 3.2: Trajectories of belief states zij(t) of 5 agents evaluating 3 options according to (3.4) with
randomized parameters; (a) average network attention level is below bifurcation threshold and beliefs of
all agents remain small; (b) average network attention level is above bifurcation threshold and agents form
strong beliefs.

Theorem 3.3.1 (Stability of Indecision Equilibrium). Consider the model (3.3),(3.4) with bij = 0,

let ui = u · ũi for all i = 1, . . . , Na, where u ≥ 0, ui > 0, and ⊗ is the Kronecker product of

matrices. Let J(u) = −diag(d1, . . . , dNa) ⊗ INo + uJ̃ be the Jacobian matrix of the dynamics

evaluated at the neutral equilibrium Z = 0 for some u, where entries of the matrix J̃ are of the form

ũiα
i
j , ũiβ

i
jl, ũiγ

ik
j , ũiδ

ik
jl . Assume J̃ has at least one eigenvalue with positive real part. Then there

exists a critical value u∗ > 0; whenever u < u∗, the neutral equilibrium Z = 0 is locally exponentially

stable, and whenever u > u∗ it is unstable.

Proof. Let ∆ = diag(d1, . . . , dNa) ⊗ INo . When u = 0, the system of ODEs (3.3),(3.4) reduces to

the linear system Ż = −∆Z and the origin is globally exponentially stable. Eigenvalues of J(u) are

continuous functions of u [124] and by this continuity J(u) is Hurwitz for sufficiently small u > 0,

which means the origin is locally exponentially stable. Define Ĵ(ϵ) = ϵ∆ + J̃ . When ϵ = 1/u,

the eigenvalues of Ĵ(ϵ) and of J(u) are related by a factor of ϵ > 0. Note that Ĵ(0) has at least

one eigenvalue with positive real part, and by eigenvalue continuity the sign of the real part of the

eigenvalues is preserved for sufficiently small ϵ > 0. Therefore for some sufficiently large u > 0, J(u)

has at least one eigenvalue with positive real part and Z = 0 is unstable. Existence of critical value

u∗ at which the origin loses stability follows once again from continuity of eigenvalues and from the

intermediate value theorem.

Theorem 3.3.1 establishes existence of a critical level of attention u = u∗, at which the system

(3.3),(3.4) undergoes a local bifurcation as the origin loses stability. This bifurcation can be observed
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Figure 3.3: Trajectories of belief states zij(t) of 5 agents evaluating 8 options according to (3.4) with
randomized parameters; (a) average network attention level is below bifurcation threshold and beliefs of
all agents remain small; (b) average network attention level is above bifurcation threshold and agents form
strong beliefs.
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whenever J̃ , a matrix containing the linearization about the origin of the nonlinear terms in (3.4),

has at least one eigenvalue with positive real part. This necessary condition is easily satisfied, which

is most easily seen for networks of agents with no self-reinforcement, αi
j = 0 for all i, j. In this

case, Tr(J̃) =
∑Na

i=1

∑No

j=1 ũiα
i
j = 0 which means either that all of the eigenvalues of J̃ lie on the

imaginary axis, or more likely that at least one of the eigenvalues has a positive real part. More

generally, J̃ has an eigenvalue in the right half-plane if and only if its symmetrization 1
2 (J̃ + J̃T )

has a positive real eigenvalue. In turn this property is generic for symmetric square matrices as

a consequence of Wigner’s semicircle law [198], and more specifically for sparse symmetric square

matrices by the analysis in [116].

The indecision-breaking bifurcation of Theorem 3.3.1 typically results in the emergence of new

equilibria, such as the configurations the network settles on in part (b) of the Figures 3.2 and

3.3. Other possible outcomes include emergence of periodic oscillations of opinions, and other more

complex dynamics on attracting invariant sets. In the next couple of chapters of this dissertation

we investigate how the choice of network structure, communication weights, and biases in the model

informs the properties these indecision-breaking bifurcations.

3.4 Homogeneous parameters

In its full generality, the model (3.3),(3.4) involves many parameters. However, it is often convenient

to consider this model in its homogeneous regime, which we now describe. First, we assume that

agents on the network are identical in their resistance to forming beliefs and in the amount of

attention they allocate towards social interactions, i.e.

di := d > 0, ui := u ≥ 0, i = 1, . . . , Na.

Next, we decompose the structure of the network coupling weights into the influence of two signed

directed graphs that are fundamental to describing the belief formation process. The first of these

is the communication graph among agents, Ga = (Va, Ea, sa) where Va = {1, . . . , Na} is the vertex

set corresponding to the Na agents, Ea is the edge set, and sa : Ea → {−1, 1} is the signature of the

communication graph Ga. When eik ∈ Ea, agent k is a neighbor of agent i and the belief state of

agent k influences the belief formation of agent i. When sa(eik) = 1, agent i is cooperative towards

agent k, and whenever sa(eik) = −1 it is competitive or antagonistic towards agent k. We assume

that Ga is simple, i.e. contains no self-loops eii ̸∈ Ea for all i ∈ Va, and there is at most one edge
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eik in Ea that begins at vertex i and ends at vertex k for all i, k ∈ Va. The signed adjacency matrix

of the communication graph is the matrix Aa ∈ RNa×Na whose entries are defined as (Aa)ik = 0 if

eik ̸∈ Ea and sa(eik) otherwise.

The second fundamental graph Go = (Vo, Eo, so) encodes the interdependence of the various

options. We refer to Go as the belief system graph, analogous to the terminology utilized in [72,221].

Analogously we can consider Go to represent some context-dependent social norms [92]. The nodes

in the vertex set Vo = {1, . . . , No} correspond to distinct options, or topics, which are evaluated by

the agents. An edge ejl ∈ Eo thereby signifies that formation of beliefs about option j is affected by

the beliefs about option l. The signature function σo : Eo 7→ {−1, 1} describes whether two options

are positively or negatively aligned according to the belief system. We also assume that Go is simple,

and we define the signed adjacency matrix Ao ∈ RNo×No whose entries are defined as (Ao)jl = 0 if

ejl ̸∈ Eo and sa(ejl) otherwise. We assume that the belief system graph is inherent to the options

that are being evaluated, and thereby shared by all agents in the group.

Using these definitions, we specialize the coupling weights in the model as

αi
j = α, βi

jl = β(Ao)jl, γik
j = γ(Aa)ik, δikjl = δ(Aa)ik(Ao)jl.

In this specialization we assume homogeneity in the magnitude of the coupling gains α, β, γ, δ ≥ 0

among the agents. These gains correspond to the four distinct classes of interactions, as illustrated

by the four differently colored arrows in Figure 3.1. Heterogeneity on the network therefore arises

from the architecture of the communication and belief system graphs.

With these assumptions in place, the model of belief formation (3.3),(3.4) becomes

żij = −dzij + u

S1

αzij + γ

Na∑
k=1
k ̸=i

(Aa)ikzkj



+

No∑
l ̸=j
l=1

S2

β(Ao)jlzil + δ(Ao)jl

Na∑
k=1
k ̸=i

(Aa)ikzkl


+ bij := Fh

ij(Z). (3.8)

Importantly, (3.8) still supports potential heterogeneity in the external information about options

that is captured by the distributed biases bij . For completeness of presentation we also state (3.8)

in vector-matrix form:

Ż = −dZ + uS1

(
((αINa

+ γAa) ⊗ INo
)Z
)

+

No∑
l=1

S2

(
((βINa

+ γAa) ⊗Ml)Z
)

+ b (3.9)
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where Z ∈ RNaNo is the state vector, Sm(y) = (Sm(y1), . . . , Sm(yn)) for y ∈ Rn, and Ml ∈ RNo×No

is the matrix whose column l coincides with column l of Ao, with zero entries in all other columns.

Analogously, the dynamics of constrained opinions in the homogeneous regime become

˙̃Zi = P0F
h
i (Z̃). (3.10)

There are several reasons that make the homogeneous model (3.8) compelling. First of all, in

this form the model contains a small number of parameters which carry a clear interpretation in

the context of belief formation. This makes the homogeneous model highly amenable to rigorous

and interpretable analysis, as we will illustrate over the next several chapters of this dissertation.

Second of all, homogeneity of agents in a group is often a valid assumption for the study and

design of collective behavior. For instance, groups in nature are often composed of individuals that

are indistinguishable from one another in their role [25, 26]. Analogously, robotic teams and other

engineered collectives are commonly made up of interchangeable components. In fact homogeneity

of system components is frequently used as motivation for the deployment of robotic swarms, in

which many simple and easily replaceable robotic units work together to perform complex tasks

[29, 111, 175]. Finally, rigorous understanding of the model behavior in its homogeneous regime

paves the way for systematic study of the effects of heterogeneity, since small heterogeneity can be

considered as a perturbation of the homogeneous system. We take advantage of this observation later

on in this dissertation when we relax the homogeneity assumption to allow agents to dynamically

modify some of their parameters.

41



Chapter 4

Belief-forming bifurcations: single

topic or two mutually exclusive

options

Most of the material presented in sections 4.1,4.2,4.3 is a summary of analysis that appears in

print in various parts of [18–21] that are also included as Chapters 9,10,11,12 in Part II of this

dissertation. Several of the propositions, theorems, figures, and figure captions in these sections

are taken verbatim from these sources as cited, with minor edits for consistency. The surrounding

discussion of the contributions is original, with exceptions noted explicitly in the text. The analysis

in section 4.4 does not yet appear in print, however an early version of it was presented as part

of my general examination in January 2019 and in the 2019 SIAM Conference on Applications of

Dynamical Systems. I presented parts of analysis in this chapter in the 2020 SIAM Conference on

the Life Sciences; in the 2020 UCLA Institute for Pure and Applied Mathematics, Mathematical

Challenges and Opportunities for Autonomous Vehicles Program, Workshop IV: Social Dynamics

beyond Vehicle Autonomy;; in the 2021 SIAM Conference on Applications of Dynamical Systems; in

the 2021 American Control Conference; and in the 2021 IEEE Conference on Decision and Control.

4.1 Model specialization to scalar state variable

In this chapter we study local indecision-breaking bifurcations of equilibria in the homogeneous

model (3.8) specialized to one topic, or two mutually exclusive options. We present two ways to
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derive this specialization.

First, consider the homogeneous value dynamics (3.8) for a network of agents evaluating a single

topic. In this case, the belief state Zi of each agent is simply the scalar state zi1 ∈ R. To simplify

notation, we relabel zi1 = xi and bi1 = bi, with the network state x = (x1, . . . , xNa
). Furthermore,

we observe that for a single topic, the belief system graph Go is trivial and inter-option dependencies

captured by saturations S2 do not play a role in the dynamics (3.8). To further simplify notation,

we drop the subscript from the saturation function S1. With these modifications, we arrive at the

model

ẋi = −dxi + uS

αxi + γ

Na∑
k=1
k ̸=i

(Aa)ikxk

+ bi. (4.1)

The internal gain α ≥ 0 describes the strength of each agent’s self-reinforcement of its own beliefs.

The social gain γ ≥ 0 describes the strength of each agent’s drive to imitate opinions of the neighbors

with which it has a cooperative relationship, and to reject the opinions of the neighbors it has an

antagonistic relationship with. A version of (4.1) with no self-reinforcement and with inhomogenious

resistance weights di that reflect the in-degree of each agent on the communication graph Ga has

been studied in the literature as a biologically inspired model for robust consensus formation on

two options [61, 63, 87]. A version of this model was also recently independently developed in the

sociophysics literature as a model of echo chamber formation in online social networks [14, 74]. As

mentioned in chapter 3, the nondegeneracy condition S′′(0) ̸= 0 is not necessary in the scalar opinion

setting and it is natural to assume the saturation function S has an odd symmetry, S(−y) = −S(y).

Alternatively consider the homogeneous model of opinion formation on the simplex for two mu-

tually exclusive options (3.10). When No = 2, each agent’s state space Z̃i = (z̃i1, z̃i2) is constrained

by z̃i1 + z̃i2 = 0 and can be represented by a single state variable xi = z̃i1 = −z̃i2. Observe that

˙̃zi1 = 1
2

(
Fh
i1(Z̃) − Fh

i2(Z̃)
)

, and the dynamics of the scalar opinion variable xi reduce to

ẋi = −dxi + u

Ŝ1

αxi + γ

Na∑
k=1
k ̸=i

(Aa)ikxk

− Ŝ2

βxi + δ

Na∑
k=1
k ̸=i

(Aa)ikxk


+ b̂i. (4.2)

where Ŝ1(y) = 1
2 (S1(y)− S1(−y)), Ŝ2(y) = 1

2 (S2(y)− S2(−y)) are saturating functions with an odd

symmetry and b̂i = 1
2 (bi1 − bi2). For (4.2) we allow the inter-option gains β, δ ∈ R to be negative as

well as positive. Whenever (Ao)12 = (Ao)21 = 0, β = δ = 0 and (4.2) reduces to (4.1).
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When b = 0, the Jacobian of (4.2) evaluated at the origin x = 0 is

J =
(
− d + u(α− β)

)
I + u(γ − δ)Aa. (4.3)

By inspection of (4.3) we see that as long as γ ̸= δ, the spectral properties of J are inherited from

the communication graph Ga. Specifically, whenever v is a right eigenvector of Aa with eigenvalue

λ, v is also a right eigenvector of J with eigenvalue ξ = −d+ u(α− β) + uλ(γ− δ). The eigenvalues

of Aa determine the critical value of attention u∗ at which the origin loses stability according to

Theorem 3.3.1. Furthermore, the local geometry of the center manifold along which the resulting

bifurcation appears near (x, u) = (0, u∗) is informed by an eigenspace of Aa.

In the following theorem we establish that a typical bifurcation of the origin in the model (4.1) is

a pitchfork bifurcation that results in appearance of two new opinonated equilibria on the network.

Theorem 4.1.1 (Pitchfork Bifurcation). [20, Theorem IV.1] Consider (4.1) and define

u∗(λ) =
d

α + λγ
, (4.4)

where λ is a simple real eigenvalue of adjacency matrix Aa. Let v = (v1, . . . , vNa
) and w =

(w1, . . . , wNa
) be right and left unit eigenvectors, respectively, corresponding to λ. Assume that

(i) for all eigenvalues ξ ̸= λ of A, Re[ξ] ̸= λ; (ii) α + λγ ̸= 0; (iii)⟨w,v3⟩ ̸= 0. Let f(z, u,b) be a

Lyapunov-Schmidt reduction of (4.1) at (x, u,b) = (0, u∗,0).

A. Bifurcation problem f(z, u, 0) = 0 has a symmetric pitchfork singularity at (z, u,b) = (0, u∗, 0).

For values of u > u∗ and sufficiently small |u−u∗|, two branches of equilibria branch off from x = 0

in a pitchfork bifurcation along a manifold tangent at x = 0 to span{v}.

When sign{⟨w,v3⟩/⟨w,v⟩}(α + λγ) > 0 (< 0) the bifurcation happens supercritically (subcriti-

cally) with respect to u. Whenever x∗ is an equilibrium of (4.2), −x∗ is also an equilibrium.

B. Bifurcation problem f(z, u,b) = 0 is an Na-parameter unfolding of the symmetric pitchfork, and

∂f
∂bi

(z, u,b) = wi.

Using Theorem 4.1.1 we can describe the properties of indecision-breaking bifurcations of (4.1)

on a communication graph Ga whenever its signed adjacency matrix Aa has a dominant eigenvalue

λ∗. Suppose u = u∗(λ∗) and w,v are the left and right unit eigenvectors of Aa corresponding to λ∗.

We always assume that the choice of w,v satisfies ⟨w,v⟩ > 0.

1. When agents are unbiased, at the bifurcation point u = u∗(λ∗) the indecision equilibrium

x = 0 loses stability and two stable branches of opinionated equilibria appear supercritically.
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For values of u near u∗(λ∗), the two equilibria ±x∗ can be approximated to first order as

multiples of the eigenvector v. The eigenvector v thus informs the pattern of opinions the

network takes on at bifurcation. For example, if sign(vi) = sign(vk) then agents i and k will

agree on their choice of option. Furthermore, if |vi| > |vk| then agent i will form a stronger

belief at equilibrium than agent k.

2. When agents have nonzero small biases bi the direction of unfolding of the pitchfork bifurcation

near u = u∗(λ∗) is determined by the quantity ⟨b,w⟩, the projection of the network biases

onto the left null eigenspace of the Jacobian (4.3). Whenever ⟨b,w⟩ > 0(< 0) the equilibria x∗

in the continuous branch of the pitchfork unfolding satisfy ⟨x∗,v⟩ > 0(< 0). We can interpret

the relative magnitude of the entries of w as a measure of influence or centrality of the agent.

For example if |wi| > |wk| and agents i, k receive small inputs of equal magnitude |bi| = |bk|,

in the projection ⟨b,w⟩ =
∑Na

l=1 blwl the quantity biwi dominates the quantity bkwk. Then

the absence of other biases of the network sign(⟨b,w⟩) = sign(biwi) and the bias of agent i

determines the direction of unfolding due to its higher centrality ranking.

Figure 4.1 shows an example of a numerically generated bifurcation diagram illustrating a pitch-

fork bifurcation and its unfolding established by Theorem 4.1.1 on a small network. Note that the

right eigenvector v informs the opinion pattern at equilibrium because its span is a linear approxima-

tion of the center manifold on which new equilibria appear as the state of indecision loses stability.

The linear term in the series expansion of this approximation dominates whenever |u − u∗(λ∗)| is

small, which means that any of the qualitative descriptions of the equilibria that are based on this

linear analysis apply only in a small neighborhood of the bifurcation point. In practice, we observe

the characterizations of equilibria in the linear regime typically persist for values of u far away from

the bifurcation point. Usually the pattern of signs on the network predicted by v remains unchanged,

and the magnitudes of opinions of different agents get closer to one another as the nonlinearities in

(4.4) saturate to their maximum value. However we do not derive a center manifold approximation

beyond first order to justify this observation, and in general it would be difficult to carry out such a

computation for an arbitrary network architecture. In the next theorem we establish that there is a

range of values for the attention parameter u near the bifurcation point u∗(λ∗) for which the three

described equilibria are the only equilibria admitted by the system.

Theorem 4.1.2 (Uniqueness of equilibria). [18] Consider (4.1) on a signed graph Ga; suppose the

signed adjacency matrix Aa has a simple leading eigenvalue λ∗ > 0 and let λ2 be an eigenvalue of A

satisfying Re(λ2) ≥ Re(λi) for all eigenvalues λi ̸= λ∗ of Aa. 1) x = 0N is globally asymptotically
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stable on a forward-invariant compact set Ω ⊂ Rn containing the origin x = 0N , for all u ∈

[0, u∗(λ∗)); 2) if Re(λ2) ≥ −α/γ, u ∈ (u∗(λ∗), u∗(λ2)), the only equilibria the system admits are 0N ,

x∗
1, and x∗

2; 3) if Re(λ2) < −α/γ, the only equilibria the system admits in Ω for all u > u∗ are 0N ,

x∗
1, and x∗

2.

An analogous result to Theorems 4.1.1 and 4.1.2 can be established for (4.2) whenever γ ̸= δ,

with the critical value of attention instead being

u∗(λ) =
d

α− β + λ(γ − δ)
. (4.5)

In the next two sections we study properties of the equilibria that result from the pitchfork bifur-

cation in Theorem 4.1.1. We already established that the bias vector b determines the unfolding

of the bifurcation, therefore we mainly study properties of the equilibria of the symmetric pitchfork

bifurcation for a network of unbiased agents. We focus our attention on the simpler model (4.1),

but note that analogous results hold more generally for (4.2) with γ ̸= δ.

4.2 Networks of cooperative and competitive agents

First, we consider (4.1) on networks that have purely cooperative or purely competitive (i.e. an-

tagonistic) relationships among the agents. Since all of the interactions have the same sign, in

this section we constrain the communication graph Ga to be unsigned with (Aa)ik ∈ {0, 1} for all

i, k = 1, . . . , Na, and instead absorb the sign of the social interactions into the social gain γ ∈ R.

With this modification, γ > 0 describes a network cooperative agents, and γ < 0 describes a network

of competitive agents. For the results stated in this section, we establish the following assumptions

and definitions:

• Assume the communication graph Go is strongly connected;

• λmax > 0 is the Perron-Frobenius eigenvalue of Aa, with right and left unit eigenvectors vmax,

wmax; recall from the Perron-Frobenius theorem that we can choose vmax ≻ 0, wmax ≻ 0;

• Define the set of smallest real-part eigenvalues of Aa as Λmin = {λ = argminµ∈σ(Aa) Re(µ)};

• Whenever |Λmin| = 1, let Λmin = {λmin}, where λmin ∈ R with right and left unit eigenvectors

vmin, wmin; since ⟨vmax,wmin⟩ = ⟨vmin,wmax⟩ = 0, both vmin, wmin each have at least one

positive and at least one negative component.
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Figure 4.1: [19] Bifurcation diagrams showing the symmetric pitchfork bifurcation (left) and its unfolding
(right) for two-option opinion dynamics (9.14) with d = α = 1 in the disagreement regime (γ = −1) for three
agents communicating over an undirected line graph. Blue (red) curves represent stable (unstable) equilibria.
The vertical axis is the projection of the system equilibria x onto wmin (wmin = vmin since the graph is
undirected). Left: b = (0.2, 0,−0.2); right: b = −0.1wmin + (0.2, 0,−0.2). Bifurcation diagrams generated
with MatCont [47]. In the agreement regime, the diagrams look qualititively the same with wmin/vmin

replaced with wmax/vmax and b modified appropriately (see Figure 1 in [21], included int his dissertation
as Figure 11.1).

In the following theorem we establish an intuitive result: cooperation drives networked agents to

agree on a choice of option, and competition or antagonism among the agents results in disagreement.

Theorem 4.2.1. [19],[20] The following hold true for (4.1) with bi = 0 for all i = 1, . . . , Na:

A. Cooperation leads to agreement: If γ > 0, the neutral state x = 0 is a locally exponentially

stable equilibrium for 0 < u < ua and unstable for u > ua, with

ua =
d

α + γλmax
. (4.6)

At u = ua, branches of agreement equilibria, xi ̸= 0, sign(xi) = sign(xk) for all i, k ∈ Va, emerge in

a pitchfork bifurcation along a center manifold tangent to span(vmax);

B. Competition leads to disagreement: Suppose |Λmin| = 1. If γ < 0 the neutral state x = 0

is a locally exponentially stable equilibrium for 0 < u < ud and unstable for u > ud, with

ud =
d

α + γλmin
. (4.7)

At u = ud, branches of disagreement equilibria, sign(xi) = − sign(xk) for at least one pair i, k ∈ V ,

i ̸= k, emerge in a pitchfork bifurcation along a center manifold tangent to span(vmin).1

According to Theorem 4.2.1, whether a network reaches agreement or disagreement post bifurca-

tion is determined by the signs of the interactions between agents rather than by the architecture of

the network interconnections. In fact, agreement and disagreement can happen on the same network

1For (4.5), the agreement regime is γ − δ > 0 and the disagreement regime is γ − δ < 0.
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Figure 4.2: [20] Post-bifurcation patterns of agreement for purely cooperative agents with γ > 0 (left) and
of disagreement for purely antagonistic agents with γ < 0 (right) on four small undirected networks.

- see Figure 4.2 for examples of agreement and disagreement equilibria that are reached by cooper-

ative and antagonistic agents on several representative undirected networks that satisfy |Λmin| = 1.

In Figure 4.2 the color of each node represents the value of its opinion state xi at equilibrium, with

red nodes choosing option 1 and blue nodes choosing option 2. Darker nodes settled on stronger

opinions than lighter nodes. Figure 4.2 illustrates that the network architecture clearly plays a role

in selecting the pattern of agreement and disagreement that appears in this bifurcation, i.e. how the

nodes are distributed across the two options in disagreement, and the relative strength of beliefs of

individual nodes in relation to their neighbors. This happens because, as we observed from Theorem

4.1.1, these patterns of opinions at equilibrium follow the sign pattern of an eigenvector of the ad-

jacency matrix of the graph. In the remainder of this section we formalize this connection between

graph structure and emergent beliefs. In particular, we explore how the centrality of individual

nodes on the communication graph Ga and its graph symmetries inform the opinion patterns the

network settles on.

Undirected graphs and agent centrality

By Theorem 4.1.1, the pitchfork bifurcation that gives rise to opinionated states on the network

happens along a manifold tangent to span(v), with v the right eigenvector corresponding to the

dominant eigenvalue of Aa. For networks of cooperative and competitive agents, we further identified

in Theorem 4.2.1 eigenvectors vmin and vmax which govern the properties of the bifurcation. In

this section, we show that for undirected networks these eigenvectors often reflect a classic measure

of centrality on the network.

A centrality measure for a graph is an assignment of a numerical score to each node that ranks
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its relative importance. In the social sciences, network centrality measures are often used to identify

influential individuals in various social networks [66, 118]. The eigenvector centrality is a popular

centrality measure for unsigned networks that effectively ranks the nodes on a graph by the number

of infinite walks that pass through them [27, 28]. The eigenvector centrality score of node i on the

graph Ga is determined by entry i in the left Perron-Frobenius eigenvector wmax of its adjacency

matrix Aa, assuming wmax is normalized to have nonnegative entries. In this section we illustrate

how for all cooperative undirected graphs and for some competitive undirected graphs, the strength

of commitment to options at equilibrium reflects the standard eigenvector centrality score of each

agent. First, we establish this result for cooperative networks.

Proposition 4.2.2 (Agreement patterns and eigenvector centrality). [20] Consider opinion dynam-

ics (4.1) with undirected Ga and bi = 0 for all i = 1, . . . , Na. When γ > 0, agreement equilibria

x = (x1, . . . , xNa
) described in Theorem 4.2.1.A satisfy |xi| < |xk| if (wmax)i < (wmax)k and

|xi| = |xk| if (wmax)i = (wmax)k for all i, k = 1, . . . , Na.

A similar result holds for disagreement patterns on bipartite undirected graphs of antagonistic

agents, i.e. graphs all of whose edges connect two disjoint subsets of vertices. Recall that the

adjacency spectrum of bipartite graphs is symmetric about zero, which means |Λmin| = 1 for all

bipartite graphs. Furthermore λmin = −λmax and |(vmin)i| = |(vmax)i| for all i = 1, . . . , Na as

long as vmin and vmax are normalized to the same length [190, Theorem 1.2]. This means that the

disagreement bifurcation at u = ud on a bipartite undirected graph of antagonistic agents is always

a pitchfork bifurcation whose properties are characterize in Theorem 4.1.1.

Proposition 4.2.3 (Bipartite disagreement patterns and eigenvector centrality). [20] Consider

(4.4) with undirected, connected, and bipartite Ga, bi = 0 and γ < 0. Let V1,V2 ⊂ Va be the

bipartition of the vertex set Va. Disagreement equilibria x = (x1, . . . , xNa) described in Theorem

4.2.1.B satisfy |xi| < |xk| if (wmax)i < (wmax)k and |xi| = |xk| if (wmax)i = (wmax)k for all

i, k = 1, . . . , Na. Moreover, sign(xi) = − sign(xk) for all i ∈ V1, k ∈ V2 .

By Proposition 4.2.3, on undirected bipartite graphs the distribution of agents across the two

options reflects the bipartition of the agents enforced by the graph architecture, and the magnitude

of their beliefs relative to other agents reflects their centrality. Figure 4.2 illustrates the findings of

Propositions 4.2.2 and 4.2.3. For example on the path, star, and wheel graphs the outer agents are

less central than the inner agents according to the eigenvector centrality measure. This is reflected

in the strength of the agents’ beliefs at equilibrium, with the inner agents settling to a stronger
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opinion about their chosen option in both agreement and disagreement regimes. Additionally in

Figure 4.2 the path, even cycle, and star graphs are bipartite. As expected, the agents’ pattern of

beliefs at equilibrium reflects the underlying graph bipartition. Interestingly, the wheel graph is not

bipartite; however at disagreement it assumes a similar color pattern to the star graph which has

a similar geometry. The final beliefs of the central agent on the wheel graph is stronger than the

beliefs of the outer agents. This observation suggests that at least for some graph structures, the

magnitude of entries in the eigenvector wmin reflects agent centrality in a similar manner to the

standard eigenvector centrality vector wmax even though the two do not coincide. As established in

Theorem 4.1.1, wmin and wmax also rank the centrality of the agents by determining the relative

influence of their biases bi in determining the unfolding of the bifurcation diagram, as in Figure 4.1.

Notice that on the cycle graph in Figure 4.2 all agents are equally central and the magnitude

of their beliefs at equilibrium is equal both in agreement and in disagreement, with disagreement

opinions summing to zero over all agents. This property holds more generally on graphs that are

K-regular, which we formalize in the following proposition.

Proposition 4.2.4 (Consensus and dissensus on regular graphs). [20] If Ga is undirected, connected,

and K-regular, the agreement bifurcations at u = ua with γ > 0 give rise to consensus equilibria

that satisfy xi = xk for all i, k ∈ Va, and the disagreement bifurcations at u = ud with γ < 0 give

rise to dissensus equilibria characterized by
∑Na

i=1 xi = 0.

Directed graphs and agent centrality

In the previous section we discussed undirected graphs for which the adjacency matrix Aa is sym-

metric. As a consequence of this symmetry for undirected graphs the left and right adjacency

eigenvectors coincide, wmax/min = vmax/min. The most strongly opinionated agents on undirected

graphs also have the strongest influence in determining which equilibrium is selected by the network

biases in the pitchfork bifurcation unfolding. This is an important design feature if we consider the

biases of agents as distributed control inputs or sensor inputs that are meant to select for a desired

behavior on the network. In order to most effectively influence the decision of agents following (4.1)

on an undirected network, one can assign a bias to the most strongly opinionated agent.

For directed graphs, distribution of agents’ beliefs decouples from their centrality with respect

to the pitchfork unfolding. For example consider a purely cooperative network of agents with γ > 0.

As before, the left eigenvector wmax is the standard centrality eigenvector for their communication

graph Ga. On the other hand, the right eigenvector vmax is the eigenvector centrality vector for the

50



graph G′
a with adjacency matrix AT

a . G′
a is generated by reversing the direction of all of the arrows

in Ga. The distribution of beliefs on the network at an agreement equilibrium therefore reflects their

centrality in the information flow network G′
a, whereas their influence in determining the unfolding

direction reflects their centrality in the sensing network Ga. Similarly, for γ < 0 the eigenvectors

wmin and vmin need not coincide, and the most opinionated agents may not be the most influential

in determining the unfolding direction of the networked pitchfork bifurcation.

Graph symmetry

Recall that a graph automorphism for an unsigned graph Ga = (Va, Ea) is a permutation of vertices

Va that preserves adjacency between agents. The automorphism group of Ga is the set of all of its

automorphisms. A graph automorphism is also referred to as a symmetry of the graph. Symmetries

of a graph generate a partition of its vertices:

Definition 4.2.5. [20] Let Γ be the automorphism group of Ga = (Va, Ea), and i ∈ Va a vertex. An

orbit of i is Oi = {k ∈ Va |k = ρi for some ρ ∈ Γ}. The orbits are equivalence classes that partition

Va through the equivalence relation

i ∼ k if k = ρi for some ρ ∈ Γ. (4.8)

Connected to graph symmetry is the notion of equivariance of a dynamical system with respect

to a symmetry group. Consider a dynamical system ẋ = h(x), where the map h : RNa → RNa is

h(x) = (h1(x), . . . , hNa(x)). Let Σ be a compact Lie group with elements σ that act on RNa . Then

h is σ-equivariant for some σ ∈ Σ if σh(x) = h(σx), and h is Σ-equivariant if this holds true for

all σ ∈ Σ [83, Definition 1.7].2 In the following propositions we establish that symmetries of the

communication graph Ga are symmetries of the belief formation dynamics (4.4).

Proposition 4.2.6 (Γa-equivariance). [20] Consider (4.4) with bi = 0 for i = 1, . . . , Na. Let Γa be

the automorphism group of Ga. The dynamical system (4.4) is Γa-equivariant.

Proposition 4.2.6 is a consequence of generic properties of dynamical systems with graph struc-

ture, see [8, 191].

Proposition 4.2.7 (Symmetry and equilibrium patterns). [20] Consider opinion dynamics (10.1)

with bi = 0 for all i ∈ Va. Let Γa be the automorphism group of the undirected graph Ga, and for

any two vertices i, k ∈ Va define the equivalence relation i ∼ k as in (4.8).

2This paragraph is taken verbatim from [20]
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A. Suppose γ > 0. For the agreement equilibria x = (x1, . . . , xNa
) from Theorem 4.2.1.A, if i ∼ k,

then xi = xk.

B. Suppose γ < 0 and |Λmin| = 1. For the disagreement equilibria x = (x1, . . . , xNa
) from Theorem

4.2.1.B, if i ∼ k, then |xi| = |xk|.

Using Proposition 4.2.7 we gain further insight into the agreement and disagreement patterns

shown in Figure 4.2. For example for the star, wheel, and cycle graphs the outer agents are all

within the same equivalence class of Definition 4.2.5 generated by permutation symmetries. This

equivalence is reflected in the belief pattern at equilibrium, as the outer agents all form beliefs of

equal magnitude. Similarly, the line graph has a reflection symmetry about its midpoint. This

means i ∼ k whenever agent i and agent k are the same number of nodes away from one of the

two endpoints of the line graph. Such agents form beliefs of equal magnitude in agreement and in

disagreement.

4.3 Mixed-sign networks

In the previous section we described patterns of agreement and disagreement opinions on networks

of purely cooperative or purely antagonistic agents, and we showed that cooperation among agents

always leads to network agreement. On sign-homogeneous networks, cooperation between agents is

therefore both necessary and sufficient for agreement. However more generally, we consider the model

(4.4) on a communication graph with a mix of cooperative and antagonistic relationships among

neighbors. It turns out that an all-positive signature of edges in Ga is sufficient but not necessary

for network agreement, and a negative signature on one or more edges of Ga is necessary but not

sufficient for disagreement. We illustrate this in the following proposition, in which we provide a

sufficient condition for network agreement that allows for some negative interactions between agents.

Recall that a matrix A ∈ RN×N is called eventually positive if there exists some integer k0 ≥ 0 such

that Ak ≻ 0N×N for all k ≥ k0.

Proposition 4.3.1 (Agreement on mixed-sign graphs). Consider (4.1) with γ > 0 and bi = 0 for

i = 1, . . . , Na on a signed directed communication graph Ga. Suppose Aa is eventually positive. Then

Aa has a unique dominant eigenvalue λ∗ with corresponding eigenvector v. The neutral state x = 0

is a locally exponentially stable equilibrium for 0 < u < u∗(λ∗) where u∗(λ∗) is defined as in (4.4).

At u = u∗(λ∗) the origin loses stability and two new equilibria appear in a pitchfork bifurcation

along a manifold tangent to span(v), where v ≻ 0. If Aa is eventually positive, v ≻ 0 and at each
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Figure 4.3: [18] Illustration of Corollary 4.3.3. The bifurcation diagram of the switched system is a “rotated”
version of the original diagram because the sign of vj flips.

nontrivial equilibrium x = (x1, . . . , xNa), xi ̸= 0 and sign(xi) = sign(xk) for all i, k ∈ Va.

Proof. A square matrix A is eventually positive if and only if A and AT possess the strong Perron-

Frobenius property - see Proposition 2.1.1This establishes the existence of a simple dominant eigen-

value λ∗ = ρ(Aa) and a corresponding positive eigenvector v. The rest of the proposition is a direct

consequence of Theorem 4.1.1.

Recall that two signed graphs G = (V, E , s), GW = (V, E , sW) are switching equivalent if there

exists a switching function θ : V → {−1, 1} that relates the signatures of the two graphs through

sW(eik) = θ(i)s(eik)θ(k) for all i, k ∈ V, eik ∈ E . In this notation, W ⊆ V is the set of nodes

that is being switched, i.e. θ(i) = −1 if i ∈ W and θ(i) = 1 otherwise. The switching matrix

Θ = diag(θ(1), . . . , θ(N)) relates the adjacency matrices of the two switching equivalent graphs

as AW = Θ−1AΘ. In the following proposition we establish topological equivalence of the flow

generated by (4.1) on two switching equivalent graphs.

Proposition 4.3.2 (Diffeomorphism between trajectories of switching equivalent systems). [18]

Consider switching equivalent graphs Ga, GW
a with adjacency matrices Aa and AW

a and with switching

matrix Θ. The trajectory x(t) is a solution to (4.4) on G if and only if Θx(t) is a solution of (4.4)

on GW .

Equivalence of bifurcation diagrams of (4.1) on two switching equivalent graphs is a direct con-

sequence of Proposition 4.3.2.

Corollary 4.3.3 (Switching a graph “rotates” a bifurcation diagram). [18] Consider (4.4) on switch-

ing equivalent graphs Ga, GW
a with adjacency matrices Aa and AW

a and with switching matrix Θ.

The state x = x∗ is an equilibrium on the bifurcation diagram of (4.4) on Ga at some value of u if

and only if Θx∗ is an equilibrium on the bifurcation diagram of (4.4) on GW for the same u.
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By Corollary 4.3.3 whenever (4.1) exhibits a pitchfork bifurcation on some graph G, the bifurca-

tion diagram of (4.1) on a switching equivalent graph GW also exhibits a pitchfork bifurcation at the

same critical attention value u∗. The mapping from G to GW through a switching transformation

effectively “rotates” the pitchfork bifurcation, mapping its nontrivial branches into different orthants

in RNa . We illustrate this intuition in Figure 4.3.

Next, we establish that switching a set of vertices is equivalent to switching its complement.

Proposition 4.3.4 (Switching complementary vertex sets generates the same flow). [18] Consider

two switching equivalent graphs GW , GV\W , generated by switching a set of vertices W or its com-

plement V \ W on graph G. The trajectory x(t) is a solution of (10.1) on GW if and only if it is

also a solution of (10.1) on GV\W .

These results motivate a simple design procedure to build a signed adjacency matrix that ensures

a desired allocation of agents across the two options, i.e. partitions the agents into two subgroups

of opposite-sign opinion.

Step 1. Start with a strongly connected Ga with an all-positive signature, i.e. (Aa)ik ∈ {0, 1} for

all i, k ∈ V. By Theorem 4.2.1, (4.1) on Ga has an all-positive stable equilibrium x∗
1 and all-negative

stable equilibrium x∗
2.

Step 2. Define the switching set W. In this step, the designer chooses which nodes are grouped

together. The two partitions W,V \W correspond to the two options or tasks.

Step 3. Update edge signatures of Ga locally as aWik = θ(i)(Aa)ikθ(k). This edge signature

update generates the switch-equivalent graph GW
a and groups all nodes in W and all nodes in

V \ W together by sign. The dynamics (10.1) on GW is bistable with stable equilibria Θx∗
1, Θx∗

2.

If |W| = M , the equilibrium Θx∗
1 corresponds to M negative nodes, and Θx∗

2 to N − M negative

nodes. 3

In the simulation shown in Figure 4.4 we illustrate this design procedure in action. We design a

signed adjacency matrix for 10 agents which partitions the agents into a group of 3 and a group of

7 by sign. To generate the signed graph we first generate a random positive-signature graph for a

network of ten agents. We then apply a switching transformation for nodes 1,2, and 3. Note that as

a consequence of Proposition 4.3.4, we could equivalently choose to switch nodes 3-10 to generate the

same bipartition of agents on the network. The figure shows the time trajectories of the networked

opinions converging to one of the two bistable equilibria for a value of attention u slightly above the

bifurcation point, as well as the final distribution of opinions on the network at the final time step of

3Paragraphs outlining steps 1-3 are taken mostly verbatim from [18]

54



Figure 4.4: [18] Assigning 10 agents to a 30-70% distribution between two tasks by switching agents 1, 2
and 3. Edges that connect red nodes and blue nodes have negative signature, all other edges have positive
signature. (a) Time trajectory of the opinion dynamics (4.1). (b) Final agent distribution. (c) Network
diagram with the opinion of each agent at t = 30. Parameters: S = tanh, d = 1, α = 1.2, γ = 1.3, u =
0.324.

the simulation. From a different set of initial conditions, the group could settle to the second stable

equilibrium at which nodes 1,2,and 3 would take on positively opinions and the rest of the group

would take on negative opinions.

More generally, any pattern of disagreement can be generated using the outlined design procedure

starting from a signed graph Ga with an eventually positive adjacency matrix Aa. This follows

straightforwardly from Proposition 4.3.1, since all possible disagreement patterns can be generated

by applying switching transformation to a graph that generates agreement solutions. This means

that there can be several different graph signatures for the same graph architecture (Va, Ea) that

generate the same partition of nodes across the two options.

In the simulations we have seen so far, all agents’ opinions tend away from zero post-bifurcation.

This does not have to be the case in general. There are many graphs on which (4.1) exhibits a

pitchfork bifurcation for which some of the agents’ beliefs remain close to neutral. This happens

whenever the right leading eigenvector v of the adjacency matrix has some zero components. To

formalize this observation, provided a graph Ga with a simple leading eigenvalue and a corresponding

right eigenvector v, we will say agent i forms strong beliefs in a pitchfork bifurcation whenever vi ̸= 0,

i.e. whenever the center manifold approximation has a linear dependence in the direction of xi.

Proposition 4.3.5 (Strong beliefs). Consider (4.1) with bi = 0 for all i = 1, . . . , Na on a graph Ga

with signed adjacency matrix Aa. If Aa is switching equivalent to an eventually positive matrix, the

indecision state x = 0 loses stability in a supercritical pitchfork bifurcation along a center manifold

on which all agents form strong beliefs.

Proof. Suppose Aa has a simple leading eigenvalue λ∗ with a right eigenvector v = (v1, . . . , vNa)
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for which vi ̸= 0 for all i ∈ Va, and a left eigenvector w. Let W ⊆ V be the set of nodes for

which vi < 0. Then we can define a switching function θ(i) = −1 whenever i ∈ W and θ(i) = 1

otherwise, with switching matrix Θ = diag(θ(1), . . . , θ(Na)). The switching equivalent adjacency

matrix A′
a = ΘAaΘ has the strong Perron-Frobenius property by Proposition 2.2.1. Recall that

A′
a has the strong Perron-Frobenius property if and only if it is eventually positive [149, Theorem

2.2]. The supercritical pitchfork bifurcation in the dynamics is established by Theorem 4.1.1 since

⟨w,v3⟩ =
∑Na

i=1 wiv
3
i > 0.

Proposition 4.3.5 establishes that in order for all agents to form strong beliefs at bifurcation, it

is sufficient for the signed adjacency matrix Aa of the communication graph to be in a switching

equivalence class with an eventually positive matrix. A special class of graphs whose adjacency

matrices are always eventually positive are strongly connected graphs with an all-positive signature.

Recall from Chapter 2 that a signed graph for which the sign of every closed path on the graph is

positive is called structurally balanced. A structurally balanced signed graph is switching equivalent

to an all-positive graph.

Let K be an orthant of RN , K = {x ∈ RN s.t. (−1)mixi ≥ 0, i = 1, . . . , N} with each mi ∈ {0, 1}.

The orthant K generates a partial ordering “≤K” on RN where if x,y ∈ RN , y ≤K x if and only

if x − y ∈ K. We say a system ẋ = f(x) on U ⊆ RN is type K monotone if its flow preserves the

partial ordering ≤K, i.e. if x1(0) ≤K x2(0) implies x1(t) ≤K x2(t) for all t > 0. 4

Proposition 4.3.6 (Monotonicity and structural balance). [18] Consider (4.1) on a signed graph

Ga with bi = 0 for all i = 1, . . . , Na. It is a type K monotone system if and only if Ga is switching

equivalent to G+
a , for which σ(eik) = 1 for all eik ∈ E, i.e. Ga is structurally balanced.

Proposition 4.3.6 gives a necessary and sufficient condition for monotonicity of the dynamics

(4.1). This is useful because monotone systems are well-behaved. For example, a locally stable Hopf

bifurcation cannot happen in a monotone system, which rules out the possibility of networked beliefs

settling on an oscillation. Furthermore, generically an equilibrium in a monotone system is either

asymptotically stable, or there are two heteroclinic orbits connecting it to two other asymptotically

stable equilibria [187]. This means that belief formation according to (4.1) on a graph satisfying

proposition 4.3.6 is generically expected to result in convergence on a network equilibrium. For a

detailed treatment of monotone dynamical systems see [97].

4This paragraph is taken verbatim from [18].
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4.4 Higher-order bifurcations and mode interaction

So far in this chapter we described properties of equilibria that arise from indecision-breaking pitch-

fork bifurcations in the belief formation networks (4.1), (4.2). The pitchfork bifurcation described

by Theorem 4.1.1 requires that the largest real-part eigenvalue of the signed adjacency matrix Aa

is algebraically simple. Although this is frequently the case, there are many graphs for which this

property does not hold. More generally, let λ∗ = maxλ∈σ(Aa) Re(λ) and define the set of leading

eigenvalues of Aa as Λmax = {λ ∈ σ(Aa) s.t. Re(λ) = λ∗}. Whenever γ ̸= δ and |Λmax| = n, there

are exactly n eigenvalues of the Jacobian (4.3) that lie on the imaginary axis at the bifurcation point

u∗(λ∗) (4.5). This means the center manifold along which at u∗(λ∗) is (n + 1)-dimensional, and

when n > 1 the resulting bifurcation is different from the pitchfork bifurcation of Theorem 4.1.1.

Some of the possibilities of higher-order phenomena for (4.2) include the following:

• γ ̸= δ and the leading eigenvalues are a complex-conjugate pair Λmax = {λ, λ}. In this case a

Hopf bifurcation of periodic orbits is observed. This type of bifurcation occurs frequently on

graphs which do not satisfy the conditions for forming strong beliefs in Proposition 4.3.5. We

defer the analysis of this case to the following chapter, where we will examine oscillations in

the more general multi-option model.

• γ ̸= δ and |Λmax| = n > 1, where the set Λmax consists of copies of a real-valued eigenvalue

with multiplicity n. Several branches of new equilibria will emerge in a higher-order bifurcation

of equilibria on the network. Typically this happens when the graph Ga has some nontrivial

symmetry, see Figure 4.5 A and B for examples of equilibria generated by a graph with a

leading eigenvalue of multiplicity 2. In fact for every undirected cycle graph with an all-negative

signature and an odd Na, the leading eigenvalue is λ∗ = 2 cos
(

Na−1
Na

)
with multiplicity 2 and

two eigenvalues cross zero simultaneously at the indecision-breaking bifurcaton. Techniques

from equivariant bifurcation theory and network bifurcation theory can be used to classify

these higher-order phenomena for classes of networks with specific symmetries [81, 83, 84].

Such analysis lies outside of the scope of this dissertation.

• γ = δ and α > β. In this case, the influence of the adjacency matrix in the Jacobian matrix

(4.3) disappears, and all Na eigenvalues of the Jacobian are simultaneously zero when u =

d/(α− β).

For the remainder of this section we will focus our attention on the last case, which is particularly

interesting due to its interpretation. Recall that in the model for opinion formation on two mutually
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Figure 4.5: [20] Disagreement patterns of (4.1) on odd cycle (A), 3-regular (B) and randomly generated (C)
graphs of purely antagonistic agents. All pictured undirected edges have a negative signature. The color of
the pictured nodes represents the opinion xi the node converged to at t = 500 of a simulation. All nodes
have bi = 0 and start from randomized initial conditions drawn from a uniform distribution between -1 and
1. System parameters are d = 1, α = 0.5, γ = 0.5, u = ud + 0.01.

exclusive options (4.2) the parameter γ reflects the strength of agents’ drive for social imitation or

reciprocity, and δ reflects the strength of alignment between the two options. When γ > 0, each agent

is pulled to form an opinion choosing the option favored by its social network. When δ > 0 agents are

simultaneously pulled to choose the opposite option, since the two are positively correlated. When

γ = δ, these two conflicting social forces balance each other out. Effectively this situation means

that agents desire both options, but can only have one. Due to the simplex constraint imposed by

this mutual exclusivity, the Jacobian matrix (4.3) becomes maximally singular at the bifurcation

point, independently of the architecture of the communication graph. When γ = δ we will refer to

the agents as conflicted.

As a consequence of the high multiplicity of the crossing eigenvalue, indecision-breaking bifurca-

tions in a network of conflicted agents can give rise to an exceptionally rich set of possible network

equilibria. However for the same reason, this parameter regime is tricky to analyze. The task of

characterizing bifurcations in arbitrarily large general networks of conflicted agents is potentially

intractable. When multiple eigenvalues cross the imaginary axis simultaneously, their associated

eigenspaces can have nonlinear coupling that gives rise to behaviors that are more complicated than

would be expected if each eigenvalue was crossing the imaginary axis separately. This phenomenon

is typically referred to as mode interaction [31,84], and the complexity of the structure of resulting

bifurcation branches is expected to grow significantly with the number of crossing eigenvalues. Some

exploratory simulations of opinion formation two options on small networks of conflicted agents can

be found in the undergraduate senior thesis [133], and indeed there are many outcomes the net-

work can settle on as a single parameter of the model (4.1) is varied. To rigorously illustrate this

complexity we will examine in detail a deceptively simple system of two conflicted agents.

Consider the dynamics (4.2) for two communicating unbiased agents and assume (Aa)12 = (Aa)21.
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Assume that the agents are conflicted, with γ = δ, and define the parameter c =: γ(Aa)12 =

δ(Aa)12 = γ(Aa)21 = δ(Aa)21 with c ∈ R. When c > 0 the two agents are conflicted because they

are pulled to cooperate and choose both options, whereas when c < 0 the two agents are conflicted

because they are pulled to reject their neighbor’s opinion on both options. With these simplifications,

the equations governing the opinion formation for the two agents become

ẋi = −dxi + u
(
Ŝ1(αxi + cxj) − Ŝ2(βxi + cxj)

)
i, j ∈ {1, 2}, i ̸= j. (4.9)

To simplify the calculations we choose specific saturating functions, the odd sigmoid functions

Ŝ1(x) = 1
a1

tanh(a1x) and Ŝ2(x) = 1
a2

tanh(a2x) where a1, a2 > 0 and a2 > a1.

Proposition 4.4.1. Consider (4.9) with α > β and define the quantities

k =: a21(c + α)3 − a22(c + β)3, ℓ =: −a21(c− α)3 + a22(c− β)3,

m =:
3(a21(c− α)2(c + α) − a22(c− β)2(c + β))

| − a21(c− α)3 + a22(c− β)3|
, n =:

3(−a21(c + α)2(c− α) + a22(c + β)2(c− β))

|a21(c + α)3 − a22(c + β)3|
(4.10)

The neutral state x = 0 is locally exponentially stable for 0 ≤ u < d/(α − β) and unstable for

u > d/(α− β). Assuming the nondegeneracy conditions

k ̸= 0, ℓ ̸= 0, m ̸= sign(ℓ), n ̸= sign(k), mn ̸= sign(k) sign(ℓ) (4.11)

are satisfied for some choice of parameters a1, a2, α, β, c, the bifurcation diagram of (4.9) is equiva-

lent5 to a bifurcation diagram of a normal form for (Z2 ⊕ Z2)-symmetric nondegenerate bifurcation

problems ,

ẋc = −rxc − εcx
3
c −mxcx

2
d,

ẋd = −rxd − εdx
3
d − nx2

cxd.

(4.12)

where r = u− d/(α− β), εc = sign(k), εd = sign(ℓ) and the parameters m,n are defined in (4.10).

A proof of Proposition 4.4.1 is developed Appendix A. The equations (4.12) define a family

of normal forms parametrized by εc, εd ∈ {1,−1} and m,n ∈ R. The parameters m,n are re-

ferred to as modal parameters. The bifurcations in these normal forms are classified using tools

from singularity theory in [82, Chapter X]. From this analysis we can deduce that there are sev-

eral topologically distinct bifurcation diagrams that can be obtained for different choices of model

5Here we mean equivalent in the sense of Definition 2.3.2, with additional constraint that the Z2 ⊕ Z2 symmetry
is preserved.
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parameters α, β, c, a1, a2. There are two types of solution branches that can appear in this bifur-

cation. The first of these are the pure mode branches, that correspond to consensus between the

agents x1 = x2 and dissensus between the agents x1 = −x2. Consensus and dissensus equilibria

appear at the bifurcation for all choices of model parameters. Additional equilibria can sometimes

appear in mixed mode branches that are a consequence of mode interaction. We will now describe

in more detail the various possible bifurcation diagrams realized by the system (4.9), identifying

each distinct bifurcation diagram by its parameter regime in the normal form (4.12). In the normal

form, the coefficient εc determines whether consensus equilibria bifurcate supercritically (εc > 0)

or subcritically (εc < 0). Similarly, εd > 0(< 0) indicates whether dissensus equilibria bifurcate

supercritically or subcritically.

Case 1: εc = εd = 1. In this case, the consensus and dissensus solution branches both bifurcate

supercritically, for values of u > d/(α− β). This happens whenever the parameter c satisfies

−

∣∣∣∣∣a2/32 β − a
2/3
1 α

a
2/3
2 − a

2/3
1

∣∣∣∣∣ < c <

∣∣∣∣∣a2/32 β − a
2/3
1 α

a
2/3
2 − a

2/3
1

∣∣∣∣∣ . (4.13)

When this is satisfied, the system (4.9) realizes one of five topologically distinct bifurcation

diagrams.

I. m > 1, n > 1. In this parameter regime, consensus and dissensus solution branches

are simultaneously stable at bifurcation. In addition to these pure mode solutions, four

unstable mixed mode equilibria bifurcate from the origin supercritically.

II. m < 1, n > 1. In this parameter regime, the consensus solutions are stable and the

dissensus solutions are unstable. No mixed-mode branches bifurcate from the origin.

III. m < 1, n < 1, mn < 1. In this parameter regime, the dissensus solutions are stable and

the consensus solutions are unstable. No mixed-mode branches bifurcate from the origin.

IV. m > 1, n < 1. In this parameter regime, consensus and dissensus solution branches

are simultaneously unstable at bifurcation. In addition to these pure mode solutions,

four stable mixed mode equilibria bifurcate from the origin supercritically. Depending

on the parameters of the model (4.9), these mixed mode solutions can represent states of

agreement, in which the two agents commit to the same option with different magnitudes

of opinion, or mixed disagreement, in which the two agents commit to the opposite options

with different magnitudes of opinion.
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V. m < 1, n < 1, mn > 1. This parameter regime appears in the normal form, however we

have not yet found a parameter combination in the model (4.9) that generates it. In this

parameter regime, consensus and dissensus branches would both appear supercritically,

and four mixed mode solutions would bifurcate subcritically. All of these solution branches

would be unstable at bifurcation.

For an illustration of a representative bifurcaion diagram of (4.9) in each of the first four

described parameter regimes, see Figure 4.6. In this figure, dashed lines represent branches of

unstable equilibria and solid lines represent stable branches of equilibria. Pink curves are the

indecision equilibrium x = 0, blue curves are the consensus equilibria, black curves are the

disensus equilirbia, and red curves are the mixed mode branches. Additionally in Figure 4.7

we show a representative phase portrait in each of these four parameter regimes, for a value

of u above the bifurcation point d/(α − β). The color of each of the equilibria in this figure

is the same as the color of the solution branch they belong to in the bifurcation diagrams in

Figure 4.6.

Case 2: εc ̸= εd. In this case one of the pure mode branches bifurcates supercritically, and the other

one subcritically.

(a) εc = −1, εd = 1. This parameter regime is realized whenever

c >

∣∣∣∣∣a2/32 β − a
2/3
1 α

a
2/3
2 − a

2/3
1

∣∣∣∣∣ . (4.14)

In this parameter regime the consensus bifurcation happens subcritically and the dissensus

bifurcation happens supercritically.

(b) εc = 1, εd = −1. This parameter regime is realized whenever

c < −

∣∣∣∣∣a2/32 β − a
2/3
1 α

a
2/3
2 − a

2/3
1

∣∣∣∣∣ . (4.15)

In this parameter regime the dissensus bifurcation happens subcritically and the consensus

bifurcation happens supercritically.

For each of these two scenarios, there are five possible topologically distinct bifurcation dia-

grams, separated in the m − n parameter plane by the nondegeneracy conditions m ̸= −1,

n ̸= 1, mn ̸= −1. The descriptions of these bifurcation diagrams are analogous to descriptions

of diagrams I-V provided for Case 1, excepting the criticality of the consensus or dissensus
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solution branch. As before, in some of the parameter regimes mixed mode branches appear

alongside the consensus and dissensus equilibria. To stay concise we do not enumerate the

possibilities in this case and refer the reader to the analysis in [82, Chapter X]. We show a

representative bifurcation diagram for each of the two categories in Figure 4.9.

For a concete example, consider (4.9) with parameters d = 1, α = 0, β = −1, a1 = 1, and

a2 = 2. For these choices of parameters, the indecision-breaking bifurcation happens at u = 1.

Varying a single parameter c generates six distinct bifurcation diagrams. In the following discussion

we provide descriptions of the six parameter regimes; all of the numerical values have been rounded

to four decimal points.

Case 1. When −2.7024 < c < 2.7024, εc = εd = 1 and all bifurcations happen supercritically.

I. −0.5149 < c < 0.5149. Consensus and dissensus solution branches are simultaneously

stable in this regime. When c > 0, the agents’ opinions at consensus are stronger than

the opinions at dissensus; when c < 0 dissensus opinions are stronger than consensus

opinions.

II. 0.5149 < c < 0.7224 and 1.7952 < c < 2.7024. Consensus equilibria are stable and

dissensus equilibria are unstable in this parameter regime.

III. −1.6519 < c < −0.7224 and 0.7224 < c < 1.6519. Consensus and dissensus equilibria are

both unstable in this parameter regime. Instead, four mixed mode equilibria are stable.

When c > 0 the mixed mode equilibria represent agreement with sign(x1) = sign(x2),

with two agreement equilibria available for each option. Similarly, when c < 0 the mixed

mode equilibria represent agreement with sign(x1) = − sign(x2).

IV. −2.7024 < c < −1.7952 and −0.7224 < c < −0.5149. Dissensus equilibria are stable and

consensus equilibria are unstable in this parameter regime.

See Figure 4.6 for four bifurcation diagrams of (4.9) in each of these parameter regimes and

Figure 4.7 for phase portraits at a supercritical value u = 1.4. In Figure 4.8 we show a graphical

representation of a curve in the m,n parameter plane that is traced out as c is varied between

−2.7024 and 2.7024.

Case 2. (a) c > 2.7024: dissensus solutions are unstable and bifurcate supercritically; consensus solu-

tions bifurcate subcritically and are also unstable at bifurcation. However the consensus

solution branch undergoes a saddle-node bifurcation at some value of u = u∗ < 1 and

gains stability - see Figure 4.9 (a).
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I II

III IV

Figure 4.6: Representative bifurcation diagrams of (4.9) with coupling parameter c in each of the four distinct
regions of the plane of modal parameters of normal form (4.12) pictured in Figure 4.8. Model parameters:
d = 1, α = 0, β = −1, u = 1.4, a1 = 1, a2 = 2. I) c = 0.2; II) c = 0.6; III) c = 1; IV) c = −0.6.
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I II

III IV

Figure 4.7: Representative phase portraits of (4.9) with coupling parameter c in each of the four distinct
regions of the plane of modal parameters of normal form (4.12) pictured in Figure 4.8. Parameters: d = 1,
α = 0, β = −1, u = 1.4, a1 = 1, a2 = 2. I) c = 0.2; II) c = 0.6; III) c = 1; IV) c = −0.6. Colors of equilibria
correspond to colors of the branches in the bifurcation diagrams in Figure 4.6.
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Figure 4.8: Parameter plane of m−n modal parameters of the normal form (4.12), with blue lines indicating
nondegeneracy conditions m ̸= 1, n ̸= 1,mn ̸= 1 (the latter only shown for negative values of m,n).
The four labeled regions correspond to regions I-IV discussed in the text for the normal form family with
εc = εd = 1. Gray curve corresponds to values of m,n reached as the paramater c of (4.9) is varied between
−2.7024 < c < 2.7024, with gray arrows indicating direction of increasting c. Other parameters: d = 1,
α = 0, β = −1, u = 1.4, a1 = 1, a2 = 2.
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Figure 4.9: Bifurcation diagrams of (4.9) with εc ̸= εd. Parameters: d = 1, α = 0, β = −1, a1 = 1, a2 = 2;
(a) c = 3, εc = −1, consensus solution branch bifurcates subcritically and regains stability in a saddle-node
bifurcation; (b) c = −3, εd = −1, dissensus solution branch bifurcates subcritically and regains stability in
a saddle-node bifurcation. Figure generated with MatCont numerical continuation package [47]. Red lines
are unstable equilibria and blue lines are stable equilibria.

(b) c < −2.7024: consensus solutions are unstable and bifurcate supercritically; dissensus so-

lutions bifurcate subcritically and are also unstable at bifurcation. However the dissensus

solution branch undergoes a saddle-node bifurcation at some value of u = u∗ < 1 and

gains stability - see Figure 4.9 (b).

Altogether we develop the following intuition about the opinion formation of two conflicted

agents with the stated choice of system parameters. When the agents are weakly conflicted, i.e.

when c is close to zero, it is possible for the agents’ opinions to converge to any of the four possible

combinations of choices between the two options (both choose option 1, both choose option 2, agent

1 chooses option 1 and agent 2 chooses option 2, agent 1 chooses option 2 and agent 2 chooses option

1). When c > 0 the agents are cooperative, and in this bistable regime consensus solutions reflect a

stronger commitment to the choice of option than the dissensus state. Analogously, when c < 0 the

agents are antagonistic and form stronger opinions when they disagree. Whether the group arrives

at agreement or at disagreement depends entirely on the initial conditions, which represent initial

beliefs or priors of the agents.

There exists a threshold magnitude of the c parameter beyond which the bistability between

agreement and disagreement disappears. When c > 0 and above this threshold, the two agents’

opinions will always converge to agreement. Agreement can either be consensus agreement, or a

mixed agreement state in which one of the agents forms a stronger belief about the option, depending

on the exact value of c. When c < 0 and its magnitude is above this threshold, the two agents’

opinions will always converge to disagreement, which can either be a dissensus disagreement or a
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mixed disagrement depending on choice of c.

Finally, there is a second threshold magnitude of the c parameter which corresponds to the switch

of criticality for the consensus solution branch when c is positive or the dissensus solution branch

when c is negative. Thus when the conflicted agents are strongly cooperative, it becomes possible

for them to reach consensus at a lower urgency, i.e. for values of u below its indecision-breaking

bifurcation point. An analogous conclusion holds for strongly antagonistic agents and dissensus.
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Chapter 5

Belief-forming bifurcations:

multiple options

In Chapter 4 we studied indecision-breaking bifurcations in the model (3.8) when the agents’ opinions

are captured by a single scalar opinion variable. Such opinion variable captures agents’ beliefs on

a single topic, or a choice on one of two mutually exclusive options. In this chapter we return

to thinking about multiple options, with agent i′s beliefs on No options captured by the vector

Zi = (zi1, . . . , ziNo
). In the scalar opinion setting we explored the role of the communication graph

Ga and discovered that the spectral properties of its signed adjacency matrix Aa play a defining

role in determining how agents distribute themselves across the two options. With No options in

addition to the communication graph Ga, the belief system graph Go will play a role in determining

the properties of the indecision-breaking bifurcation on the network. For easier reference, we restate

the homogeneous model (3.8)

żij = −dzij + u

S1

αzij + γ

Na∑
k=1
k ̸=i

(Aa)ikzkj



+

No∑
l ̸=j
l=1

S2

β(Ao)jlzil + δ(Ao)jl

Na∑
k=1
k ̸=i

(Aa)ikzkl


+ bij := Fh

ij(Z) (5.1)

and its matrix-vector form (3.9)

Ż = −dZ + uS1

(
((αINa + γAa) ⊗ INo)Z

)
+

No∑
l=1

S2

(
((βINa + γAa) ⊗Ml)Z

)
+ b (5.2)
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where Sm(y) = (Sm(y1), . . . , Sm(yn)) for y ∈ RN , and Ml ∈ RNo×No is the matrix whose column l

coincides with column l of Ao, with zero entries in all other columns. For maximal generality, in this

chapter we define the saturation functions S1, S2 as perturbations of odd saturation functions. Let

Sm(y) = Ŝm(y) + gm(y) with Ŝm(−y) = −Ŝm(y), Ŝ′
m(0) = 1, gm(0) = 0, g′m(0) = 0 for m = 1, 2 and

suppose g′′m(0) is small. When g1(y) = g2(y) = 0, S1 and S2 have an odd symmetry, The bounded

perturbations gm(y) ̸= 0 capture a less idealized case with imperfect symmetry.

Recall that α, γ, β, δ ≥ 0 are the gains that regulate the relative strengths of influence of an agent’s

own beliefs and the social network influence along each option dimension. We can interpret these

gains in the following manner. The gain α is the strength of the agents’ self-reinforcement, or their

commitment to already-held beliefs; β is the strength of the agents’ internal adherence to the belief

system prescribed by Go. The gain γ captures the strength of social imitation, i.e. the agents’ desire

to mimic the beliefs of the neighbors towards whom they are cooperative and oppose the beliefs of

those towards whom they are antagonistic. Finally, δ describes the agents’ ideological commitment;

when δ is large, the agents evaluate their neighbors’ influence more holistically according to the

value system Go rather than through pure imitation along each topic. A mixture of these four effects

drives the formation of beliefs according to (5.1).

The results in this chapter do not yet appear in print and have not yet been submitted for

publication; all of the work presented in this chapter is thereby original.

5.1 Linear analysis

As before, the neutral state Z = 0 is an equilibrium of the homogeneous multi-option model (5.1)

whenever the agents are unbiased, b = 0. In this section we study the properties of the linearization

of the system the about the neutral state. The Jacobian matrix of the linearization is

J(0, u) = (−d + uα)INa
⊗ INo

+ uγAa ⊗ INo
+ uβINa

⊗Ao + uδAa ⊗Ao (5.3)

where ⊗ is the Kronecker product of matrices. The following proposition establishes that the eigen-

values and eigenvectors of (11.4) inherit their properties from the eigenvalues and eigenvectors of

the signed adjacency matrices Aa and Ao of the communication and belief system graphs.

Proposition 5.1.1 (Eigenvalues and eigenvectors). The following statements hold for (5.3), with

some selection of parameters d, u, α, γ, β, δ:

1) Recall that for a square matrix A, σ(A) refers to the set of its eigenvalues. For each η ∈
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σ
(
J(0, u)

)
, there exists λ ∈ σ(Aa) and µ ∈ σ(Ao) so that

η = −d + u(α + γλ + βµ + δλµ) := η(u, λ, µ); (5.4)

2) Suppose λi is an eigenvalue of Aa with a right (left) eigenvector vi and µj is an eigenvalue

of Ao with a right (left) eigenvector ṽj, then the vector vi ⊗ ṽj is a right (left) eigenvector of (5.3)

with corresponding eigenvalue η(u, λi, µj).

Proof. 1) By Schur’s unitary triangularization theorem [101, Theorem 2.3.1] there exist unitary

matrices U ∈ CNa×Na
, V ∈ CNo×No

such that U∗AaU = ∆a, V ∗AoV = ∆o where ∆a,∆o are

upper triangular complex matrices with eigenvalues of Aa, Ao on the diagonal. Then, using the

mixed-product property of the Kronecker product,

∆J = (U ⊗ V )∗J(0, u)(U ⊗ V ) = (−d + uα)(U∗INa
U) ⊗ (V ∗INo

V )

+ uγ(U∗AaU) ⊗ (V ∗INo
V ) + uβ(U∗INa

U) ⊗ (V ∗AoV ) + uδ(U∗AaU) ⊗ (V ∗AoV )

= (−d + uα)INa
⊗ INo

+ uγ∆a ⊗ INo
+ uβINa

⊗ ∆o + uδ∆a ⊗ ∆o.

The matrix ∆J is upper triangular, with its diagonal entries corresponding to the eigenvalues of

J(0N , u). By inspection we see that all diagonal entries of ∆J have the form η(u, λ, µ) for some

λ ∈ σ(Aa), µ ∈ σ(Ao).

2) The vector vi⊗ ṽj is an eigenvector of Aa⊗Ao with eigenvalue λiµi by [100, Theorem 4.2.12];

it is also an eigenvector of INa ⊗ INo , Aa ⊗ INo , and INa ⊗ Ao with corresponding eigenvalues

1, λi, µi, respectively, and the proposition statement follows from multiplying (5.3) by vi ⊗ ṽj .

Given some parameters d, u, α, γ, β, δ we say the eigenvalue pair λ ∈ σ(Aa), µ ∈ σ(Ao) generate

the Jacobian eigenvalue η(u, λ, µ) through the relationship (5.4). Recall that a leading eigenvalue ξ

of a matrix A satisfies Re(ξ) ≥ Re(ξi) for all ξi ∈ σ(A). For the remainder of this chapter we define

H ⊂ σ(J(0, u)) to be the set of the leading eigenvalues of the Jacobian matrix (5.3) (accounting for

algebraic multiplicity), and Λ to be the set of eigenvalue pairs (λ, µ) that generate each η ∈ H. We

are now ready to establish a result on the stability of the neutral indecision equilibrium Z = 0.

Theorem 5.1.2 (Stability of network indecision equilibrium). Consider (5.1) with bij = 0 for all

i ∈ Va, j ∈ Vo. Suppose for any (λ, µ) ∈ Λ, α + γ Re(λ) + β Re(µ) + δ Re(λµ) > 0 and note that

this quantity is constant over Λ. Then Z = 0 is locally exponentially stable whenever u < u∗ and
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unstable for u > u∗,

u∗ =
d

α + γ Re(λ) + β Re(µ) + δ Re(λµ)
. (5.5)

Let N (J) be the generalized eigenspace of J(0, u∗) corresponding to its leading eigenvalue set H, and

let k = |H| be the dimension of N (J). There exists a (k + 1)-dimensional invariant center manifold

W c ⊂ RNaNo+1 passing through (Z, u) = (0, u∗), tangent to N (J) at u = u∗.All trajectories of (5.1)

starting at (Z, u) near (0, u∗) converge to W c exponentially as t → ∞.

Proof. By Proposition 5.1.1, a leading eigenvalue of (5.3) is of the form η(u, λs, µp) = −d+u(α+γλs+

βµp + δλsµp) =: ηsp. When u < u∗, Re(ηsp) < 0 and therefore Re(ηij) < 0 for all ηij ∈ σ(J(0, u));

for u > u∗, Re(ηsp) > 0. Stability conclusions follow by Lyapunov’s indirect method [109, Theorem

4.7], and the existence of an attracting center manifold follows by the Center Manifold Theorem

[90, Theorem 3.2.1] since Re(ηij) < 0 for all eigenvalues ηij ∈ σ
(
J(0, u)

)
, ηij ̸∈ H at u = u∗.

The instability of the origin in Theorem 5.1.2 corresponds to one or more eigenvalues of J(0, u)

crossing the imaginary axis as u passes through its critical value u∗ (5.5). By Proposition 5.1.1,

the eigenvalues and eigenvectors of J(0, u) are generated by the eigenvalues and eigenvectors of the

adjacency matrices Aa,Ao of the communication and belief system graphs Ga, Go. In fact, for each

(λi, µj) ∈ Λ with corresponding eigenvectors vai,voj , we know vai ⊗ voj ∈ N (J). Since the center

manifold W c is tangent to N (J) at u = u∗, we can conclude that the communication and belief

system graphs Ga and Go play a defining role in determining the local structure of the new solutions

that emerge along W c. Next, we seek to understand which pairs of eigenvalues (λ, µ) generate the

leading eigenvalue set H. In the following proposition, we establish how the set of eigenvalue pairs

Λ is selected by the communication gains γ, β, δ in the networked value dynamics (5.1).

Proposition 5.1.3 (Model parameters select the crossing eigenvalues).

Let λmax = maxλi∈σ(Aa){Re(λi)}, µmax = maxµj∈σ(Ao){Re(µj)}.

Let (λµ)max = maxλk∈σ(Aa),µl∈σ(Ao){Re(λiµj)}.

The following statements hold:

1) Suppose λmax > 0. Then with all other model parameters held constant, there exists a critical

parameter value γc such that for every pair (λ, µ) ∈ Λ, Re(λ) = λmax whenever γ > γc;

2) Suppose µmax > 0. Then with all other model parameters held constant, there exists a critical

value βc such that for every pair (λ, µ) ∈ Λ, Re(µ) = µmax whenever β > βc;

3) Suppose (λµ)max > 0. Then with all other model parameters held constant, there exists a

critical value δc such that for every pair (λ, µ) ∈ Λ, Re(λµ) = (λµ)max whenever δ > δc;
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4) Suppose λmax ≥ 0 and µmax ≥ 0 with γ, β > 0, and at least one of λmax, µmax ̸= 0. Then

there exists a critical value Kc such that for every pair (λ, µ) ∈ Λ, Re(λ) = λmax and Re(µ) = µmax

whenever (γλmax + βµmax)/δ > Kc.

Proof. 1) Suppose η(u, λ, µ), η(u, λ̃, µ̃) ∈ σ
(
J(0N , u)

)
, Re(λ) = λmax, Re(λ̃) < λmax.

Re(η(u, λ, µ)) − Re(η(u, λ̃, µ̃))

= uγ
(
λmax − Re(λ̃)

)
+ uβ

(
Re(µ) − Re(µ̃)

)
+ uδ

(
Re(λµ) − Re(λ̃µ̃)

)
> 0

whenever

γ >
1

λmax − Re(λ̃)

(
− β

(
Re(µ) − Re(µ̃)

)
− δ
(

Re(λµ) − Re(λ̃µ̃)
))

. (5.6)

We can always find a sufficiently large value of γ so that (5.6) is satisfied for all possible combinations

of λ̃, µ̃. Then Re(η(u, λ, µ)) > Re(η(u, λ̃, µ̃)) whenever Re(λ) = λmax and Re(λ̃) < λmax, regardless

of the choice of µ, µ̃. From this we can conclude that H ⊂ {η(u, λ, µ) s.t.Re(λ) = λmax, µ ∈ σ(Ao)}.

Statements 2),3), and 4) follow by analogous arguments.

Proposition 5.1.3 carries the following interpretation. For a network of decision-makers, the set

H is often generated by one of two sets of eigenvalue pairs of Aa, Ao. These are the following:

1. Let Λ1 be a set of ordered pairs (λ, µ) with λ ∈ σ(Aa), µ ∈ σ(Ao) defined as (λ, µ) ∈ Λ1

whenever Re(λ) = maxλi∈σ(Aa){Re(λi)}, Re(µ) = maxµj∈σ(Ao){Re(µj)}.

2. Let Λ2 be a set of ordered pairs (λ̃, µ̃) with λ̃ ∈ σ(Aa), µ̃ ∈ σ(Ao) defined as (λ̃, µ̃) ∈ Λ2

whenever Re(λ̃µ̃) = maxλk∈σ(Aa),µl∈σ(Ao){Re(λiµj)}.

Based on the observations in Proposition 5.1.3, we conjecture that a typical belief-forming bifur-

cation at u = u∗ will happen along a manifold tangent to an eigenspace associated with either Λ1

or Λ2. The two sets Λ1,Λ2 are not necessarily disjoint, and in some cases Λ2 ⊆ Λ1 or Λ1 ⊆ Λ2. For

example Λ1 = Λ2 whenever both Aa and Ao have the strong Perron-Frobenius property. Whenever

Λ1 ∩ Λ2 = ∅, if Λ1 generates H we will say the resulting bifurcation is driven by social imitation,

since it typically happens when the social imitation gain γ is strong. Similarly if Λ2 generates H we

will say the bifurcation is driven by the belief system or ideology, since it typically corresponds to a

strong ideological commitment gain δ.
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5.2 Pitchfork bifurcation and its unfolding

The cardinality of the leading eigenvalue set H corresponds to the the number of eigenvalues of

J(0, u) that cross the imaginary axis with nonzero speed as u is varied through u∗ when the origin

Z = 0 loses stability in an indecision-breaking bifurcation. In this section we examine the simplest

case, when (5.3) has exactly one leading eigenvalue. In the following lemma we establish that this

necessarily corresponds to an interaction of simple, real eigenvalues of Aa and Ao.

Lemma 5.2.1. Suppose |H| = 1. Then there exist simple and real eigenvalues λ ∈ σ(Aa) and

µ ∈ σ(Ao) for which H = {η(u, λ, µ)}; furthermore, it must hold that (λ, µ) ∈ Λ1 or (λ, µ) ∈ Λ2.

Proof. Following (5.4), define η(u, λi, µj) = −d+u(α+γλi+βµj+δλiµj) and observe that η(u, λ, µ) ∈

H implies η(u, λ, µ) ∈ H since Re
(
η(u, λ, µ)

)
= Re

(
η(u, λ, µ)

)
. Therefore if Im(λ) and/or Im(µ)

are nonzero, then |H| > 1 and the assumption in the lemma is violated. Furthermore, if either λ,µ

have multiplicity greater than 1, then |H| > 1 as a consequence of Proposition 5.1.1. Therefore λ, µ

must both be real and simple. The last statement then follows trivially from the definitions of H,

Λ1, and Λ2.

As a consequence of Lemma (5.2.1), whenever the leading eigenvalue of (5.3) is simple there are at

most two manifolds along which the indecision-breaking bifurcation of the origin can appear, which

greatly constraints the structure of the possible beliefs that can arise in this bifurcation. Next,

we establish in the following theorem that whenever J(0, u) has a simple leading eigenvalue the

indecision-breaking behavior of the system (5.1) is organized by a symmetric pitchfork singularity.

Theorem 5.2.2 (Multi-option pitchfork bifurcation). Consider (5.1) with communication graph

Ga and belief system graph Go, and suppose |H| = 1, i.e. the leading eigenvalue of (5.3) ηmax =

−d + u(α + γλa + βµo + δλaµo) ∈ R is simple for some λa ∈ σ(Aa), µo ∈ σ(Ao) . Assume

α+γλa +βµo +δλaµo > 0. Let va,wa ∈ RNa and vo,wo ∈ RNo be the right and left eigenvectors of

Aa and Ao corresponding to λa and µo, respectively, normalized to satisfy ⟨wa,va⟩ = 1,⟨wo,vo⟩ = 1.

Finally, let f(y, u,b) be a Lyapunov-Schmidt reduction of (5.1) at (Z, u,b) = (0, u∗,0).

1) Suppose g1 and g2 are zero, i.e. the saturating functions S1, S2 have an odd symmetry. At

(Z, u,b) = (0, u∗,0), the system undergoes a symmetric pitchfork bifurcation. For values of u ̸= u∗,

|u − u∗| < ϵ for small ϵ two branches of equilibria of (5.1) bifurcate from Z = 0 along a manifold

tangent at u = u∗ to span{va ⊗ vo}. If

(
S′′′
1 (0)(α + γλa)3 + S′′′

2 (0)(βµo + δλaµo)3
)
⟨wa,v

3
a⟩⟨wo,v

3
o⟩ < 0(> 0)

73



where x3 = x ⊙ x ⊙ x, the bifurcation happens supercritically (subcritically). The two bifurcating

fixed points are locally exponentially stable (unstable).

2) When one or more of g1, g2, and bij are nonzero, the bifurcation problem f(y, u,b) = 0 is an

unfolding of the pitchfork singularity near (z, u,b) = (0, u∗,0). If b = 0 and

(
g′′1 (0)(α + γλa)2 + g′′2 (0)(βµo + δλaµo)2

)
⟨wa,v

2
a⟩⟨wo,v

2
o⟩ > 0(< 0),

then the bifurcation at u = u∗ is transcritical, with the branch of equilibria satisfying ⟨va ⊗vo,Z⟩ >

0(< 0) bifurcating subcritically. Furthermore, whenever

⟨wa ⊗wo,b⟩ > 0(< 0) (5.7)

on a small neighborhood of u near u∗ the local bifurcation diagram of (5.1) has a unique equilibrium

which satisfies ⟨va ⊗ vo,Z⟩ > 0(< 0).

For a proof of Theorem 5.2.2, see Appendix B.2. We illustrate the intuition of Theorem 5.2.2

with the following example.

Example 5.2.3 (5 Agents, 3 Options). Consider a network of 5 agents evaluating 3 options accord-

ing to (5.1), with communication graph Ga and belief system graph Go characterized by the adjacency

matrices

Aa =



0 0 1 0 0

−1 0 −1 1 −1

1 1 0 0 1

1 −1 0 0 −1

1 0 1 −1 0


, Ao =


0 −1 1

1 0 −1

1 0 0

 . (5.8)

Network diagrams of these communication and belief system graphs is shown in Figure 5.1 (a) and

(b), with positive edges represented by blue lines and negative edges represented by red lines. Let the

parameters of (5.1) be d = 1, α = γ = β = δ = 0.1. The eigenvalues of Aa are

λ1 ≈ 0.823, λ2,3 ≈ 0.745 ± 1.106i, λ4,5 ≈ −1.157 ± 0.327i

and the eigenvalues of Ao are

µ1 = 1, µ2,3 = −1

2
±

√
3

2
i.

The set of leading eigenvalues of Aa, Ao is Λ1 = {(λ1, µ1)} and the set of eigenvalue pairs that
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Figure 5.1: (a) and (b): communication and belief system graphs for Example 5.2.3. Red edges have
a positive signature, and blue edges have a negative signature; (c) symmetric pitchfork bifurcation with
ε1 = ε2 = 0, ⟨wa ⊗ wo,b⟩ = 0; (d) pitchfork unfolding with ε1, ε2 ̸= 0, ⟨wa ⊗ wo,b⟩ = 0; (e) pitchfork
unfolding with ε1 = ε2 = 0, ⟨wa ⊗ wo,b⟩ > 0 ; (f)ε1, ε2 ̸= 0, ⟨wa ⊗ wo,b⟩ > 0. In (c)-(f) vertical gray
line indicates the bifurcation point u = u∗ ≈ 0.2742, red lines represent unstable equilibria, and blue lines
represent stable equilibria. Bifurcation diagrams in (c)-(f) generated with MatCont numerical continuation
package [47].
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maximize the real part of the product of eigenvalues of Aa, Ao is Λ2 = {(λ4, µ3), (λ5, µ2)}. For

the stated choice of model parameters, the leading eigenvalue of the Jacobian (5.3) is simple and

generated by the set Λ1, with corresponding right eigenvectors

va ≈ (0.463,−0.272, 0.381, 0.743, 0.123)T , vo = (1, 0, 1)T , (5.9)

and left eigenvectors

wa ≈ (0.999, 0.322, 0.739, 0.474,−0.069)T , wo =

(
1

3
,−1

3
,

2

3

)T

.

where values were rounded to three digits past the decimal point. The critical value of attention at

which the indecision-breaking bifurcation occurs is

u∗ =
d

α + γλ1 + βµ1 + δµ1λ1
≈ 2.742.

Let the two saturating functions in (5.1) be

S1(y) = tanh(y + ε1 tanh y2), S2(y) =
1

2
tanh(2(y + ε2 tanh y2)) (5.10)

where ε1, ε2 ∈ R. When ε1 = ε2 = 0 and therefore g1 = g2 = 0, meaning S1 and S2 have an odd

symmetry. In Figure 5.1 (c)-(f) we show four numerically generated bifurcation diagrams for (5.1).

For diagrams (c) and (e), ε1 = ε2 = 0; for diagrams (d) and (f), ε1 = ε2 = 0.1. For diagrams

(c) and (d), all agents are unbiased; in diagrams (e) and (f), the nonzero biases are b11 = 0.001,

b22 = 0.003, b53 = −0.002 and

⟨wa ⊗wo,b⟩ = (wa)1(wo)1b53 + (wa)2(wo)2b22 + (wa)5(wo)3b11 ≈ 0.0001 > 0.

Together these four diagrams illustrate how allowing for nonzero biases and for asymmetric satu-

ration functions, the value dynamics (5.1) on these graphs realize all of the topologically distinct

bifurcation diagrams in a universal unfolding of a pitchfork bifurcation [82, Chapter I]. When the

agents are unbiased and both saturation functions have an odd symmetry, two nontrivial equilibria

Z∗,−Z∗ emerge on the network in a supercritical pitchfork bifurcation shown in Figure 5.1(c); both

of these equilibria are stable at bifurcation. When agents are unbiased and the saturation functions

are asymmetric, the bifurcation at u = u∗ is transcritical which means one of the solution branches
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Figure 5.2: Trajectories zij(t) for value dynamics (5.1) for 5 agents evaluating 3 options, with setup and
parameters as described in Example 5.2.3. Initial conditions for each zij(0) were generated randomly. The
figure illustrates the distribution of agents’ states zij along each option dimension as the network settles to
(a) EQ1 from Figure 5.1(d), (b) EQ2 from Figure 5.1(d).

is unstable at bifurcation and gains stability in a saddle-node bifurcation at some value of u < u∗-

see Figure 5.1(d). Finally, when the agents are unbiased and ⟨wa ⊗wo,b⟩ > 0(< 0), in both cases

the bifurcation diagram breaks up into two continuous curves. For values of u near u∗ the system

admits a single stable equilibrium that satisfies ⟨va ⊗ vo,Z⟩ > 0(< 0) - see Figure 5.1(e),(f).

Finally we can describe the relationship between the right eigenvectors va,vo (5.9) and the dis-

tribution of agents’ beliefs at equilibrium post-bifurcation. The center manifold along which the

bifurcation occurs is tangent at u = u∗ to span(va⊗vo). This means that near the critical value u∗,

the opinions formed on the network are approximately a multiple of the vector va⊗vo. To illustrate

this point, in Figures 5.2 and 5.3 we show representative trajectories of the system with ε1 = ε2 = 0

and b = 0 at a supercritical value of the attention parameter, u = u∗+0.05. In part (a) of Figure 5.2

and in Figure 5.3, the trajectories of the system settle to the point labeled as EQ1 in the bifurcation

diagram in Figure 5.1. Similarly, in part (b) in Figure 5.2 the trajectories settle to EQ2.

In Figure 5.2 the trajectories of the system are grouped by option and it can easily be seen that

the relative strength of commitment of each agent along each option dimension is determined by the

eigenvector of the communication graph va. Specifically, if |(va)i| > |(va)k| then |zij | > |zkj | for any

option j on which agents i and k form strong opinions (i.e. (va)i(vo)j ̸= 0 and (va)k(vo)j ̸= 0).

Similarly, if sign((va)i) ̸= sign((va)k) then sign(zij) ̸= sign(zkj), i.e. agents i and k disagree in

their belief about any option j on which both form strong opinions. Specifically, in the eigenvector

va we see that the second entry has opposite sign from the rest. This means that agent 2 will agree

with all other agents on any option on which the network forms strong opinions, and this is indeed
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Figure 5.3: Same trajectories as Figure 5.2(a), grouped by agent instead of option. The Option 1 blue curve
overlaps with the Option 3 red curve for most of the simulation.

the observed behavior for both equilibria to which the network converges in Figure 5.2.

Notice that the belief trajectories on option 2 remain near neutral at equilibrium. This observation

can be inferred from the observation that the second entry of vo is zero. The role of vo can easily

be deduced when we group the network belief trajectories by agent, instead of by option, in Figure

5.3. From this figure we can observe that vo defines the distribution of each agent’s internal beliefs

at equilibrium. Specifically, if |(vo)j | > |(vo)l| then |zij | > |zil| for any agent i and options j, l on

which it forms strong opinions. Similarly, if sign((vo)j) ̸= sign((vo)l) then sign(zij) ̸= sign(zil), i.e.

agent i always either chooses option j and rejects option l, or chooses option l and rejects option j.

For the presented example, (vo)1 = (vo)3 and (vo)2 = 0; and indeed we see in Figure 5.3 that all

agents remain close to neutral on option 2, and form comparatively strong beliefs of close magnitude

about options 1 and 3.

We further illustrate the relationship between the eigenvectors va, vo and the system trajectories

in Figure 5.4. Let Z†
j = (z1j , z2j , z3j , z4j , z5j) be the vector of network beliefs on option j. In Figure

5.4(a) for each option j we normalize the vector Z†
j to unit magnitude at each time step of the

simulation of Figure 5.2(a), and project its absolute value onto the unit eigenvector va. For both of

the options on which the agents form strong opinions, options 1 and 3, this projection converges to a

value close to 1 over time, which tells us that the network opinions along each option are settling to

a multiple of va. Analogously, in Figure 5.4(b) for each agent i we normalize its opinion vector Zi

to unit magnitude at each time step of the simulation in Figure 5.3, and project its absolute value

onto the unit eigenvector va. For all agents, this projection converges to a value close to 1 over
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Figure 5.4: (a) Projections of the normalized trajectories in each panel of Figure 5.2(a) onto va; (b) projec-
tions of the normalized trajectories in each panel of Figure 5.3 onto vo.

time, which tells us that network opinions of each agents are settling to a multiple of vo.

In summary, in the pitchfork bifurcation and its unfolding established in Theorem 5.2.2, the

eigenvector va of the communication graph Ga informs the relative beliefs of agents along each option

dimension post-bifurcation, whereas the eigenvector vo of the belief system graph Go informs the

internal distribution of beliefs of each agent. We saw in Example 5.2.3 how whenever (va)i(vo)j = 0,

the beliefs of agent i about option j remain near neutral at equilibrium post bifurcation, even if the

agent forms strong beliefs on other options. We will say that agent i forms strong beliefs about option

j in a pitchfork bifurcation whenever (va)i(vo)j ̸= 0. To conclude our discussion of bifurcations of

equilibria, we establish a sufficient condition for all agents to form strong beliefs on all options,

analogous to Proposition 4.3.5 for the scalar-variable system.

Proposition 5.2.4 (Strong beliefs on multiple options). Consider (5.1) on a communication graph

Ga with a belief system graph Go, with corresponding signed adjacency matrices Aa, Ao. Suppose

bij = 0 for all i = 1, . . . , Na, j = 1, . . . , No and g1 = g2 = 0. Whenever Aa and Ao are both switching

equivalent to eventually positive matrices, the indecision state Z = 0 loses stability in a pitchfork

bifurcation along a center manifold on which all agents form strong beliefs on all options.

Proof. The adjacency matrices Aa and Ao are each similar to a matrix that has the strong Perron

Frobenius property by the argument presented in the proof of Proposition 4.3.5. Let λmax > 0 and

µmax > 0 be their dominant eigenvalues with corresponding right eigenvectors va, vo. For any pair

of eigenvalues λi ∈ σ(Aa), µj ∈ σ(Ao) that are not equal to λmax, µmax, |λiµi| < λmaxµmax and

therefore Re(λiµi) < λmaxµmax which means Λ1 = Λ2 = {(λmax, µmax)}. The leading eigenvalue

of the Jacobian (5.3) is therefore ηmax = −d + u(αλmax + βλmax + δλmaxµmax) > 0, and it is real

and simple which means |H| = 1 and a pitchfork bifurcation is established by Theorem 5.2.2. The

vector va ⊗ vo has no zero entries, which means all agents form strong beliefs on all options in this

bifurcation.
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5.3 Hopf bifurcation

So far in this dissertation we have focused our attention on describing belief patterns that arise in the

networked dynamics (5.1) as a consequence of indecision-breaking pitchfork bifurcations of equilibria.

Another common type of bifurcation encountered in this system is a Hopf bifurcation in which the

origin Z = 0 loses stability and gives rise to a family of periodic orbits. In general, oscillations are

a meaningful phenomenon in the context of opinion and belief formation. Oscillations of beliefs and

attitudes of have been hypothesized and observed in individuals [60] and in computational models of

social opinion formation [30,74,210,215]. Famously, public opinion surveys in the United States that

track voters’ policy positions over time show alternating swings towards more conservative and more

liberal voter preferences [192,193]. For a more informal example, oscillations in values are commonly

encountered in social communities on topics such as fashion trends in clothing, hair styles, and

musical tastes that tend to re-emerge in popularity skipping a few years or generations. In the context

of decision-making, an oscillatory network state may enable a system to systematically explore the

various available options by visiting different configurations over time without committing to a set

of beliefs. In the following theorem we formalize the emergence of persistent periodic oscillations in

(5.1) and describe the role of the communication graph Ga and belief system graph Go in determining

the relative amplitudes and phases of agents’ opinion states in these oscillations.

Theorem 5.3.1 (Hopf bifurcation). Consider (5.1) with communication graph Ga and belief system

graph Go, with b = 0. Assume that i) the leading eigenvalues of the Jacobian (5.3) are generated

by some combinations of λ± = λa ± iλc ∈ σ(Aa) and µ± = µo ± iµc ∈ σ(Aa), with at least one of

λc, µc ̸= 0; i.e. H = {η(u), η(u)} with η(u) = −d + u(α + γλa + βµo + δ(λaµo + λcµc)) + iu(γλc −

βµc + δ(−λaµc + λcµo)); ii)α + γλa + βµo + δ(λaµo + λcµc) > 0.

Suppose λ, µ generate η(u). Let va,wa ∈ CNa be the right and left eigenvectors of Aa correspond-

ing to λ and λ, respectively; let vo,wo ∈ CNo be the right and left eigenvectors of Ao corresponding

to µ and µ, respectively. Choose the eigenvectors to satisfy the normalization

⟨wa ⊗wo,va ⊗ vo, ⟩ = 2, ⟨wa ⊗wo,va ⊗ vo, ⟩ = 0. (5.11)

1) There is a unique 3-dimensional center manifold W c ⊂ RNaNo ×R passing through (Z, u) =

(0, u∗), tangent to span{Re(va ⊗ vo), Im(va ⊗ vo)} at u = u∗. There is a family of periodic orbits

of (5.1) that bifurcates from the neutral equilibrium Z = 0 along Wc at u = u∗;

2)When |u−u∗| is small, the period of the solutions is near 2π/|γλc +βµc + δ(λaµc +λcµo)|, the
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difference in phase between zij(t) and zkl(t) is near φ = arg((va)i(vo)j) − arg((va)k(vo)l), and the

amplitude of zij(t) is greater than the amplitude of zkl(t) if and only if |(va)i||(vo)j | > |(va)k||(vo)l|;

3) Whenever

b2 = Re

((
S′′′
1 (0)

(
(α + γλa)2 + (γλc)

2
)

(α + γ(λa + iλc))

+ S′′′
2 (0)(µ2

o + µ2
c)
(
(β + δλa)2 + (δλc)

2
) (

µo(β + δλa) − δµcλc

+ i(µc(β + δλa) + δλcµo)
))

⟨wa, |va|2 ⊙ va⟩⟨wo, |vo|2 ⊙ vo⟩

)
< 0, (5.12)

where |x|2 = x ⊙ x, the bifurcating periodic solutions appear supercritically (for u > u∗) and are

locally asymptotically stable; whenever (5.12) is instead positive, the solutions appear subcritically

and are unstable.

For a proof of Theorem 5.3.1, see Appendix B.3. Observe that the period of oscillations estab-

lished by Theorem 5.3.1 is inversely proportional to the social gains β, γ, δ. The beliefs of agents

with weak social coupling and weak internal adherence to social beliefs will change slowly over time,

whereas strong social coupling or strong adherence to a belief system results in high-frequency oscil-

lations among all agents on the network. To illustrate the findings of Theorem 5.3.1 we consider the

following examples. In both of these examples we define the saturation functions S1, S2 as (5.10)

with ε1 = ε2 = 0.

Example 5.3.2 (Oscillations). a) First we return to the dynamics of five agents evaluating three

options on communication graph Ga and belief system graph Go that we examined in Example 5.2.3.

The adjacency matrices of the two graphs are stated in (5.8) and their network diagram represen-

tations can be found in Figure 5.1(a) and (b). We consider the dynamics (5.1) with parameters

d = 10, α = γ = β = 0.1, δ = 12, ε1 = ε2 = 0. Compared to Example 5.2.3, the ideological coupling

δ was increased substantially from 0.1 to 12; the damping coefficient d was also increased to keep

the bifurcation value of u further away from zero. In proposition 5.1.3 we established that when the

ideological coupling gain δ is large, then the network bifurcation is generated by the eigenvalues of

Aa and Ao in the set Λ2, that maximize the real part of the eigenvalue product. This is indeed what

happens with the stated choice of model parameters. The leading eigenvalue set H of the Jacobian

matrix (5.3) is generated by two pairs of the complex conjugate eigenvalues λ4,5 ≈ −1.157 ± 0.327i

and µ2,3 = − 1
2 ±

√
3
2 i. The indecision-breaking bifurcation happens when two complex conjugate

eigenvalues cross the imaginary axis, which suggests an onset of oscillations in a Hopf bifurcation.
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A choice of eignevectors defined in Theorem 5.3.1 that satisfy the normalization condition (5.11) are

va = (0.468 + 0.132i, 0.073 + 0.119i,−0.584,−0.105 − 0.423i, 0.135 − 0.442i)T ,

vo = (0.447i, −0.775, −0.387 − 0.224i)T ,

wa = (0.990 − 1.181i, −1.123 − 0.476i, 0.309 + 1.043i, −0.834 + 0.126i, −2.129 − 0.602i)T ,

wo = (−0.577,−0.289 − 0.5i, 0.577)T .

These eigenvectors were generated numerically and all values have been rounded to three decimal

points when necessary. The critical value of attention at which the bifurcation occurs is

u∗ =
d

α + γ Re(λ4) + β Re(µ3) + δ Re(µ3λ4)
=

d

α + γ Re(λ5) + β Re(µ2) + δ Re(µ2λ5)
≈ 0.973.

Furthermore we compute a numerical estimate of the quantity (5.12) which yields b2 ≈ −264 < 0

(rounded to the nearest integer) which means the periodic orbits should appear supercritically, and

will be stable at bifurcation according to the third part of Theorem 5.3.1.

Figure 5.5 shows simulated trajectories of the small oscillations the system settles on from ran-

domized initial conditions at an attention value slightly above the bifurcation point, u = 1. The same

trajectories are showed in parts (a) and (b) of the figure, grouped by beliefs about each option in

part (a) and by each agent’s internal beliefs in part (b). The following properties of the observed

oscillations can be inferred from Theorem 5.3.1:

• The oscillation period is close to 2π
|γ Im(λ5)+β Im(µ2)+δ Im(µ2λ5)| ≈ 0.6279

• Relationships between amplitudes of oscillations of beliefs on any given option can be inferred

by the magnitude of the entries of the eigenvector vo (5.3.2); for example, we expect agent 3

to have the largest amplitude belief oscillations on all options, and agent 2 to have the lowest

amplitude belief oscillations, which is consistent with the simulation - see Figure 5.5(a).

• Relationships between amplitudes of oscillations of beliefs internal to any agent can be inferred

by the magnitude of the entries of eigenvector va (5.3.2); for example, we expect belief oscilla-

tions about option 2 to have the largest amplitude, and belief oscillations about options 1 and

3 to be close in amplitude. Again, this is consistent with the simulation - see Figure 5.5(b).

• For all i, k = 1, . . . , Na, j, l = 1, . . . , No, it holds that arg((va)i(vo)j) ̸= arg((va)k(vo)l), which
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Figure 5.5: Trajectories zij(t) of stable oscillation described in Example 5.3.2(a) on the same communication
and belief system graphs shown in Figure 5.1(a),(b); parameters d = 10, u = 1, α = γ = β = 0.1, δ = 12,
ε1 = ε2 = 0; (a) grouped by option; (b) grouped by agent.
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means that there is a phase offset between any pair of periodic belief trajectories zij(t), zkl(t).

And indeed in Figure 5.5 we see that all trajectories are out-of-phase with one another, with

the phase offset constant over time as all of the oscillations have the same period.

Interestingly, when the beliefs on these exact same graphs Ga and Go converged to an equilibrium

in Example 5.2.3, all agents remained neutral on option 2. In contrast, for a different choice of

model parameter δ on the same exact network, oscillations of beliefs on option 2 have the strongest

amplitude for all agents. This example illustrates clearly how a difference in the strength of the

gains β, γ, δ can result in drastically different belief-forming behaviors of the agents. For the choice

of Ga and Go studied in Example 5.2.3 and in the present discussion, the agents’ beliefs converge to

equilibrium when social imitation dominates, and oscillate when ideology dominates in the dynamics

(5.1).

b) In the previous example, we saw an oscillation of opinions in which all of the belief trajectories

were out of phase with one another which means that at a random snapshot in time, there can be

many potential configurations of beliefs in the network. This is typically what happens any time

the leading eigenvalue set H is generated by interactions of complex conjugate eigenvalues of both

Aa and Ao. For completeness of discussion, we present another example to illustrate how certain

networked opinions can synchronize in-phase or out of phase when H is generated by an interaction

of a simple eigenvalue of one graph with a complex-conjugate pair of the second.

We consider a network of four agents evaluating nine options on communication graph Ga and

belief system graph Go whose adjacency matrices are

Aa =



0 0 −1 1

0 0 1 0

−1 1 0 −1

1 −1 0 0


, Ao =



0 0 −1 −1 0 1 0 0 0

0 0 0 0 0 −1 0 0 0

−1 1 0 −1 0 0 0 −1 1

0 −1 0 0 0 −1 −1 0 0

−1 0 0 −1 0 0 −1 0 −1

0 0 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 1

0 0 0 1 1 0 −1 0 0

0 −1 0 0 −1 0 0 0 0



. (5.13)

Network diagrams of these communication and belief system graphs are shown in Figure 5.6(a) and
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(b). The eigenvalues of Aa are

λ1 = 2, λ2 = 0, λ3 = λ4 = −1

and the eigenvalues of Ao are

µ1,2 ≈ 1.467 ± 0.599i, µ3,4 ≈ 0.088 ± 0.661i, µ5 = µ6 = 0, λ7 ≈ −0.447, µ8,9 = −1.332 ± 0.486i.

where the values were rounded to three digits past the decimal point. The set of pairs of leading

eigenvalues of Aa and Ao is Λ1 = {(λ1, µ1), (λ1, µ2)}. Let the parameters of the model (5.1) be

d = 1, α = β = γ = δ = 0.1. For this choice of parameters, Λ1 generates the leading eigenvalues

of the Jacobian (5.3) which are a complex conjugate pair, i.e. the indecision-breaking bifurcation is

a Hopf bifurcation of the origin as established in Theorem 5.3.1. The critical value of attention at

which the bifurcation occurs is

u∗ =
d

α + γλ1 + β Re(µ1) + δλ1 Re(µ1)
=

d

α + γλ1 + β Re(µ2) + δλ2 Re(µ2)
≈ 1.351.

A choice of eignevectors defined in Theorem 5.3.1 which satisfy the normalization (5.11) are

va = (−0.539, 0.324, 0.647, −0.431)T ,

vo = (0.243 + 0.164i, 0, −0.630, 0.176 − 0.095i, 0.048 − 0.310i, 0,

− 0.202 + 0.244i, 0.404 − 0.277i, −0.102 + 0.170i)T ,

wa = (−0.5, 0.5, 0.5, −0.5)T ,

wo = (0.979 + 0.796i, −1.184, −0.352i, −0.762 − 0.232i, 0.498 + 0.418i, −0.1970 − 1.523i,

1.147 + 0.030i, −0.194 + 0.864i, 0.501 − 0.047i, 0.071 + 1.441i)T

where values were rounded to three digits past the decimal point. With these eigenvectors we compute

a numerical estimate for the quantity (5.12) to get b2 ≈ −20708 < 0 (rounded to the nearest inte-

ger), which means the periodic orbits should appear supercritically, and will be stable at bifurcation
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according to the second part of Theorem 5.3.1.

Figure 5.6(c) and (d) shows simulated trajectories of oscillations on which the system settles

from randomized initial conditions at an attention value slightly above the bifurcation point, u = 1.4.

The same trajectories are shown in parts (c) and (d) of the figure, grouped by beliefs about each

option in part (c) and by each agent’s internal beliefs in part (d). In contrast to the first example we

considered, we observe that the oscillations in beliefs of different agents about each option are either

exactly in phase or exactly out of phase. This happens because va is real, and arg((va)i(va)j) is the

same across all j modulo an offset by π. Then if sign((va)i) = sign((va)k), agents i and k agree

on all options, i.e. their beliefs oscillate in phase. Analogously, if sign((va)i) ̸= sign((va)k) then

agents i and k disagree on all options, i.e. their beliefs oscillate out of phase. However, all of the

trajectories in the agents’ internal dynamics are out of phase and the ordering of relative preference

towards options changes over time.

Analogous conclusions would hold if Ga and Go swapped roles, and we instead considered a network

of nine agents evaluating four options. In this scenario, the internal belief oscillations of each agent

would synchronize, meaning each agent would be rigid in its order of preference towards options;

however, the ordering of preferences of various agents along each option would vary over time, as

all of the trajectories would be out of phase.

To conclude our discussion of oscillations of networked beliefs, we establish that oscillations

cannot happen as a primary bifurcation of the origin in (5.1) if the communication and belief system

graphs are both undirected, i.e. if the adjacency matrices Aa and Ao are both symmetric.

Proposition 5.3.3 (No primary Hopf bifurcations on undirected graphs). If communication graph

Ga and belief system graph Go are both undirected, the dynamics (5.1) cannot support the onset of

oscillations in a local bifurcation of the indecision equilibrium Z = 0.

Proof. For undirected Ga, Go, the adjacency matrices Aa and Ao are symmetric. This means that all

eigenvalues λ ∈ σ(Aa), µ ∈ σ(Ao) are real, and as a consequence all of eigenvalues of the Jacobian

(11.4) o are η = −d+u(α+γλ+βµ+ δλµ) ∈ R. It is thereby impossible for the leading eigenvalues

of (11.4) to be a complex-conjugate pair, which violates a necessary condition of Theorem 5.3.1.

5.4 Mode interaction example: invariant 2-torus

So far we studied in detail how equilibria and sustained oscillations appear in a network of agents

forming beliefs according to (5.1). These are the most common and general expected outcomes of
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Figure 5.6: Trajectories zij(t) of stable oscillation described in Example 5.3.2(b), d = 1, u = 1.4, α = γ =
β = δ = 0.1, ε1 = ε2 = 0. (a)and (b): communication and belief system graphs with red edges representing
negative connections and blue edges representing positive connections; (c) belief trajectories grouped by
option; (d) belief trajectories grouped by agent.
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belief formation. Here we do not prove the genericity of these bifurcations, but rather state it as a

conjecture. However, genericity of pitchfork and transcritical bifurcations on networked dynamical

systems has been established for some classes of graphs, for example for networks with a regular

in-degree [80]. Although these belief-forming outcomes are generic, they are not all-exhaustive. For

example when the communication graph Ga and/or the belief system graph Go have some symmetry,

the set of leading eigenvalues of the Jacobian H can be made up of multiple real eigenvalues, multiple

complex conjugate pairs of eigenvalues, or combinations of both. As discussed in Chapter 4 the

dynamics of belief formation at bifurcation can become much more complicated in such scenarios

due to mode interaction between the eigenspaces of the simultaneously crossing eigenvalues, which

can give rise to much more complex dynamics.

To illustrate the possible complexity of the belief formation dynamics, we present a numerical

example. Consider four unbiased agents forming beliefs on four options according to (5.1) with

model parameters d = 1, α = γ = β = δ = 0.1. Let the communication graph Ga and the belief

system graph Go be defined by their adjacency matrices

Aa =



0 −1 1 0

1 0 1 1

0 −1 0 1

0 0 −1 0


, Ao =



0 −1 1 −1

−1 0 −1 1

−1 −1 0 0

−1 1 1 0


.

Network diagrams of Ga and Go are shown in Figure 5.7(a) and (b). The eigenvalues of Ao are µ1 = 2,

µ2 = 0, µ3 = µ4 = −1. At the same time, all of the eigenvalues of Aa lie on the imaginary axis with

λ1,2 ≈ ±1.618i and λ3,4 ≈ ±0.618i. Then there are four eigenvalues of the Jacobian (5.3) which

cross the imaginary axis simultaneously at the bifurcation point u∗ = d/(α+βµ1) ≈ 3.33, which are

two distinct complex-conjugate pairs. In Figure 5.7(c) we show simulated trajectories of the beliefs

of the agents over time at a value of attention u slightly above the bifurcation point, u = 3.34.

Agents’ belief trajectories may seem random and irregular at first glance, however when they are

visualized in phase space it becomes immediately clear that these trajectories are in fact ergodic

and settle to an invariant torus in phase space - see Figure 5.7(d). This is an expected outcome of

such bifurcation, as mode interaction of two complex conjugate pairs of eigenvalues typically results

in the bifurcation of an invariant 2-torus in phase space [84]. This means that network beliefs

settle on a low-dimensional manifold, despite their apparent irregularity. Furthermore since the

torus bifurcation arises from an interaction of a simple eigenvalue of Ao and two complex conjugate
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eigenvalue pairs of Aa, the internal dynamics of each agent are predictably structured. The right

eigenvector of Ao corresponding to µ1 is v1 = (−1, 1, 0, 1). This tells us that all agents form strong

beliefs on options 1,2, and 4, and remain close to neutral on option 3 which is consistent with the

simulation in Figure 5.7. Furthermore, we see that beliefs on options 2 and 4 are synchronized within

each agent’s belief trajectory, and beliefs on option 1 are anti-synchronized with those on options 2

and 4.

5.5 Consensus, dissensus, and multistability on symmetric

belief systems

When a group evaluates options that are highly interchangeable, the adjacency matrix Ao of the

belief system graph reflects a high degree of symmetry. When Ao has a transitive symmetry or

most generally a homogeneously signed all-to-all connection topology, belief formation according to

(3.8) and (3.10) has particularly interesting properties. For example, consider the case of simplex-

constrained opinion dynamics (3.10) with an all-positive undirected communication matrix Aa with

Ao = 1
No

1No
1T
No

−INo
. The opinions of the group in this case will form in a bifurcation along either

the multi-option consensus space defined as

Wc = {(Z̃1, . . . , Z̃Na) | Z̃i = Z̃k, ∀i, k}, (5.14)

or the multi-option dissensus space defined as

Wd = {(Z̃1, . . . , Z̃Na
) | Z̃1 + · · · + Z̃Na

= 0}. (5.15)

On the consensus space Wc, agents have identical opinions. On the dissensus space Wd, agent opin-

ions are balanced over the options such that the average opinion of the group is neutral. Consensus

bifurcations happen when social imitation dominates, γ − δ > 0, and dissensus bifurcations happen

when ideology dominates, γ − δ < 0. For example trajectories of group opinions settling on con-

sensus and dissensus equilibria, see Figure 5.8. A similar splitting happens for unconstrained belief

dynamics (3.8), with bifurcations expected along one of four distinct subspaces that correspond to

full synchrony (zij = zkl for all i, j, k, l), consensus (Zi = Zk and
∑No

j=1 zij = 0), deadlock (zij = zik

and
∑Na

i=1 zij = 0 for all i, j, k), and dissensus (
∑No

j=1 zij = 0 and
∑Na

i=1 zil = 0 for all i, j, k, l). These

ideas are developed thoroughly by Alessio Franci and collaborators in [68] and [69], and we mention
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γ = 0.2, δ = −0.1; (b) dissensus when agents are competitive: γ = −0.1, δ = 0.2. In each plot, α = 0.2,
β = 0.1, d = 1, u = 3, b̂ = 0, and random initial conditions are the same. Communication weights α, β, γ, δ
were perturbed with small random additive perturbations drawn from a normal distribution with variance
(a) 0.01, (b) 0.001 to illustrate the robustness of these trjectories. Ternary plots for three options generated
with the help of [54].

them here for completeness of discussion. It is also worthy of note that in the presence of symmetry,

bifurcations of equilibria will exhibit a high degree of multistability with branches of equilibria that

emerge being related to one another by the symmetries of the network as a consequence of the

Equivariant Branching Lemma [83].

These ideas are particularly important because analysis of the behavior of this model with max-

imal symmetry informs its possible behaviors when symmetry is broken through parameter het-

erogeneity or network structure. For a parametrized dynamical system, its instance with maximal

symmetry in the equations often serves as an organizing center for the broader dynamics [82]. This

means that many of the possible bifurcation diagrams of the heterogeneous model are recovered

in a universal unfolding of the maximally symmetric case. In other words, predictions made for a

symmetric system are remarkably robust and constrain the behavior of the dynamical system with

broken symmetry. The analysis of the maximally symmetric system in [68] and [69] predicts the

qualitative features of the solutions supported by the model (3.8). The analysis presented in this

dissertation is complementary to this work, and can be understood as analysis of some of the possible

unfoldings of the maximally symmetric case.
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Chapter 6

Dynamic parameters

So far in this dissertation, in Chapter 3 we formulated a new model for distributed formation of

beliefs on multiple options on a social network and showed that beliefs form through a bifurcation

in which a network state of indecision loses stability. In Chapter 4 we characterized patterns of

scalar beliefs or opinions at equilibrium using spectral properties of the signed communication graph

Ga. In Chapter 5 we studied belief-forming bifurcations in multi-option networks and established

how the communication graph Ga and the belief system graph Go play a role in determining the

dynamic outcome, along with the ideological and social gains α, γ, β, δ in the homogeneous model

(3.8). All of the analysis we presented so far assumes that the model parameters d, u, γ, α, δ are

homogeneous and static. In this chapter, we relax this assumption. First in section 6.1, we will show

how allowing each agent to dynamically modulate their level of attention to social interactions can

enable cascades of opinion formation on the network which are tunably sensitive to the information

contained in the distributed inputs b. Next, in section 6.2 we will show how allowing agents to

dynamically change the sign of their local interactions allows for decentralized control of the opinion

patterns on the network. Both of these features are especially relevant for the use of this modeling

framework to coordinate behavior in distributed technological teams, such as task allocation in

robotic swarms. The analysis summarized in this chapter is contained in various parts of [18–21]

which are also contained as Chapters 9,10,11,and 12 in Part II of this dissertation. All of the figures

in this chapter also originate from these works. The ideas in section 6.1 are originally inspired by

the adaptive controller design for nonlinear consensus formation in [87, 88] and cascade dynamics

studied in [226]. I presented parts of analysis in this chapter in the 2020 SIAM Conference on

the Life Sciences; in the 2020 UCLA Institute for Pure and Applied Mathematics, Mathematical
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Challenges and Opportunities for Autonomous Vehicles Program, Workshop IV: Social Dynamics

beyond Vehicle Autonomy; in the 2021 SIAM Conference on Applications of Dynamical Systems; in

the 2021 American Control Conference; and in the 2021 IEEE Conference on Decision and Control.

6.1 Opinion cascades: tunable sensitivity and robustness

When a nonlinear system operates in a parameter regime near its bifurcation point, it is highly

sensitive to perturbations and external signals. This is evident in our discussion of unfolding theory

in Chapter 2.3 where we saw that a perturbed bifurcation diagram for a pitchfork bifurcation deforms

significantly near its bifurcation point, but still resembles the unperturbed system away from the

bifurcation point. Perturbations in such systems can lead to sudden and drastic changes in behavior.

When bifurcations are encountered in control engineering applications, a common design goal is

therefore to move the system away from its bifurcation point in order to improve its robustness

to disturbance [35]. We instead argue that heightened sensitivity near bifurcation points can be

a desired property for some systems, and we can take advantage of it through incorporating its

features in controller design.

To illustrate the advantage of sensitivity, consider a robotic team operating in a safety-critical

environment. In such environments individual robots may come across information that warrants an

urgent response from the entire team - for example a fire that requires an evacuation, an individual

in need of rescue, or an action cue from a human collaborator. For such purposes it is imperative

to design distributed teams that are able to quickly and reliably respond to locally available in-

formation by committing to a decision or a task. A desired network response may be a consensus

response in which all agents commit to the same choice of option or a disagreement response in

which individuals allocate themselves across available tasks, depending on the specific context. In

this section we illustrate how the model of opinion and belief formation (3.8) proposed and analyzed

in this dissertation very naturally lends itself to the design of distributed control laws which enable

teams to be highly sensitive and responsive to information, allowing for the network to reach both

agreement and disagreement in response to a local cue. We develop and illustrate these ideas for

decision-making on two options; for an extension to multiple options we refer the reader to the

analysis in the work [67] on which I am a co-author.

Recall from our analysis in Chapter 4 that on many signed communication graphs Ga, opinion

formation on two options exhibits a pitchfork bifurcation. Let Aa be the signed adjacency matrix of

Ga with a simple leading eigenvalue λ > 0 and associated right and left eigenvectors v, w satisfying
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⟨w,v⟩ > 0. Then the entries of v inform the pattern of opinions which form at equilibrium in

the pitchfork bifurcation, and the quantity ⟨w,b⟩ determines the primary branch of the unfolding,

where b = (b1, . . . , bNa
) is a vector of biases of individual agents about the two options. The biases

of individuals represent distributed information about the two options on the network and they can

be pre-determined or be obtained through sensor measurement or control input. Near its bifurcation

point of network attention u = u∗, a group of agents forming opinions according to (4.1) is highly

sensitive to the information contained in b and commits to a configuration of opinions determined

by the sign distribution of v when ⟨w,b⟩ > 0 and −v when ⟨w,b⟩ < 0.

In order to take advantage of this high sensitivity to distributed information in the opinion

formation process, we seek to design a dynamic feedback law that allows the level of attention on

the network to increase over time from some pre-bifurcation value u < u∗ to some post-bifurcation

value u > u∗. This transition will enable the system to pass through a highly sensitive region of

the pitchfork bifurcaton diagram and become informed by the distributed biases. In order for this

process to be distributed, we relax the homogeneous attention assumption in (4.1) and define ui ≥ 0

to be the amount of attention agent i allocates towards the information from its social network.

Furthermore, we allow this attention to be a dynamic state which evolves over time in response to

dynamic feedback of opinion states of its neighbors. With these extensions, each agent is equipped

with an opinion state xi and an attention state ui which evolve according to the coupled dynamics

ẋi = −dxi + uiS

(
αxi + γ

∑Na

k ̸=i
k=1

(Aa)ikxk

)
+ bi (6.1a)

τuu̇i = −ui + Su

(
x2
i +

Na∑
k=1

(
(Aa)ikxk

)2)
(6.1b)

where parameters d, γ, bi are defined as before, Su is a function that saturates inputs between a lower

bound
¯
u and an upper bound ū such that ū > u∗ ≥

¯
u > 0, and τu > 0 is a time scale. The intuition

behind the dynamic feedback law for the agents’ attention (6.1b) is as follows. The function Su

saturates the squared magnitude of the opinions which agent i observes from its social network. It

becomes more urgent for agent i to commit to an option if many of its neighbors are forming strong

opinions for either option, and it ramps up its attention accordingly. We can think of (6.1b) as a

form of social pressure between agents.

Before presenting our main result we examine a motivating simulation in Figure 6.1. In this

figure, we show two simulations of the dynamics (6.1) on a balanced tree graph with all-negative

interactions between agents. In both simulations, all agents on the network are unbiased except for
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Figure 6.1: [20] Triggering a cascade on the balanced tree. Input bi = 0.4 for agent marked with arrow;
bi = 0 for all other agents. Simulations of (6.1) start from small random initial conditions. Left: time
trajectories of the dynamics. Right: final opinion, indicated by color, of simulation at t = 300. Parameters:
d = 1, α = 1, γ = −1, ui(0) = 0 for all i ∈ V; Su(y) is a rescaled logistic function.

the agent that is pointed out by a black arrow. In both simulations, a bias of equal magnitude is

provided to the selected agent with all other parameters equal and the agents’ initial opinions and

attention are close to zero. On the left we show opinion and attention trajectories of the agents

over time for both simulations, and on the right we show the final configuration of opinions on

the network represented by color at t = 300 of the simulation. In the top simulation, the input is

provided to a more central agent and we observe a network transition in which all agents take on

strong opinions. In the bottom simulation, the input is provided to a less central agent and the

network opinions remain close to neutral, with the attention level across all agents remaining low.

Motivated by these observations, we define an opinion cascade as a network transition from a weakly

to a strongly attentive state, where in a weakly (strongly) attentive state, the agents’ attention is

close to its lower (upper) saturation bound, i.e. u ∼=
¯
u (u ∼= ū). With this definition, in the top

simulation of Figure 6.1 the network exhibits an opinion cascade, and the bottom simulation does

not. In the rest of the simulations and in the stated theorem we utilize a modified Hill activation

function:

Su(y) =
¯
u + (ū−

¯
u)

yn

(yth)n + yn
, (6.2)

where threshold parameter yth > 0 tunes the midpoint input value of the saturation. Similar analysis

would hold with different forms of saturation function. In the following theorem we establish the

properties of input-triggered opinion cascades.

Theorem 6.1.1 (Inputs to the network trigger opinion cascades). [19, 21] Consider the coupled
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system (6.1) on a communication graph Ga whose adjacency matrix has a simple leading eigenvalue

λ > 0 with corresponding right and left eigenvectors v,w satisfying ⟨w,v⟩ > 0. Let u∗ = d
α+λγ .

There exists ε > 0 such that for u∗ > u, yth < ε, and n sufficiently large, the following generically

hold:

1) There exists p = p(yth) > 0 satisfying ∂p
∂yth

> 0 such that, for |⟨w,b⟩| < p, model (6.1)

possesses a weakly attentive locally exponentially stable equilibrium;

2) The weakly attentive equilibrium loses stability in a saddle-node bifurcation for |⟨w,b⟩| = p.

No weakly attentive equilibria exist for |⟨w,b⟩| > p and all trajectories converge to a strongly attentive

equilibrium (x∗,u∗). At this equilibrium if ⟨w,b⟩ > 0(< 0) then sign(xi) = sign(vi)
(
− sign(vi)

)
;

3)For γ = 0, with α > 0, the strongly opinionated equilibrium (x∗,u∗) satisfies sign(x∗
i ) =

sign(bi).
1

Theorem 6.1.1 explains why the same input triggered an opinion cascade on the graph shown in

Figure 6.1 when it was provided to the innermost agent, and did not trigger a cascade when it was

provided to the outermost agent. Cascades are triggered when the projection of the network biases

onto the left leading eigenvector of the dsjacency matrix Ao is sufficiently large. The magnitude

of the entries in w therefore determine the influence, or centrality, of agents on the network in

their ability to trigger network cascades. For the graph in Figure 6.1, the innermost agent is the

most central and the outermost agent is one of the least central, according to w. For the selected

parameters in these simulations providing an input to the inner agent pushed the quantity ⟨w,b⟩

over its cascade threshold, and providing it to the outermost agent did not.

We further illustrate the properties of opinion cascades with three representative simulations on

undirected graphs with the same topology in Figure 6.2. In these simulations the five agents all have

initial small biases which do not trigger a cascade. At t = 20, the agent pointed out by the arrow

increases its bias and a network cascade is triggered. This figure illustrates how different opinion-

forming behaviors can be triggered on a network with the same biases and interconnection toplogy.

In part (a), all of the edges in the graph Ga are positive and the cascade results in an agreement

decision on the network. In part (b) all of the edges are negative and the network distributes itself

across the two options at disagreement. In part (c), γ = 0 which means the dynamics of opinions

of the agents are decoupled in (6.1). However, the agents are still coupled through their attention

dynamics, and a cascade is triggered. The configuration of opinions on the network post-cascade is

not determined by an eigenvector of the adjacency matrix Aa; instead the agents strongly commit

1The statement of the theorem here has been modified to describe a broader class of signed graphs than in its
original presentation; a proof of this version of the theorem is a minor modification of the proof in the cited works.
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Figure 6.2: [19] Opinion cascades with opinion and attention dynamics defined in Theorem 9.5.1. For t < 20,
b = (−0.05, 0.05, 0.05, 0.05, 0.05) for all three simulations. At t = 20 the input to agent 5 (indicated by the
arrow) increases to b5 = 0.25, which triggers an opinion cascade on the network. Plots show opinion and
attention trajectories of the agents with agent 5 in orange. Network diagrams on the right show the opinion
strength of each agent at t = 60 of the simulation. (a) Agreement cascade with γ = 1; the network chooses
the positive option following the informed agent. (b) Disagreement cascade with γ = −1; agents’ opinions
on the network disperse following the sign structure of vmin. (c) Agents are coupled through the attention
dynamics only (i.e. γ = 0); opinion cascade causes each agent to amplify its small input and commit to a
strong opinion. Other parameters: α = 2, n = 3, yth = 0.1, τu = 5, d = 1, ū = u∗ + 0.3, u = u∗ − 0.3,
ui(0) = u for all i = 1, . . . , Na. x(0) generated randomly from a uniform distribution between −0.2 and 0.2;
the same initial condition was used for all three simulations.
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Figure 6.3: [19] Sensitivity of opinion formation to input magnitude. (ui, xi)-phase plane and trajectories of
(6.1) for a single agent. Initial state (ui(0), xi(0)) = (0, 0) is a blue circle, and final state a yellow diamond.
Nullclines of (6.1a) are black solid and (6.1b) are red dashed. Gray arrows show flow streamlines. Color
scale is time.

to the option which is favored by their small biases bi.

Next, we emphasize that the parameters of the saturation function (6.2) allow a designer to tune

two important aspects of the opinion cascade: the agents’ sensitivity, i.e. how strong of a network

input is required to trigger the onset of a cascade; and the agents’ robustness, i.e. how strongly

committed the agents are to their choice of option post-cascade. Specifically, the parameter yth

regulates the sensitivity of the network. If yth is small, the saturation midpoint is small, and a small

bias can trigger a network cascade. Increasing yth increases the range of magnitudes of network

biases which is ignored by the agents. This means that agents can be made sensitive to arbitrarily

small inputs when necessary, but they can also be designed to reject small inputs as disturbance

when necessary - for example when there is a high level of sensor noise. On the other hand, the

upper bound ū of the saturation tunes the robustness of the system. The larger ū, the further away

the final operating point of the system lies from the bifurcation point u∗ of the underlying opinion

dynamics model. This means that even if the inputs bi change, the agents will remain committed

to their opinion configuration.

For a simple illustration of these ideas we consider a single agent with a nonzero self-reinforcement

α > 0 whose opinion and attention dynamics evolve according to (6.1). Although there is no social

network, due to the self-reinforcement mechanism built into both the opinion and the attention dy-

namics the agent’s opinion dynamics reproduce the basic properties underlying the network opinion

cascades. An added bonus of examining this simple system lies in the fact that its equilibria can be

visualized as intersections of nullclines of the opinion dynamics and attention dynamics in the x−u

plane - see Figures 6.3 and 6.4.
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Figure 6.4: [19] Robustness of opinion formation to changes in input. (ui, xi)-phase plane and trajectories
of (6.1); (Left) Input is bi = 1, initial state (ui(0), xi(0)) = (0, 0) is a blue circle, and final state is a cyan
diamond. (Right) Input changes to bi = −1, initial state is final state on left and final state is yellow square.
Top: ū = 1, and agent changes opinion in direction of new input. Bottom: ū = 2.5, and agent retains
opinion in original direction. Nullclines, streamlines, and time are drawn as in Figure 6.3.

First, consider Figure 6.3. This figure shows the same phenomenon as was shown for the network

in Figure 6.1. When the agent receives a small input bi, its attention nullcline (red) and the primary

branch in the bifurcation unfolding diagram captured by its opinion nullcline (black) intersect in

three places, including at a value of ui close to zero. The agent remains weakly attentive and does

not commit to a strong opinion. However as the input is increased, the continuous branch moves

up and eventually the intersections near ui = 0 disappear. This forces the agent’s attention to

increase and it commits to a strong opinion in the direction of the input. A similar mechanism in

higher dimension governs the network cascades such as the one shown in Figure 6.1 - the nullcline of

the attention dynamics on a network defines a bent hypersurface which intersects with a pitchfork

bifurcation nullcline of the opinion dynamics. If the saturation function Su chosen to generate Figure

6.3 was chosen with a higher parameter yth, the red curve in the picture would move up and it would

take a bigger input to remove the nullcline intersections near ui = 0.

Next, consider Figure 6.4 which shows two simulations. In both simulations, for the first time
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Figure 6.5: [21] Blue (red) lines track the first coordinate of the stable (unstable) equilibrium solutions of
the coupled dynamics (11.9) on a 3-agent undirected line graph. Parameters: uth = 0.1, γ = 1, n = 3,
b = ∥b∥ · |b∠wmax| · wmax; left: |b∠wmax| = 0.1, right: ∥b∥ = 0.1 Bifurcation diagrams generated using
MatCont [47].

steps the agent receives an input bi = 1 and at t = 10 the input instantaneously changes sign. In the

top simulation, u = 1 and when the input switches, the agent’s opinion also switches. In the bottom

simulation, u = 2.5 and in the first ten time steps, it settles at a point further along the primary

branch of the pitchfork unfolding in the opinion nullcline. It is therefore more robust, and its opinion

does not switch when the input changes sign (although it lowers in magnitude). This illustrates on

a low dimensional example the sensitivity-robustness tradeoff that’s built into the opinio cascade

dynamics (6.1) - a similar (but trickier to visualize) mechanism happens for the networked dynamics.

Finally, let ∥b∥ designate the magnitude of the input or bias vector, and let b∠w := ⟨w,b⟩/∥b∥

its orientation relative to the centrality eigenvector w. Increasing ∥b∥ or increasing b∠w has an

analogous effect in triggering network cascades, which we illustrate in Figures 6.5 and 6.6; both can

be used as controls for triggering network cascades.

In Figure 6.5 we show a bifurcation diagram which illustrates the saddle-node bifurcation estab-

lished in Theorem 6.1.1 on a small network of agents with an all-positive signature, for which the

cascade centrality eigenvector is wmax. When ∥b∥ and/or b∠w are small, there is a stable equi-

librium that is linearly offset from zero, and a network starting from a small initial condition will

be trapped at this equilibrium. Past the threshold determined by the saddle-node bifurcation, all

initial conditions instead evolve to a branch with a strong final opinion. When the design parameter

yth is increased, the saddle-node bifurcation point will move further away from zero and the system

response will reject inputs of greater magnitude. We further illustrate the existence of this cascade

threshold by heatmaps in Figure 6.6 which were generated by running 1.5× 105 simulations of (6.1)

on the three pictured small graph architectures with an all-positive signature and cascade central-
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Figure 6.6: [21]Heatmaps with color corresponding to proportion of simulations in the given parameter range
that did not result in a network cascade by t = 500. Dark red corresponds to no cascades, white to there
always being a cascade. Grey squares are bins with no datapoints. Each plot corresponds to 1.5×105 distinct
simulations on an undirected graph shown in the diagram. Simulation parameters: τu = 10, uth = 0.2,
u = ua−0.01 for γ = 1 (left plots) and u = ud−0.01 for γ = −1 (right plots). For each simulation, inputs bi
were drawn from N (0, 1) and the input vector b was normalized to a desired magnitude. There were 10000
simulations performed at each constant input magnitude, with 15 magnitudes sampled uniformly spaced
between 0 and 0.1. The initial conditions for each simulation were xi = 0, ui = 0 for all i = 1, . . . , Na.
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ity eigenvector wmax (left) and an all-negative signature and cascade centrality eigenvector wmin

(right). In these plots, the red region indicates combinations of input magnitude and orientation

which did not trigger an opinion cascade, and the white region corresponds to a parameter regime

in which cascades were always triggered. There is a clear and abrupt transition between these two

dynamical regimes, which corresponds to the crossing of the saddle-node bifurcation threshold. If

the design parameter yth was increased, this threshold would also increase and red no-cascade region

in these plots would expand outwards.

6.2 Dynamic switching

In the previous section we established a mechanism for a cascade of opinions to spread on a network

in response to a local signal. This type of drastic transition in the entire network is one way in which

a team of decentralized decision-makers can adapt to environmental cues, however in many situations

it may be desireable for only some of the team members to alter their behavior when they encounter

a relevant cue. For example if an autonomous robotic team is exploring an environment and some of

its members run low on battery, these individuals need to have the capability to switch away from

their current behavior and dock to a charging station. However it is advantageous for the group

that these individuals remain plugged in to the overall communication network in case of a safety-

critical concern that requires their participation. Any framework for the design and coordination of

robust, responsive, and adaptable autonomous teams must enable individual members to alter their

behavior in response to local cues without affecting the behavior of the rest of the team. In this

section we explore how such a local change in commitment to an option or task can be implemented

dynamically and in a distributed manner for a group of decision-makers following the belief formaton

dynamics (3.8).

To illustrate this point we examine once again the dynamics of opinion formation on two options

for a network of unbiased agents with communication graph Ga

ẋi = −dxi + uS

αxi + γ

Na∑
k=1
k ̸=i

(Aa)ikxk

 . (6.3)

So far we have shown that whenever the signed adjacency matrix Aa has a simple positive leading

eigenvalue, opinions form according to (6.3) through a pitchfork bifurcation. In section 6.1 we also

showed that this pitchfork bifurcation informs the outcome of opinion cascade when agents’ attention
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is dynamic. Whether the agents reach their final opinion configuration solely through the opinion

dynamics or through opinion cascades, we know that the sign pattern of opinions on the network

follows the sign pattern of the right leading eigenvector of the adjacency matrix, v. On the surface

this outcome may appear rigid since the final distribution of opinions is effectively pre-determined by

the architecture and signature of Ga. However, recall from Chapter 4.3 that the bifurcation digrams

of (6.3) on two switching-equivalent graphs are related in a straightforward manner. For example

if agent i is switched to obtain graph G′
a from Ga (i.e. the signature of all the edges that point in

and out of agent i on the graph is flipped), then the opinion of agent i relative to its neighbors

at equilibrium on graph G′
a is the opposite of what it would be on Ga. We take advantage of this

observation and show that such a switching transformation can be implemented locally on a network,

and it will result in a predictable network transition in wich the agents which are being switched flip

their opinion, and the opinions of the rest of their neighbors are unaffected (excepting some minor

transient dynamics).

Consider a structurally balanced network of agents whose attention is above the pitchfork bi-

furcation point, u > u∗ = d/(α + λγ), and whose opinion states have settled to an equilibrium.

This system is operating at an one of the stable opinionated equilibria established by the pitchfork

bifurcation described in Theorem 4.1.2. First, we conjecture in the following assumption that the

stable manifold of the origin is bounded for these graphs when u > u∗. Let w,v be the left and right

eigenvectors of Aa corresponding to the simple leading eigenvalue of the adjacency matrix Aa.2

Assumption 6.2.1 (Stable manifold of origin is bounded; Fig. 6.7). [18] Consider (10.1) on some

structurally balanced graph Ga with u > u∗ and u < u2 when appropriate, as defined in Theorem

4.1.2. Let U ′ ⊂ RN be an open neighborhood containing the origin, and let x ∈ W s(0)∩U ′. 1)

|⟨w,x⟩| < ε∥x∥2 for some 0 < ε < 1; 2) for equilibria x∗
k ̸= 0 of Proposition 12.3.1 with k ∈ {1, 2},

|⟨w,x∗
k⟩| > ε∥x∗

k∥2.

The assumption 6.2.1 has been verified through simulation on various network structures, however

a proof of this assumption would require computing an approximation of the stable manifold of

the origin, allowing for general graph architectures and parameters. Such a calculation is at best

cumbersome and at worst intractable, and we leave it as an assumption in present work. A geometric

illustration is presented in Figure 6.7. In the following lemma we characterize the region of attraction

of the equilibria x∗
1,x

∗
2.

Lemma 6.2.2 (Regions of attraction). [18] Consider (6.3) on some structurally balanced graph

2As discussed perviously, a structurally balanced graph always has a simple leading eigenvalue.
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Figure 6.7: [18] Geometric intuition behind Assumption 12.5.2. The one-dimensional unstable manifold
Wu(0) of the origin (shown in red) forms heteroclinic orbits with the stable equilibria x∗

1,x
∗
2, as is generically

the case for monotone systems - see [187, Theorem 2.8].

Ga with u > u∗ for all i = 1, . . . , N , on an open and bounded neighborhood Ωr. Let x∗
1, x

∗
2 be the

nonzero equilibria on the pitchfork bifurcation of Theorem 4.1.2 with ⟨w,x∗
1⟩ > 0. Consider an initial

condition x(0) at t = 0. If ⟨w,x(0)⟩ > ε∥x(0)∥2(< −ε∥x(0)∥2) then as t → ∞, x(t) → x∗
1(x∗

2) .

Finally, we can establish our main result.

Theorem 6.2.3 (Instantaneous switching). [18] Consider (10.1) on some Ga and let x∗
1, x

∗
2 be the

two nonzero equilibria on the pitchfork bifurcation of Theorem 4.1.2, with ⟨w,x∗
1⟩ > 0. Let GW

a be

switch equivalent to G with the associated switching matrix Θ. Suppose at t = 0, x(0) is close to x∗
i

where i = 1 or 2. If |⟨Θw,x∗
i ⟩| > ε∥x∗

i ∥2 and ⟨Θw,xi⟩ > 0(< 0) then for (10.1) on GW
a as t → ∞,

x(t) → Θxi(→ −Θxi).

The intuition behind Theorem 6.2.3 is the following. Instantaneously changing a structurally

balanced graph Ga to its switching equivalent GW
a results in a predictable transition of the system

state. Namely, if the number of nodes in W is small in comparison with the cardinality of V, we

expect that all nodes in W will change sign, and all of the nodes in V \ W will not. A simulation

example of this behavior is shown in Figure 6.8. In this figure, opinions form on a graph that is

initially all-positive. At the halfway point of the simulation, agent 1 on the graph is switched, which

results in its opinion evolving away from the group, with all other opinions remaining unchanged.

The precise number of nodes that can be switched simultaneously to generate this behavior depends

on the eigenvector w∗ of the graph adjacency matrix, the value of the equilibrium x∗
1, and the bound

ε. In practice, it is often sufficient that |W| < 1
2 |V|.

3

Recall that a switching of a node modifies only the sign of the pairwise interactions of that node

with its neighbors. A switching transformation can therefore easily be implemented in a way that is

3This paragraph is modified directly from [18].

104



Figure 6.8: [18] Applying a switching transformation to agent 1 at t = 15. (a) Time trajectory of the opinion
dynamics (b)-(c) Network diagram with the opinion of each agent at t = 10, t = 30. Parameters: S = tanh,
d = 1, α = 1.2, γ = 1.3, u = 0.294.

agnostic to the global network topology. This means that a transition of network opinions of the type

shown in Figure 6.8 can easily be triggered with a local cue. Concretely, let θi ∈ {1,−1} be an agent’s

switching state and suppose the agents share both their opinion xi and their switching state θi with

their neighbors on the communication graph Ga. Furthermore let (Aa)ik = (Aa)ik(0)θiθk where

(Aa)ik(0) ∈ {1,−1} is determined by the initial graph signature. If agent i receives information

about agent k on the communication graph Ga, then it is aware of both switching states. If in

response to some cue or control signal the switching state of agent i or of agent k changes, then the

sign of (Aa)ik flips. This transition implements the instantaneous switching transformation we show

in Figure 6.8.

Finally we show with a simulation example that a switching transformation can also be im-

plemented through a dynamic law and still results in well-behaved predictable transitions in the

opinion dynamics. In this example we allow each agent to update its edge weights with its neighbors

through a dynamic feedback law which smooths out the previously instantaneous transition in the

edge weights by integrating the quantity (Aa)ik(0)θiθk:

τa
d

dt
(Aa)ik = −(Aa)ik + (Aa)ik(0)θiθk. (6.4)

In Figure 6.9 we show a simulation of a sequence of switches faciliated by (6.4), implemented on a

network which starts with an all-positive signature. Initially the agents converge to an agreement

state. Then at t = 10 agents 1 and 2 change their switching state and evolve away from the group,

followed by agent 3 at t = 15. Figure 6.9 illustrates how network opinion transitions with dynamic

edge weights are well-behaved and similar to the transitions for an instantaneously switched graph.

This observation motivates future explorations of various feedback laws through which a network

can adapt and self-regulate its behavior via coupled dynamics of opinions and edge signatures.

105



Figure 6.9: [18] Locally switching agents 1, 2 and 3 using (12.6). Agents 1, 2 switch at t = 10 and agent 3
at t = 15. (b)-(d) Network diagram with the opinion of each agent at t = 10, t = 15, t = 30. Parameters:
S = tanh, d = 1, α = 1.2, γ = 1.3, u = 0.315, τa = 0.01

In this chapter we established that a group of decentralized decision-makers can respond to local

cues in a variety of meaningful ways. At one extreme, we have shown that a small localized signal

picked up by a node in the network can be amplified, leading to a cascade of opinionation and a

global change in the network state. On the other extreme, we have shown that individual nodes in

the system can respond to local cues by changing their state without disrupting the behavior in the

rest of the group. A key ingredient in the design of these flexible features of the decision process

is the endowment of the parameters in the belief formation model (3.8) with their own dynamics.

Although these ideas were explored separately, they can easily coexist in a system which makes the

modeling framework developed in this dissertation an appealing tool for guiding future design of

networked technologies. Together the ideas presented in this dissertation make up a new approach

for the design of adaptable behaviors in a decentralized group of agents.
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Chapter 7

Final remarks: applications and

future extensions

7.1 Applications

The material presented in this dissertation constitutes primarily a theoretical contribution with the

development and formal analysis of the model (3.8) and its extensions. However one of the driving

motivations for developing this modeling framework is the broad range of potential applications of

this analysis. These applications include using the model as a tool for generation of mechanistic

hypotheses that provide insight into emergent phenomena in online social networks, sociopolitical

systems, groups of social animals, and other systems driven by social interactions. On the other hand,

the model can serve as a powerful tool that informs the design of distributed biologically inspired

algorithms which enable technological teams such as robotic swarms to coordinate, make decisions,

and allocate tasks dynamically in uncertain and time-varying environments. In this section we

provide a brief summary of several applications of this modeling framework which are either actively

under development or appear in print. I am a co-author on several of the discussed works which are

cited where appropriate. However, none of the papers discussed in this section with the exception

of [18] appear in Part II of this dissertation, as Part II only contains work for which I was the lead

author.
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7.1.1 Game theory and social dilemmas

The field of game theory develops mathematical models of decision-making outcomes of strategic

interactions between individuals, typically referred to as players. Game theoretic models are widely

utilized by economists as models of human behavior [73], and in engineering as tools for design [13].

These models are built with a fundamental underlying assumption that the players’ decision-making

strategies follow rational rules. Rationality in this context is captured in a system of rewards or

payoffs which each individual seeks to maximize for themselves. Different games are classified by

the number of players, the number of available strategies, and the structure of their payoffs for

different strategy combinations. For example in a two-player two-strategy game the payoff structure

is summarized in the following chart:

Player 2

C D

Player 1
C (PCC)1, (PCC)2 (PCD)1, (PDC)2

D (PDC)1, (PCD)2 (PDD)1, (PDD)2

(7.1)

In (7.1) there are two strategies, C and D (e.g. “cooperate” and “defect”). The entries in the

chart represent the payoffs received when each player chooses the indicated strategy. When Player 1

chooses strategy C and player 2 chooses strategy D, Player 1 receives the payoff (PCD)1 and Player

2 receives the payoff (PDC)2. A Nash equilibrium in a game is a combination of strategies such

that no single player can gain a greater payoff by changing its strategy, assuming all other players’

strategies remain unchanged.

Social dilemmas are games whose Nash equilibria differ from the optimal configuration for the

group [113]. A famous social dilemma is the two-player prisoners’ dilemma in which the Nash

equilibrium leads to both players defecting (choosing strategy D) whereas the best outcome for the

group is both players cooperating (choosing strategy C). Standard game-theoretic models predict

convergence of a prisoners’ dilemma game to this mutual-defection Nash equilibrium. However

experimental evidence supports emergence of cooperation in prisoners’ dilemma games played by

people in laboratory settings for some of the game trials [96,132].

In political science and economics it has long been argued that cooperation emerges from

reciprocity between individuals, i.e. players mimicking the observed strategies of their neighbors

[10,58,86]. In the opinion dynamics model (3.8) reciprocity is modeled by the same-option interac-

tions with gain γ whenever agents are cooperative, i.e. with (Aa)ik ∈ {0, 1}. With this motivation
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Figure 7.1: Pitchfork bifurcation unfolding explains emergence of cooperation in a two-player prisoners
dilemma game with social reciprocity ( γ > 0); x = 1

2
(z11+z21). Branch of equilibria with x > 0 corresponds

to both players choosing the cooperation strategy, and x < 0 corresponds to both players choosing to defect.

in [158] we extend the opinion dynamics model (3.10) as a framework for the study of strategic in-

teractions in multi-player games. To do this we allow the agents’ biases bij in the model to be driven

by the game-theoretic payoff weights (7.1); for a full mathematical development we refer the reader

to [158]. With this modification the model captures a balance between payoff-driven rationality and

social interaction-driven reciprocity in each agent’s decision-making. Furthermore in this work we

analyze the bifurcations in this modified model for two-strategy games with symmetric payoffs be-

tween agents (PCC)i = PCC , (PCD)i = PCD, (PDC)i = PDC , (PDD)i = PDD for all i. Analogously

to the analysis presented in Chapter 4 we prove that a pitchfork bifurcation organizes the dynamics

of decision-making in two-strategy games on many graphs. Furthermore, we can make concrete

predictions about different games based on the structure of their payoff weights. For example we

find that the quantity

P⊥ = PCC + PCD − PDC − PDD (7.2)

determines the direction of unfolding of the pitchfork bifurcation. Specifically if all interactions

between agents are positive in sign then P⊥ > 0 (< 0) implies that the primary branch of solutions

in the pitchfork unfolding corresponds to all agents choosing strategy C (strategy D).

For a concrete example, consider a two-player symmetric prisoners’ dilemma game with strategy

C corresponding to cooperation and strategy D to defection. This type of game is characterized by

the payoff weight structure PDC > PCC > PDD > PCD. With this constraint imposed, P⊥ < 0
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for all prisoners’ dilemma games and the primary branch in the pitchfork bifurcation unfolding cor-

responds to the mutual-defection Nash equilibrium. When the social coupling u between agents is

weak, the Nash equilibrium is the only solution for the two-player game. However as u is increased,

reciprocity between the players plays a stronger role and a simultaneously stable mutual coopera-

tion equilibrium appears - see Figure 7.1. This modeling framework therefore rigorously predicts

emergence of cooperation in social dilemmas, which is consistent with experimental evidence. In

future work we plan to generalize the multi-option analysis in Chapter 5 of this dissertation to games

involving more than two strategies in the model [158].

7.1.2 Dynamic task allocation

The modeling framework introduced in this dissertation can serve as a new tool for the design of

dynamic task allocation algorithms in distributed technological teams. Allocating and managing

tasks in a team through self-organization is an especially important design problem for coordination

of robotic swarms and multi-robot teams [29, 77, 110, 114]. Algorithms for distributed task alloca-

tion often rely on biological inspiration, for example taking inspiration from honeybees [104], fish

[197, 200], and ants [115]. Other common algorithms include market-based approaches in which

robots communicate and place bids to compete for tasks [48]. Since the form of the model (3.3)

takes inspiration from social decision-making in biological and human groups, its use for design of

task allocation algorithms is similar in spirit to these popular approaches in the broader literature.

Furthermore the model and its analysis scales to arbitrarily many options, which makes it especially

compelling for use in multi-robot task allocation applications.

As we have shown with the analysis in this dissertation, the model (3.8) enables a group of

decision-makers to self-organize into a variety of potentially multistable preference configurations.

This self-organization has many properties which are desirable in a task allocation algorithm, which

we discuss in [18]. For example in Chapter 4 we established a simple procedure that allows a designer

to pre-assign each node on the network into one of two teams which will choose opposite tasks in a

two-task environment. When agents are unbiased, the resulting task allocation is maximally flexible

in that there are two bistable equilibria available to the network, and the network can select either

equilibrium based on its initial conditions. Initial conditions can reflect relevant environmental

factors, for example the spatial proximity of the individual robots to the locations of the tasks.

This enables the group decision to adapt in real time to the environment. Furthermore, using the

dynamic switching mechanism explored in Chapter 6 agents can change their allocation in real-time
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which allows for the design of adaptable robotic teams. An expansion of these ideas to more than

two tasks is part of future work.

In [67] we introduced a different mechanism which extends the opinion dynamics model (3.10)

to allow a group of social agents to self-organize and allocate themselves across tasks in a pre-

determined distribution. In contrast to the approach we discuss in [18], in [67] agents are not pre-

assigned into groups. Instead, they are made aware of the desired proportion of the group required

at each task. The group then self-organizes into the desired distribution following the modified

opinion dynamics vector field. This task allocation application very clearly illustrates the benefit of

introducing attention dynamics and opinion cascades, developed for two options in Chapter 6 of this

dissertation. In [67] the proposed task allocation approach was tested with and without feedback

dynamics in the attention parameter, analogous to (6.1b). One of the key insights of these numerical

experiments is that dynamic feedback to agents’ attention and the resulting opinion cascades greatly

improve the accuracy with which the group is able to track the desired distribution across tasks,

compared to the static attention case.

7.1.3 Cooperative navigation and collaboration with humans

The model (3.8) is being explored as a promising design tool for enabling robotic teams to coopera-

tively navigate through space and interact with people. The ability of a robotic team to cooperate

and self-organize is a feature that is important for coordinating navigation of robotic units towards

spatially embedded tasks which may be discovered by members of the distributed team as they are

exploring their environment [52, 171]. Recently dynamical systems approaches to composing and

coordinating navigational tasks in robotic units and teams have proved successful in generating ro-

bust, legible, and adaptive behaviors that accomplish design goals [169,170,199]. These observations

motivate the use of our model (3.3),(3.4) for coordinating robotic navigation in various applications.

Furthermore since the model takes inspiration from social decisions in human and other biological

social systems, it has potential for generating motion that is highly legible to a human observer.

The indecision-breaking bifurcations that organize the behavior of a swarm following (3.8) are

an important feature that can be leveraged for design. This mechanism can enable a group of

robotic units to reliably avoid any deadlocks which can arise from pathological symmetries in the

physical space or in the task urgency. This is analogous to how groups in nature avoid deadlocks

- for example, symmetry breaking bifurcations have been shown to organize the spatial movement

of animals as they approach spatial targets which are arranged in an equidistant fashion from the

111



Figure 7.2: Figure from [32], simulation by Charlotte Cathcart. Birds eye view of a simulation of two robots
(red and blue) avoiding collision with an oncoming mover (black) via the opinion dynamics model. Left:
robots disagree on the direction of movement and avoid the oncoming mover by splitting up; right: robots
agree on direction of movement and pass the oncoming mover on the same side.

animals [162, 189]. Symmetry breaking bifurcations are also a key mechanism that allows house-

hunting honeybees to avoid deadlock when making a collective decision between nest sites which

have equal value [167, 181]. In future work, we are exploring how a similar symmetry-breaking

mechanism can be implemented in a robotic unit and in a team of robotic units whose decision-

making is governed by the model (3.8), with the attention bifurcation parameter u being governed

by proximity to the spatial targets. This design approach will enable a team to provably avoid

deadlock in highly symmetric and pathological settings.

This modeling framework is also a promising tool for the design of collaborative decision-making

by robotic teams which co-exist in environments with people. The ability for robotic units to navigate

crowded environments and collaborate with people in their decision-making are important design

challenges for intelligent robotic swarms [112, 202]. The following steps have been taken to explore

the potential of this modeling framework to address these challenges:

1. An undergraduate senior thesis explored through simulation how the model (4.1) can be imple-

mented on a robotic unit moving through space for reactive collision avoidance of an oncoming

mover, such as a human navigating through a hallway [214].

2. Extended abstract [32] expands on these ideas and explores how a group of robotic units

can interact with an oncoming mover using (4.1). We show in simulation that a group can

collaboratively avoid an oncoming mover through a variety of strategies, for example agreeing

to pass the unit on the same side, or splitting up - see Figure 7.2. This enables a group
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of robots navigating space to react to their surroundings adapt their behavior flexibly. In

upcoming work, interaction of a moving robot with a human using this framework is being

explored through analysis and robotic experiments [33].

3. An undergraduate senior thesis explored through simulation, analysis, and robotic implemen-

tation how the game theoretic framework discussed earlier in this chapter can be used for

collaborative lane merging between two moving autonomous vehicles [166].

7.1.4 Emergent properties of sociopolitical systems

The model we propose and analyze in this dissertation has the potential to aid social scientists in

exploring hypotheses about mechanisms that give rise to emergent properties of social systems, such

as online social networks and sociopolitical collectives. For example in [120] we used the model

(4.1) to investigate possible mechanisms behind the asymmetric political polarization trends which

have been observed over time in the voting records of partisan elites in the United States Congress.

With this approach we were able to deduce that self-reinforcement of political opinions within each

party is a more likely mechanism for explaining asymmetric trends in polarization than reflexive

partisanship, i.e. parties opposing policies because they are supported by their opponent. This

insight is an important step towards proposing evidence-based mitigation strategies to counteract

the negative effects of polarization. A model analogous in its structure to the two-option model (4.1)

was arrived at independently by researchers in sociophysics literature, in parallel to the modeling

work presented in this dissertation. These researchers have shown that this model successfully

reproduces qualitative features of echo chamber formation and polarization of opinions in debates in

online social networks [14,15]. These works together suggest that the model and analysis we present

in this dissertation can serve as a valuable tool in the future for gaining insight into the emergent

properties of complex sociopolitical networks, and as a next step for exploring possible mitigation

strategies to counteract polarization in societies.

7.2 Future extensions

The analysis of the model (3.8) presented in this dissertation is limited in a number of ways, which

leaves opportunity for many future analyses and extensions of the model. We list a few of these

below.

• Throughout this dissertation we have elected to use the attention parameter u as a bifurcation
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parameter. Equivalently, any of the other model parameters d, α, β, γ, δ can be used to establish

an indecision-breaking bifurcation threshold. In fact we have already seen an example of

this in our discussion of political polarization, wherein the increase in self-reinforcement α

drove the partisan polarization. In future applications of this model, dynamics in any of

these parameters can be linked to indecision-breaking. This observation paves the way for

systematic comparisons of many different mechanistic hypotheses behind emergent features of

social systems.

• The focus of our analysis so far has been the classification and description of primary indecision-

breaking bifurcations. However, other local and global bifurcations can be found in (3.8), even

in its homogeneous parameter setting. Equilibria and invariant sets which appear in these

secondary bifurcations may be of equal interest for our understanding of emergent properties

of social processes. This leaves room for many theoretical investigations of the rich dynamic

behavior of (3.8).

• Analysis of belief formation on multiple topics in Chapter 5 is constrained to a single homoge-

neous belief system shared by all agents. However in real-world settings, different communities

can subscribe to different sets of beliefs. Investigation of the properties of indecision-breaking

bifurcations of (3.4) with two or more belief systems which coexist in the population of agents

is an exciting open question. Mapping out these properties would also allow for a richer set of

possibilities in the design of self organizing behaviors.

• So far we have always assumed that the communication topology between agents does not

change over time and communication is instantaneous. However realistic social networks are

time-varying, with agents forming and deleting communication links due to proximity, shared

social groups, and other factors [123]. Furthermore realistic networked communication is not

instantaneous, and possesses time delays [225]. These observations pose many important

questions which must be addressed in future work. For example, are the multistable equilibria

established in the analysis in this dissertation robust to changes in the communication topology

and to time delays? Furthermore, can any pathological behavior arise on the network due to

dynamic communication topology? These questions are important to address in order to

establish safety and reliability of self-organized behaviors which rely on the model (3.4).
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Chapter 8

Overview

Part II of this dissertation contains four peer-reviewed papers, with minor formatting modifications

constituting the only differences between the original articles and the presented chapters. Only

my first-author works are included in this dissertation, with other peer-reviewed publications I

contributed to as a co-author cited throughout the text.

8.1 Outline

Chapter 9 presents a new dynamical system model of opinion formation on a social network. We

show how this model generalizes several existing models of opinion dynamics in the literature. We

prove that agreement and disagreement opinions can form on the network in a bifurcation of the

neutral state. Furthermore we investigate how through parameter dynamics, a network can take

advantage of its high sensitivity to input near a bifurcation point, and how this sensitivity can be

tuned through controller design. This chapter appears in the IEEE Transactions on Automatic

Control journal [19].

Chapter 10 studies a 2-option specialization of the model propised in Chapter 9 on networks

with homogeneous signs. Specifically, we show how graph symmetries and centrality of agents on

the network informs the outcome of agreement and disagreement opinion formation. We show

through simulation how centrality determines whether a signal to an agent will trigger a cascade of

opinionation on a network of decision-makers with dynamic attention which is governed through a

feedback law. This chapter appears in the Proceedings of the 2021 American Control Conference

[20]

Chapter 11 formally expands the observations made in Chapter 10 about the role of centrality in
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opinion cascades. First, this chapter establishes a formal proof that any bifurcation of the origin in

the scalar opinion dynamics model of Chapter 9 must be a pitchfork bifurcation. Next, the chapter

introduces a dynamic feedback law which governs each agent’s attention and formally connects

opinion cascades on the network with a saddle-node bifurcation in the dynamics of opinions coupled

with attention. This bifurcation establishes a tunable threshold which separates inputs which trigger

network cascades from inputs which do not. We illustrate this threshold in a series of simulations.

This chapter appears in the Proceedings of the 2021 Conference on Decision and Control [21]

Chapter 12 studies the scalar opinion dynamics model on networks with mixed-sign interactions.

First the notion of switching equilvalence of two signed graphs is defined, and a relationship between

patterns of opinions on switching equivalent graphs is established. Next, we prove that agents can

change the opinion pattern on the network dynamically, through a local switching transformation.

Finally, applications of switching dynamics to multi-robot teams are explored through motivating

scenarios. This chapter appears in the IEEE Control Systems Letters journal [18].

8.2 Author contributions

I am the lead author and lead contributor to the material presented in all four included papers.

My advisor, Naomi Ehrich Leonard, and co-author Alessio Franci were closely involved with the

development of all of the presented works throughout the various stages of planning, writing, and

response to peer review. Alessio Franci was particularly involved in checking the mathematical

results in all of these manuscripts and provided many helpful suggestions and references. Specific

author contributions are listed below.

• In Chapter 9, Alessio Franci had the original idea to generalize nonlinear consensus models

to include disagreement as a potential solution. With his guidance I developed a simple low-

dimensional version of the presented model, which I presented for my general examination in

2019. The final version of the model which appears in the chapter was arrived at through

several months of meticulous collaborative efforts between myself, Alessio Franci, and Naomi

Ehrich Leonard. The original version of the proof for the boundedness result in this chapter was

outlined by Alessio Franci, which I then iterated on to arrive at what is presented in the text.

Similarly, an early version of Theorem 10.4.2 was originally written down by Alessio Franci.

Alessio Franci also developed the original discussion of the comparison between our model

with the linear averaging models, which was then iterated on by myself and Naomi Ehrich

Leonard. Any discussion of axial subgroups of symmetry groups and how they inform solution
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branches of bifurcations that is present in the text was the contribution of Alessio Franci.

Figure 10.10 is adapted from the conference paper [21] and includes data from simulations run

by Timothy Sorochkin. Figure 10.4 was adapted from a figure which was originally created

by myself and Ayanna Matthews for the conference publication [20]. This paper went through

many collaborative iterations and revisions, and the writing throughout the manuscript is a

well-mixed combination of contributions by all three of the co-authors - myself, Alessio Franci,

and Naomi Ehrich Leonard.

• In Chapter 10, Ayanna Matthews contributed to the development of Figures 11.1, 11.3, and

11.4. Ayanna Matthews also ran many helpful simulations which helped confirm the connection

between standard network centrality measures and the strength of opinions formed in this

model, as well as contributed to some of the writing introducing the model and describing its

various terms. The idea to use a saturation function in the dynamic feedback law for attention

was developed collaboratively with Naomi Ehrich Leonard, inspired by active feedback in

neuronal systems.

• In Chapter 11, Timothy Sorochkin contributed to the development of Figures 12.2 and 12.4.

He was involved with this paper from its inception, and ran many greatly helpful simulations

of opinion cascades with various attention dynamics which helped narrow down the right

parameter regimes and visualization techniques for the presented results.

• In Chapter 12, Giovanna Amorim created Figures 13.2, 13.4, and 13.5 and Alessio Franci cre-

ated Figure 13.3. Maŕıa Santos wrote a part of the introduction and Giovanna Amorim wrote

part of the section introducing the model. Maŕıa Santos and Giovanna Amorim collaboratively

developed the applications of our analysis to multi-robot systems and together wrote section

13.6 of the paper.
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Chapter 9

Nonlinear Opinion Dynamics with

Tunable Sensitivity
Anastasia Bizyaeva, Alessio Franci, and Naomi Ehrich Leonard

We propose a continuous-time multi-option nonlinear generalization of classical linear weighted-

average opinion dynamics. Nonlinearity is introduced by saturating opinion exchanges, and this

is enough to enable a significantly greater range of opinion-forming behaviors with our model as

compared to existing linear and nonlinear models. For a group of agents that communicate opinions

over a network, these behaviors include multistable agreement and disagreement, tunable sensitivity

to input, robustness to disturbance, flexible transition between patterns of opinions, and opinion

cascades. We derive network-dependent tuning rules to robustly control the system behavior and we

design state-feedback dynamics for the model parameters to make the behavior adaptive to changing

external conditions. The model provides new means for systematic study of dynamics on natural

and engineered networks, from information spread and political polarization to collective decision

making and dynamic task allocation.

9.1 Introduction.

Opinion dynamics of networked agents are the subject of long-standing interdisciplinary interest,

and there is a large and growing literature on agent-based models created to study mechanisms

that drive the formation of consensus and opinion clustering in groups. These models appear, for

example, in studies of collective animal behavior and voting patterns in human social networks. In
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engineering, they are fundamental to designing distributed coordination of autonomous agents and

dynamic allocation of tasks across a network.

Agent-based models are typically used to investigate parameter regimes and network structures

for which opinions in a group converge over time to a desired configuration. However, natural

groups exhibit much more flexibility than captured with existing models. Remarkably, groups in

nature can rapidly switch between different opinion configurations in response to changes in their

environment, and they can break deadlock, i.e., choose among options with little, if any, evidence

that one option is better than another. Understanding the mechanisms that explain the temporal

dynamics of opinion formation in groups and the ultra-sensitivity and robustness needed for groups

to pick out meaningful information and to break deadlock in uncertain and changing environments

is important in its own right. It is also pivotal to developing the means to design provably adaptable

yet robust control laws for robotic teams and other networked multi-agent systems.

Motivated by these observations, we explore the following questions in this paper. How can a

network of decision makers come rapidly and reliably to coherent configurations of opinions, including

both agreement and disagreement, on multiple options in response to, or in the absence of, internal

biases or external inputs? How can a network reliably transition from one configuration of opinions

to another in response to change? How can the sensitivity of the opinion formation process be tuned

so that meaningful signals are distinguished from spurious signals? To investigate these questions,

we present an agent-based dynamic model of the opinion formation process that generalizes linear

and existing nonlinear models. The model is rich in the behaviors it exhibits yet tractable to analysis

by virtue of the small number of parameters needed to generate the full range of behaviors.

We emphasize that our modeling approach is distinct from existing models in the literature in the

following way. Models of opinion formation are typically built on the fundamental assumption that

individuals update their opinions through a linear averaging process [5, 38, 45, 71, 153]. Additional

feedback dynamics are then often imposed on the coupling weights between agents, for example

in bounded confidence models [22, 44, 93, 94], biased assimilation models [43, 218], and models of

evolution of social power [105, 220]. Nonlinearity thereby arises through the superposition of lin-

ear opinion dynamics and nonlinear coupling-weight dynamics. When persistent disagreement is

observed, it is necessarily the consequence of the dynamic updating of the coupling weights. How-

ever, state-dependent interactions are not the only way for a network to achieve structurally stable

disagreement. We are instead proposing that the opinion update process itself is fundamentally

nonlinear due to saturation of information. We introduce a new multi-option nonlinear model of

opinion formation with saturated interactions in Section 9.3 and in Section 9.4 we prove that this
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modeling assumption supports persistent disagreement with a completely static interaction network.

As is done for linear models, dynamic feedback can also be introduced to the nonlinear model

parameters. We explore the effects of several dynamic parameter update laws in detail in Section 9.5.

The feedback laws we consider are simple, yet they make our model adaptive to changing external

conditions with tunable sensitivity and they allow robust and tunable transitions between distinctly

different patterns of opinions.

Our model generalizes recent literature on opinion formation with input saturation [1,49,61,62,

70,87,102]. Closely related to these are nonlinear models that leverage coupled oscillator dynamics

[121,139,144], biologically inspired mean-field models [156], and the Ising model [162,185].

Our primary contributions are as follows.

1) We introduce a new nonlinear model for the study of multi-agent, multi-option opinion dy-

namics. The model has a social term weighted by an attention parameter, which can also represent

social effort or susceptibility to social influence, and an input term, which can represent, e.g., external

stimuli, bias, or persistent opinions.

2) We show that the model exhibits a rich variety of opinion-formation behaviors governed

by bifurcations. This includes rapid and reliable opinion formation and multistable agreement and

disagreement, with flexible transitions between them. It also includes ultra-sensitivity to inputs near

the opinion forming bifurcation, and robustness to disturbances and uncertainties, away from the

bifurcation. Moreover, the behaviors are governed by a small number of key parameters, rendering

the model analytically tractable. We prove the central role of the spectral properties of the network

graph adjacency matrix in informing the model behavior.

3) We show how the model recovers a range of models in the literature for suitable parame-

ter combinations and/or when linearized, and how the reliance on structurally unstable network

conditions in linear models breaks down in the nonlinear setting. The central role of the network

graph adjacency matrix in our nonlinear model generalizes the central role of the network graph

Laplacian in opinion dynamics in the literature. We show that the right and left adjacency matrix

eigenstructures determine patterns of opinion and sensitivity to inputs, respectively.

4) We introduce distributed adaptive feedback dynamics to the agent parameters. We show how

design parameters in the attention feedback allow tunable sensitivity of opinion formation to inputs

and robustness to changes in inputs, as well as tunable opinion cascades even in response to a single

agent receiving an input.

5) We examine tunable transitions between consensus and dissensus using feedback dynamics

also on network weights.
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We define notation in Section 9.2. We present the new nonlinear opinion dynamics model in

Section 9.3. In Section 9.4 we prove results on agreement and disagreement opinion formation for

the new model. We introduce attention feedback dynamics and prove results on tunable sensitivity

in Section 9.5 in the special case of two options. In Section 9.5.4, we illustrate feedback controlled

transitions between agreement and disagreement. We conclude in Section 9.6.

9.2 Notation

Given y ∈ RN , the norm ∥y∥ is the standard Euclidean 2-norm and diag{y} ∈ RN×N is a diagonal

matrix with yi in row i, column i. Let IN ∈ RN×N be the identity matrix, 1N ∈ RN the vector

of ones, and P0 = (INo − 1
No

1No1
T
No

) the projection onto 1⊥
No

. Let R{v1, . . . ,vk} be the span of

vectors v1, . . . ,vk ∈ RN . We define vi ∈ RN component-wise as (vi1, . . . , viN ). Let U , V and W

be vector spaces. U is the direct sum of V and W , i.e., U = V ⊕W , if and only if U = V + W and

V ∩ W = {0}. Given matrices B = (bij) ∈ Rm×n and C = (cij) ∈ Rp×q, the Kronecker product

B ⊗ C ∈ Rmp×nq has entries (B ⊗ C)pr+v,qs+w = brscvw.

Let the set of vertices V = {1, . . . , Na} index a group of Na agents, and let edges E ⊆ V × V

represent interactions between agents. If edge eik ∈ E, then agent k is a neighbor of agent i.

The communication topology between agents is captured by the directed graph G = (V,E) and its

associated adjacency matrix A ∈ RNa×Na . A is made up of elements aik, and aik ̸= 0 if and only

if agent k is a neighbor of agent i. When A is symmetric (i.e., communication between agents is

bidirectional), the graph is undirected.

9.3 Nonlinear multi-option opinion dynamics

In this section we present our nonlinear model of opinion dynamics for a network of interacting

agents that form opinions about an arbitrary number of options. In Section 9.3.1 we recall the

classical consensus model of DeGroot [45] and several of the extensions that have been proposed and

studied in the literature. All of the cited models (with one exception noted) use an opinion update

rule that depends on a linear weighted-average of exchanged opinions. In our model, as discussed in

Section 9.3.2 and formalized in Section 9.3.3, we apply a saturation function to opinion exchanges,

which makes the update rule fundamentally nonlinear, even before introducing extensions. The

fundamentally nonlinear update rule makes all the difference with respect to generality and flexibility

of the model as we show here and in the rest of the paper.
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9.3.1 Linear Averaging Models: Drawbacks and Extensions

Opinion formation is classically modeled as a weighted-averaging process, as originally introduced by

DeGroot [45]. In this framework an agent’s opinion xi ∈ R reflects how strongly the agent supports

an issue or topic of interest. The real-valued opinion is updated in discrete time as a weighted

average of the agent’s own and other agents’ opinions, i.e.,

xi(T + 1) = ai1x1(T ) + · · · + aiNa
xNa

(T ) (9.1)

where ai1 + · · ·+aiNa
= 1 and aik ≥ 0. The weights aik describe the influence of the opinion of agent

k on the opinion of agent i and the matrix A ∈ RNa×Na with entries aik represents the structure of

the influence network.

A key drawback of linear weighted-average models is that consensus among the agents is the only

possible outcome. As observed in [134], this necessarily happens because the attraction strength of

agent i’s opinion toward agent k’s opinion increases linearly with the difference of opinions between

the two agents. In other words, the more divergent the two agents’ opinions are, the more strongly

they are attracted to each other, which is paradoxical from an opinion formation perspective.

To overcome these limitations, a number of prominent variations on averaging models have

been proposed. For example in “bounded confidence” models, agents average network opinions but

delete communication links to any neighbors whose opinions are sufficiently divergent from their own

[22, 44, 93, 94]. In a similar spirit, “biased assimilation” models instead incorporate a self-feedback

into the interaction weights of an averaging model [43, 218]. This self-feedback accounts for an

individual’s bias towards evidence that conforms with its existing beliefs. The linear model and its

variations have also been extended to the case of signed networks, where the linear weights aik can

be negative [5,127,184]. In [134] the authors do away with averaging altogether and instead propose

that opinions form through a weighted-median mechanism.

In the present paper we propose an alternative perspective to this literature: driven by the above

motivation and the model-independent theory developed in [68], we introduce a parsimonious non-

linear extension of linear weighted-average opinion dynamics that leverages the saturation function.

The linear weighted-average discrete-time opinion dynamics (9.1) can equivalently be written as

xi(T + 1) = xi(T ) +
(
− xi(T ) + ai1x1(T ) + · · · + aiNaxNa(T )

)
.

This discrete-time update rule is the unit time-step Euler discretization of the continuous time linear
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dynamics

ẋi = −xi + ai1x1 + · · · + aiNaxNa . (9.2)

Observe that (9.1) and (9.2) have exactly the same steady states with the same (neutral) stability.

The linear consensus dynamics (9.2) are determined by two terms: a weighted-average opinion-

exchange term, modeling the pull felt by agent i toward the weighted group opinion, and a linear

damping term, which can be interpreted as the agent’s resistance to changing its opinion.

9.3.2 Nonlinear Multi-option Extension of Weighted-average Models:

Defining Properties

Our goal is to derive a novel nonlinear extension of (9.2) satisfying the following defining properties.

1. Opinion exchanges are saturated. Saturated nonlinearities appear in virtually every natural

and artificial signaling network due to bounds on action and sensing. For example, dynamics that

evolve according to saturating interactions appear in spatially localized and extended neuronal popu-

lation models of thalamo-cortical dynamics [211,212], in Hopfield neural network models [98,99,145],

in models of perceptual decision making [23, 205], and in control systems with sensor and actuator

saturations [103, 126]. Saturated interactions between decision-makers also effectively bound the

attraction between opinions, thus overcoming the linear weighted-average model paradox mentioned

above.

2. Multi-option opinion formation. Allowing for an arbitrary number of options makes the

model relevant to a wide range of applications, for example, in task allocation problems where op-

tions represent tasks or in strategic settings where options represent strategies. We extend the model

to multiple options by suitably generalizing the agent’s opinion state space, analogous to existing

multi-option extensions of averaging models such as [65,72,125,147,157,160,221].

To construct this extension formally, observe that in the scalar opinion setting, xi > 0 (xi < 0) is

usually interpreted as favoring (disfavoring) an option A and disfavoring (favoring) an option B. The

strength of favoring or disfavoring is represented by the magnitude |xi| and xi = 0 is interpreted as

being neutral. This formalism is equivalent to one in which each agent is characterized by two scalar

variables ziA (modeling the preference of agent i for option A) and ziB (modeling the preference

of agent i for option B) that are “mutually-exclusive”, i.e., that satisfy ziA + ziB = 0. The scalar

opinion is then obtained simply by defining xi = ziA. This observation leads to the following multi-

option generalization of the state space of model (9.2). Given No options, we model each agent’s

opinion state space as the subspace 1⊥
No

⊂ RNo . Thus, in our model, the opinion state of agent
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i, i = 1, . . . , Na, is described by the state variable Zi ∈ 1⊥
No

, with components zij , j = 1, . . . , No.

When Zi = 0, we say that agent i is neutral or unopinionated. When Zi ̸= 0 we say that the agent

is opinionated. The full model state space is V = 1⊥
No

× · · · × 1⊥
No︸ ︷︷ ︸

Na times

, and Z = (Z1, . . . ,ZNa
) ∈ V is

the system state. The origin Z = 0 is the neutral point. Another way of interpreting our choice of

1⊥
No

as an agent’s state space comes from observing that 1⊥
No

is the tangent space to the (No − 1)-

dimensional simplex in RNo . Because 1⊥
No

and the simplex are isomorphic, our modeling approach

naturally applies to multi-option decision-making problems in which an agent’s state space is the

(No−1)-dimensional simplex. This is useful when the agents’ opinions are interpreted as probabilities

of choosing options, for example, in the case of mixed strategies in games where an option refers to

a strategy [158]. For more details on the connection to simplex dynamics see Corollary 9.7.3 in the

Appendix.

3. Agents have allocable attention. Because an agent’s attention to exchanged opinions may be

variable, we introduce, for each agent i, two parameters, di > 0 and ui ≥ 0, that weight the relative

influence of the linear resistance term and the nonlinear opinion-exchange term, respectively. When

the resistance parameter di dominates the attention parameter ui, the agent is weakly attentive

to other agents’ opinions. When ui dominates di, the agent is strongly attentive to other agents’

opinions. A shift from a weakly attentive to a strongly attentive state can be induced, for instance,

by a time-urgency (election day approaching) or a spatial-urgency (target getting closer) to form

an informed collective opinion. The attention parameter ui can also be used to model social effort,

excitability, or susceptibility of agent i to social influence.

4. Agents have exogenous inputs. For each agent, we introduce an input parameter bij , which

represents an input signal from the environment or a bias or predisposition that directly affects agent

i’s opinion of option j. For example, the input bij can be used to model the exogenous influence of

agent i’s initial opinions, as in [71], where agents hold on to their initial opinions (sometimes called

“stubborn” agents as in [78]).

If the attention and/or bias parameters are hard or impossible to measure or control, which

may be the case in sociopolitical applications, we can use standard homogeneity assumptions, e.g.,

di = 1, ui = u, bij = 0 for all agents, and include random perturbations to capture modeling

uncertainties. In technological applications (e.g. robotic swarms), however, tunable parameters of

the model provide novel, analytically tractable means to design complex collective behaviors – see

for example [67].
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Agent i Agent k

γik

δik

αi
βk

zij

zil

zip

zkj

zkl

zkp

Figure 9.1: Illustration of the four classes of interactions. An arrow from zij to zkl means the opinion of
agent i about option j is influenced by the opinion of agent k about option l, modulo the labeled gain.

9.3.3 A General Nonlinear Opinion Dynamics Model

In the multi-option setting, there are four possible types of coupling in the resulting opinion network

(see Figure 9.1):

1) Intra-agent, same-option coupling, with gain αi;

2) Intra-agent, inter-option coupling, with gain βi;

3) Inter-agent, same-option coupling, with gains γik, i ̸= k;

4) Inter-agent, inter-option coupling, with gains δik, i ̸= k.

Parameters αi, βi, γik, δik determine qualitative properties of opinion interactions. Parameter αi

determines sign and magnitude of opinion self-interaction for agent i. To avoid redundancy with

resistance di, we assume αi ≥ 0, i.e., either no self-coupling (αi = 0) or self-reinforcing coupling

(αi > 0). Parameter βi determines how different intra-agent opinions interact. Parameters γik and

δik determine if i’s response to k is to cooperate (γik − δik > 0) or compete (γik − δik < 0). When

different option dimensions have no interdependence, we can set βi = δik = 0 for all i, k = 1, . . . , Na.

The proposed general nonlinear opinion dynamics are

Żi = P0F i(Z) (9.3a)

Fij(Z) = −dizij + bij + ui

(
S1

(
αizij +

∑Na

k ̸=i
k=1

γikzkj

)
+
∑No

l ̸=j
l=1

S2

(
βizil +

∑Na

k ̸=i
k=1

δikzkl

))
(9.3b)

where zij(t) is agent i’s opinion of option j at time t, Zi(t) = (zi1, . . . , ziNo
)(t) ∈ 1⊥

No
is agent

i’s opinion state at time t as introduced in Section 9.3.2, and Żi = dZi

dt . Sq : R → [−kq1, kq2]

with kq1, kq2 ∈ R>0 for q ∈ {1, 2} is a generic sigmoidal saturating function satisfying constraints

Sq(0) = 0, S′
q(0) = 1, S′′

q (0) ̸= 0, S′′′
q (0) ̸= 01. S1 saturates same-option interactions, and S2

1S′′
q (0) ̸= 0 is a nondegeneracy condition, in the sense of [82], only for No > 2. For No = 2, the simplex

projection (9.3a) imposes odd symmetry of the opinion dynamics and makes this assumption unnecessary. See (9.5)
and below.
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saturates inter-option interactions. S1 and S2 could be the same but are distinguished in (9.3) for a

more general statement of the model. We provide an even more general formulation of the model in

Appendix 9.7.1 that makes use of an adjacency tensor and allows for the possibility of heterogeneous

interactions between options. Let

Γ = [γik] ∈ RNa×Na , ∆ = [δik] ∈ RNa×Na . (9.4)

In (9.3) the sum over the agents could be brought outside of the two sigmoids without altering

the qualitative behavior of the model. Our choice in (9.3) corresponds to an opinion network with

saturated inputs. Bringing the sum over the agents outside the sigmoids corresponds to an opinion

network with saturated outputs. Either choice could be useful depending on the application. On

the other hand, the sum over the options cannot be brought inside S2 as the mutual exclusivity

condition Zi ∈ 1⊥
No

would lead to spurious term cancellations for some parameter choices. Intuitively,

this means that opinions about different options are processed though different input channels.

Dynamics (9.3) are well defined on the system state space V , as we rigorously prove in Appendix

9.7.2.

Let b̂i = 1
No

∑No

l=1 bil be the average input to agent i and let b⊥ij = bij − b̂i be the relative input

to agent i for option j.

Lemma 9.3.1. The dynamics (9.3) are independent of the average input b̂i in the sense that
∂żij

∂b̂i
=

0.

Proof. Recall that P0 is the projection onto 1⊥
No

as defined in Section 9.2. Then P0bi = b⊥
i , and

the conclusion follows trivially from the form of (9.3).

Lemma 9.3.1 implies that only relative inputs affect the location of the equilibria of the opinion

dynamics (9.3).

Assumption 9.3.2. In light of Lemma 9.3.1, for the remainder of the paper we assume without

loss of generality that the average input b̂i = 0 for all i = 1, . . . , Na. Thus, bij = b⊥ij.

When relative inputs are absent, the system (9.3) always has the neutral point as an equilibrium.

Lemma 9.3.3. Z = 0 is an equilibrium for (9.3) if and only if there are no relative inputs, i.e.,

b⊥ij = 0 for all i and all j.

When relative inputs are small, i.e., they do not dominate the dynamics, the formation of opinions

in the general model (9.3) is governed by the balance between the resistance term, which inhibits
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opinion formation, and the social term, which promotes opinion formation. For illustrative purposes,

consider the case in which ui = u ≥ 0 for all i. Then for u small, resistance dominates and the

system behaves linearly. The opinions zij remain small and their relative magnitudes are determined

by the small inputs bij . For u large, the social term dominates and the system behaves nonlinearly.

Importantly, in this nonlinear regime, where u is large enough that opinion exchanges dominate

resistance, opinions zij form that are much larger than, and potentially unrelated to, inputs bij , even

for very small initial conditions. Opinion exchanges govern opinion formation through bifurcations

at which the neutral equilibrium loses stability as discussed in the next section and formalized and

investigated in the remainder of the paper.

9.3.4 Generality and Connection to Existing Models

The model (9.3) is general in the sense that it recovers a number of published opinion-formation,

decision-making, and consensus models for specific sets of parameters and/or when linearized. In

order to illustrate this we consider the model specialized to No = 2, as most of the models in the

literature consider two-option scenarios. The opinion state of agent i is one-dimensional: following

the notation introduced in Section 9.3.2 we define xi = zi1 = −zi2 as agent i’s opinion. Then,

opinion dynamics (9.3) reduce to

ẋi = −dixi + ui

(
Ŝ1

(
αixi +

∑Na

k ̸=i
k=1

γikxk

)
− Ŝ2

(
βixi +

∑Na

k ̸=i
k=1

δikxk

))
+ bi (9.5)

where Ŝl(y) = 1
2 (Sl(y) − Sl(−y)) are odd saturating functions for l = 1, 2, bi := bi1 = −bi2, and

di = 1
2 (di1 +di2). Let the network opinion state be x = (x1, . . . , xNa

) ∈ RNa and vector of inputs be

b = (b1, . . . , bNa
) ∈ RNa . When interactions between option dimensions are disregarded, i.e. with

βi = δik = 0 for all i, k = 1, . . . , Na, the two-option model (9.5) further reduces to

ẋi = −dixi + uiŜ1

(
αixi +

∑Na

k ̸=i
k=1

γikxk

)
+ bi (9.6)

which, with appropriate restrictions on the model coefficients, recovers a number of nonlinear con-

sensus models studied in recent literature. We illustrate this in the following example.

Example 9.3.4 (Specialization to nonlinear consensus protocols in the literature). A. When αi = 0,

γik ∈ {0, 1} (or more generally, γik ≥ 0), ui := u ≥ 0, and the resistance parameter di is defined

as di :=
∑Na

k=1 γik with k ̸= i (the network in-degree for node i), (9.6) reduces to the nonlinear

consensus dynamics of [1, 61,70,87].
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B. When αi = 0, γik ∈ {0, 1,−1} (or more generally, γik ∈ R), ui := u ≥ 0, and the resistance

parameter di is defined as di :=
∑Na

k=1 |γik| with k ̸= i, (9.6) reduces to the nonlinear consensus

dynamics with antagonistic interactions studied in [62,63].

In the nonlinear consensus models of Example 9.3.4, the formation of consensus opinions on the

network is a bifurcation phenomenon. Namely when bi = 0 for all i = 1, . . . , Na and 0 ≤ u < u∗,

the neutral point x = 0 is an asymptotically stable equilibrium. At a critical value u = u∗ > 0 a

pitchfork bifurcation is observed in both models, at which point x = 0 loses stability and two nonzero

asymptotically stable equilibria appear [87, Theorem 1], [63, Theorem 1]. For nonzero inputs, the

pitchfork unfolds.

Importantly, the linearization of these models about the origin x = 0 at u = 1 yields ẋ =

−(D − Γ)x, where D = diag(di) ∈ RNa×Na is the degree matrix for the network. For the positive

weights of Example 9.3.4.A this corresponds to the standard Laplacian consensus protocol [153],

a continuous-time analogue of the weighted-average models discussed in Section 9.3.1. For the

signed weights of Example 9.3.4.B this linearization is exactly the model of linear consensus with

antagonistic, i.e., signed, interconnections [5, 127,184].

In linear models, nonzero agreement (consensus) and disagreement (e.g., bipartite consensus and

its generalizations) equilibria are never exponentially asymptotically stable because the model Jaco-

bian has a zero eigenvalue. The eigenspace of the zero eigenvalue is R{1} in the case of agreement,

whereas it is spanned by a mixed-sign vector determined by the coupling topology in the case of

disagreement [5, 136, 157, 165]. In other words, linear agreement and disagreement models are not

structurally stable and arbitrary small unmodelled (nonlinear) dynamics will in general destroy the

predicted behavior. Adding saturated opinion exchanges has a two-fold advantage: i) it makes the

model generically structurally stable and, therefore, the agreement and disagreement equilibria hy-

perbolic (i.e., with no eigenvalues on the imaginary axis); ii) it weakens the necessary conditions for

the existence of stable disagreement states.

In linear models, the existence of neutrally stable agreement or disagreement states is always

linked to restrictive and non-generic assumptions on the coupling topology, for example, balanced

coupling for consensus [153] and either strongly connected structurally balanced coupling [5, 157],

quasi-strongly connected coupling with an in-isolated structurally balanced subgraph [165], or the

existence of a spanning tree on the coupling graph [136] for disagreement.

As we prove in Section 9.4 for our model, agreement is always possible for generic strongly

connected (balanced or unbalanced) graphs, and disagreement only requires a weak and provable
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Figure 9.2: For small initial conditions x(0) = (0.1,−0.09,−0.1), trajectories of the linear model from [5]
(left) approximate trajectories of the nonlinear model of Example 9.3.4.B (right) with Na = 3, u = 1.01,
bi = 0, and Ŝ1 = tanh. Top: bipartite consensus on a strongly connected and structurally balanced graph, as
in [5, Example 1]. Bottom: polarized opinions on a quasi-strongly connected graph containing an in-isolated
structurally balanced subgraph, as in [165, Example 1]. Arrows point to neighbors per the convention of
Fig. 9.1.

condition on the spectral properties of the adjacency matrix (satisfied even for networks with homo-

geneous weights). It follows that our model recovers the behavior of linear models when one of the

above conditions is satisfied (Figure 9.2) but avoids the conservativeness of linear model predictions

under more general coupling topologies (Figure 9.3). In Figure 9.3, for a network with all negative

edges weights, the linear model predicts neutrality whereas our model predicts disagreement (see also

Figure 9.4). In the linear model, the repulsion felt among agents balances the resistance, whereas in

the nonlinear model, the repulsion dominates the resistance, destabilizing the neutral solution and

driving different agents to form a strong opinion for different available options.

Linear model Nonlinear model
x1 x2

x3

-1

x4 x5

-1

-2

x i

-2 -2-2
-1

0 10t
-1

0

1

0 10t
-1

0

1

-1

Figure 9.3: The model from [5] (left) and nonlinear model (9.6) (right) with Na = 5, ui = 0.5, di = 1, bi = 0
for all i = 1, . . . , Na, Ŝ1 = tanh, initial conditions x(0) = (0.9,−0.4, 0.4, 0.1,−0.8), and same adjacency
matrix given by γik = −1 for i, k ∈ Ip, i ̸= k, and γik = −2 for i ∈ Ip, k ∈ Is, p ̸= s for clusters with
indices I1 = {1, 2} and I2 = {3, 4, 5} – see network diagram for illustration of the interconnection topology.
The linear model converges to the neutral solution. The nonlinear model, however, converges to a stable
clustered dissensus state, as follows from Remark 9.4.5.
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9.3.5 Clustering and Model Reduction

The opinion states Zi of the model (9.3) can either represent individual agents or alternatively the

average opinion of a subgroup. The latter perspective can be advantageous, for example, in design-

ing methodology for robotic swarm activities where subgroups of robots needs to make consensus

decisions, in studying cognitive control where the behavior of competing subpopulations of neurons

determines task switching [143], and in modeling and investigating mechanisms that explain sociopo-

litical processes such as political polarization [120]. In this section we prove a sufficient condition for

cluster synchronization of the opinions on the network with the opinion dynamics (9.3), in which the

network trajectories converge to a lower-dimensional manifold on which agents within each cluster

have identical opinions, whereas agents in different clusters can have different opinions.

The cluster synchronization problem has been extensively studied in dynamical systems with

diffusive coupling, as in [163, 217]. More broadly, cluster synchronization has been linked to graph

symmetries and graph structure called external equitable partitions [75, 154, 177, 188, 191]. In the

following theorem we show that such a network structure constitutes a sufficient condition for a

network of agents to form opinion clusters – see Appendix 9.7.3 for the proof.

Theorem 9.3.5 (Model Reduction with Opinion Clusters). Consider Nc clusters with Np agents in

cluster p such that
∑Nc

p=1 Np = Na. Let Ip be the set of indices for agents in cluster p. Assume for

every p = 1, . . . , Nc: 1) ui = ûp, di = dp, bij = bpj for i ∈ Ip; 2) within a cluster αi = ᾱp, γik = α̃p,

βi = β̄p, δik = β̃p for i, k ∈ Ip, and i ̸= k; 3) between clusters γik = γ̃ps, δik = δ̃ps for i ∈ Ip, k ∈ Is

s = 1, . . . , Nc and s ̸= p. Define bounded set Kq ⊂ R>0, q = 1, 2, as the image of the derivative of

the saturating function S′
q of (9.3). If the following condition holds:

sup
κ1∈K1,κ2∈K2

{
− dp + upκ1(ᾱp − α̃p) + upκ2(β̄p − β̃p)

}
< 0, (9.7)

for all p = 1, . . . , Nc, then every trajectory of (9.3) converges exponentially to the Nc(No − 1)-

dimensional manifold

E = {Z ∈ V | zij = zkj ∀i, k ∈ Ip, p = 1, . . . , Nc}. (9.8)

The dynamics on E reduce to (9.3) with Nc agents with opinion states ẑpj, p = 1, . . . , Nc, and with
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coupling weights

α̂p = ᾱp + (Np − 1)α̃p, γ̂ps = Nsγ̃ps, (9.9a)

β̂p = β̄p + (Np − 1)β̃p, δ̂ps = Nsδ̃ps. (9.9b)

Whenever conditions of Theorem 9.3.5 are met, the group of Na agents will converge to a clustered

group opinion state. This can happen for a broad class of interaction networks including an all-to-

all network with interaction weights that all have the same sign. The sufficient condition can, for

example, inform network design for technological systems where each of several groups must make

a different collaborative decision. See Figure 9.3 for an illustration of opinion trajectories with two

clusters, membership in which is defined by the network.

9.3.6 A Minimal Opinion Network Model

Several of the results characterizing opinion formation in (9.3) will be proved in the homogeneous

regime defined by

bij = 0, di = d > 0, ui = u ≥ 0, αi = α ≥ 0

βi = β ∈ R, γik = γaik, δik = δaik, A = [aik] (9.10)

where α, β, γ, δ ∈ R and aik ∈ {0, 1}, aii = 0 for all i, k = 1, . . . , Na, k ̸= i, so that A is an unweighted

adjacency matrix without self-loops.

With this choice of parameters, the nonlinear model is minimal in the following sense. The

matrix A with elements aik defines the influence network topology. The set of four interactions

gains α, β, γ, δ is minimal because in general there are four distinct types of arrows in a multi-option

opinion network. The (global) attention parameter u and resistance parameter d tune an agent’s

attention to other agents’ opinions and they jointly determine the occurrence of opinion-formation

bifurcations, as we prove in Section 9.4.

We show that our model, even in the fully homogeneous regime, exhibits extremely rich and

analytically provable opinion-formation behaviors. We further build upon the results proved for

the homogeneous model to study, either analytically or numerically, the effects of heterogeneity and

perturbations.
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9.4 Agreement and disagreement opinion formation

We show key results on opinion formation for dynamics (9.3):

1. Opinion formation can be modeled as a bifurcation, an intrinsically nonlinear dynamical phe-

nomenon. Opinions form rapidly through bifurcation-induced instabilities rather than slow

linear integration of evidence. Opinions can form even in the absence of input, as long as

attention (urgency or susceptibility, etc.) is sufficiently high.

2. The way opinions form at a bifurcation depends on the eigenstructure of the matrix Γ − ∆

defined by (9.4).

3. In the homogenous regime defined by (9.10), cooperative agents (γ > δ) always form agreement

opinions, whereas under suitable assumptions on the eigenstructure of the adjacency matrix

A, competitive agents (γ < δ) always form disagreement opinions.

4. At the bifurcation, there are multiple stable solutions, and opinion formation breaks deadlock,

that is, the situation in which every agent remains neutral, and therefore undecided, about all

the options.

5. Near the bifurcation, opinion formation is ultra-sensitive to input.

6. Away from the bifurcation, opinion formation is robust to small heterogeneity in parameter

values and small inputs.

7. In the absence of inputs, multistable agreement solutions and multistable disagreement solu-

tions emerge generically at opinion-forming bifurcations.

8. In the presence of inputs, the opinion-forming bifurcation unfolds (i.e., multistability is par-

tially or completely broken) in a such a way that the opinion states favored by inputs attract

most of the initial conditions close to the bifurcation. The network structure governs the rela-

tive influence of inputs, which leads to a formal notion of centrality indices for agreement and

disagreement.

9. Agreement and disagreement can co-exist, revealing the possibility of easy transition between

them.

10. With sufficient symmetry, agreement specializes to consensus and disagreement to dissensus.
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9.4.1 Agreement and Disagreement States

We say the agents agree, i.e., are in an agreement state, when sign(zij) = sign(zkj) for all i, k =

1, . . . , Na, j = 1, . . . , No. This means that all agents unanimously favor or disfavor each of the

options, although they may differ on the magnitude of their opinions. Agreement specializes to con-

sensus when Zi = Zk for all i, k = 1, . . . , Na. We say the agents disagree, i.e., are in a disagreement

state, when sign(zij) ̸= sign(zkj) for at least one pair of agents i, k = 1, . . . , Na, i ̸= k, and at least

one option j. Disagreement specializes to dissensus when the average opinion of the group is neu-

tral, i.e.,
∑Na

i=1 Zi = 0. For a network with clustered coupling (Theorem 9.3.5), clustered consensus,

dissensus, agreement, and disagreement are defined by applying the definitions to the average states

of each cluster ẑpj in the reduced model.

Remark 9.4.1. In the presence of nonzero inputs bij, agents will generically have nonzero opinions

about options as follows from Lemma 9.3.3. For realistic applications, small opinions formed in a

linear response to inputs should be distinguished from large opinions which arise from a nonlinear

response. To make this distinction we say agents are opinionated when their opinions are large,

and unopinionated when their opinions are close to zero. In this paper we keep this distinction

qualitative. A precise bound between opinionated and unopinionated magnitudes depends on the

application and can be defined when necessary.

9.4.2 Opinions Form through a Bifurcation

Steady-state bifurcations of the opinion dynamics (9.3) result in large opinions even for zero input.

Theorem 9.4.2, proved in Appendix 9.7.4, provides sufficient conditions under which opinions form

through a bifurcation from the neutral equilibrium Z = 0 and formulas to compute the kernel along

which the bifurcation appears. Let interaction matrices Γ, ∆ be as in (9.4).

Theorem 9.4.2 (Opinion Formation as a Bifurcation). Consider model (9.3) with bij = 0, di = d,

ui = u, αi = α, and βi = β, for all i = 1, . . . , Na. Let J be the Jacobian of the system evaluated at

neutral equilibrium Z = 0. Define λ to be the eigenvalue of Γ − ∆ with largest real part. Assume

that λ is real, α − β + λ > 0, and that Re[µ] ̸= λ for any eigenvalue µ ̸= λ of Γ − ∆. Then Z = 0

is locally exponentially stable for 0 < u < u∗, and unstable for u > u∗, with

u∗ =
d

α− β + λ
. (9.11)
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If λ is simple2, at u = u∗ an opinion-forming steady-state bifurcation happens along ker J = R{v∗}⊗

1⊥
No

where v∗ is the right unit eigenvector associated to λ. More precisely, generically for each

bifurcation branch, there exists vax ∈ 1⊥
No

such that the branch is tangent at Z = 0 to the one-

dimensional subspace R{v∗ ⊗ vax}.

Remark 9.4.3. The vector vax can be computed as the generator of the fixed-point subspace of an

axial subgroup [83, Section 1.4] of the (irreducible) action of SNo
on ker J .

Theorem 9.4.2 reveals how agents can become opinionated even without input: opinions form

when attention u is greater than threshold u∗. This means that deadlock can be avoided even when

there is little or no evidence to distinguish among options. The value of the threshold is determined

from the structure of the communication network. Additionally, from this result we can deduce

how agreement and disagreement solutions are informed by the network structure. In particular,

the equilibrium opinions of each agent near the bifurcation are directly proportional to the vector

vax, scaled by the entries of v∗. When all of the entries of v∗ have the same sign, the agents

will be in an agreement state. If v∗ contains mixed-sign entries, the agents will necessarily be in

a disagreement state. This provides a straightforward connection between the spectral properties

of the effective inter-agent communication graph Γ − ∆ and the opinion configurations that arise

from the opinion dynamics (9.3). The entries of the vector vax determine the relative preference

associated to the various options. In the following corollary we show how in the homogeneous regime

(9.10) Theorem 9.4.2 specializes to simple conditions for agreement and disagreement.

Corollary 9.4.4 (Agreement and Disagreement). Consider model (9.3) with homogeneous param-

eters as in (9.10) on a strongly connected graph. Let λmax > 0 be the largest real-part eigenvalue of

A. Let λmin < 0 be the smallest real-part eigenvalue of A. Assume λmin is real, simple, and for all

eigenvalues ξ ̸= λmin of A, Re[ξ] ̸= λmin.

A. Cooperative agents. Suppose that γ−δ > 0 and α−β+λmax(γ−δ) > 0. Then the steady-state

bifurcation predicted by Theorem 9.4.2 happens when attention u = u∗, where

u∗ := ua =
d

α− β + λmax(γ − δ)
(9.12)

and close to bifurcation all the bifurcation branches are made of agreement solutions.

B. Competitive agents. Suppose γ−δ < 0 and that α−β+λmin(γ−δ) > 0. Then the steady-state

2This result can be generalized to networks for which λ is not simple.
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Figure 9.4: Adapted from [20]. Agreement (left) and disagreement (right) opinion configurations at steady
state from simulation of two-option opinion dynamics (9.14) and four different undirected graph types, with
attention u slightly above the critical value u∗ in each case. Color of each node i corresponds to opinion xi at
t = 500. For all graphs γ = 1.3 (left) and γ = −1.3 (right), d = 1, α = 1.2, and bi = 0 for all i = 1, . . . , Na.
For the path and cycle graphs, u = 0.31, and for the star and wheel graphs, u = 0.26. Randomized initial
opinions are drawn from the distribution U(−1, 1).

bifurcation predicted by Theorem 9.4.2 happens when attention u = u∗, where

u∗ := ud =
d

α− β + λmin(γ − δ)
. (9.13)

Moreover, whenever vmin, the right unitary eigenvector associated to λmin, has mixed-sign entries,

close to bifurcation all the bifurcation branches are made of disagreement solutions.

We emphasize that the assumption about eigenvalues λ of Theorem 9.4.2 and λmin of Corollary

9.4.4 being simple often holds, and can be easily verified numerically for various graph structures.

Furthermore, the eigenvector vmin of Corollary 9.4.4 typically has mixed-sign entries, and competi-

tion between agents therefore tends to result in network disagreement. For example, on undirected

networks vmin always has mixed-sign entries since vmax, the unitary right eigenvector associated to

λmax, i.e., the Perron-Frobenius eigenvector, is positive and ⟨vmax,vmin⟩ = 0. For example, see Fig-

ure 9.4 for patterns of agreement and disagreement solutions for No = 2 and several representative

undirected graphs.

An important feature of the opinion dynamics (9.3) is the multistability of opinion configurations

at the bifurcations described by Theorem 9.4.2 and Corollary 9.4.4. When agents cooperate and

ker J is made of agreement vectors, if agreement in favor of one option is stable then agreement in

favor of each other option is stable, and likewise for disagreement solutions. There is a deadlock

when u < ua (u < ud) and breaking of deadlock when u > ua (u > ud).

At the bifurcation the linearization is singular, and the model is ultra-sensitive at transition from

neutral to opinionated. Even infinitesimal perturbations (e.g., tiny difference in option values) are
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sufficient to destroy multistability at bifurcation by selecting a subset of stable equilibria (e.g., those

corresponding to higher-valued options), a phenomenon known as forced-symmetry breaking and

widely exploited in nonlinear decision-making models [87,156,168].

Generically, stable equilibria that appear at the bifurcation are hyperbolic, and thus they and

their basin of attraction are robust to perturbations, a key property that ensures stability of opinion

formation despite (sufficiently small) changes in inputs, heterogeneity in parameters, and perturba-

tions in the communication network. Robustness bounds can be derived using methods like those

used for Hopfield networks in [106]. Robust multistability of equilibria gives the opinion-forming

process hysteresis, and thus memory, between different opinion states: once an opinion is formed in

favor of an option, a large change in the inputs is necessary for a switch.

Remark 9.4.5. Under the clustering conditions of Theorem 9.3.5, we can apply Theorem 9.4.2 and

Corollary 9.4.4 with Nc agents and coupling parameters defined by (9.9).

Remark 9.4.6 (Mode Interaction and Coexistence of Agreement and Disagreement). When γ = δ,

there is mode interaction [82], and agreement and disagreement bifurcations appear at the same

critical value of u. This regime is especially interesting because it allows for co-existence of stable

agreement and disagreement solutions, which can result in agents easily transitioning between the

two in response to changing conditions. However, additional primary solution branches not captured

by the analysis presented here can appear in this regime; we leave exploring this regime to future

work.

9.4.3 Patterns of Opinion Formation for Two Options

We examine the ultra-sensitivity of the network opinion dynamics to inputs or biases of individual

agents when operating near its bifurcation point. We consider the two-option opinion dynamics

(9.6) with homogeneous parameters (9.10), relaxing the assumption of zero inputs:

ẋi = −dxi + uŜ1

(
αxi + γ

∑Na

k ̸=i
k=1

aikxk

)
+ bi. (9.14)

The next corollary follows from Corollary 9.4.4 and [21, Theorems IV.1 and IV.2]. It recognizes

the opinion-forming bifurcations of (9.14) as agreement and disagreement pitchfork bifurcations and

predicts their unfolding in response to distributed inputs as a function of network structure. In other

words, it predicts the location of the two symmetric agreement (or disagreement) solutions and how

the input-driven unfolding selects one of the two solutions (see Figure 9.5).

137



Corollary 9.4.7. Consider (9.14) and suppose that adjacency matrix A is irreducible, i.e., the

associated graph is strongly connected. Let λmax > 0 be the largest real-part eigenvalue of A, i.e.

the Perron-Frobenius eigenvalue, with associated unitary positive right eigenvector vmax and unitary

positive left eigenvector wmax. Let λmin < 0 be the smallest real-part eigenvalue of A. Assume λmin

is real, simple, and for all eigenvalues ξ ̸= λmin of A, Re[ξ] ̸= λmin. Let vmin and wmin be the right

and left unitary eigenvectors associated to λmin with ⟨vmin,wmin⟩ > 0.

A. Cooperative agents. If γ > 0, inputs satisfy ⟨b,wmax⟩ = 0, and α + λmaxγ > 0, model (9.14)

undergoes a supercritical pitchfork bifurcation for u = u∗ = d
α+λmaxγ

at which opinion-forming

bifurcation branches emerge from x = 0. The associated bifurcation branches are tangent at x = 0

to R{vmax}. The pitchfork unfolds in the direction given by ⟨b,wmax⟩, i.e., if ⟨b,wmax⟩ > 0 (< 0),

then the only stable equilibrium x∗ for u close to u∗ satisfies ⟨x∗,vmax⟩ > 0 (< 0).

B. Competitive agents. If γ < 0, inputs satisfy ⟨b,wmin⟩ = 0, and α + λminγ > 0, model (9.14)

undergoes a supercritical pitchfork bifurcation for u = u∗ = d
α+λminγ

at which opinion-forming

bifurcation branches emerge from x = 0. The associated bifurcation branches are tangent at x = 0

to R{vmin}. The pitchfork unfolds in the direction given by ⟨b,wmin⟩, i.e., if ⟨b,wmin⟩ > 0 (< 0),

then the only stable equilibrium x∗ for u close to u∗ satisfies ⟨x∗,vmin⟩ > 0 (< 0).

Remark 9.4.8. For (9.5) with homogeneous parameters (9.10) an analogous result to Corollary

(9.4.7) holds, except with u∗ = d
α−β+λmax/min(γ−δ) .

The symmetric opinion-forming pitchfork bifurcation predicted by Corollary 9.4.7 in the case

of trivial or balanced inputs ⟨b,wmax/min⟩ = 0 constitutes the simplest instance of multi-stability

(bistability in this case) between different possible equilibrium opinion states (see Figure 9.5 left

for the disagreement case and [21, Figure 1] for the identical figure in the agreement case). For u

greater than critical value u∗ (the bifurcation point), the group of agents can converge to either of

the two stable opinion states depending on initial conditions as well as unmodelled uncertainties and

disturbances.

In the agreement regime, solutions on the upper branch correspond to agents agreeing on option 1

and on the lower branch to agents agreeing on option 2. In the disagreement regime, solutions on the

upper branch correspond to one subgroup favoring option 1 and the second subgroup favoring option

2 and the lower branch to the first subgroup favoring option 2 and the second subgroup favoring

option 1. Both the sign and relative magnitudes of the agent opinions are predicted by vmax in the

agreement regime and vmin in the disagreement regime – see Figure 9.4 for an illustration for four

types of graphs. Observe that for the highly symmetric cycle graph, the group splits evenly in the
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Figure 9.5: Bifurcation diagrams showing the symmetric pitchfork bifurcation (left) and its unfolding (right)
for two-option opinion dynamics (9.14) with d = α = 1 in the disagreement regime (γ = −1) for three agents
communicating over an undirected line graph. Blue (red) curves represent stable (unstable) equilibria. The
vertical axis is the projection of the system equilibria x onto wmin (wmin = vmin since the graph is undi-
rected). Left: b = (0.2, 0,−0.2); right: b = −0.1wmin + (0.2, 0,−0.2). Bifurcation diagrams generated with
help of MatCont [47]. In the agreement regime, the diagrams look qualititively the same with wmin/vmin

replaced with wmax/vmax and b modified appropriately (see Figure 1 in [21]).

disagreement case, whereas in the star and wheel graphs, the center node disagrees with all of the

peripheral nodes. These results are easily predicted using well-known results on the eigenstructure

of the adjacency matrix for these graphs. See [20] for details.

The symmetric pitchfork unfolds (Figure 9.5 right) such that only one solution (predicted by the

sign ⟨b,wmax/min⟩) is stable close to the symmetric bifurcation point; this follows from unfolding

theory for a pitchfork bifurcation ([82, Chapter I]). For larger values of the attention parameter, the

other solution also regains stability in a saddle-node bifurcation but the input-driven asymmetry is

still reflected in the relative sizes of the basin of attraction of the two solutions. The left eigenvectors

of the adjacency matrix wmax/min define agreement/disagreement centrality indices because the

unfolding formula ⟨b,wmax/min⟩ ≶ 0 implies that the larger [wmax/min]i the larger the effect of a

nonzero input bi on the agreement/disagreement pitchfork unfolding. Agreement and disagreement

centrality indices can thus naturally be used to control opinion forming behavior via distributed

inputs. By augmenting our opinion dynamics with an attention feedback mechanism, these centrality

indices determine distributed thresholds for the triggering of opinion cascade, as illustrated in the

next section (see also [67] for numerical illustrations on large random graphs with No > 2 and

application to task allocation in robot swarms). All the results in this section generalize to the case

No > 2. This generalization requires the computation of the vector vax appearing in Theorem 9.4.2

using equivariant bifurcation theory methods (see Remark 9.4.3), a direction that we leave for future

extensions of this work.
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9.4.4 Consensus and Dissensus Generic for Transitive Symmetry

In Section 9.4.2 we have shown how graph structure can inform what types of opinion configurations

arise in the group. Here we consider, for the homogeneous regime (9.10), how the presence of

symmetry in the communication graph can further constrain opinion configurations. We show how

consensus and dissensus emerge for dynamics (9.3) with two examples of transitive symmetry. We

first introduce a few technical definitions from group theory and equivariant bifurcation theory.

Let G be a compact Lie group acting on Rn. Consider a dynamical system ẋ = h(x) where

x ∈ Rn and h : Rn → Rn. Then ρ ∈ G is a symmetry of the system, equivalently h is ρ-equivariant,

if ρh(x) = h(ρx). If h is ρ-equivariant for all ρ ∈ G, then h is G-equivariant [83]. G-equivariance

means elements of symmetry group G send solutions to solutions.

The compact Lie group associated with permutation symmetries of n objects is the symmetric

group on n symbols Sn, which is the set of all bijections of Ωn := {1, . . . , n} to itself (i.e., all permu-

tations of ordered sets of n elements). The opinion dynamics (9.3) with homogeneous parameters

(9.10) and all-to-all coupling are maximally symmetric, i.e. (SNo
× SNa

)-equivariant, where ele-

ments of SNa permute the Na-element set of agents and elements of SNo permute the No-element

set of options [68]. Maximally symmetric opinion dynamics are unchanged under any permutation

of agents or options.

A subgroup Gn ⊂ Sn is transitive if the orbit Gn(i) = {ρ(i), ρ ∈ Gn} = Ω, for some (and thus

all) i ∈ Ω. (GNo
×GNa

)-equivariant opinion dynamics, with transitive GNa
, are still highly symmetric

since any pair of agents, while not necessarily interchangeable by arbitrary permutations, can be

mapped into each other by the symmetry group action. The following are examples of transitive

subgroups of SNa
:

• DNa , dihedral group of order Na; symmetries correspond to Na rotations and Na reflections.

DNa
-equivariant opinion dynamics are unchanged if agents are permuted by a rotation or a

reflection, e.g., if agents communicate over a network defined by an undirected cycle.

• ZNa , cyclic group of order Na; symmetries correspond to Na rotations (and no reflections).

ZNa
-equivariant opinion dynamics are unchanged if agents are permuted by a rotation, e.g., if

agents communicate over a network defined by a directed cycle.

The system opinion state space decomposes as V = Wc⊕Wd, where Wc is the multi-option consensus

space defined as

Wc = {(Z1, . . . ,ZNa) |Zi = Z̃ ∈ 1⊥
No

, ∀i}, (9.15)
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and Wd is the multi-option dissensus space defined as

Wd = {(Z1, . . . ,ZNa) |Z1 + · · · + ZNa = 0}. (9.16)

On the consensus space Wc, agents have identical opinions. On the dissensus space Wd, agent

opinions are balanced over the options such that the average opinion of the group is neutral.

Model-independent results [68, Theorem 4.6 and Remark 4.7] ensure that, in the presence of

transitive symmetry, ker J = Wc or ker J = Wd. I.e., if (9.3) is symmetric with respect to a group

Γa that acts by swapping the agent indices transitively, then generically ker J = Wc or ker J = Wd.

In the homogeneous regime (9.10), agent symmetry of (9.3) is fully determined by A as proved in

the following proposition for the maximally symmetric case Ga = SNa
and the highly symmetric

case Ga = DNa
(see Appendix 9.7.5 for proof). The same result holds, with similar proof, for other

transitive agent symmetries, e.g., Ga = ZNa .

Proposition 9.4.9. Consider model (9.3) in the homogeneous regime defined by (9.10). Then the

following hold true:

1. Model (9.3) is (SNo ×SNa)-equivariant if and only if A is the adjacency matrix of an all-to-all

graph;

2. If A is the adjacency matrix of an undirected cycle graph, then model (9.3) is (SNo ×DNa)-

equivariant.

Remark 9.4.10. More generally, the symmetry group of the opinion dynamics is determined by the

automorphism group of the graph associated to A. The proof follows as for Proposition 9.4.9.

The next corollary follows from Theorem 9.4.2 and [68, Theorem 4.6 and Remark 4.7]. The

two types of opinion-formation behaviors proved in this corollary, i.e., consensus for cooperative

agents and dissensus for competitive agents, respectively, constitute an opinion-formation analogue

of consensus and balanced (split) states in coupled phase oscillators (see, e.g., [153,183,196]).

Corollary 9.4.11 ( Consensus from Cooperation and Dissensus from Competition). Consider

model (9.3) in the homogeneous regime (9.10). Suppose that the graph associated to adjacency

matrix A is either all-to-all or an undirected cycle. Let ua and ud be defined by (9.12) and (9.13).

A. Cooperative agents and consensus. If agents are cooperative (γ − δ > 0), then opinion

formation appears as a bifurcation along the consensus space at u = ua with λmax = Na − 1 for the

all-to-all case and λmax = 2 for the cycle case.
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Figure 9.6: Simulations for No = 2 options and Na = 8 agents (top) and No = 3 options and Na = 12 agents
(bottom) with A = 11T − I. Opinions form (a) consensus when agents are cooperative: γ = 0.2, δ = −0.1;
(b) dissensus when agents are competitive: γ = −0.1, δ = 0.2. In each plot, α = 0.2, β = 0.1, d = 1, u = 3,
b̂ = 0, and random initial conditions are the same. Communication weights α, β, γ, δ were perturbed with
small random additive perturbations drawn from a normal distribution with variance (a) 0.01, (b) 0.001.
Ternary plots for three options generated with the help of [54].

B. Competitive agents and dissensus. If agents are competitive (γ − δ < 0), then opinion

formation appears as a bifurcation along the dissensus space at u = ud with λmin = −1 for the

all-to-all case, λmin = −2 for the cycle case, when Na is even, and λmin = 2 cos(π(Na − 1)/Na),

when Na is odd.

As an illustration of Corollary 9.4.11, representative consensus and dissensus trajectories of the

opinion dynamics for two and three options on all-to-all graphs are shown in Fig. 9.6.

Remark 9.4.12 (Stability of Consensus and Dissensus). Consensus and dissensus solution branches

predicted for the symmetric networks in Corollary 9.4.11 are a consequence of the Equivariant

Branching Lemma [83, Section 1.4], and are made of hyperbolic equilibria. Their stability can be

proved using the tools in [84, Section XIII.4] and [83, Section 2.3].

9.5 Attention dynamics and tunable sensitivity

We have established that existence of agreement and disagreement equilibria and multistability of

opinion formation outcomes arise from bifurcations of the general opinion dynamic model (9.3).

In this section we explore how ultra-sensitivity to inputs bij, robustness to changes in inputs, and

opinion cascade dynamics also arise from bifurcations. With the addition of dynamic state feedback

for model parameters in (9.3), the opinion formation process can reliably amplify arbitrarily small
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inputs bij , reject small changes in input as unwanted disturbance, facilitate an opinion cascade

even if only one agent gets an input, and enable groups to move easily between agreement and

disagreement. The choice of feedback design parameters determine implicit thresholds that make all

of these behaviors tunable.

The addition of dynamic state feedback for parameters in our model is similar in spirit to the

extension of the linear weighted-average model with nonlinear state-feedback update rules for the

coupling gains, as in bounded confidence models [44,93,94] and biased assimilation models [43,218].

However, our motivation, rather than to capture a specific sociological phenomenon, is to make our

model adaptable to inputs and flexibly responsive to changing environments. This is achieved by

ensuring tunable sensitivity of opinion formation to inputs. We illustrate our ideas and prove our

results for the case No = 2. The multi-option extension is left for future work.

9.5.1 Dynamic State Feedback Law for Attention

It is natural to consider each agent’s attention ui in (9.3) as a quantity that evolves in time in

response to signals from others or from the environment ([87, 226]). This might happen when the

agents delay making a collective decision until some task-relevant signal is detected on the network.

To study this, we augment the opinion dynamics with an attention update

τuu̇i = −ui + fu,i (Z) , (9.17)

where τu > 0 is a time scale, which can be freely chosen, and fu,i : RNaNo → R is a state feedback

law, which can take different functional forms depending on the application. To study how attention

feedback dynamics can enable a small local signal to excite a cascade of opinions across the entire

network, we define fu,i to drive agent i to increase its attention when its neighbors form a strong

opinion about any option, i.e., agent i engages when it observes its neighbors engaging:

τuu̇i = −ui + Su

(
1

No

∑Na

k=1

∑No

l=1 (āikzkl)
2

)
. (9.18)

Su is a smooth saturating function, satisfying Su(0) = 0, Su(y) → ū > 0 as y → ∞, S′
u(y) > 0 for

all y ∈ R, and S′′′
u (y) > 0 for all y > 0. We define Su as a Hill function

Su(y) = u + (ū− u)
yn

(yth)n + yn
, (9.19)
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where threshold yth > 0 and n > 0. In (9.19) we constrain ū and u such that ū > uc ≥ u > 0,

with uc = ua (ud) when γ > 0 (< 0) and ua, ud are defined by (9.12),(9.13). For the remainder of

this section we consider the homogeneous regime (9.10), except for the ui, which are heterogeneous,

and for nonzero inputs. The attention coupling matrix Ā with elements āik can be distinct from

the opinion coupling matrix A, but here we let Ā = A + INa . For No = 2 the attention feedback

dynamics (9.18) simplify to

τuu̇i = −ui + Su

(∑Na

k=1(āikxk)2
)
. (9.20)

9.5.2 Tunable Sensitivity and Robustness for a Single Agent

In this section we first consider a single agent with dynamic opinions (9.5) and dynamic atten-

tion (9.20) with no neighbors, i.e., aik = 0 for all k = 1, . . . , Na. As shown in Figures 9.7 and 9.8,

the equilibria of the coupled opinion and attention dynamics can be graphically represented as the

intersection of the xi-nullcline {ẋi = 0} (black solid) and ui-nullcline {u̇i = 0} (red dashed) in the

(ui, xi) plane. Corollary 9.4.7 defines the shape of the xi-nullcline as a pitchfork bifurcation which

unfolds with nonzero input bi, analogous to Figure 9.5.

For model (9.5),(9.20), define agent i to be strongly opinionated when its attention is close to its

upper saturation value, i.e., ui ≃ ū, and weakly opinionated when its attention is close to its lower

saturation value, i.e., ui ≃ u. What we refer to as tunable sensitivity of opinion formation to input bi

can then be understood by comparing the plots of Figure 9.7, where the opinion trajectory for agent

i is plotted on the left for bi = 0.5 and on the right for bi = 1. For the given parameters and bi = 0.5,

the nullclines intersect at three points in the positive half-plane. For unopinionated initial conditions,

the opinion state is attracted to the point corresponding to a weakly opinionated equilibrium: agent

i rejects the input bi = 0.5 and does not form a strong opinion. For the same parameters and bi = 1,

the nullclines intersect at only one point, corresponding to a strongly opinionated equilibrium. Thus,

for the same initial conditions, agent i accepts the input bi = 1 and forms a strong opinion. The

implicit sensitivity threshold3 that distinguishes rejected from accepted inputs can be tuned by using

parameters n, yth in (9.19). Changing their value changes the shape of the ui-nullcline and thereby

varies how strong of an input bi is required to reduce the number of nullcline intersections from three

to one, as in Figure 9.7.

Tunable robustness of opinion formation to changes in input bi can be understood by comparing

3Quantifying the exact relationship between the design parameters in the saturation function (9.19) and the
implicit thresholds described in this section is a straightforward but lengthy calculation, which involves taking implicit
derivatives of the equilibria of the coupled system with respect to the design parameters. Due to space constraints
we leave out this analysis here.
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Figure 9.7: Sensitivity of opinion formation to input magnitude. (ui, xi)-phase plane and trajectories of
(9.5),(9.20); n = 2, yth = 0.4, αi = 2, βi = −1, γik = δik = 0, di = 1, τu = 1, u = 0, ū = 2 for bi = 0.5 (left)
and bi = 1 (right). Initial state (ui(0), xi(0)) = (0, 0) is a blue circle, and final state a yellow diamond.
Nullclines of (9.5) are black solid and (9.20) are red dashed. Gray arrows show flow streamlines. Color scale
is time.

the sequence of plots in the top and bottom halves of Figure 9.8. The plots on the left show agent

i forming a strong opinion in the direction of the input bi = 1. The plots on the right show what

happens to agent i’s opinion when the input switches to bi = −1, i.e., an input that is in opposition

to the original input. In the top sequence, when ū = 1, agent i accepts the change of input and

forms a strong opinion in the direction of the new input. In the bottom sequence, when ū = 2.5,

agent i rejects the change of input and retains a strong opinion in the direction of the original input.

The implicit robustness threshold that distinguishes rejected from accepted changes in input can be

tuned by design parameter ū.

9.5.3 Opinion Cascades with Tunable Distributed Sensitivity

The following corollary shows that our feedback attention dynamics create a distributed threshold for

the opinion dynamics below which the agents remain weakly opinionated and above which agents

converge to a strongly opinionated equilibrium. The transition from a weakly opinionated to a

strongly opinionated equilibrium in response to inputs is called an opinion cascade. The threshold

is defined in terms of the inner product of the vector of inputs b and suitable eigenvectors of the

opinion network adjacency matrix. In other words, the threshold is distributed across the agents

and the spectral properties of the adjacency matrix determine highly sensitive and weakly sensitive

directions in the input vector space. As in Section 9.5.2 for single agents, the threshold can be tuned

with parameters of the attention dynamics.

In the following theorem, we let λmax, wmax and λmin, wmin satisfy the assumptions of Corol-

lary 9.4.7.4

4The proof of Theorem 9.5.1 follows from [21, Theorem V.3] and from geometric arguments based on implicit
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Figure 9.8: Robustness of opinion formation to changes in input. (ui, xi)-phase plane and trajectories of
(9.5),(9.20); n = 2, yth = 0.4, αi = 2, βi = −1, γik = δik = 0, di = 1, τu = 1, u = 0. (Left) Input is bi = 1,
initial state (ui(0), xi(0)) = (0, 0) is a blue circle, and final state is a cyan diamond. (Right) Input changes
to bi = −1, initial state is final state on left and final state is yellow square. Top: ū = 1, and agent
changes opinion in direction of new input. Bottom: ū = 2.5, and agent retains opinion in original direction.
Nullclines, streamlines, and time are drawn as in Figure 9.7.
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Figure 9.9: Opinion cascades with opinion and attention dynamics defined in Theorem 9.5.1. For t < 20,
b = (−0.05, 0.05, 0.05, 0.05, 0.05) for all three simulations. At t = 20 the input to agent 5 (indicated by the
arrow) increases to b5 = 0.25, which triggers an opinion cascade on the network. Plots show opinion and
attention trajectories of the agents with agent 5 in orange. Network diagrams on the right show the opinion
strength of each agent at t = 60 of the simulation. (a) Agreement cascade with γ = 1; the network chooses
the positive option following the informed agent. (b) Disagreement cascade with γ = −1; agents’ opinions
on the network disperse following the sign structure of vmin. (c) Agents are coupled through the attention
dynamics only (i.e. γ = 0); opinion cascade causes each agent to amplify its small input and commit to a
strong opinion. Other parameters: α = 2, n = 3, yth = 0.1, τu = 5, d = 1, ū = u∗ + 0.3, u = u∗ − 0.3,
ui(0) = u for all i = 1, . . . , Na. x(0) generated randomly from a uniform distribution between −0.2 and 0.2;
the same initial condition was used for all three simulations.

Theorem 9.5.1. Consider the coupled system (9.6),(9.18) with di = d αi = α, and γik = γaik,

where A = [aik] is a symmetric and irreducible adjacency matrix. Let uc = d
α+λmaxγ

, wc = wmax if

γ > 0 and uc = d
α+λminγ

, wc = wmin if γ < 0. There exists ε > 0 such that for uc > u, yth < ε, and

n sufficiently large, the following generically hold. There exists p = p(yth) > 0 satisfying ∂p
∂yth

> 0

such that, for |⟨wc,b⟩| < p, model (9.6),(9.18) possesses a weakly opinionated locally exponentially

stable equilibrium. This equilibrium loses stability in a saddle-node bifurcation for |⟨wc,b⟩| = p.

No weakly opinionated equilibria exist for |⟨wc,b⟩| > p and all trajectories converge to a strongly

opinionated agreement (disagreement) equilibrium for γ > 0 (γ < 0). For γ = 0, with α > 0, the

strongly opinionated equilibrium (x∗,u∗) satisfies sign(x∗
i ) = sign(bi).

Figure 9.9 illustrates the predictions of Theorem 9.5.1. It shows that the arrival of a suprathresh-

old input at t = 20 triggers an opinion cascade. Independently of the entries of the input vector b,

differentiation, similarly to the single-agent case of Section 9.5.2. It is omitted for space constraints.
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Figure 9.10: Adapted from [21]. Frequency of agreement (left) and disagreement (right) cascades for opinion
and attention dynamics defined in Theorem 9.5.1. Color represents proportion of simulations in the given
parameter range that did not result in a network cascade by t = 500. Dark red corresponds to no cascades,
white to always a cascade, and grey to bins with no datapoints. Each plot shows the results of 1.5 × 105

distinct simulations with τu = 10, yth = 0.2, u = ua − 0.01 for γ = 1 (left) and u = ud − 0.01 for γ = −1
(right). For every simulation, initial conditions were xi = 0, ui = 0 for all i = 1, . . . , Na and bi were drawn
from N (0, 1) with b normalized to a desired constant magnitude. 10000 simulations were performed for each
constant input magnitude, with 15 magnitudes sampled uniformly spaced between 0 and 0.1.

the cascade goes to a strongly opinionated agreement equilibrium for γ > 0 (Figure 9.9a) and to a

strongly opinionated disagreement equilibrium for γ < 0 (Figure 9.9b). Conversely, for γ = 0, the

pattern of opinions at the strongly opinionated equilibrium is determined by the sign of the entries

of the input vector. Figure 9.10 makes these observations more quantitative by showing the cascade

threshold predicted by Theorem 9.5.1 as a joint function of the norm of the input vector and of the

cosine of the angle between the input vector and the relevant eigenvector of the adjacency matrix.

As predicted by the theorem, when the input vector is misaligned with respect to the adjacency

matrix eigenvector, large-magnitude inputs are necessary to robustly trigger an opinion cascade.

Conversely, as the two vectors align, an opinion cascade can be triggered with much smaller inputs.

9.5.4 Dynamics on weights: agreement-disagreement transitions

We illustrate how feedback dynamics of social influence weights in the two-option opinion dynamics

(9.5) can be used to facilitate transitions between agreement and disagreement on the network.

Suppose agents comprise two clusters of size N1 and N2 with index sets I1 and I2. Let bi = bp for

i ∈ Ip and x̂p = 1
Np

∑
i∈Ip

xi, where p ∈ {1, 2}. We define intra-cluster coupling as αi = γik =

α/Np > 0 and βi = δik = β/Np < 0, l ̸= j, p = 1, 2, di = d for all i, k ∈ Ip, and agent attention

dynamics by (9.20) with āik = 1 for all i, k.

The influence network between the clusters is dynamic. Let γik(t) = γi(t)/Ns, δik(t) = δi(t)/Ns
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Figure 9.11: (a) Transient opinion trajectories settling to the clustered attractive manifold from random
initial conditions in a simulation; (b) Full simulation. Top: opinion trajectories; Bottom: parameter trajec-
tories. Seven agents form two clusters of sizes N1 = 3 (dashed-line opinion trajectories), N2 = 4 (solid-line
opinion trajectories). d = 1, α = 1, β = −1, b1 = 0.5, b2 = −0.5 τu = 10, τγ = τδ = 100, γf = 2, δf = 1,
u = 2, gγ = gδ = 10, ym = 1.5. xi(0) are drawn from N (0, 2), ui(0) from N (0, 0.3), γi(0) from N (−3, 0.3),
and δi(0) from N (1, 0.3). di, αi, βi, bi have additive perturbations drawn from N (0, 0.1) independently for
each agent i. For t < 300, σ = 1 and for t ≥ 300, σ = −1.

if i ∈ Ip, k ∈ Is, s ̸= p. Define feedback dynamics for inter-cluster coupling as

τγ γ̇i = −γi + σSγ(x̂1x̂2) (9.21a)

τδ δ̇i = −δi − σSδ(x̂1x̂2) (9.21b)

where σ ∈ {1,−1}, τγ , τδ > 0 are time scales, Sγ(y) = γf tanh(gγy), Sδ(y) = δf tanh(gδy), and

γf , δf , gγ , gδ > 0.

The sign of design parameter σ in (9.21) determines whether the system tends towards agreement

or disagreement, and switching the sign can reliably trigger a transition between agreement and

disagreement. Figure 9.11 illustrates the opinion formation of 7 agents that form two clusters, one

with 3 agents and the other with 4 agents. One cluster has input favoring option 1 and the second

favoring option 2. Initially, γ−δ < 0 on average and the clusters evolve to a dissensus state5 which is

informed by the agents’ inputs. However, because σ = 1, the two clusters eventually evolve towards

a consensus state once γ − δ > 0 despite the inputs favoring disagreement. At time t = 300, σ

switches sign to σ = −1 and the two clusters evolve back towards a clustered dissensus state once

γ − δ < 0.

5Equilibria differ slightly from clustered consensus/dissensus due to parameter perturbations, simulated to illustrate
robustness to uncertainty.
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9.6 Final Remarks

Our opinion dynamics provide a new modeling framework for studying a variety of phenomena in

which opinion formation is the governing behavior. In contrast to previous models, our approach

focuses on the intrinsic nonlinear nature of opinion exchanges and thus on bifurcations as the key

mechanism for analyzing and controlling opinion formation. Our model exhibits the flexibility,

adaptability and robustness of natural opinion-forming systems, including deadlock-breaking and

tunable sensitivity to changing inputs. A special instance of our model was motivated by modeling

decision making in honeybee communities [87]. The analytical tractability of our model makes it

possible to tackle its rich dynamical behavior constructively. This has allowed us to make novel

predictions about the role of the opinion network structure in determining the emerging patterns

of opinion formations and the sensitivity of the network to exogenous inputs, as well as to design

adaptive feedback control laws for the model parameters.

The applicability of our model to real-world problems has recently been confirmed by our re-

cent contributions in sociopolitical problems [120], the design of task-allocation algorithms in robot

swarms [67], cognitive control [143], and game theory [158]. Other possible applications include

decision making in biological and artificial neural networks, epidemiology and disease spread, and

decision making in groups, from humans and robots to bacteria and animals on the move.
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9.7 Appendix

9.7.1 Extension to Heterogeneous Inter-option Coupling

In future applications of the opinion dynamics model (9.3) it may be useful to consider scenarios in

which there is a heterogeneous level of influence between different options, i.e., in addition to the

inter-agent interaction network there is an inter-option interaction network. Thus, we introduce the

adjacency tensor with entries Ajl
ik that capture the weight of influence agent k’s opinion on option l
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has on agent i’s opinion on option j. This leads to the generalized opinion dynamics:

Żi = P0F i(Z)

Fij(Z) = −dizij + ui

∑No

l=1 Sl

(∑Na

k=1 A
jl
ikzkl

)
+ bij .

The model studied in this paper is recovered when Sl is S1 for same-option interactions and S2 for

inter-option interactions, and Ajj
ii = αi, A

jj
ik = γik, Ajl

ii = βi, and Ajl
ik = δik for all i, k = 1, . . . , Na,

j, l = 1, . . . , No, i ̸= k,j ̸= l.

9.7.2 Well-definedness of Model

The general model (9.3) is well defined since V is forward invariant for (9.3) (Lemma 9.7.1) and

solutions are bounded (Theorem 9.7.2). Let D = diag{d1, . . . , dNa
} ⊗ INo

.

Lemma 9.7.1. V is forward invariant for (9.3).

Proof. For all i = 1, . . . , Na,
∑No

j=1 żij = 0, so if zi1(0) + · · · + ziNo
(0) = 0, zi1(t) + · · · + ziNo

(t) = 0

for all t > 0.

Theorem 9.7.2 (Boundedness). Let Ū be a compact subset of R. There exists R > 0 such that,

∀ ui, di, αi, βi, γik, δik, bij ∈ Ū , i, k = 1, . . . , Na, j, l = 1, . . . , No, the set V ∩ {|zij | ≤ R, i =

1, . . . , Na, j = 1, . . . , No} is forward invariant for (9.3). This implies that the solutions Z(t) of

the dynamics (9.3) are bounded for all time t ≥ 0.

Proof. By boundedness of Sp(·), there exists R̃ > 0 such that, for all ui, di, αi, βi, γik, δik, bij ∈ Ū ,

Fij(Z) = −dizij + Cij(Z), with |Cij(Z)| ≤ R̃. For all Z ∈ V , it holds that

d

dt

1

2
∥Z∥2 =

Na∑
i=1

No∑
j=1

zij żij =

Na∑
i=1

No∑
j=1

zij

(
− dizij+Cij(Z)+

1

No

No∑
l=1

(dilzil − Cil(Z))
)

= ZTDZ +

Na∑
i=1

No∑
j=1

zij

(
Cij(Z) − 1

No

No∑
l=1

Cil(Z)

)
≤ ZTDZ + NaNoR̃∥Z∥

where we have used
∑No

j=1 zij = 0 for all i. We compute

ZTDZ =

Na∑
i=1

No∑
j=1

(
−diz

2
ij

)
+

1

No

Na∑
i=1

No∑
l=1

dizil

 No∑
j=1

zij

 =

Na∑
i=1

No∑
j=1

−diz
2
ij ≤ −min

i
{di}∥Z∥2.
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Then, for all ∥Z∥ ≥ NaNoR̃
mini{di} , it follows that d

dt
1
2∥Z∥2 ≤ −∥Z∥

(
mini{di}∥Z∥ −NaNoR̃

)
≤ 0. The

result follows by [109, Theorem 4.18].

These results connect the opinion vector Zi ∈ 1⊥
No

to a simplex vector yi = (yi1, . . . , yiNo), where

yij ≥ 0 for all i, j and yi1 + · · · + yiNo
= r, r > 0, i.e. yi ∈ ∆ where ∆ is a (No − 1)-dimensional

simplex. Let V = ∆ × · · · × ∆.

Corollary 9.7.3. Mapping to the Simplex Product V. Given a bounded set Ū ⊂ R, assume

ui, di, αi, γik, βi, δik, bij ∈ Ū , i, k = 1, . . . , Na, j, l = 1, . . . , No. Then, the vector field of (9.3) can be

mapped from the forward invariant region V ∩{|zij | ≤ R, i = 1, . . . , Na, j = 1, . . . , No} to the product

of simplex V by the affine change of coordinates L : V ∩{|zij | ≤ R, i = 1, . . . , Na, j = 1, . . . , No} → V,

Z 7→ r
NoR

Z + r
No

, r > 0.

The simplex product space V is often associated with models of opinion dynamics, e.g., in

[105, 128, 186]. Under the mapping proposed in Corollary 9.7.3 or any other bijective mapping

to the simplex product space (e.g. using the standard softmax function), the system state y =

(y1, . . . ,yNa) ∈ V can be interpreted as the absolute opinions of agents that have equal voting

capacity in the collective decision [68], or as probabilities of choosing a particular option [158].

9.7.3 Proof of Theorem 9.3.5

Opinion dynamics (9.3) of agent i ∈ Ip are defined by

Fij(Z) = −dpzij + bpj+ (9.23)

up(S1(ᾱpzij + α̃p

∑
k∈Ip\{i} zkj +

∑Nc

s̸=p
s=1

∑
k∈Is

γ̃pszkj)+∑No

l ̸=j
l=1

S2(β̄pzil + β̃p

∑
k∈Ip\{i} zkl +

∑Nc

s ̸=p
s=1

∑
k∈Is

δ̃pszkl)).

Let VT (Z) =
∑Nc

p=1 Vp(Z), Vp(Z) = 1
2

∑
i,k∈Ip

∑No

j=1(zij − zkj)
2. Let Fij(Z) = −dizij + Cij(Z).

Then V̇p(Z) = −
∑

i∈Ip

∑
k∈Ip

dp(Zi − Zk)T (Zi − Zk) +
∑

i∈Ip

∑
k∈Ip

∑No

j=1(zij − zkj)(Cij(Z) −

Ckj(Z)) − 1
No

∑
i∈Ip

∑
k∈Ip

∑No

j=1

∑No

l=1(zij − zkj)(Cil(Z) − Ckl(Z)). The last term is zero because∑No

j=1 zij = 0 on V . By the Mean Value Theorem, we can write Cij(Z)−Ckj(Z) in the second term

as up

(
κ1(ᾱp − α̃p) − κ2(β̄p − β̃p)

)
(zij − zkj)

2, where κ1 ∈ K1 and κ2 ∈ K2. Then we find that

V̇p(Z) ≤supκ1∈K1,κ2∈K2

{
− dp + upκ1(ᾱp − α̃p) + upκ2(β̄p − β̃p)

}
2Vp(Z). When (9.7) is satisfied, by

LaSalle’s invariance principle [109, Theorem 4.4] every trajectory of (9.3) converges asymptotically

in time to E , the largest invariant set of VT (Z) = 0. Let ẑpj = zij for any i ∈ Ip. The dynamics
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(9.23) on E reduce to (9.3) with Na = Nc and weights (9.9).

Remark 9.7.4. This proof could be carried out using a group-theoretic approach outlined in [188],

which would guarantee local stability of the clustered manifold. The Lyapunov function approach

presented here provides a global stability guarantee.

9.7.4 Proof of Theorem 9.4.2

J = ((−d + u (α− β)) INa + u(Γ − ∆)) ⊗ P0, with eigenvalues ξiλo, for ξi an eigenvalue of (−d +

u (α− β)) INa
+ u(Γ − ∆)) and λo an eigenvalue of P0 restricted to V . So λo = 1 and ξi =

−d + u(α − β) + uλi, λi, i = 1, . . . , Na, an eigenvalue of Γ − ∆. Thus, whenever α − β + λ > 0,

all eigenvalues of J are negative for u < u∗, zero is an eigenvalue of J for u = u∗ (with multiplicity

(No − 1)Nλ, where Nλ is the multiplicity of λ), and there exist positive eigenvalues for u > u∗.

The form of the eigenvectors of J corresponding to its zero eigenvalue for u = u∗ follows since the

eigenvectors of the Kronecker product of matrices is the Kronecker product of the eigenvectors. For

simple λ, the statement follows from the Equivariant Branching Lemma [83, Section 1.4].

9.7.5 Proof of Proposition 9.4.9

The proof of (1) follows analogously to that of [68, Theorem 2.5] with the additional coefficient di

on the linear terms.

To prove (2), it is sufficient to show equivariance of the dynamics under the action of gen-

erators of SNo × DNa . Element σ ∈ SNo acts on V by permuting the elements of each agent’s

opinion Zi. Generators of SNo
are No transpositions σj where each σj swaps adjacent elements

j and j + 1 (or No and 1 when j = No). Let Fi(Z) = (Fi1(Z), . . . , FiNo
(Z)) and observe

that σjFi(Z) = (Fi1(Z), . . . , Fi(j+1)(Z), Fij(Z), . . . , FiNo(Z)). Computing Fi(σjZ), only Fij and

Fi(j+1) are changed, with Fij(σjZ) = −dzi(j+1) + u
(
S1

(
αzi(j+1) + γz(i−1)(j+1) + γz(i+1)(j+1)

)
+∑No

l ̸=(j+1)
l=1

S2

(
βzil + δz(i−1)(j+1) + δz(i+1)(j+1)

) )
+ b̂. Thus, σjFi(Z) = Fi(σjZ) ∀ j = 1, . . . , No,

i = 1, . . . , Na, and the dynamics are equivariant under the action of SNo . ρ ∈ DNa acts on V by

permuting the order of the agent vectors Zi in the total system vector Z = (Z1, . . . ,ZNa
). The gen-

erators of DNa
are the reflection element ρ1 which reverses the order of elements in Z, and a rotation

ρ2 which cycles forward the vector by one element, mapping each element i to i+1 (and Na to 1). Let

F(Z) = (F1(Z), . . . ,FNa
(Z)) and observe that ρ1F(Z) = (FNa

(Z),FNa−1(Z), . . . ,F2(Z),F1(Z))

and ρ2F(Z) = (FNa
(Z),F1(Z),F2(Z), . . . ,FNa−1(Z)). For compactness we leave out the full ex-

pression for Fij(ρpZ).
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Chapter 10

Patterns of Nonlinear Opinion

Formation on Networks
Anastasia Bizyaeva, Ayanna Matthews, Alessio Franci,

and Naomi Ehrich Leonard

When communicating agents form opinions about a set of possible options, agreement and disagree-

ment are both possible outcomes. Depending on the context, either can be desirable or undesirable.

We show that for nonlinear opinion dynamics on networks, and a variety of network structures, the

spectral properties of the underlying adjacency matrix fully characterize the occurrence of either

agreement or disagreement. We further show how the corresponding eigenvector centrality, as well

as any symmetry in the network, informs the resulting patterns of opinion formation and agent

sensitivity to input that triggers opinion cascades.

10.1 Introduction

Multi-agent systems that perform distributed control tasks in uncertain or dynamic contexts benefit

when agents use network communications to form and change opinions about context-dependent

options. For example, network communications can help autonomous multi-robot teams make better

navigational choices among alternative routes or better allocation choices among alternative tasks.

Mathematical models of opinion dynamics over networks are often used to bring a group to a desired

opinion configuration. In a task-allocation context, agreement is not necessarily the only desirable

opinion configuration, as sometimes agents are better off exploring different routes or doing different

154



tasks.

A general model of opinion dynamics for distributed agents on a network was recently introduced

in [19, 68].In this multi-agent multi-option model, real-valued opinions evolve in continuous time

according to a nonlinear update rule that saturates network exchanges. A key feature of the model

is the emergence of consensus and dissensus as equilibrium opinion configurations, even when agents

are homogeneous, receive no input, and communicate over an all-to-all network. The emergence of

consensus and dissensus depends on a small number of parameters that distinguish the interactions

between agents as cooperative or competitive.

In [19] the behavior of the general model is examined with particular attention to all-to-all and

vertex-transitive cycle network topologies. The work identifies parameter regimes that correspond

to consensus and dissensus (a heterogeneous opinion configuration with neutral average opinion).

In the present paper we take first steps to analyze opinion formation on other classes of networks.

We consider opinion formation for two options and homogeneous agents that communicate over

networks that include K-regular, bipartite, and strongly connected directed graphs. We examine

how network structure influences the group outcome of the opinion formation process, and we prove

that, generically, agreement and disagreement arise on these networks. We show that the parameter

regimes associated with consensus and dissensus for complete graphs in [19] correspond precisely to

agreement and disagreement regimes for more general networks.

The engineering literature on distributed opinion dynamics typically associates formation of

opinions in continuous time to the spectral properties of the Laplacian matrix of the network graph.

In linear consensus protocols, the governing equations take on the structure of the graph Laplacian,

and consensus is achieved as opinions converge to its kernel [153]. Analogous distributed Laplacian

schemes are considered with antagonistic (signed) interconnections in, e.g., [5, 127, 184]. When

graphs are structurally balanced, i.e., when the signed graph Laplacian has a zero eigenvalue [5],

such schemes give rise to clustered disagreement on the network. A nonlinear model of distributed

consensus formation with saturated network interactions studied in [1, 61, 62, 70, 87] also relies on

Laplacian-like structure of the governing equations, with each agent weighting its opinion state based

on its in-degree on the network graph. Linearization of this model about the unopinionated state

yields linear Laplacian consensus dynamics.

We study opinion dynamics of homogeneous agents with governing equations that do not neces-

sarily have a Laplacian structure. We show how spectral properties of the adjacency matrix of the

underlying graph, rather than those of its Laplacian, play a key role in characterizing the opinion

formation process. In [61] the spectral properties of the adjacency matrix are tied to a necessary and
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sufficient condition for existence of multi-stable consensus equilibria. However, unlike our model, the

model in [61] relies on a Laplacian structure, and so the dynamics do not inherit the full symmetry

properties of the network graph. For our model, we show that the largest and smallest eigenvalues of

the adjacency matrix determine if nonzero opinions form, and the associated eigenspaces select the

sign and relative magnitude of resultant opinions on the network. With the addition of dynamics on

an attention parameter, the eigenvectors also determine which agents in the group are maximally

sensitive to inputs. We illustrate how this can be used to trigger opinion cascades.

In Section 10.2 we present the opinion dynamics model of [19] on a network in the case of

homogeneous agents and two options. In Section 10.3 we prove that agreement and disagreement

equilibria, of which consensus and dissensus are special cases, arise on networks as bifurcations

from an unopinionated equilibrium. We prove relationships between the magnitude of an agent’s

equilibrium opinion and its centrality on the network in Sections 10.4, and to the symmetry properties

of the network graph in Section 10.5. In Section 10.6 we introduce attention feedback dynamics and

demonstrate how the group’s sensitivity to input relates to the adjacency eigenvectors. We conclude

in Section 10.7 .

10.2 Opinion Dynamics Model

We study a nonlinear model of Na homogeneous agents forming opinions about two options, a

specialization of the general heterogeneous multi-agent, multi-option, model introduced in [19, 68].

The opinion of each agent i is captured by a real-valued variable xi ∈ R. When xi = 0 agent i has a

neutral opinion, and when xi > 0 (< 0) agent i favors option A (option B). A greater magnitude |xi|

corresponds to a stronger commitment of agent i to one of the options. We define a threshold ϑ > 0

to formalize what is meant by “close”; the value of ϑ can be chosen for purposes of interpretation.

We call an agent opinionated when |xi| > ϑ > 0, and unopinionated otherwise.

The directed graph Ḡ = (V, Ē) encodes which agents can communicate with which other agents.

The set of vertices V = {1, . . . , Na} represents the set of Na agents, and edges Ē ⊆ V ×V represent

interactions between agents. If edge ēik ∈ Ē, then agent k is a neighbor of agent i. When inter-

agent communication is bidirectional, G is undirected: if ēik ∈ Ē, then ēki ∈ Ē. The graph adjacency

matrix Ā ∈ RNa×Na encodes interaction weights with element āik ̸= 0 if and only if ēik ∈ Ē. The sign

of inter-agent weights determines whether agents are cooperative (āik > 0) or competitive (āik < 0).

In this paper we specialize āik ∈ {0, 1}.

Let x = (x1, . . . , xNa) ∈ RNa be the opinion state of the group. When x = 0, the group is in the
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neutral state. When all agents are unopinionated, the group is in an unopinionated state. A pair of

opinionated agents i, k agree if both share the same qualitative opinion state, i.e., sign(xi) = sign(xk).

When all agents agree, the group is an agreement state. The consensus state is a special type of

agreement state in which opinions are close in value, i.e. |xi − xk| < ϑ for all i, k ∈ V . A pair of

opinionated agents disagrees if each has a different qualitative opinion state. If at least one pair of

agents disagrees, then the group is in a disagreement state. The dissensus state is a special type of

disagreement state in which individual agents may be opinionated but the group is unopinionated

on average, i.e.,
∣∣∣∑Na

i=1 xi

∣∣∣ < ϑNa.

Each agent’s opinion is updated in continuous time as a function of three key terms: a linear

damping term, a nonlinear network interaction term that includes self-reinforcement, and an additive

input term:

ẋi = −dxi + uiS

αxi + γ

Na∑
k=1
k ̸=i

āikxk

+ bi := hi(x). (10.1)

S : R → R is an odd saturating function satisfying S(0) = 0, S′(0) = 1, sign (S′′(z)) = − sign(z).

The saturation function is applied to the sum of two terms. The first is a self-reinforcement term

with weight α ≥ 0. The second is the sum of opinions of agent i’s neighbors with weight γ ∈ R. That

the network interactions are saturated using S in (10.1) means the opinion dynamics of agent i are

proportionally sensitive to changes in these interactions when the corresponding opinion magnitudes

are small, but that the influence of these interactions levels off when the corresponding opinion

magnitudes become large. In all simulations we let S = tanh; however the results hold qualitatively

for more general sigmoidal functions. For the general model, motivation, and relation to the broader

literature see [19,68].

The parameter d > 0 is the damping coefficient. In the absence of network interactions, agent

i’s opinion xi will converge exponentially to bi/d at a rate determined by d. The control parameter

ui > 0 is the attention of agent i to network interactions. Attention ui governs the influence of the

saturated network interactions, relative to damping, on the opinion dynamics of agent i. When ui

is above a critical threshold that grows with d, the magnitude of xi grows nonlinearly to a value

much larger than bi/d. Attention ui can be fixed, time-varying, or defined to evolve according to

state-dependent (closed-loop) dynamics. The input bi ∈ R is an external signal or internal bias that

stimulates an agent in favor of option A (option B) when bi > 0 (< 0). For most of this paper we

focus on the zero-input case: bi = 0 for all i. We consider nonzero input in Section 10.6.

Let W (λi) be the generalized eigenspace of Ā relative to its eigenvalue λi. Let λmax and λmin
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be the eigenvalues of Ā with largest and smallest real parts. In the following lemma we state several

useful properties of λmin, λmax, and their associated eigenspaces.

Lemma 10.2.1. A. When Ḡ is strongly connected (directed), λmax > 0 is real with multiplicity 1,

and for any nonzero vector v = (v1, . . . , vNa) ∈ W (λmax), vi ̸= 0 and sign(vi) = sign(vk) for all

i, k ∈ V ;

B. When Ḡ is connected (undirected), λmin < 0 is real and for any nonzero vector w =

(w1, . . . , wNa) ∈ W (λmin), sign(vi) = − sign(vk) for at least one pair of i, k ∈ V .

Proof. Observe that tr Ā = 0 so Re (λmin) < 0. When Ḡ is undirected, Ā is symmetric and λmin is

real. Further, Ā is a nonnegative matrix. Parts A and B follow from the Perron-Frobenius Theorem

[57, Theorem 11].

10.3 Agreement and Disagreement

In this section we study opinion dynamics (10.1) with static ui := u ≥ 0 for all i ∈ V and show

how cooperative agents (γ > 0) give rise to agreement, whereas competitive agents (γ < 0) give

rise to disagreement. In the following theorem, we expand upon the result in [19, Theorem IV.1]

for two-option networks, and describe the steady-state solutions that arise from (10.1) in different

parameter regimes.

Theorem 10.3.1. The following hold true for (10.1) with ui := u ≥ 0 and bi = 0 for all i =

1, . . . , Na:

A. Cooperation leads to agreement: Let Ḡ be a strongly connected directed graph. If γ > 0,

the neutral state x = 0 is a locally exponentially stable equilibrium for 0 < u < ua and unstable for

u > ua, with

ua =
d

α + γλmax
. (10.2)

At u = ua, branches of agreement equilibria, xi ̸= 0, sign(xi) = sign(xk) for all i, k ∈ V , emerge in

a steady-state bifurcation off of x = 0 along W (λmax);

B. Competition leads to disagreement: Let Ḡ be a connected undirected graph. If γ < 0 the

neutral state x = 0 is a locally exponentially stable equilibrium for 0 < u < ud and unstable for

u > ud, with

ud =
d

α + γλmin
. (10.3)

At u = ud, branches of disagreement equilibria, sign(xi) = − sign(xk) for at least one pair i, k ∈ V ,
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Figure 10.1: Steady-state patterns of agreement with γ = 1.3 (left) and disagreement with γ = −1.3 (right)
from simulation of opinion dynamics (10.1) for four undirected graph types. Node color represents opinion
xi at t = 500. All nodes have bi = 0 and randomized initial opinions drawn from U(−1, 1). Parameters:
d = 1, α = 1.2, u = 0.31 for path and cycle, u = 0.26 for star and wheel.

i ̸= k, emerge in a steady-state bifurcation off of x = 0 along W (λmin).

Proof. The Jacobian of (10.1) evaluated at x = 0 is J(0) = (uα−d)I +uγĀ, where I is the identity

matrix. The eigenvalues of J(0) are µi = u(α + γλi) − d where λi is an eigenvalue of Ā. When

0 ≤ u < mini
d

α+γRe (λi)
, Re (µi) is negative for all i ∈ V and x = 0 is locally exponentially stable.

For values of u above this bound the origin is unstable. When γ > 0 this bound ua corresponds to

λi = λmax and is given by (10.2). When γ < 0 the bound ud corresponds to λi = λmin and is given

by (10.3). Thus, when γ > 0 (γ < 0) a steady-state bifurcation happens at u = ua (u = ud) along

W (λmax) (W (λmin)). The rest follows from Lemma 10.2.1.

Remark 10.3.2. Due to space constraints, we defer to a future publication detailed analysis of sta-

bility of the agreement and disagreement equilibria emerging at agreement and disagreement opinion-

forming bifurcations. For one-dimensional kernels, we expect these equilibria to be generically stable,

as easily verifiable using center-manifold reduction arguments.

A main takeaway of Theorem 10.3.1 is that the spectral properties of Ā inform the opinion

formation outcomes on the network. Characterizing the eigenvalues λmin, λmax along with their

associated eigenspaces W (λmin), W (λmax) is equivalent to characterizing the primary branches of

opinionated steady-state solutions of (10.1) emerging at bifurcations from the neutral state. We use

this approach to systematically classify the opinion patterns that arise for various networks with

spectral properties that are well known or easily established. For larger and less structured networks

these quantities can be easily computed numerically. Figures 10.1 and 10.2 illustrate agreement and

disagreement equilibria of (10.1) on a variety of graphs, with u slightly above the bifurcation point.

Network consensus and dissensus are special cases of agreement and disagreement described in

Theorem 10.3.1. Let the consensus space be Wc := span{1} and the dissensus space be Wd := {x ∈
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Figure 10.2: Disagreement patterns on odd cycle (A), 3-regular (B) and randomly generated (C) graphs.
Parameters are d = 1, α = 0.5, γ = −0.5, u = ud + 0.01. All else is as in Fig. 10.1.

RNa :
∑Na

i=1 xi = 0}. Observe that Wc and Wd are orthogonal complements in RNa . Outside a

ϑ-neighborhood of the origin, the ϑ-neighborhood of Wc is made of consensus solutions, whereas the

ϑ-neighborhood of Wd is made of dissensus solutions. We show next that for graphs in which all

agents have the same number of neighbors, the agreement and disagreement equilibria of Theorem

10.3.1 correspond to consensus and dissensus.

Definition 10.3.3. Ĝ = (V̂, Ê) is a K-regular graph if every vertex i ∈ V̂ has exactly K neighbors.

Lemma 10.3.4. If Ḡ is undirected, connected, and K-regular, all vectors x = (x1, . . . , xNa
) ∈

W (λmin) satisfy
∑Na

i=1 xi = 0.

Proof. Observe that for a connected, K-regular graph, λmax = K and W (λmax) = Wc. Because Ā is

symmetric, all its generalized eigenspaces are orthogonal and, thus, W (λmin) ⊆ Wd. The statement

of the lemma follows.

Theorem 10.3.5 (Consensus and Dissensus). If Ḡ is undirected, connected, and K-regular, the

agreement bifurcations at u = ua with γ > 0 give rise to consensus solutions |xi − xk| < ϑ for all

i, k ∈ V , and the disagreement bifurcations at u = ud with γ < 0 give rise to dissensus solutions∣∣∣∑Na

i=1 xi

∣∣∣ < ϑNa.

Proof. From Theorem 10.3.1 and Lemma 10.3.4, an opinion-forming bifurcation emerges along the

consensus space for γ > 0 and dissensus space for γ < 0. This means that the resulting equilibrium

solutions are arbitrarily close to the consensus (dissensus) space as u ↘ ua (u ↘ ud), where the

notation ↘ signifies approaching in value from above.

Figure 10.1B and Figure 10.2A,B are examples of consensus and dissensus on 2-regular graphs

(a cycle with an even and odd number of nodes) and a 3-regular graph.

160



10.4 Agent Centrality

In this section we examine how equilibrium opinions of agents depend on their location in the graph.

We show that at an opinion-forming bifurcation, an agent’s opinion strength is often determined by

its relative location in the network as quantified by a suitable centrality measure.

A centrality measure ranks how central each node is in a network, i.e., measures its influence

over some emergent network property. We recall the definition of a well known network centrality

measure originally proposed in [27]:

Definition 10.4.1 (Eigenvector Centrality). The entries of the normalized positive left eigenvector

corresponding to the eigenvalue λmax of Â for a (directed or undirected) graph Ĝ provide a centrality

measure for the nodes of the graph.

It is shown in [28] that eigenvector centrality, deriving from the adjacency matrix and not the

Laplacian, is particularly useful for graphs on which agents with high in-degree have many neighbors

of low in-degree, and is related to several other common graph centrality measures. Let vc =

(vc1, . . . , v
c
Na

) be the centrality eigenvector for Ā from Definition 10.4.1. For undirected graphs, this

centrality vector determines the opinion strength of each agent at an agreement equilibrium predicted

by Theorem 10.3.1A, i.e., the larger an agent’s centrality, the stronger its opinion at agreement.

Theorem 10.4.2. Consider opinion dynamics (10.1) with undirected, connected Ḡ, ui := u ≥ 0,

bi = 0, and α > 0. Agreement equilibria x = (x1, . . . , xNa) described in Theorem 10.3.1.A satisfy

|xi| < |xk| if vci < vck and |xi| = |xk| if vci = vck for all i, k = 1, . . . , Na.

Proof. Let v = (v1, . . . , vNa) be the normalized right λmax-eigenvector of Ā. By symmetry of Ā,

vi = vci for all i = 1, . . . , Na and the theorem follows from Theorem 10.3.1.A.

We next state an analogous result for disagreement equilibria on a common class of graphs called

bipartite graphs.

Definition 10.4.3. Undirected Ĝ = (V̂, Ê) is a bipartite graph if V̂ can be subdivided into disjoint

subsets V̂1, V̂2 such that every edge êik ∈ Ê connects a vertex in V̂1 to one in V̂2.

In the following, we show that for disagreement on bipartite graphs, an agent’s partition membership

determines the sign of its equilibrium opinion and an agent’s centrality in the network determines

the strength of its equilibrium opinion.

Lemma 10.4.4 (λmin-Eigenvector of Bipartite Graph). Suppose Ḡ is a bipartite graph and let V̂1, V̂2

be the two vertex subsets of V from Definition 10.4.3. Let w = (w1, . . . , wNa) be the eigenvector
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corresponding to λmin of Ā. Then wi, wk ̸= 0 and sign(wi) = − sign(wk) for all i ∈ V̂1, k ∈ V̂2.

Moreover, |wi| = vci for all i = 1, . . . , Na.

Proof. For all bipartite graphs, dimW (λmin) = 1. By symmetry of Ā, the λmax-eigenvector is equal

to vc. The lemma then follows from [190, Theorem 1.2], which states that the terms of the λmin-

eigenvector are equal in magnitude to the terms of the λmax-eigenvector, with the sign structure

reflecting the bipartition.

Theorem 10.4.5 (Disgreement Opinion Strength Reflects Agent Centrality on Bipartite Graphs).

Consider (10.1) with undirected bipartite Ḡ, ui := u ≥ 0, bi = 0, α > 0, and γ < 0. Let V̂1, V̂2 be

the two subsets of V from Definition 10.4.3. Disagreement equilibria x = (x1, . . . , xNa
) described in

Theorem 10.3.1.B satisfy |xi| < |xk| if vci < vck and |xi| = |xk| if vci = vck for all i, k = 1, . . . , Na.

Moreover, sign(xi) = − sign(xk) for all i ∈ V̂1, k ∈ V̂2 .

Proof. This follows by Theorem 10.3.1B and Lemma 10.4.4.

All graphs shown in Figure 10.1 have a simple λmin. Further, the cycle, path, and star are

bipartite graphs and the sign distribution of nodes across options reflects their bipartition. Observe

that the magnitude of opinions reflects relative centrality on all the shown graphs in both the

agreement and disagreement parameter regimes, including the wheel which is not bipartite. This

suggests that the λmin-eigenvector can sometimes be related to a notion of agent centrality even

when it does not precisely equal vc. In contrast, graphs in Figure 10.2 are not bipartite, and graphs

A,B have a two-dimensional W (λmin). The distribution of disagreement opinions on these graphs

is more heterogeneous in magnitude, despite the first two graphs being regular and all agents being

equally central. Additional equilibrium distributions of opinions are possible in the disagreement

regime.

10.5 Graph Symmetry

In this section we relate the patterns of emergent opinions on solution branches described in Theorem

10.3.1 to the symmetry of the underlying graph. We first state several key definitions.

Recall that a graph automorphism of Ḡ is a permutation of vertices that preserves adjacency

(i.e., maps edges to edges and non-edges to non-edges). The automorphism group Aut(Ḡ) := Γ is

the set of all graph automorphisms of Ḡ. Define the group of permutations of a set of n symbols

{1, . . . , n} as Sn. Then for graph Ḡ with Na agent vertices, Γ ⊆ SNa
. The graph automorphism
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group of Ḡ can also be interpreted as the group of permutation matrices which commute with its

adjacency matrix Ā. Each element ρ ∈ Γ can be represented by a permutation matrix Pρ which

satisfies PρĀ = ĀPρ [41, Proposition 3.8.1]. We commonly refer to ρ as a symmetry of Ḡ and Γ as

its symmetry group.

A connected notion is the equivariance of a dynamical system with respect to a symmetry

group. Consider the opinion dynamics (10.1) as a dynamical system ẋ = h(x), where the map

h : RNa → RNa is h(x) = (h1(x), . . . , hNa
(x)). Let Σ be a compact Lie group with elements σ that

act on RNa . Then h is σ-equivariant for some σ ∈ Σ if σh(x) = h(σx), and h is Σ-equivariant if this

holds true for all σ ∈ Σ [83, Definition 1.7]. In the following theorem we show that the symmetry

group of the graph Ḡ is also a symmetry group of the opinion dynamics (10.1) with zero input.

Theorem 10.5.1 (Γ-equivariance). Consider opinion dynamics (10.1) with bi = 0 for i = 1, . . . , Na.

Let Γ be the automorphism group of Ḡ. The opinion dynamics are Γ-equivariant.

Proof. Let ρ be an element of Γ, and define the function Ŝ : RNa → RNa as (S(y1), . . . , S(yNa)).

Every permutation ρ can be decomposed into a product of transpositions ρik that interchange

elements in positions i and k of a set. For an arbitrary transposition, it is easy to see that Pρik
Ŝ
(
y
)

=

Ŝ
(
Pρik

y
)
, and by iteratively applying transpositions we see that for all permutations ρ, PρŜ

(
y
)

=

Ŝ
(
Pρy

)
. Using this and the definition of graph automorphism we get

Pρh(x) = −dPρx + uŜ
(
Pρ(αI + γĀ)x

)
= −dPρx + uŜ

(
(αI + γĀ)Pρx

)
= h(Pρx).

This holds for all ρ ∈ Γ, and the theorem follows.

In the remainder of this section we illustrate how graph symmetry dictates patterns of opinions

on the network.

Definition 10.5.2. Let Γ be the automorphism group of Ḡ, and i ∈ V a vertex. An orbit of i is

Oi = {k ∈ V |k = ρi for some ρ ∈ Γ}. The orbits are equivalence classes that partition V through

the equivalence relation

i ∼ k if k = ρi for some ρ ∈ Γ. (10.4)

Theorem 10.5.3. Consider opinion dynamics (10.1) with ui := u ≥ 0 and bi = 0 for all i ∈ V .

Let Γ be the automorphism group of the undirected graph Ḡ, and for any two vertices i, k ∈ V define

the equivalence relation i ∼ k as in (10.4).
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A. Suppose γ > 0. For the agreement equilibria x = (x1, . . . , xNa
) from Theorem 10.3.1.A, if i ∼ k,

then xi = xk.

B. Suppose γ < 0 and λmin has multiplicity 1. For the disagreement equilibria x = (x1, . . . , xNa
)

from Theorem 10.3.1.B, if i ∼ k, then |xi| = |xk|.

Proof. In A and B, the solutions x appear along the 1-dimensional subspace ker J(0). For any ρ ∈ Γ

and v ∈ ker J(0), Pρv ∈ ker J(0) [83, Remark 1.25], and Pρv = ±v [41, Lemma 3.8.2]. The only

way for this to be true is if for any i, k ∈ V for which i ∼ k, |vi| = |vk|.

All graphs shown in Figure 10.1 have a nontrivial symmetry and a simple λmin. The vertices

contained in the same orbit under the action of its symmetry have equal magnitude opinion in both

agreement and disagreement parameter regimes (e.g. all the vertices of a cycle, the outer vertices

of the star and wheel). The randomly generated graph in Figure 10.2C also has a simple λmin

but only a trivial symmetry. Each node is its own orbit and the equilibrium opinion magnitude is

different at each node. In contrast, both graphs in Figure 10.2A,B have a nontrivial symmetry but

the dimension of W (λmin) is 2 and the conditions of Theorem 10.5.1 are not met. The disagreement

opinion magnitudes on these graphs do not reflect the orbit structure of the graph’s symmetry group.

10.6 Agent Sensitivity and Opinion Cascades

In [19, Section VI] a state feedback law is introduced for the attention parameter ui in (10.1), which

enables the group to become opinionated in response to input bi. Each agent’s attention parameter

ui tracks a saturated norm of the system state observed by agent i, with dynamics defined by

τsu̇i = −ui + Su

(
x2
i +

Na∑
k=1

(āikxk)2

)
. (10.5)

Here, τs > 0 is the time scale of the integration and Su(y) = uf (F (g(y − ym)) − F (−gym)), with

F (x) = 1
1+e−x . Design parameters g, uf , ym > 0 tune the system response. The positive feedback

between opinion strength and attention defined by dynamics (10.5) provides the resulting opinion-

attention dynamics with a threshold for the input strength needed to let an originally weakly opin-

ionated (|xi| ≪ ϑ, for all i = 1, . . . , Na), weakly attentive (|ui| ≪ ϑ, for all i = 1, . . . , Na) network

transition to a strongly opinionated (|xi| ≫ ϑ, for all i = 1, . . . , Na), strongly attentive (|ui| ≫ ϑ,

for all i = 1, . . . , Na) state [67].

Such an opinion cascade is illustrated in Figures 10.3 and 10.4 top left. An opinion cascade is
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of agreement (disagreement) type if the final opinion configuration is of agreement (disagreement)

type.

A rigorous analysis of opinion cascade over networks is the subject of ongoing work based on

unfolding theory [82] of agreement and disagreement bifurcations. Here, we illustrate with numerical

examples. We show in particular how the spectral properties of the adjacency matrix predict which

agents are more likely to trigger a cascade when excited by an input.

We conjecture that the norm of the projection of the vector of inputs b onto the eigenspaces

W (λmax) or W (λmin), depending on the cooperative or competitive regime, is directly related to

whether or not the opinion cascade gets triggered. To illustrate this, in Figures 10.3 and 10.4 we show

two examples of a disagreement cascade for graphs with a simple λmin. In Figure 10.3 the graph

is a balanced tree, which is bipartite. Thus, the magnitude of each entry of its λmin-eigenvector

corresponds to the corresponding agent’s relative centrality, as proved in Lemma 10.4.4. When an

input is given to the most central agent an opinion cascade gets triggered, whereas when the same

input is given to an agent located on an outer leaf, the group remains neutral.

Analogously, in Figure 10.4 a cascade is triggered on a randomly generated network when an

input is given to the agent with the largest magnitude entry in the λmin-eigenvector, and is not

triggered when the same input is given to the agent with the smallest entry. The post-cascade

pattern of opinions on this network is very close to the pattern for the solution of the zero-input

system shown in Figure 10.2C. In this way, the spectral properties of Ā can be used not only to

predict the patterns of opinion formation for opinion dynamics (10.1) both with a static ui = u and

coupled with (10.5), but also to inform which agent should receive a control signal or carry a sensor

in order to have maximal likelihood of an informed opinion cascade spreading on the network.

10.7 Discussion

We have shown how patterns of nonlinear opinion formation on two-option networks can be studied

systematically using spectral properties of the graph adjacency matrix. We proved that agent

centrality and symmetry of the underlying graph select the pattern of opinions in agreement and

disagreement for a large set of networks. We illustrated how the eigenvectors of the adjacency matrix

inform sensitivity of individual nodes to input that triggers opinion cascades; proving the influence

of distributed input on opinion cascades is the subject of ongoing work. Other future work includes

the natural generalization to multi-option networks with opinion dynamics defined in [19].
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Figure 10.3: Triggering a cascade on the balanced tree. Input bi = 0.4 for agent marked with arrow; bi = 0
for all other agents. Simulations of (10.1) start from small random initial opinions drawn from N (0, 0.1).
Left: time trajectories of the dynamics. Right: final opinion, indicated by color, of simulation at t = 300.
Parameters: d = 1, α = 1, γ = −1, ui(0) = 0 for all i ∈ V , g = 10, ym = 0.4, uf = 1, τs = 10. Only in the
top plots does the model undergo a disagreement opinion cascade, with ϑ = 0.5.

Figure 10.4: Triggering a cascade on a randomly generated graph. Input bi = −0.45 for agent marked with
arrow; bi = 0 for all other agents. Simulations of (10.1) start from small random initial opinions drawn from
N (0, 0.1). Left: time trajectories of the dynamics. Right: final opinion, indicated by color, of simulation at
t = 300. Parameters: d = 1, α = 0.5, γ = −0.5, ui(0) = 0 for all i ∈ V , g = 10, ym = 0.4, uf = 1, τs = 10.
Only in the top plots does the model undergo a disagreement opinion cascade, with ϑ = 0.5.
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Chapter 11

Control of Agreement and

Disagreement Cascades with

Distributed Inputs
Anastasia Bizyaeva, Timothy Sorochkin, Alessio Franci,

and Naomi Ehrich Leonard

For a group of autonomous communicating agents to carry out coordinated objectives, it is

paramount that they can distinguish meaningful input from disturbance, and come rapidly and re-

liably to agreement or disagreement in response to that input. We study how opinion formation

cascades through a group of networked decision makers in response to a distributed input signal.

Using a nonlinear opinion dynamics model with dynamic feedback modulation of an attention pa-

rameter, we prove how the triggering of an opinion cascade and the collective decision itself depend

on both the distributed input and node agreement and disagreement centrality indices, determined

by the spectral properties of the network graph. Moreover, we show how the attention dynamics

introduce an implicit threshold that distinguishes between distributed inputs that trigger cascades

and ones that are rejected as disturbance.

11.1 Introduction

Emerging technologies rely on network communications and sensor input to make coherent collective

decisions. For example, autonomous multi-robot teams must cooperate to move as a group, avoid
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collisions, and perform collective tasks in potentially dynamic and uncertain environments. These

objectives necessarily involve on-the-fly collective decision making about context-dependent options,

such as which of multiple available paths to take, in which direction to turn, or how to distribute

available tasks among team members. There is urgent need for a unified design framework that

enables autonomous teams to rapidly and reliably coordinate decisions across different contexts in

a distributed manner.

Mathematical models of networked opinion dynamics, e.g. [62, 105, 160, 161, 220], can be useful

for this purpose, in part due to their analytical tractability. However, most existing models rely on

a linear weighted-average opinion updating process, which imposes limits on the range of behaviors

exhibited. Notably, special network structure or asymmetry is needed to produce solutions other

than consensus, whereas applications that require groups to split among locations or tasks warrant

more generically enabled disagreement solutions.

We present new results for the nonlinear opinion dynamics model [19,20,67,68], which provides

an analytically tractable generalization of models that rely on linear weighted-averaging by apply-

ing a saturation function to opinion exchanges. The saturation makes the opinion update process

fundamentally nonlinear, which has a number of important consequences. First, the model yields

multi-stability of disagreement solutions as well as agreement solutions, each in easily identifiable

parameter regimes, even for homogeneous agents. Second, opinions form through a bifurcation in

which the neutral solution becomes unstable and agreement or disagreement solutions become sta-

ble, independent of the number of agents or options [19] and across network topologies [20]. This

means solutions are reached rapidly and reliably – strength of opinions grow nonlinearly even with

little or no input.

Our contributions yield a rigorous and systematic method for designing distributed inputs to

control opinion formation and opinion cascades. We specialize the model to opinions on two options

here, but results extend naturally to an arbitrary number of options. First, using Lyapunov-Schmidt

reduction methods [82, Chapter VII], we prove that opinions generically form through a supercritical

pitchfork bifurcation where the two stable branches are either agreement solutions or disagreement

solutions, which we can fully characterize. Second, we prove that the agreement (disagreement)

centrality of a node, which depends only on the spectral properties of the network adjacency matrix,

determines the influence an input to the node has on the agreement (disagreement) bifurcation

behavior. Third, when the opinion dynamics are coupled with the feedback attention dynamics

introduced in [19], sufficiently large inputs can trigger an opinion cascade, depending on where

in the network they are introduced. We show how agreement and disagreement centrality indices
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predict the sensitivity of opinion cascades to distributed inputs: The more aligned the input vector

is with the centrality vector, the smaller the inputs need to be to trigger a cascade.

We present the model in Section 11.2 and review Lyapunov-Schmidt reduction in Section 11.3.

We prove the pitchfork bifurcations and the role of distributed input on opinion formation behavior

for constant attention in Section 11.4 and for dynamic feedback controlled attention in Section 11.5.

We conclude in Section 11.6.

11.2 Opinion Dynamics Model

We study a model of Na agents communicating over a network and forming opinions on two options

through a nonlinear process specialized from the multi-option general model in [19],[68]. As in [20],

we specialize to agents that are homogeneous with respect to three fixed parameters in the dynamics:

the rate of forgetting (damping coefficient d > 0), the edge weight in the communication network

(γ ∈ R), and the strength of self-reinforcement of opinion (α ≥ 0). In [20], we focused on the zero-

input setting, i.e., the case in which there is no stimulus, evidence or bias that informs the agents

about the relative merits of the options. Instead, here, we consider an input bi ∈ R, for each agent

i = 1, . . . , Na, and allow the inputs to be heterogeneously distributed over the network of agents.

We further model heterogeneity over the agents in their attention to network exchange.

Agent interactions are encoded in graph G = (V,E) where V = {1, . . . , Na} is the index set of

vertices. Vertex i ∈ V represents agent i, and edge set E ⊆ V × V represents agent interactions.

A = (aik), i, k ∈ V , is the unweighted graph adjacency matrix with elements satisfying aik = 1 if

and only if eik ∈ E, and aik = 0 otherwise. We let aii = 0 for all i ∈ V . G is an undirected graph if

aik = aki for all i, k ∈ V . Let λq, q = 1, . . . , Na, be the eigenvalues of A and W (λq) the generalized

eigenspace associated to λq. We define λmax and λmin to be the λq with largest and smallest real

parts, respectively, and vmax (wmax) and vmin (wmin) to be the corresponding unit right (left)

eigenvectors.

With two options, the opinion of each agent i is a real-valued scalar xi ∈ R. The sign of xi

corresponds to agent i favoring option 1 (xi > 0) or favoring option 2 (xi < 0). The magnitude

of the opinion variable xi describes the strength of agent i’s commitment. The vector of agents’

opinions x = (x1, . . . , xNa
) ∈ RNa is the network opinion state.

Agent i has a neutral opinion when xi = 0, and we say it is opinionated otherwise. Furthermore

we say that any pair of agents i, k ∈ V agree (disagree) when they are opinionated and favor the

same option (different options), i.e. sign(xi) = sign(xk) (sign(xi) ̸= sign(xk) ). The group is in an
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agreement state when all agents agree, and in a disagreement state when at least one pair of agents

disagree.

Each agent i updates its own opinion state xi in continuous time according to the nonlinear

update rule:

ẋi = −dxi + uiS

(
αxi + γ

∑Na

k ̸=i
k=1

aikxk

)
+ bi. (11.1)

The rule has three parts: a damping term with coefficient d > 0, a nonlinear interaction term that

includes inter-agent exchanges with weight γ ∈ R and a self-reinforcement term with weight α ≥ 0,

and an additive input bi ∈ R.

The nonlinearity applied to the inter-agent exchanges and self-reinforcement is defined by an odd

sigmoidal saturating function S which satisfies S(0) = 0, S′(0) = 1, and sign(S′′(z)) = − sign(z).

This is motivated from the literature and means that agent i is more influenced by opinion fluctua-

tions in its neighbors when their average opinion is close to neutral, and as neighbors’ opinions grow

large on average their influence levels off. In simulations and analysis throughout this paper we use

S = tanh. We purposely leave the sigmoid more general in (11.1) because the results in this paper

generalize to arbitrary odd sigmoidal functions with minor modifications in the algebraic details of

the proofs.

We begin by specializing a result from [20].

Proposition 11.2.1 ([20], Theorem 1). The following hold true for (11.1) with ui := u ≥ 0 and

bi = 0 for all i = 1, . . . , Na:

A. Cooperation leads to agreement: Let G be a connected undirected graph. If γ > 0, the neutral

state x = 0 is a locally exponentially stable equilibrium for 0 < u < ua and unstable for u > ua,

with ua = d
α+γλmax

. At u = ua, branches of agreement equilibria, xi ̸= 0, sign(xi) = sign(xk) for all

i, k ∈ V , emerge in a steady-state bifurcation off of x = 0 along W (λmax);

B. Competition leads to disagreement: Let G be a connected undirected graph. If γ < 0 the

neutral state x = 0 is a locally exponentially stable equilibrium for 0 < u < ud and unstable for

u > ud, with ud = d
α+γλmin

. At u = ud, branches of disagreement equilibria, sign(xi) = − sign(xk)

for at least one pair i, k ∈ V , i ̸= k, emerge in a steady-state bifurcation off of x = 0 along W (λmin).
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11.3 Lyapunov-Schmidt Reduction

To systematically characterize the equilibria of the opinion dynamics model as a function of pa-

rameters, we leverage Lyapunov-Schmidt reduction and its use in computing bifurcation diagrams.

Consider the n−dimensional dynamical system ẏ = Φ(y,p), where Φ : Rn ×Rm → Rn is a smooth

parameterized vector field, y ∈ Rn is a state vector, and p ∈ Rm is a vector of parameters. Let

rs ∈ Rn, s = 1 . . . N . The N th order derivative of Φ at (y∗,p∗) is

(dNΦ)y∗,p∗(r1, . . . , rN ) =
∂

∂t1
. . .

∂

∂tN
Φ

(
y∗ +

N∑
s=1

tsrs,p
∗

)∣∣∣∣∣
t1=···=tN=0

. (11.2)

The equilibria of ẏ = Φ(y,p) are the level sets Φ(y,p) = 0, which defines the bifurcation diagram

of the system.

The Jacobian of the system is the matrix J with elements Jij = ∂Φ(y,p)
∂yij

. When J evaluated at an

equilibrium point (y∗,p∗) is degenerate (i.e. has rank n−m where 0 < m < n), the local bifurcation

diagram can be described using m variables and the point is a singular point. The Lyapunov-Schmidt

reduction of Φ(y,p) is an m-dimensional system of equations that captures the structure of the local

bifurcation diagram of the system near (y∗,p∗). The procedure for deriving the Lyapunov-Schmidt

reduction [82, Chapter VII] involves projecting the Taylor expansion of Φ(y,p) onto the kernel of its

Jacobian at the singularity. The Implicit Function Theorem is used to solve for n−m variables as

function of the remaining m, thus approximating the local vector field in the directions orthogonal

to the kernel.

The normal form for a bifurcation is the simplest equation that captures all qualitative features

of the bifurcation diagram. Systems with an odd state symmetry Φ(−y,p) = −Φ(y,p) often exhibit

a pitchfork bifurcation. A normal form for the pitchfork bifurcation universal unfolding is

ẏ = p1y ± y3 + p2 + p3y
2 (11.3)

where y ∈ R is the reduced state, p1 is a bifurcation parameter and p2, p3 are unfolding parameters.

When p2 = p3 = 0, the symmetric pitchfork normal form is recovered in (11.3). When one of

the unfolding parameters is nonzero, it follows from unfolding theory [82, Chapter III] that the

bifurcation diagram changes locally to one of four possible topologically distinct configurations (see

Fig. 11.1).
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11.4 Constant Attention: Sensitivity to Input

In this section, we investigate how a vector of constant inputs b informs the outcome of the opinion

formation process (11.1) when attention is constant and ui := u ∈ R for all i = 1, . . . , Na. The

Jacobian of (11.1) evaluated at x = 0 is

Jx = (uα− d)I + uγA (11.4)

with identity matrix I. The dynamics (11.1) in vector form are

ẋ = −dx + uS ((αI + γA)x) + b := F (x, u,b) (11.5)

where S(y) = (S(y1), . . . , S(yn)), y ∈ Rn, and b = (b1, . . . , bNa). The following theorem generalizes

[87, Theorem 1] to describe bifurcations of the opinion dynamics of homogeneous agents. The

theorem shows that any bifurcation of x = 0 of (11.1) that is generated by a simple eigenvalue of

the adjacency matrix A must be a pitchfork bifurcation.

Theorem 11.4.1 (Pitchfork Bifurcation). Consider (11.1) and define u∗ = d
α+λγ , where λ is a

simple real eigenvalue of adjacency matrix A for a strongly connected graph G. Let v = (v1, . . . , vNa)

and w = (w1, . . . , wNa
) be right and left unit eigenvectors, respectively, corresponding to λ. Assume

that (i) for all eigenvalues ξ ̸= λ of A, Re[ξ] ̸= λ; (ii) α+ λγ ̸= 0; (iii)⟨w,v3⟩ ≠ 0. Let f(z, u,b) be

the Lyapunov-Schmidt reduction of F (x, u,b) at (0, u∗, 0).

A. Bifurcation problem f(z, u, 0) = 0 has a symmetric pitchfork singularity at (z, u,b) = (0, u∗, 0).

For values of u > u∗ and sufficiently small |u−u∗|, two branches of equilibria branch off from x = 0

in a pitchfork bifurcation along a manifold tangent at x = 0 to span{v}.

When sign{⟨w,v3⟩/⟨w,v⟩}(α + λγ) > 0 (< 0) the bifurcation happens supercritically (subcriti-

cally) with respect to u.

B. Bifurcation problem f(z, u,b) = 0 is an Na-parameter unfolding of the symmetric pitchfork, and

∂f
∂bi

(z, u,b) = wi.

Proof. The eigenvalues of Jx (11.4) are µ = uα − d + uγλ, and so, at u = u∗, Jx has a single zero

eigenvalue. Observe that the left and right null eigenvectors of Jx are precisely w and v. Following

the procedure outlined in [82, Chapter I, 3.(e)] we derive f(z, u,b). We derive the coefficients of

the polynomial expansion of f(z, u,b) [82, Chapter I, Equations 3.23(a)-(e)] through third order in

the state variable. Note that (d2F )0,u∗,0(v1,v2,v3) = 0 for any vi because S′′(0) = 0, which implies
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that fzz = 0 by [82, Chapter I, Equation 3.23(b)]. Also, fz(0, u∗, 0) = 0 by [82, Chapter I, Equation

3.23(a)]. The nonzero coefficients in the expansion are

fxxx = ⟨w, (d3F )0,u∗,0(v,v,v)⟩ = −2d(α + λγ)2⟨w,v3⟩

fbi =

〈
w,

∂F

∂bi
(0, u∗, 0)

〉
= wi

fûx =

〈
w,

(
d
∂F

∂û

)
0,u∗,0

(v,v)

〉
= (α + λγ)⟨w,v⟩

where û = u−u∗ and ⟨·, ·⟩ denotes the standard vector inner product. Also, observe that we can align

the left and right eigenvectors to satisfy ⟨w,v⟩ = k1 > 0 (the inner product is nonzero by duality).

Then ⟨w,v3⟩ := k2 =
∑Na

i=1 wiv
3
i . The Lyapunov-Scmidt reduction of (11.1) about (0, u∗, 0) is thus

ż = k1(α + λγ)ûz − 2k2d(α + λγ)2z3 + ⟨w,b⟩ + h.o.t. (11.6)

Part A of the lemma follows by (11.6), by the recognition problem for the pitchfork bifurcation

[82, Chapter II, Proposition 9.2], as well as by the definition of a center manifold. Part B follows by

the definition of an unfolding and by (11.6).

From Theorem 11.4.1 we can describe many of the bifurcations of x = 0 of (11.5) from the

spectrum of A. In particular, if A has N ≤ Na simple eigenvalues λq, we expect x = 0 to exhibit

N distinct pitchfork bifurcations at critical values of the parameter u∗
q = d/(α + λqγ). Locally near

the bifurcation point the left eigenvector wq corresponding to λq informs the sign structure of the

emergent equilibria, as explored in [20]. For undirected graphs we can deduce the direction in which

the bifurcation branches appear.

Corollary 11.4.2. Suppose G is an undirected graph. When u∗
q = d/(α + λqγ) > 0(< 0) the

pitchfork bifurcation at u∗
q happens supercritically (subcritically).

Proof. Let vq and wq be the right and left eigenvectors of A corresponding to λq. For an undirected

graph, wq = vq. Then ⟨wq,vq⟩ = ⟨vq,vq⟩ > 0 and ⟨wq,v
3
q⟩ = ⟨vq,v

3
i ⟩ =

∑Na

k=1(vq)4k > 0. The

criticality condition from Theorem 11.4.1 becomes (α + λiγ) > 0(< 0) for supercritical (subcritical)

pitchfork bifurcation. Since d > 0 the result follows.

Using these general results on the bifurcation behavior of the opinion dynamics, the next theorem

establishes that the agreement and disagreement bifurcations in Proposition 11.2.1 are supercritical

pitchfork bifurcations in which x = 0 loses stability and new branches of locally stable solutions
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appear.

Theorem 11.4.3 (Agreement and Disagreement Pitchforks). Consider (11.1) and let ui := u ≥

0. The agreement and disagreement bifurcations in Proposition 11.2.1 are supercritical pitchfork

bifurcations. Additionally, the two steady-state solutions, which appear for u > ua(ud), are locally

exponentially stable for |u− ua|(|u− ud|) sufficiently small.

Proof. Supercriticality of the bifurcating branches of equilibria follows for the undirected case from

Corollary 11.4.2. For a directed graph and γ > 0 it follows from the Perron-Frobenius theorem

that vmax and wmax have strictly positive components, i.e., ⟨wmax,vmax⟩ > 0 and ⟨wmax,v
3
max⟩ >

0. Supercriticality then follows from Theorem 11.4.1. The two nontrivial fixed points are locally

exponentially stable by analytic continuity of eigenvalues: Na − 1 negative eigenvalues are shared

with x = 0 and the bifurcating eigenvalue is negative by [82, Chapter I, Theorem 4.1] because

∂f/∂z > 0 for the Lyapunov-Schmidt reduction (11.6).

The results presented in this section provide rigorous predictions of the influence of inputs on

the opinion formation bifurcation behavior. We define the node agreement (disagreement) central-

ity index for node i to be wi, the ith component of wmax (wmin) (see also [67]). It follows by

Theorem 11.4.1B and Theorem 11.4.3 that the influence of an input bi to node i on the network

opinion formation behavior is exactly node i’s agreement or disagreement centrality wi. This allows

us to predict in which direction the agreement or disagreement pitchfork unfolds as a function of

the locations and strengths of distributed inputs. If ⟨b,wmax⟩ = 0 the pitchfork does not unfold. If

⟨b,wmax⟩ < 0 (⟨b,wmax⟩ > 0) the pitchfork unfolds in a such a way that it exhibits a lower (upper)

smooth branch of equilibria. For example, in Fig. 11.1 the diagram on the left receives a nonzero

input which is orthogonal to wmax, and the symmetry of the pitchfork bifurcation is unbroken.

On the right, ⟨b,wmax⟩ = 0.1 and near the singular point of the symmetric diagram, the unfolded

diagram favors the positive solution branch which corresponds to agents agreeing on the positive

option.

11.5 Dynamic Attention: Cascades and Tunable Sensitivity

to Input

In this section we show how distributed state feedback dynamics in the attention parameters of the

opinion dynamics (11.1) give rise to agreement and disagreement cascades with tunable sensitivity to
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Figure 11.1: Symmetric pitchfork bifurcation and its unfolding for opinion dynamics (11.1) in the agreement
regime (γ > 0) with three agents communicating over an undirected line graph. Blue (red) curves correspond
to stable (unstable) equilibria. Vertical axis is the projection of equilibria onto W (λmax). d = α = γ = 1.
Left: b = (0.05, 0,−0.05); right: b = 0.1vmax + (0.05, 0,−0.05). Bifurcation diagrams generated with help
of MatCont [47].

distributed input. We show that the magnitude of the distributed input vector, and its orientation

relative to the centrality eigenvector wmax (wmin) when γ > 0 (< 0) provide control parameters for

triggering cascades over the network. A single design parameter in the attention feedback dynamics

can be used to tune the threshold above which inputs trigger a cascade.

As in [19] we define state feedback dynamics for the attention parameter ui of each agent i to

track the saturated norm of the opinions observed by agent i:

τuu̇i = −ui + Su

(
x2
i +

Na∑
k=1

(aikxk)2

)
. (11.7)

Su takes the form of the Hill activation function:

Su(y) =
¯
u + (ū−

¯
u)

yn

(yth)n + yn
, (11.8)

where threshold yth > 0. We constrain ū and
¯
u such that ū > uc ≥

¯
u > 0, with uc = ua (ud) when

γ > 0 (< 0). As in [67], we define an opinion cascade as a network transition from a weakly to a

strongly opinionated state, where in a weakly (strongly) opinionated state, the agents’ attention is

close to its lower (upper) saturation bound, i.e. u ∼=
¯
u (u ∼= ū). See Fig. 11.2 for an example of an

opinion cascade in an agreement (γ > 0) and disagreement (γ < 0) regime.

Assumption 11.5.1. G is undirected.
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In vector form, coupled dynamics (11.1),(11.7) become

ẋ

u̇

 = −

dx

u

+

u⊙ S ((αI + γA)x) + b

Su((I + A)x2)

 (11.9)

where Su(y) = (Su(y1), . . . , Su(yn)), y ∈ Rn, x2 = (x2
1, . . . , x

2
Na

), and ⊙ is the element-wise product

of vectors. The Jacobian of (11.9) at equilibrium point (xs,us) is

J(x,u) =

−dI + (diag{us}(αI + γA)) ⊙K1 K2

(I + A) diag{xs} ⊙K3 −I

 , (11.10)

K1 = S′((αI + γA)xs)1
T , K2 = diag{S((αI + γA)xs)}, K3 = 2S′

u

(
(I + A)x2

s

)
1T , and 1 =

(1, . . . , 1) ∈ RNa . Let G(y,b) be the right hand side of (11.9) with y = (x,u).

Lemma 11.5.2 (Stability of x = 0). Consider (11.9) with b = 0. The point (xs,us) = (0,
¯
u1) is

an equilibrium point of the coupled dynamics. When either γ > 0 and
¯
u < ua or γ < 0 and

¯
u < ud,

it is locally exponentially stable.

Proof. Plugging the state values into the coupled dynamics (11.9) easily verifies that (ẋ, u̇) = 0 at

(xs,us). Evaluated at this point, (11.10) simplifies to the block diagonal matrix

J(0,
¯
u) =

−dI +
¯
u(αI + γA) 0

0 −I

 . (11.11)
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When 0 <
¯
u < ua (ud), (11.11) has 2Na eigenvalues with negative real part, and the stability

conclusion follows.

Lemma 11.5.3 (Small Input Approximates Equilibrium Opinion). Let (xs,us) be an equilibrium

of (11.9) with inputs b. Let
¯
u < uc where uc = ua if γ > 0 or uc = ud if γ < 0. Define w = wmax

if γ > 0 or w = wmin if γ < 0. Then

∂∥xs∥
∂|⟨w,b⟩|

∣∣∣∣
b=xs=0

> 0. (11.12)

Proof. Since x = 0 is an equilibrium of the system with b = 0, (xs,us) can be approximated by the

linearization

J(0,
¯
u)

xs

us

+

b

0

 = 0. (11.13)

J(0,
¯
u) is symmetric and invertible so its inverse has the same eigenvectors. Thus, to the first order,

it holds that

xs = −J−1
x b = −

Na∑
q=1

1

µq
⟨wq,b⟩wq (11.14)

where Jx is (11.4) with u =
¯
u, wq is an eigenvector of A corresponding to λq, and µq = d+

¯
u(α+λqγ).

Eigenvectors are orthogonal, so ∥xs∥ =
∑Na

i=1
1
µ2
i
⟨wi,b⟩2.

Theorem 11.5.4 (Saddle-Node Bifurcation). Consider (11.9) with a nonzero input vector b and

define uc = ua if γ > 0 and uc = ud if γ < 0. Let wc = wmax or wmin respectively. Suppose

uth ≪ 1 and
¯
u < uc with |

¯
u− uc| sufficiently small. There exists p > 0 such that when |⟨wc,b⟩| = p

there exists an equilibrium (xp,up) of (11.9) such that, if

⟨wc,up ⊙ v2
c ⊙ S′′((αI + γA)xp)⟩ > 0 (11.15)

kq⟨wc,up ⊙ vc ⊙ vq ⊙ S′′((αI + γA)xp)⟩ < 0 (11.16)

is verified for all q at (xp,up) with λq ̸= λc an eigenvalue of A with corresponding left (right)

eigenvector wq (vq), where kq = (α + γλq)/(d +
¯
u(α + γλq)): (i) There exists a smooth curve of

equilibria in R2Na ×R passing through (xp,up, p), tangent to the hyperplane R2Na ×{p}; (ii) There

are no equilibria near (xp,up, p) when |⟨wc,b⟩| > p and two equilibria near (xp,up, p) for each

|⟨wc,b⟩| < p; (iii) The two equilibria near (xp,up, p) are hyperbolic and have stable manifolds of

dimensions Na and Na − 1 respectively.
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Proof. (11.10) depends continuously on the model parameters and on the state. So, by [108, Chapter

II, Theorem 5.1] the eigenvalues and eigenvectors of (11.10) change continuously for ∥xs∥ sufficiently

small. Leaving the full development of the matrix perturbation theory for future work, we conjecture

that if ∥xs∥ is sufficiently small then the eigenvectors of (11.11) are a good approximation of the

eigenvectors of (11.10). Since the origin of (11.9) with b = 0 is stable by Lemma 11.5.2 and because

λmin and λmax are simple eigenvalues, if an eigenvalue of J(xs,us) crosses zero for some ∥b∥ it must

also be simple. This eigenvalue corresponds to a perturbation of −d +
¯
u(α + γλc) where λc = λmax

or λmin respectively.

By Lemma 11.5.3, if b ̸= 0 then at equilibrium ∥x∥ ≠ 0. Define ṽc = (vc,0) and w̃c = (wc,0).

Let g(z,b) be the Lyapunov-Schmidt reduction of (11.9) at an equilibrium (x,u) for sufficiently

small inputs. We have

d2Gyp,bp(ṽc, ṽc) =

Na∑
j=1

Na∑
k=1

∂2(G)i
∂xj∂xk

(vc)j(vc)k

∣∣∣∣
(yp,bp)

=

(α + λcγ)2

up

0

⊙

v2
c

0

⊙

S′′((αI + γA)xp)

0

 . (11.17)

The second derivative in the Lyapunov-Schmidt reduction is

gzz = ⟨w̃c, d
2Gyp,bp(ṽc, ṽc)⟩ = (α + λcγ)2

×
Na∑
i=1

(up)i(wc)
3
iS

′′
(
α(xp)i + γ

∑Na

k=1
k ̸=i

aik(xp)k

)
> 0

by assumption (11.15). Additionally, the term ⟨wc,b⟩ appears in g(z, p) since gbi =
〈
w̃c,

∂G
∂bi

〉
=

(w̃c)i.

Finally, we compute the coefficient of the cross-term gzb̂ in the Lyapunov-Schmidt reduction. For

convenience, we express b =
∑Na

q=1 βqwq where each βq := ⟨wq,b⟩. Coefficients of the cross-terms

zβq in g(z,b) simplify to

gzβq
=

〈
w̃c,−d2Gyp,bp

(
ṽc, J

−1
(0,u)E

(
∂G

∂βq

))〉
. (11.18)

E is a projection onto the range of J(0,
¯
u) and J−1

(0,
¯
u) : v⊥

c 7→ RNa is the inverse of to restriction

of J(0,
¯
u) to the orthogonal complement to vc. We find that J−1

(0,u)E
(

∂G
∂βq

)
= 1

µq
(vq,0) and gzβq

=

−(α + λcγ)Kq where each Kq is the quantity in (11.16). Since gzβq > 0 for all q, we conclude that
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Figure 11.3: Blue (red) lines track the first coordinate of the stable (unstable) equilibrium solutions of
the coupled dynamics (11.9) on a 3-agent undirected line graph. Parameters: uth = 0.1, γ = 1, n = 3,
b = ∥b∥ · |b∠wmax| · wmax; left: |b∠wmax| = 0.1, right: ∥b∥ = 0.1 Bifurcation diagrams generated using
MatCont [47].

the eigenvalue of the equilibrium is monotonically increasing with | < wc,b > |. By continuity of

eigenvalues of the perturbed Jacobian, it follows that the leading eigenvalue necessarily crosses zero

as input is increased. By [90, Theorem 3.4.1] this singularity must be a saddle-node bifurcation point,

with bifurcation parameter b̂ = ⟨wc,b⟩ and properties outlined in the statement of the theorem.

Corollary 11.5.5. The input magnitude ∥b∥ and its relative orientation b∠wc := ⟨wc,b⟩/∥b∥ can

be used as controls to trigger a network opinion cascade.

Proof. This follows by factoring out the magnitude of the input vector from the bifurcation parameter

⟨wc,b⟩.

Figure 11.3 illustrates the prediction of Corollary 11.5.5, showing bifurcation diagrams with

stable and unstable equilibria of the opinion dynamics in the agreement regime on a small network.

The two diagrams illustrate the saddle-node bifurcation predicted by Theorem 11.5.4 with ∥b∥ and

b∠w as bifurcation parameters. Opinion cascades are activated when the bifurcation parameter

passes the critical value. Although the predictions of the results in this section assume inputs are

small, in simulation and through numerical continuation of the dynamics on different networks we

observe that this result is quite robust. The existence of a saddle-node bifurcation, and therefore a

threshold which differentiates between inputs which trigger a cascade and ones which do not, persists

across network structures and for large inputs.

A consequence of Theorem 11.5.4 is that also for opinion cascades the node centrality indices are

the key determinant of the effect of inputs on the coupled attention-opinion dynamics (11.9): The

smaller the angle between the input vector and the agreement or disagreement centrality vector,
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the smaller the needed input strength to trigger an agreement or a disagreement opinion cascade.

Figure 11.4 numerically illustrates our theoretical prediction. The transition line from the red (no

cascade) to the white (cascade) regions correspond to the threshold, i.e., the saddle node bifurcation

predicted by Theorem 11.5.4, at which the opinion cascade is ignited. It shows, for different network

topologies and agreement and disagreement opinion cascades, that as the angle between the input

vector and the centrality vector decreases, the norm of the input needed to trigger a cascade gets

smaller. In the cascade region of the simulations in Figure 11.4, the centrality eigenvector accurately

predicts the sign distribution among the nodes. Rigorously proving this is subject of future work.

The cascade threshold is implicitly defined by the design parameter yth in the attention saturation

function (11.8). In future work we will explore how the sensitivity of the group to distributed input

can be tuned with this parameter.

11.6 Final Remarks

We have derived and proved a systematic method for designing distributed inputs to control opinion

formation and opinion cascades for both agreement and disagreement among distributed agents that

communicate over a network. Future directions include expanding the analysis presented here to

multi-option cascades using the general formulation of nonlinear multi-option opinion dynamics of

[19].
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Figure 11.4: Heatmaps with color corresponding to proportion of simulations in the given parameter range
that did not result in a network cascade by t = 500. Dark red corresponds to no cascades, white to there
always being a cascade. Grey squares are bins with no datapoints. Each plot corresponds to 1.5×105 distinct
simulations on an undirected graph shown in the diagram. Simulation parameters: τu = 10, uth = 0.2,
u = ua−0.01 for γ = 1 (left plots) and u = ud−0.01 for γ = −1 (right plots). For each simulation, inputs bi
were drawn from N (0, 1) and the input vector b was normalized to a desired magnitude. There were 10000
simulations performed at each constant input magnitude, with 15 magnitudes sampled uniformly spaced
between 0 and 0.1. The initial conditions for each simulation were xi = 0, ui = 0 for all i = 1, . . . , Na.

181



Chapter 12

Switching transformations for

decentralized control of opinion

patterns in signed networks:

application to dynamic task

allocation
Anastasia Bizyaeva, Giovanna Amorim, Maŕıa Santos, Alessio Franci,

and Naomi Ehrich Leonard

We propose a new decentralized design to control opinion patterns on signed networks of agents

making decisions about two options and to switch the network from any opinion pattern to a new

desired one. Our method relies on switching transformations, which switch the sign of an agent’s

opinion at a stable equilibrium by flipping the sign of the interactions with its neighbors. The global

dynamical behavior of the switched network can be predicted rigorously when the original, and

thus the switched, networks are structurally balanced. Structural balance ensures that the network

dynamics are monotone, which makes the study of the basin of attraction of the various opinion

patterns amenable to monotone systems theory. We illustrate the utility of the approach through

scenarios motivated by multi-robot coordination and dynamic task allocation.
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12.1 Introduction

Modern networked technologies require decentralized mechanisms for decision-making and allocation

of tasks. For example, systems such as smart power grids, cloud computing services, or multi-robot

teams, call for strategies that dynamically distribute tasks among individual units to optimize system

performance even as task requirements change or units experience failure.

We use the model of networked nonlinear opinion dynamics of [19,87] to illustrate how network

interconnection topology can be designed so a group of decision makers converges to a desired opin-

ion pattern and how the network can be transformed so the group switches to a desired alternative

opinion pattern. When all agents commit to the same option the network is in ‘agreement’, while

for any other opinion configuration it is in ‘disagreement’. The emergence of agreement and dis-

agreement in nonlinear opinion networks has been studied in [19–21]. However, the analysis in those

works has assumed that all network interactions are either positive or negative. In this paper we

add to this body of analysis by allowing mixed-sign interactions.

Decision-making with signed interactions has been studied on linear networks with averaging

dynamics [5,127], as well as with nonlinear consensus models [61,63] and biased assimilation models

[209]. The novelty of our approach is to use signed interactions on a network as a design tool. Our

design methodology drives a distributed system to a desired network state and allows any individual

agent to respond to local contextual changes and adjust its allocation by dynamically adjusting

the sign of interaction with its neighbors. Since the strategy relies only on pairwise interactions

between neighboring agents, it is decentralized and agnostic to the global topology of the network

communication graph.

Our contributions are as follows. First, we prove that a network system can be easily and

intuitively controlled to any agreement or disagreement opinion pattern using standard tools from

signed graph theory grounded in switching transformations of graphs. Second, we prove a sufficient

condition for the networked state to converge to one of two available equilibrium configurations.

Third, we show how a pattern of equilibrium opinions can be changed dynamically through local

updates of the network weights that follow the structure of a switching transformation. Fourth, we

validate the theory with simulation examples.

In Section II we introduce notation. Section III describes the opinion dynamics model and

summarizes some of its properties. In Section IV we present new analysis of the model on signed

graphs and propose a systematic design approach for agent allocation across two tasks. In Section

V we describe the asymptotic dynamics of trajectories on structurally balanced graphs. Section VI
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relates the features of the approach in the context of multi-robot task allocation. Final remarks are

included in Section VII.

12.2 Notation and Mathematical Preliminaries

For any vectors x = (x1, . . . , xN ) ∈ RN , y = (y1, . . . , yN ) ∈ RN , the standard Euclidean inner

product is ⟨x,y⟩ =
∑N

i=1 xiyi. Let x ⪰ y if xi ≥ yi for all i = 1, . . . , N , and x ≻ y if xi > yi

for all i = 1, . . . , N . Define the operation ⊙ as the element-wise product of vectors, x ⊙ y =

(x1y1, . . . , xNyN ). 0N denotes the vector with all zero entries in RN , and IN the identity matrix in

RN×N .

We study networks of N agents with a signed communication graph G := (V, E , σ) where V =

{1, . . . , N} is the vertex set, E is the edge set, and σ : E → {1,−1} is a sign function or signature

of the graph G. We use the sensing convention such that eik ∈ E denotes a directed edge in G that

points from vertex i to vertex k, indicating that k is a neighbor of i. We assume that the unsigned

directed graph Γ = (V, E) underlying G is simple, i.e. contains no self-loops eii ̸∈ E for all i ∈ V,

and there is at most one edge eik in E that begins at vertex i and ends at vertex k for all i, k ∈ V.

We say that the graph G is strongly connected if the edges contained in E form a path between any

two nodes.

Define A = (aik) to be the N × N signed adjacency matrix of G whose entries aik ∈ {0, 1,−1}

satisfy aik = 0 if eik ̸∈ E and aik = σ(eik) if eik ∈ E . We use the symbol λ∗ to distinguish, when it

exists, the real and unique eigenvalue of A that satisfies Re(λ∗) > Re(λi) for all eigenvalues λi ̸= λ∗

of A. We denote the right and left eigenvectors of A corresponding to λ∗ as v∗ and w∗, respectively.

We always assume v∗,w∗ are normalized to satisfy ⟨w∗,v∗⟩ = 1. We adapt the statement of the

standard Perron-Frobenius theorem, e.g. as presented in [195], to specialize to adjacency matrices

of graphs with an all-positive signature.

Proposition 12.2.1 (Perron-Frobenius). Suppose σ(eik) = 1 for all eik ∈ E for some strongly

connected graph G. Then the following hold: 1) λ∗ exists; 2) λ∗ > 0; 3) we can choose v∗,w∗ to

satisfy v∗ ≻ 0N and w∗ ≻ 0N .

12.3 Nonlinear Opinion Dynamics Model

The evolution of the opinion of N agents on a signed network choosing between two options is

modeled in this paper according to the continuous-time multi-agent, multi-option nonlinear opinion
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dynamics model in [19].

Let xi ∈ R denote the opinion of agent i, where the magnitude of xi determines the agent’s

commitment to one of the two options such that a stronger (weaker) commitment to an option

corresponds to a larger (smaller) |xi|. If xi = 0, the agent is said to be unopinionated, and, if

xi > 0 (< 0), agent i prefers option 1 (option 2). We define the opinion state of the network as

x = (x1, ..., xN ) ∈ RN , with x = 0N being the neutral state of the group. The network is in an

agreement state when sign(xi) = sign(xk) for all i, k ∈ {1, ..., N} (i.e., if all the agents commit to

the same option), and in a disagreement state otherwise.

The evolution of agent i’s opinion is determined by a linear damping term and a saturated

network interaction term

ẋi = −d xi + uiS

(
αxi + γ

∑N
k=1
k ̸=i

aikxk

)
, (12.1)

where d > 0 is the damping coefficient, ui > 0 regulates the relative strength of the two terms,

and the odd saturating function S : R → R acts on network interactions. Furthermore, S satisfies

S(0) = 0, S′(0) = 1, sign(S′′(x)) = − sign(x).1 Network interactions comprise self-reinforcement

interactions, weighted by α ≥ 0, and neighbor interactions, weighted by γ > 0. The sign of network

interactions is determined by the signed adjacency weight aik ∈ {0, 1,−1}. Agent i cooperates

(competes) with agent k when aik = 1 (= −1) and is indifferent to agent k’s opinion when aik = 0.

In vector form, dynamics (12.1) are

ẋ = −dx + US(αx + γAx), (12.2)

where S(y) := (S(y1), . . . , S(yN )) for any y ∈ RN and U = diag(u1, . . . , uN ).

12.3.1 Network opinion formation through bifurcation

The following proposition, adapted from [19, Theorem IV.1] and [21, Theorem IV.1] and stated

without proof, summarizes several key features of the opinion dynamics (12.1).

Proposition 12.3.1 (Opinion formation as a pitchfork bifurcation). Consider (12.1) on a graph

G with ui = u ≥ 0, α ≥ 0, γ > 0, d > 0 for all i = 1, . . . , N , and assume a simple, real largest

eigenvalue λ∗ exists. Suppose α + γλ∗ > 0 and ⟨w∗, (v∗)3⟩ > 0, where (v∗)3 = v∗ ⊙ v∗ ⊙ v∗. Then

1The presence of non-smooth (piece-wise linear) saturation functions can be tackled using methods from non-
smooth analysis [119] and recent bifurcation-theoretical tools for linear complementarity systems [138].
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1) for 0 ≤ u < u∗ := d/(α + γλ∗), the neutral equilibrium x = 0N is locally exponentially stable; 2)

for u > u∗, x = 0N is unstable, and two branches of locally exponentially stable equilibria x = x∗
1,

x∗
2 branch off from (x, u) = (0N , u∗) along a manifold tangent at x = 0N to span(v∗). The two

nonzero equilibria differ by a sign, i.e. x∗
2 = −x∗

1.

Proposition 12.3.1 shows that a group of decision-makers with opinion dynamics (12.1) can break

deadlock and commit to an opinionated configuration when their level of attention ui is sufficiently

large. Fig. 12.1 provides a graphical illustration of the equilibria and their stabilty as a function of

u in the form of the pitchfork bifurcation described by the proposition. Next we state other useful

properties of (12.1).

Corollary 12.3.2 (Sufficient condition for agreement). When G is strongly connected with an all-

positive signature, conditions of Proposition 12.3.1 are always satisfied. For u > u∗, one of the two

new stable equilibria satisfies x∗ ≻ 0N .

Proof. The corollary follows from Proposition 12.3.1 and Proposition 12.2.1, since λ∗ is the Perron-

Frobenius eigenvalue, and eigenvectors w∗,v∗ have all-positive entries.

We next show that the equilibria predicted by Proposition 12.3.1 are the only equilibria admitted

by dynamics (12.1) for a range of values of u, following similar arguments as those used for Laplacian-

weighted nonlinear consensus networks in [61]. We first state a necessary lemma.

Lemma 12.3.3 (Boundedness). Any compact set Ωr ⊂ RN of the form Ωr = {x ∈ RN s.t. |xi| <

r maxj{uj}/d, ∀i, j ∈ V} with r > 1 is forward-invariant for (12.1).

Proof. The lemma follows directly from the more general result [19, Theorem A.2].

Corollary 12.3.4 (Uniqueness of Equilibria). Suppose conditions of Proposition 12.3.1 are satisfied,

and let λ2 be an eigenvalue of A satisfying Re(λ2) ≥ Re(λi) for all eigenvalues λi ̸= λ∗ of A. 1)

x = 0N is globally asymptotically stable on a forward-invariant compact set Ω ⊂ Rn containing the

origin x = 0N , for all u ∈ [0, u∗); 2) when Re(λ2) ≥ −α/γ, u ∈ (u∗, u2), the only equilibria the

system admits are 0N , x∗
1, and x∗

2, where u2 = d/(α+ γ Re(λ2)); 3) when Re(λ2) < −α/γ, the only

equilibria the system admits in Ω for all u > u∗ are 0N , x∗
1, and x∗

2.

Proof. 1) Existence of Ω, and thereby boundedness of solutions of (12.1), is established in Lemma

12.3.3. Define Ã = αIN + γA with components ãij , and let fi(x) =
∑N

j=1 ãijxj . Consider the

continuously differentiable function V (x) =
∑

i=1

∫ fi(x)

0
S(η)dη. Along trajectories of (12.1), V̇ (x) =

S(Ãx)T Ãẋ = S(Ãx)T Ã(−dx + uS(Ãx)) = −dS(Ãx)T Ãx + uS(Ãx)T ÃS(Ãx) ≤ −S(Ãx)T (dIN −
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uÃ)S(Ãx) (using |S(y)| ≤ |y| and sign(S(y)) = sign(y)). Since dIN − uÃ is positive definite for

u ∈ [0, u∗),

V̇ (x) ≤ −(d− u(α + γλ∗))S(Ãx)TS(Ãx) ≤ 0. (12.3)

The set on which (12.3) is exactly zero is N (Ã) = {x ∈ RN s.t. Ãx = 0N}. By LaSalle’s invariance

principle [109, Theorem 4.4] we conclude that the trajectories x(t) approach the largest invariant

set in N (Ã) as t → ∞. If N (Ã) = {0N}, the corollary follows trivially. Let x ∈ N (Ã) and suppose

x ̸= 0N . Then ẋ = −dx, i.e. all trajectories that start in N (Ã) decay to the origin exponentially

in time, and the corollary follows. Under the assumptions on u stated in 2) and 3), the Jacobian

matrix J(x) = −dIN +udiag(S′(Ãx))Ã is Hurwitz for all x ∈ RN \{0N}, the proof of which follows

closely the argument presented in [63, Lemma 6] and we omit its details. By Proposition 12.3.1,

for values of u in a small neighborhood above u∗ exactly three equilibria exist. Since the Jacobian

is nonsingular for all x ∈ Ω and all u ∈ (u∗, u2), by the implicit function theorem, the number of

equilibria remains unchanged.

12.4 Switching Transformation as a Design Tool for Synthe-

sis of Opinion Patterns

When the communication graph G contains edges with a negative signature and its adjacency matrix

A has a simple leading eigenvalue, the opinion-forming bifurcation of Proposition 12.3.1 results in

disagreement network equilibria. We describe a simple synthesis procedure for generating a signed

adjacency matrix that results in a desired pattern of opinions among the decision-makers following

opinion dynamics (12.1). We first introduce a few important concepts from the theory of signed

graphs; for more details on the theory we refer the reader to [223] and [224].

12.4.1 Signed graphs and switching

Let W ⊂ V be a subset of nodes on a signed graph G. Switching a set W on the graph G refers to

a mapping of the graph G to GW = (V, E , σW) where the signature of all the edges in E between

nodes in W and nodes in its complement V \W reverses sign. We introduce the switching function

θ : V → {1,−1}, where for any i ∈ V, θ(i) = −1 if i ∈ W and θ(i) = 1 otherwise. Then the signature

of the switched graph GW is generated as

σW(eik) = θ(i)σ(eik)θ(k) (12.4)
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for all eik ∈ E . From (12.4) we see that the signature update for an edge between agents i and k

depends only on their membership in the switching set W. Thus, the edges between i and k flip

sign if and only if exactly one of i, k is in the switching set W, and does not change sign if i, k are

both in W or in V \W. Importantly, switching a set W all at once generates the same graph GW

as sequentially switching individual vertices in W. If G can be transformed into GW by switching,

G and GW are switching equivalent graphs.

Let θ be the function for switching from graph G to GW , with adjacency matrices A and AW ,

respectively. Define the switching matrix Θ = diag(θ(1), θ(2), . . . , θ(N)). The adjacency matrices of

G and its switching GW are related as

AW = Θ−1AΘ. (12.5)

Since Θ is diagonal and θ(i) = ±1, Θ−1 = Θ. We refer to (12.5) as a switching transformation of

the adjacency matrix A, and A and AW as switching equivalent adjacency matrices.

Proposition 12.4.1. Suppose G, GW are switching equivalent with adjacency matrices A and AW

and associated switching matrix Θ. Then 1) A and AW are isospectral, i.e. have the same set of

eigenvalues; 2) v (w) is a right (left) eigenvector of A corresponding to eigenvalue λ if and only if

Θv (Θw) is a right (left) eigenvector of AW with the same eigenvalue.

Proof. The proposition follows from the standard properties of a matrix similarity transformation,

since A and AW are related through a similarity transformation (12.5).

Proposition 12.4.1 implies that the eigenvectors of the switched adjacency matrix AW are ob-

tained from the eigenvectors of the original adjacency matrix A by flipping the sign of each entry

that corresponds to a node which is being switched. We will take advantage of this observation in

our design of nonlinear opinion patterns on a network.

12.4.2 Nonlinear opinion patterns on switch equivalent graphs

In this section we show that a switching transformation of the nonlinear opinion dynamics (12.1)

is effectively a coordinate change, and two switching equivalent networks generate topologically

equivalent flow and bifurcation diagrams.

Theorem 12.4.2 (Diffeomorphism between trajectories of switching equivalent systems). Consider

switching equivalent graphs G, GW with adjacency matrices A and AW and with switching matrix Θ.

The trajectory x(t) is a solution to (12.1) on G if and only if Θx(t) is a solution of (12.1) on GW .
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Proof. Suppose x(t) is a solution of (12.1) on G. Multiplying both sides of (12.2) by the switching

matrix Θ yields

d

dt
(Θx(t)) = Θ (−dx(t) + US(αx(t) + γAx(t)))

= −dΘx(t) + ΘUS(αx(t) + γAx(t))

= −dΘx(t) + US(αΘx(t) + γAWΘx(t)),

where the last step follows since ΘU = UΘ and −S(y) = S(−y). This shows that Θx(t) is a solution

of (12.1) on GW . The other direction follows by an identical proof.

Corollary 12.4.3 (Switching a graph “rotates” a pitchfork bifurcation). Consider (12.1) with

ui = u ≥ 0 for all i = 1, . . . , N on the graphs described in Theorem 12.4.2. Suppose G satisfies

the conditions of Proposition 12.3.1. Then GW also satisfies the conditions of Proposition 12.3.1.

Furthermore, x∗ is an equilibrium on the bifurcation diagram on G at some u if and only if Θx∗ is

an equilibrium on the bifurcation diagram of GW at the same u.

Proof. For (12.1) on GW , λ∗ is simple and α+γλ∗ > 0 because G, GW are isospectral. Additionally,

⟨Θw∗, (Θv∗)3⟩ =
∑N

i=1 θ(i)4w∗
i (v∗i )3 =

∑N
i=1 w

∗
i (v∗i )3 = ⟨w∗,v∗⟩ > 0 since θ(i) = ±1 for all i ∈ V

and therefore the condition of Proposition 12.3.1 are satisfied. The rest of the corollary statement

follows as a direct consequence of Theorem 12.4.2.

We illustrate the intuition of Corollary 12.4.3 in Fig. 12.1.

Theorem 12.4.4 (Switching complementary vertex sets generates the same flow). Consider two

switching equivalent graphs GW , GV\W , generated by switching a set of vertices W or its complement

V \W on graph G. Let the switching matrices in relation to G of these two graphs be ΘW and ΘV\W

respectively. The trajectory x(t) is a solution of (12.1) on GW if and only if it is also a solution of

(12.1) on GV\W .

Proof. Suppose x(t) is a solution of (12.1) on GW . Then by Theorem 12.4.2, ΘWx(t) is an equi-

librium of (12.1) on G. Applying the complementary switching transformation, and observing that

ΘV\WΘW = −IN , we see that ΘV\WΘWx(t) = −x(t) is a solution of (12.1) on GV\W . By odd

symmetry of the dynamic equations (12.1), x(t) is also a solution of (12.1) on GV\W . The proof of

the converse follows the same steps in opposite order.
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Figure 12.1: Illustration of Corollary 12.4.3. The bifurcation diagram of the switched system is a “rotated”
version of the original diagram because the sign of vj flips.

Figure 12.2: Assigning 10 agents to a 30-70% distribution by switching agents 1, 2 and 3. (a) Time trajectory
of the opinion dynamics. (b) Final agent distribution. (c) Network diagram with the opinion of each agent
at t = 30. Parameters: S = tanh, d = 1, α = 1.2, γ = 1.3, u = 0.324. Arrows on the graph defined by the
sensing convention.

12.4.3 Synthesis of nonlinear opinion patterns

The theoretical results of Section 12.4.2, lead to a design procedure to build a signed adjacency

matrix that ensures a desired allocation of agents across the two options. Step 1. Start with a

strongly connected G with an all-positive signature, i.e. aik ∈ {0, 1} for all i, k ∈ V. By Corollary

12.3.2, (12.1) on G has an all-positive stable equilibrium x∗
1 and all-negative stable equilibrium x∗

2.

Step 2. Define the switching set W. In this step, the designer chooses which nodes are grouped

together. The two partitions correspond to the two tasks. Step 3. Update edge signatures of G

locally as aWik = θ(i)aikθ(k). This edge signature update generates the switch-equivalent graph GW

and groups all nodes in W and all nodes in V \ W together by sign, i.e. the dynamics (12.1) on

GW is bistable with stable equilibria Θx∗
1, Θx∗

2. If |W| = M , the equilibrium Θx∗
1 corresponds to

M negative nodes, and Θx∗
2 to N −M negative nodes. We illustrate this in Fig. 12.2. Step 3 can

also be implemented in a decentralized manner since it only relies on the pairwise switching states

of neighboring agents.
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12.5 Dynamic Switching

We next investigate the asymptotic opinion dynamics of (12.1) when the underlying communication

graph G instantaneously changes to a switching equivalent graph GW .

12.5.1 Monotonicity and structural balance

First, we introduce some relevant definitions from the study of monotone systems. Let K be an

orthant of RN , K = {x ∈ RN s.t. (−1)mixi ≥ 0, i = 1, . . . , N} with each mi ∈ {0, 1}. The orthant

K generates a partial ordering “≤K” on RN where if x,y ∈ RN , y ≤K x if and only if x − y ∈ K.

We say a system ẋ = f(x) on U ⊆ RN is type K monotone if its flow preserves the partial ordering

≤K, i.e. if x1(0) ≤K x2(0) implies x1(t) ≤K x2(t) for all t > 0.

Lemma 12.5.1. Consider (12.1) on a signed graph G. It is a type K monotone system if and only

if G is switching equivalent to G+, for which σ(eik) = 1 for all eik ∈ E, i.e. G is structurally

balanced.

Proof. The off-diagonal terms of the Jacobian matrix J(x) are uγ diag(S′((αIN + γA)x))A. Let

Θ be the switching matrix between G and G+. Since S′(y) > 0 for all y ∈ R, the matrix

uγΘ diag(S′((αIN +γA)x))AΘ has nonnegative components, and the lemma follows by [187, Lemma

2.1].

12.5.2 Instantaneous switching

Suppose x∗ is a hyperbolic equilibrium of (12.1), i.e. the linearization of the system at x∗ has

m unstable eigenvalues and N − m stable eigenvalues. Then by [90, Theorem 1.3.2], there exist

smooth local unstable and stable manifolds Wu
loc(x

∗), W s
loc(x

∗) of dimensions m, N − m that are

tangent to the unstable and stable eigenspaces of the linearized systems at x∗ and invariant under

the dynamics. Global stable and unstable manifolds W s(x∗),Wu(x∗) invariant under the dynamics

can be obtained by continuing the trajectories in their local counterparts forwards or backwards in

time.

Assumption 12.5.2 (Stable manifold of origin is bounded; Fig. 12.3). Consider (12.1) on some

structurally balanced graph G with ui = u > u∗ and u < u2 when appropriate, as defined in Corollary

12.3.4. Let U ′ ⊂ RN be an open neighborhood containing the origin, and let x ∈ W s(0)∩U ′. 1)

|⟨w∗,x⟩| < ε∥x∥2 for some 0 < ε < 1; 2) for equilibria x∗
k ̸= 0 of Proposition 12.3.1 with k ∈ {1, 2},

|⟨w∗,x∗
k⟩| > ε∥x∗

k∥2.
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Figure 12.3: Geometric intuition behind Assumption 12.5.2. The one-dimensional unstable manifold Wu(0)
of the origin (shown in red) forms heteroclinic orbits with the stable equilibria x∗

1,x
∗
2, as is generically the

case for monotone systems - see [187, Theorem 2.8].

Estimating the ε bound described above requires a lengthy computation of the stable manifold

approximation (see [90, p.132] for an example of an invariant manifold approximation) which we

do not carry out for space considerations. However, this assumption should hold at least locally

as a consequence of the (Un)Stable Manifold Theorem [90, Theorem 1.3.2] and monotonicity of the

flow. We verified the assumption numerically for several graphs. For example, numerically we find

ε = 0.05 to be a valid bound for the graph and parameter values in Fig. 12.5 with w∗ normalized

to unit norm; in general ε will vary with u, d, α, γ.

Lemma 12.5.3 (Regions of attraction). Consider (12.1) on some structurally balanced graph G with

ui = u > u∗ for all i = 1, . . . , N , on an open and bounded neighborhood Ωr as defined in Lemma

12.3.3. Let x∗
1, x∗

2 be the nonzero equilibria described in Proposition 12.3.1 with ⟨w∗,x∗
1⟩ > 0.

Consider an initial condition x(0) at t = 0. If ⟨w∗,x(0)⟩ > ε∥x(0)∥2(< −ε∥x(0)∥2) then as t → ∞,

x(t) → x∗
1(x∗

2) .

Proof. We established in Corollary 12.3.4 that the only equilibria the system admits are 0,x∗
1,x

∗
2,

and Ωr is positively invariant by Lemma 12.3.3. Let B(x∗
i ) be the basin of attraction of equilibrium

xi in Ωr. By monotonicity (Lemma 12.5.1) and [187, Theorem 2.6], the set Int(B(x∗
1))∪Int(B(x∗

2)) is

open and dense in Ωr, where Int signifies the interior points. Then following Assumption 12.5.2, the

stable manifold partitions Ωr into the basins of attraction of the two locally asymptotically stable

equilibria. The sets U+ = {x ∈ Ωr s.t.⟨w∗,x⟩ > ε∥x∥2}, U− = {x ∈ Ωr s.t.⟨w∗,x⟩ < −ε∥x∥2} do

not intersect the center manifold and are therefore positively invariant. Then since x1 ∈ U+ and

x2 ∈ U−, we get that U+ ⊂ B(x∗
1) and U− ⊂ B(x∗

2).

Remark 12.5.4. In practice, without a precise value for the bound ε from Assumption 12.5.2, for
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most points x(0) ∈ RN it is sufficient to check whether the projection of x(0) onto w∗ is positive or

negative to determine which region of attraction the points belongs to, i.e. ⟨w∗,x(0)⟩ > 0(< 0) where

> implies convergence to x∗
1 and < to x∗

2. This is because the stable manifold that partitions the

space of possible opinion configurations occurs near the plane of points normal to w∗ at the origin;

see Fig. 12.3 for illustration. As long as x(0) is not too close to this plane, the projection is a

reliable heuristic for the asymptotic dynamics of the network opinions.

Theorem 12.5.5. Consider (12.1) on some G and let x∗
1, x

∗
2 be the nonzero equilibria described in

Proposition 12.3.1, with ⟨w∗,x∗
1⟩ > 0. Let GW be switch equivalent to G with the associated switching

matrix Θ. Suppose at t = 0, x(0) is close to x∗
i where i = 1 or 2. If |⟨Θw∗,x∗

i ⟩| > ε∥x∗
i ∥2 and

⟨Θw∗,xi⟩ > 0(< 0) then for (12.1) on GW as t → ∞, x(t) → Θxi(→ −Θxi).

Proof. Without loss of generality,let ∥x(0)−x∗
1∥ < µ so that ⟨Θw∗,x(0)⟩ > ε∥x(0)∥2 and w∗

i xi(0) > 0

for all i ∈ V (these are true at x1 by assumption; sufficiently close nearby points will satisfy the

conditions by continuity). By Theorem 12.4.2 we know that that for (12.1) on GW , Θx1 is an

equilibrium, and the vector Θw∗ is normal to the stable eigenspace at the origin. The theorem

follows by Lemma 12.5.3.

Theorem 12.5.5 shows that instantaneously changing a structurally balanced graph G to its

switching equivalent GW results in a predictable transition of the system state. Namely, if the

number of nodes in W is small in comparison with the cardinality of V, we expect that all nodes in

W will change sign, and all of the nodes in V \W will not. A simulation example of this behavior is

shown in Fig. 12.4. The precise number of nodes that can be switched simultaneously to generate this

behavior depends on the eigenvector w∗ of the graph adjacency matrix, the value of the equilibrium

x∗
1, and the bound ε. In practice, it is often sufficient that |W| < 1

2 |V|. For the graph and parameter

values in Fig. 12.5, and the numerical estimate ε = 0.05, any combination of 4 or fewer nodes can

indeed be switched simultaneously.

The analysis in this section reveals that dynamics (12.1) should be well-behaved if the transition

between G and GW is driven by smooth dynamics, e.g., a suitably designed feedback law. We consider

an example of such a smoothly-driven transition in the following section.

12.6 Applications to Multi-Robot Task Allocation

We illustrate how our method can be used to change the proportion of robots dedicated to a task,

how it can be decentralized, how it is robust to individual robot failures or additions, and how we
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Figure 12.4: Applying a switching transformation to agent 1 at t = 15. (a) Time trajectory of the opinion
dynamics (b)-(c) Network diagram with the opinion of each agent at t = 10, t = 30. Parameters: S = tanh,
d = 1, α = 1.2, γ = 1.3, u = 0.294.

can ensure that robots switch when triggered locally.

Task distributions Many multi-robot applications need subteams to be assigned to different tasks

in a certain proportion (see e.g. [110] for a review on multi-robot task allocation). As illustrated in

Fig. 12.2, switching transformations can be used to distribute a team of agents among two tasks in

predetermined proportion.

In scenarios where robots can be divided in subteams, and each subteam can indiscriminately

contribute to one of the tasks, our method guarantees a predetermined proportion of agents among

tasks, but does not control which subteam is assigned to which task. For example, in Fig. 12.2, the

team composed of agents 1, 2, and 3 could execute either task 1 or 2. This affords flexibility from

the application point of view, where the initial condition on the opinion (e.g., how close a robot is

to an area where the demand for a task is abundant) can determine the final distribution of agents.

Local flexibility Our approach provides flexibility by letting single agents/robots make individ-

ual decisions in a decentralized way without disconnecting from the network. This is important

for multi-robot teams that should change their allocation across tasks in response to changing en-

vironmental conditions that are observed only by some agents; see [159] for the case of globally

available environmental cues in a multi-robot trash pick-up problem. This method is also useful for

long-duration autonomy applications where team performance should not be affected by failures or

individuals that stop contributing to tasks, e.g. to charge batteries [148]. See Fig. 12.4, where one

agent switches between tasks without affecting the task preference of its neighbors in the graph.

To illustrate suppose that agent i wants to switch options. Agent i alerts its neighbors that

θi = −1. We define

τaȧik = −aik + aik(0)θiθk, (12.6)
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Figure 12.5: Locally switching agents 1, 2 and 3 using (12.6). Agents 1, 2 switch at t = 10 and agent 3 at
t = 15. (b)-(d) Network diagram with the opinion of each agent at t = 10, t = 15, t = 30. Parameters: S
= tanh, d = 1, α = 1.2, γ = 1.3, u = 0.315, τa = 0.01

where τa is a time-scale parameter and aik(0) ∈ {0, 1,−1} is the initial signature of the edge between

agents i and k. As seen in Fig. 12.5, the dynamics (12.6) allow locally originated switches to take

place simultaneously between neighbors. This property can be useful in applications involving

switching cascades, where a robot switching to a new task can trigger its neighbors to switch.

This feature is relevant in dynamic task allocation for multi-robot systems where robots can assign

themselves to new tasks as a result of interacting with the environment or with their neighboring

robots [122].

12.7 Final Remarks

We analyzed the nonlinear networked opinion dynamics (12.1) on signed graphs and proposed a

novel approach for dynamic and decentralized allocation of a group of agents across two tasks. In

future work, we aim to generalize the results in Section 12.5 to graphs that are not structurally

balanced, to derive an estimate for the ε bound from Assumption 12.5.2, and to extend this analysis

to the more general multi-option opinion dynamics of [19].
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Appendix A

Supporting material for Chapter 4

A.1 Proof of Proposition 4.4.1

Recall that we are examining the dynamical system

ẋi = −dxi + u
(
Ŝ1(αxi + cxj) − Ŝ2(βxi + cxj)

)
=: fi(x1, x2) i, j ∈ {1, 2}, i ̸= j.

with d > 0, α, β ≥ 0, and c ∈ R. Furthermore,Ŝi(x) = 1
ai

tanh(x). Local exponential stability of

x = 0 follows from linearization. The Jacobian of (4.9) is diagonal with a repeated eigenvalue equal

to −d + u(α− β). This quantity is negative for u < ud/(α− β) and positive for u > d/(α− β).

To prove the rest of the statement of the Proposition we rely on results from singularity theory

outlined in [82, Chapter X]. In particular, we verify that the governing equations for the opinion

dynamics (4.9) satisfy the conditions for local topological equivalence to a (Z2 × Z2)-equivariant

nondegenerate normal form, the dynamical behavior of which is well understood.

First, we check that the equations commute with the symmetry group S2×S2
∼= Z2⊕Z2. Define

the action (τ, σ) ∈ S2×S2 where σ is a permutation of the agents and τ is a permutation of options

for both agents (xi → −xi ∀i). Also define e ∈ S2 as the identity element of the permutation group

on two symbols. The group elements of S2 × S2 are {(τ, σ), (τ, e), (e, σ), (e, e)}. If the dynamical

system is (S2×S2)-equivariant, it should commute with the action of each nontrivial group element,

which means we must check the following:

• The dynamics are equivariant under permutation of agents:

(e, σ) ·
(
f1(x1, x2), f2(x1, x2)

)
=
(
f1((e, σ) · (x1, x2)), f2((e, σ) · (x1, x2)

)
(A.1)
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• The dynamics are equivariant under permutation of options:

(τ, e) ·
(
f1(θ1, θ2), f2(θ1, θ2)

)
=
(
f1((τ, e) · (θ1, x2)), f2((τ, e) · (x1, x2)))

)
(A.2)

• The dynamics are equivariant under permutation of both agents and options:

(τ, σ) ·
(
f1(x1, x2), f2(x1, x2)

)
=
(
f1((τ, σ) · (x1, x2)), f2((τ, σ) · (x1, x2)))

)
(A.3)

As a recap, (e, σ) · (x, y) = (y, x), (τ, e) · (x, y) = (−x,−y), and (τ, σ) · (x, y) = (−y,−x). First we

consider the action (e, σ):

(e, σ) ·

f1(x1, x2)

f2(x1, x2)

 =

f2(x1, x2)

f1(x1, x2)

 =

−dx2 + uŜ1(αx2 + cx1) − uŜ2(βx2 + cx1))

−dx1 + Ŝ1(αx2 + cx2) − uŜ2(βx1 + cx2))

 (A.4)

f1((e, σ) · (x1, x2))

f2((e, σ) · (x1, x2))

 =

f1(x2, x1)

f2(x2, x1)

 =

−dx2 + uŜ1(αx2 + cx1) − uŜ2(βx2 + cx1)

−dx1 + uŜ1(αx1 + cx2) − uŜ(βx1 + cx2)

 (A.5)

The two statements above are equivalent and the dynamics are equivariant under the permutation

of agents. Then we consider the action (τ, e):

(τ, e) ·

f1(x1, x2)

f2(x1, x2)

 =

−f1(x1, x2)

−f2(x1, x2)

 =

 dx1 − uŜ1(αx1 + cx2) + uŜ2(βx1 + cx2)

dx2 − uŜ1(αx2 + cx1) + uŜ2(βx2 + cx1))

 (A.6)

f1((τ, e) · (x1, x2))

f2((τ, e) · (x1, x2))

 =

f1(−x1,−x2)

f2(−x1,−x2)

 =

 dx1 + uŜ1(−αx1 − cx2) − uŜ2(−βx1 − cx2)

dx2 + uŜ1(−αx2 − cx1) − uŜ2(−βx2 − cx1))


(A.7)

Since the sigmoid functions Ŝi are odd, we can conclude that the two statements above are equivalent

and the dynamics are equivariant under permutation of options. Finally, we consider the action
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(τ, σ):

(τ, σ) ·

f1(x1, x2)

f2(x1, x2)

 =

−f2(x1, x2)

−f1(x1, x2)

 =

dx2 − uŜ1(αx2 + cx1) + uŜ2(βx2 + cx1))

dx1 − uŜ1(αx1 + cx2) + uŜ2(βx1 + cx2)

 (A.8)

f1((τ, σ) · (x1, x2))

f2((τ, σ) · (x1, x2))

 =

f1(−x2,−x1)

f2(−x2,−x1)

 =

dx2 + uŜ1(−αx2 − cx1) − uŜ2(−βx2 − cx1)

dx1 + uŜ1(−αx1 − cx2) − uŜ2(−βx1 − cx2)


(A.9)

Once again, the two statements above are equivalent and so the dynamics are equivariant under

simultaneous permutation of agents and options.

We have established that the dynamical system we are working with has the same symmetry

as the normal form. Next, for convenience of calculations, we transform the coordinate system to

align the two axes with the primary modes of the bifurcation. The coordinates on the consensus

and dissensus subspaces are xc = 1
2 (x1 + x2) (average opinion of the agents) and xd = 1

2 (x1 − x2)

(average difference in the opinions of the agents). Transformed into these consensus and dissensus

coordinates, the model equations become

ẋc = −dxa+
1

2
uŜ1

(
(α+c)xc+(α−c)xd

)
+

1

2
uŜ1

(
(α+c)xc+(c−α)xd

)
− 1

2
uŜ2

(
(β+c)xc+(β−c)xd

)
− 1

2
uŜ2

(
(β + c)xc + (β − c)xd

)
, (A.10)

ẋd = −dxd+
1

2
uŜ1

(
(α+c)xc+(α−c)xd

)
− 1

2
uŜ1

(
(α+c)xc+(c−α)xd

)
− 1

2
uŜ2

(
(β+c)xc+(c−β)xd

)
+

1

2
uŜ2

(
(β + c)xc + (c− β)xd

)
. (A.11)

Next, we compute a series expansion of (A.10),(A.11)

ẋc = A1rxc + A2x
3
c + A3xcx

2
d + h.o.t.

ẋd = B1rxd + B2x
3
d + B3xdx

2
c + h.o.t.

(A.12)

where the higher order terms are of the form xu
cx

s
du

t and satisfy one of (a) u + s ≥ 5, (b) t =
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1, u + s ≥ 3, or (c) t ≥ 2. The coefficients in the expansion are

A1 = α− β, B1 = α− β,

A2 =
d

3(α− β)

(
−a21(c + α)3 + a22(c + β)3

)
A3 =

d

α− β

(
−a21(c− α)2(c + α) + a22(c− β)2(c + β)

)
,

B2 =
d

3(α− β)

(
a21(c− α)3 − a22(c− β)3

)
B3 =

d

α− β

(
a21(c− α)(c + α)2 − a22(c− β)(c + β)2

)
.

From these coefficients the nodegeneracy conditions stated in the proposition are computed using

[82, Chapter X, Definition 2.2]. Equivalence to the normal form then follows by [82, Chapter X,

Proposition 2.3], assuming the nondegeneracy conditions are satisfied.
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Appendix B

Supporting material for Chapter 5

For proofs of Theorems 5.2.2 and 5.3.1 we rely on Lyapunov-Schmidt reduction and singularity

theory techniques, for a thorough development of which we refer the interested reader to [82].

B.1 Directional derivatives

In this section we compute the directional derivatives of (5.1) at (Z, u) = (0, u∗), for use in the

Lyapunov-Schmidt reduction calculations in the following two sections. We compute the directional

derivatives which appear in the Lyapunov-Schmidt reduction coefficieonts (2.15). Recall the direc-

tional derivative formula (2.13). Let v̂ = v ⊗ ṽ, with v ∈ RNa and ṽ ∈ RNo . For

First, we compute the first order directional derivative for ∂Fh

∂u (Z):

d

(
∂Fh

∂u

)
(v̂) = S′

1(0)(αINa
+ γAa)v ⊗ ṽ + S′

2(0)(βINa
+ δAa)v ⊗Aoṽ.

When v is an eigenvector of Aa with eigenvalue λ, and ṽ is an eigenvector of Ao with eigenvalue µ,

this derivative further simplifies to

d

(
∂Fh

∂u

)
(v̂) = (S′

1(0)(α + γλ) + S′
2(0)µ(β + δλ)) v̂. (B.1)

Let x2 = x⊙ x. With a similar calculation at second order, we find

d2Fh(v̂, v̂) = u∗S′′
1 (0)((αINa + γAa)v)2 ⊗ ṽ2 + u∗S′′

2 (0)((βINa + δAa)v)2 ⊗ (Aoṽ)2
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which, under the eigenvector assumption simplifies to

d2Fh(v̂, v̂) = u∗ (S′′
1 (0)(α + γλ)2 + S′′

2 (0)µ2(β + δλ)2
)
v̂2. (B.2)

Next, defining x3 = x⊙ x⊙ x at third order we find

d3Fh(v̂, v̂, v̂) = u∗S′′′
1 (0)((αINa

+ γAa)v)3 ⊗ ṽ3 + u∗S′′′
2 (0)((βINa

+ δAa)v)3 ⊗ (Aoṽ)3

which simplifies to

d3Fh(v̂, v̂) = u∗ (S′′′
1 (0)(α + γλ)3 + S′′′

2 (0)µ3(β + δλ)3
)
v̂3. (B.3)

Define PN = IN − v̂v̂T to be the projection from RN onto the range of J at u = u∗. Suppose

Sm(y) = Ŝ(y+gm(y) with Ŝ(−y) = −Ŝ(y), Ŝ′
m(0) > 0, and bounded small perturbation g satisfying

g(0) = 0, g′(0) = 0, g(−y) ̸= −g(y). Then S′′
m(0) = g′′m(0) and

J−1PNd2Fh(v̂, v̂) = u∗ (g′′1 (0)(α + γλ)2 + g′′2 (0)µ2(β + δλ)2
)
J−1PN v̂2

where J−1 is the inverse of the restriction of (11.4) to its range. Finally we write down the expression

for the following directional derivative

d2Fh
(
v̂, J−1PNd2Fh(v̂, v̂)

)
= (u∗)2

(
g′′1 (0)(α + γλ)2 + g′′2 (0)µ2(β + δλ)2

)
(
g′′1 (0)(α + γλ)v̂ ⊙ ((αINa

+ γAa) ⊗ INo
) (J−1P v̂2)

+g′′2 (0)µ(β + δλ)v̂ ⊙ ((βINa
+ δAa) ⊗Ao) (J−1P v̂2)

)
. (B.4)

B.2 Proof of Theorem 5.2.2

1) The loss of stability of Z = 0 at u = u∗ is established in Theorem 5.1.2. Since ηmax is simple,

at u = u∗ ηmax = 0 equilibria along span{va ⊗ vo} Following the Lyapunov-Schmidt reduction

procedure outlined in [82, Chapter I] we derive the coefficients of the polynomial expansion of a

Lyapunov-Schmidt reduction of (2.14) f(y, u,b) through third order. With the odd symmetry
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assumption on Sm, it follows that S′′
m(0) = 0 and

f(y, u,0) = (α + γλa + βµo + δ(λaµo − λcµc)) (u− u∗)y

+
d
(
S′′′
1 (0)(α + γλa)3 + S′′′

2 (0)(βµo + δ(λaµo − λcµc))
3
)

α + γλa + βµo + δ(λaµo − λcµc)
⟨wa,v

3
a⟩⟨wo,v

3
o⟩y3. (B.5)

The conclusion follows by the recognition problem for a pitchfork bifurcation [82, Chapter II, Propo-

sition 9.2]. Linearization of the system about each of the two bifurcating fixed points shares the

N − 1 stable eigenvalues with the origin, and the bifurcating eigenvalue is negative (or positive)

under the conditions in the theorem statement by [82, Chapter I, Theorem 4.1].

2) The first statement follows by definition of an unfolding. With nonzero b,g1,g2, the coefficients

of the polynomial expansion of f(y, u,b) through third order take the form

f(y, u,b) = f(y, u,0) + ⟨wa ⊗wo,b⟩ + C1y
3

+
d
(
g′′1 (0)(α + γλa)2 + g′′2 (0)(βµo + δ(λaµo − λcµc))

2
)

α + γλa + βµo + δ(λaµo − λcµc)
⟨wa,v

2
a⟩⟨wo,v

2
o⟩y2 (B.6)

where C1 is the quantity defined in (B.4). Let C0 denote the coefficient of the cubic term in (B.5).

When g′′1 (0) = 0 and g′′2 (0) = 0, the total coefficient of the cubic term in (B.6) is C0. Therefore by

continuity there exist small positive ε1, ε2 such that sign(C0 +C1) = sign(C0) as long as |g′′1 (0)| < ε1

and |g′′2 (0)| < ε2. We assume g′′m(0) for m = 1, 2 is sufficiently small so that C0 determines the sign

of the cubic term, and do not compute (B.4).

For compactness let f(y, u,b) = a1(u− u∗)x + a2x
2 + a3x

3 + a4 + h.o.t. where a1, a2, a3, a4 are

the coefficients in (B.5),(B.6). Following [82, Chapter III, Proposition 4.4]. We confirm that the

following determinant is nonzero:

det



0 0 a1 a3

0 a1 0 0

1 0 0 0

0 0 0 1


= −a21 = − (α + γλa + βµo + δ(λaµo − λcµc))

2 ̸= 0.

Then if we treat the quantities a2, a4 as unfolding parameters, (B.6) realizes a universal unfolding of

the pitchfork bifurcation by [82, Chapter III, Proposition 4.4] and the theorem statement describes

the expected persistent bifurcation diagrams, as in [82, Chapter 1].
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B.3 Proof of Theorem 5.3.1

1) To establish existence of periodic orbits we check that the system (5.1) under the stated assump-

tions satisfies the conditions of the Hopf bifurcation theorem [90, Theorem 3.4.2]. When u = u∗,

the leading eigenvalues of (11.4) are a simple purely imaginary pair

η±(u∗) = ±i
d (γλc − βµc + δ(−λaµc + λcµo))

α + γλa + βµo + δ(λaµo + λcµc)

which satisfies the eigenvalue condition (H1) of the Hopf theorem. Next, we check that the leading

eigenvalues cross the imaginary axis with nonzero speed as u is varied, i.e.

d

du
Re(η±(u)) = α + γλa + βµo + δ(λaµo + λcµc) ̸= 0

which satisfies the nonzero crossing speed condition (H2) of the Hopf theorem. Existence of periodic

orbits directly follows by the Hopf theorem. By this theorem and by the definition of a center

manifold [90, Theorem 3.2.1], the solutions appear along a unique W s which is tangent at u = u∗

to N
(
J(0, u∗)

)
= span{Re(va ⊗ vo), Im(va ⊗ vo)} .

To show 2) and 3) we first compute the coefficients of the Lyapunov-Schmidt reduction of (5.1),

following the Lyapunov-Schmidt reduction for a Hopf bifurcation [82, Chapter VIII, Proposition

3.3], also outlined in Chapter 2.3 of this dissertation.

f(y, u) =
(
α + γλa + βµo + δ(λaµo + λcµc)

)
y(u− u∗) + by3 + h.o.t. (B.7)

where

b =
1

16
u∗ Re

((
S′′′
1 (0)

(
(α + γλa)2 + (γλc)

2
)

(α + γ(λa + iλc))

+ S′′′
2 (0)(µ2

o + µ2
c)
(
(β + δλa)2 + (δλc)

2
) (

µo(β + δλa) − δµcλc

+ i(µc(β + δλa) + δλcµo)
))

⟨wa, |va|2 ⊙ va⟩⟨wo, |vo|2 ⊙ vo⟩

)
+ C2. (B.8)

where all of the terms grouped in C2 have a dependence on g′′1 (0) and/or g′′2 (0), with C2 = 0 whenever

g′′1 (0) = 0 and g′′2 (0) = 0. By an analogous continuity argument to that presented in the pitchfork

bifurcation proof in Appendix B.2 we assume g′′m(0) is sufficiently small so the first term in the sum

in (B.8) dominates and determines the sign of the cubic coefficient b. Then as long as b ̸= 0, by
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[82, Chapter VIII, Theorems 2.1 and 3.2] the reduced bifurcation equation f(y, u) is Z2-equivalent

to the pitchfork sign(b)x3 + x(u − u∗), i.e. when |u − u∗| is small, solutions to f(y, u) = 0 are in

one-to-one correspondence with orbits of small amplitude periodic solutions to the system (5.1) with

period near 2π/|γλc +βµc + δ(λaµc +λcµo)| =: 1/ω. For u near u∗, the small amplitude oscillations

can be approximated to first order as scalar multiples of eiωtva ⊗ vo from which the conclusions

on phase and amplitude difference between agents follow. When b < 0, the bifurcating periodic

solutions are stable by [82, Chapter VIII, Theorem 4.1].
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