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Abstract

This dissertation explores distributed estimation and control of networked multiagent sys-

tems. We consider collaborative systems inwhich agents access information from their neigh-

bors and use this information to better understand and manipulate the environment.

We consider distributed filtering of a scalar linear stochastic process over a networkedmul-

tiagent system and focus on the setting where communication between agents is corrupted

by Gaussian noise. We show that communication noise is not easily handled by a two-stage

consensus filter in the literature and propose a novel algorithm which does not suffer per-

formance degradation under such communication noise. We discuss how to optimally tune

two fixed gains to minimize the asymptotic error covariance of the filter.

We consider designing a network of agents to perform distributed estimation and control

of linear time-invariant systems. We develop a framework in which agents have the flexibil-

ity to change their feedback control parameters without needing to redesign their estimation

strategies. We use the small-gain theorem and the bounded real lemma to characterize con-

ditions under which this is possible using linear matrix inequalities. We show how linear

consensus dynamics can be used to further extend the operating regime of this framework.

Leveraging our distributed estimation and control framework, we develop amethodology

to distinguish agents for the purpose of actuator and sensor selection. We use hypothesis

testing to rigorously compare a set of centrality measures as selection tools, focusing on the

actuator selection problem. We show that under our framework there is strong statistical
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evidence that, given sufficient edge density, betweenness centrality is a good metric for actu-

ator selection over Erdos-Renyi random graphs in terms of minimizing a key matrix norm.

We further show that these results broadly extend to other graph generation methods and

are robust to actuator failure as well as network scale. When considering scenarios in which

individual agents do not have full controllabilty of the system, we show that there is strong

statistical evidence that degree centrality, rather than betweenness centrality, is a good selec-

tion heuristic for actuator placement.

iv



Acknowledgements

My time in graduate school has been filled with intellectual stimulation as well as personal

growth. I not only was able to learn a great deal about the subject matter within my field of

study, but I also was able to learn a great deal about myself. I am extremely grateful to have

been afforded the opportunities to explore and grow both professionally as well as person-

ally. Of course, this would not have been possible without the help of many colleagues and

friends.

I would first like to thankmy advisorsNaomi Leonard andH.Vincent Poor. Naomi’s pas-

sion for research is incredibly inspiring, and this passion is equally matched by her kindness.

Naomi has shownme endless patience and understanding, and for that I am forever grateful.

She has pushed me to be a better researcher and collaborator, and has instilled in me values

which I will take and nurture throughout the rest of my career and beyond. Likewise, Vince

hasprovidedmewith irreplaceable feedbackonmy research. Inmeetings,Vincewould always

ask very deep questions that caused me to really reflect on aspects of our work together and

ultimately strengthened the research to a great degree. I felt like Vince’s metaphorical door

v



was always open, and no matter howmany directions he was pulled in at any given moment

he would without fail provide feedback or get back to me almost instantaneously. Thank

you, Naomi and Vince, for all that you have provided to me over my time at Princeton.

Throughout the course of my research I had the privilege of collaborating with Vaibhav

Srivastava and Shinkyu Park. During my first semester at Princeton I began collaborating

with Vaibhav, and I remember being so appreciative of how welcoming Vaibhav was to me.

As I was adjusting not only to graduate school but also to returning to school in general as

I had been in the workforce for over two years prior, Vaibhav provided me with a sounding

board for research questions or just any questions I had about life at Princeton. Similarly,

when working with Shinkyu I always felt comfortable to ask just about any question regard-

ing our work together, nomatter how trivial it might seem. Shinkyuwas always there to pro-

vide valuable feedback and center my thinking back to the right space whenever I might get

lost in the weeds. I am a better researcher for having workedwith bothVaibhav and Shinkyu.

Thank you both for everything.

I would like to thank my Ph.D. committee members N. Jeremy Kasdin, Clancy Rowley,

andAnirudhaMajumdar for their invaluable insight over the years. I want to especially thank

Ani and Shinkyu for taking the time to read andprovide feedback on this thesis. Many thanks

also to Luigi Martinelli and Vaibhav for serving as my dissertation examiners.

I must also extend a warm thanks to the former and current members of the Leonard

Lab that I have been privileged to work alongside: Vaibhav, Shinkyu, Biswadip Dey, Kay-

nan Ozcimder, Karla Kvaternik, Zahra Aminzare, Katie Fitch, Will Scott, Peter Landgren,

Liz Davidson, Bec Gray, Renato Pagliara, Desmond Zhong, Anastasia Bizyaeva, Udari Mad-

hushani, Mari Kawakatsu, Christine Allen-Blanchette, Kenza Hamidouche, María Santos,

vi



Yunxiu Zhou, Justice Mason, Charlotte Cathcart, and Justin Lidard. Thank you all for the

camaraderie and support. Although I was never one to do a large portion of my work in the

office spaces, I always felt energizedwhenever I would interact withmy labmates. Thank you

all for being some of the most compassionate and driven people I have met.

I would like to thank the MAE department at Princeton. Jill Ray was always available to

answer any questions I had regarding navigating graduate school. Even before formally en-

rolling as a graduate student when I visited Princeton to tour the campus along with other

accepted students, I remember asking Jill for a good dinner location to grab something to eat

with my family. Jill, as always, was able to help out and let us know her favorite pizza place in

the area.

Finally, I truly owe so much thanks and gratitude to my family. Ruoqiao, thank you for

your advice and support over the years. Whenever I was feeling stressed out or out of sorts, I

knew that I could talk to you and I would instantly feel better. You have taught me how to

be a better man. I could not have gotten to this point without you. I love you. Also, thank

youMomandDad for always givingme unending love and encouragement. Going home for

holidays and breaks was always a time to relax and recharge, as well as to eat some wonderful

home cooking! Even if I wrote something like 1 + 1 = 2 in a manuscript my parents were

always my biggest cheerleaders. Thank you for raising me to be intellectually curious and

morally strong.

This dissertation carries the number T#3428 in the records of the Department of

Mechanical and Aerospace Engineering.

vii



Tomy parents, John and Francine.

viii



Contents

Abstract iii

Acknowledgements v

List of Tables xviii

List of Figures xxvii

I Design of Distributed Estimation and Control for Networked
Multiagent Systems 2

1 Introduction 3

1.1 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Distributed FilteringwithNoisy Communication 12

2.1 Distributed Linear Filtering Problem Setup . . . . . . . . . . . . . . . . . 13

2.2 Consensus Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A Two-Stage Distributed Linear Filter . . . . . . . . . . . . . . . . . . . 18

2.3.1 Measurement and Prediction Stage . . . . . . . . . . . . . . . . . 19

ix



2.3.2 Consensus Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Implementing Noisy Communication . . . . . . . . . . . . . . . 20

2.3.3.1 Numerical Performance Under Noisy Communication . 21

2.4 ANovel Two-Stage Distributed Linear Filter . . . . . . . . . . . . . . . . 23

2.5 Analysis of the Novel Two-Stage Distributed Linear Filter . . . . . . . . . 24

2.5.1 Error Covariance of Estimator . . . . . . . . . . . . . . . . . . . 24

2.5.2 Methodology to Tune Parameters . . . . . . . . . . . . . . . . . 26

2.5.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Individual Node Differences for Novel Two-Stage Distributed Linear Filter 30

2.7 Convexity of Trace of Asymptotic Error Covariance Matrix . . . . . . . . 33

3 Distributed Control and Estimation of a Linear Time-invariant

System 41

3.1 ProblemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Parameter Design for State Feedback and Distributed Estimation . . . . . . 48

3.2.1 LMI Formulation for Parameter Design . . . . . . . . . . . . . . 51

3.2.2 Effect of Linear Consensus on Stability . . . . . . . . . . . . . . . 54

3.2.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Parameter Design . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Role of Network Structure on Performance of Distributed Algorithm . . . 62

3.4.1 Line Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Ring Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



3.4.3 Star Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Actuatorand SensorAllocation forDistributedControl andEs-

timation 69

4.1 Actuator Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Building Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Impact of Multiple Actuators . . . . . . . . . . . . . . . . . . . 73

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Statistical Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Two-sample testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Centrality Measures of Interest . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.1 Closeness Centrality . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.2 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.3 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.4 Information Centrality . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.1 Erdos-Renyi Graphs . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Generation of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.10 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.12 Comparing Betweenness Centrality with Closeness Centrality . . . . . . . 89

xi



4.12.1 Impact of Fully Connected Nodes . . . . . . . . . . . . . . . . . 90

4.13 Comparing Betweenness Centrality with Degree Centrality . . . . . . . . 98

4.14 Comparing Betweenness Centrality with Eigenvector Centrality . . . . . . 101

4.15 Comparing Betweenness Centrality with Information Centrality . . . . . . 103

4.16 Sensor Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.16.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.16.2 Comparing Betweenness Centrality with Closeness Centrality . . . 108

4.16.3 Comparing Betweenness Centrality with Degree Centrality . . . . 110

4.16.4 Comparing Betweenness Centrality with Eigenvector Centrality . . 111

4.16.5 Comparing Betweenness Centrality with Information Centrality . 113

4.16.6 Typical Values for Upper Bound on Estimation Block Norm . . . 114

4.17 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 RobustnessandScalability forDistributedControlandEstimation117

5.1 Robustness to Graph GenerationMethod . . . . . . . . . . . . . . . . . 118

5.1.1 Barabasi-Albert Model . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1.2 ComparingBetweennessCentralitywithClosenessCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1.3 Comparing Betweenness Centrality with Degree Cen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1.4 ComparingBetweennessCentralitywithEigenvectorCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xii



5.1.1.5 ComparingBetweennessCentralitywith InformationCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1.1.6 Summary of Results . . . . . . . . . . . . . . . . . . . 132

5.1.2 Watts-Strogatz Model . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1.2.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.2.2 ComparingBetweennessCentralitywithClosenessCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.2.3 Comparing Betweenness Centrality with Degree Cen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.2.4 ComparingBetweennessCentralitywithEigenvectorCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.2.5 ComparingBetweennessCentralitywith InformationCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.2.6 Summary of Results . . . . . . . . . . . . . . . . . . . 145

5.2 Robustness to Actuator Failure . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.1 One Actuator Fails . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1.2 ComparingBetweennessCentralitywithClosenessCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1.3 Comparing Betweenness Centrality with Degree Cen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.1.4 ComparingBetweennessCentralitywithEigenvectorCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiii



5.2.1.5 ComparingBetweennessCentralitywith InformationCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2.1.6 Summary of Results . . . . . . . . . . . . . . . . . . . 158

5.2.2 Two Actuators Fail . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.2.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.2.2 ComparingBetweennessCentralitywithClosenessCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.2.3 Comparing Betweenness Centrality with Degree Cen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2.2.4 ComparingBetweennessCentralitywithEigenvectorCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2.2.5 ComparingBetweennessCentralitywith InformationCen-

trality . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2.2.6 Combined Conclusions . . . . . . . . . . . . . . . . . 169

5.3 Robustness to Sparsely Available Control Authority . . . . . . . . . . . . 170

5.3.1 Multi-dimensional Process with Joint Controllability . . . . . . . 170

5.3.2 Methodology to Investigate Joint Controllability . . . . . . . . . . 171

5.3.2.1 Actuator Weights for Multi-dimensional Process . . . . 172

5.3.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3.4 Comparing Betweenness Centrality with Closeness Centrality . . . 176

5.3.5 Comparing Betweenness Centrality with Degree Centrality . . . . 177

5.3.6 Comparing Betweenness Centrality with Eigenvector Centrality . . 179

5.3.7 Comparing Betweenness Centrality with Information Centrality . 181

xiv



5.3.8 Additional Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 182

5.3.9 Comparing Degree Centrality with Closeness Centrality . . . . . . 184

5.3.10 Comparing Degree Centrality with Eigenvector Centrality . . . . . 185

5.3.11 Comparing Degree Centrality with Information Centrality . . . . 187

5.3.12 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4 Robustness to Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.4.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.4.2 Comparing Betweenness Centrality with Closeness Centrality . . . 190

5.4.3 Comparing Betweenness Centrality with Degree Centrality . . . . 191

5.4.4 Comparing Betweenness Centrality with Eigenvector Centrality . . 193

5.4.5 Comparing Betweenness Centrality with Information Centrality . 194

5.4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . 195

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6 Final Remarks 197

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

II Published Work 201

7 Outline and Contributions 202

7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8 OnDistributed Linear FilteringwithNoisy Communication 205

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xv



8.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.3 A state-of-the-art distributed linear filter . . . . . . . . . . . . . . . . . . 211

8.3.1 A two-stage distributed linear filter under noise-free communication 211

8.3.2 Performance under noisy communication . . . . . . . . . . . . . 212

8.4 A novel two-stage distributed linear filter . . . . . . . . . . . . . . . . . . 214

8.5 Analysis of the novel two-stage distributed linear filter . . . . . . . . . . . 216

8.5.1 Error covariance of the estimator . . . . . . . . . . . . . . . . . . 216

8.5.2 Tuning parameters ℓ and ζ . . . . . . . . . . . . . . . . . . . . . 220

8.5.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . 221

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9 A Separation Principle in the Design of Distributed Control for

LTI Systems 224

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.2 ProblemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.3 Parameter Design for State Feedback and Distributed Estimation . . . . . . 232

9.3.1 LMI Formulation for Parameter Design . . . . . . . . . . . . . . 234

9.3.2 Effect of Linear Consensus on Stability . . . . . . . . . . . . . . . 237

9.3.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.4.1 Parameter Design . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

xvi



References 246

xvii



List of Tables

2.1 Nomenclature relevant to our novel distributed estimation algorithm. . . . 30

3.1 List of basic notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs. Each data

point is calculated using 3000Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 90

4.2 Comparisonofhypotheses{H01,H1} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes and sta-

tistically significant cases (p < 0.05) are highlighted in green. . . . . . . . . 97

4.3 Comparisonofhypotheses{H02,H2} acrossErdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 99

4.4 Comparisonofhypotheses{H02,H2} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes and sta-

tistically significant cases (p < 0.05) are highlighted in green. . . . . . . . . 100

4.5 Comparisonof hypotheses{H03,H3} across Erdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 102

xviii



4.6 Comparisonofhypotheses{H03,H3} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes and sta-

tistically significant cases (p < 0.05) are highlighted in green. . . . . . . . . 103

4.7 Comparisonofhypotheses{H04,H4} acrossErdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 104

4.8 Comparisonofhypotheses{H04,H4} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes and sta-

tistically significant cases (p < 0.05) are highlighted in green. . . . . . . . . 105

4.9 Comparison of hypotheses {H′
01,H′

1} across Erdos-Renyi graphs. Each data

point is calculated using 500 Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 109

4.10 Comparisonofhypotheses{H′
02,H′

2} acrossErdos-Renyi graphs. Eachdata

point is calculated using 500 Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 111

4.11 Comparisonof hypotheses{H′
03,H′

3} across Erdos-Renyi graphs. Eachdata

point is calculated using 500 Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 112

4.12 Comparisonofhypotheses{H′
04,H′

4} acrossErdos-Renyi graphs. Eachdata

point is calculated using 500 Monte Carlo runs and statistically significant

cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . . . . . 114

xix



5.1 Comparison of hypotheses {H01,H1} across Barabasi-Albert graphs. Each

data point is calculated using 3000 Monte Carlo runs and statistically sig-

nificant cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . 123

5.2 Comparison of hypotheses {H01,H1} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 124

5.3 Comparison of hypotheses {H02,H2} across Barabasi-Albert graphs. Each

data point is calculated using 1000 Monte Carlo runs and statistically sig-

nificant cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . 126

5.4 Comparison of hypotheses {H02,H2} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 127

5.5 Comparison of hypotheses {H03,H3} across Barabasi-Albert graphs. Each

data point is calculated using 1000 Monte Carlo runs and statistically sig-

nificant cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . 128

5.6 Comparison of hypotheses {H03,H3} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 129

5.7 Comparison of hypotheses {H04,H4} across Barabasi-Albert graphs. Each

data point is calculated using 1000 Monte Carlo runs and statistically sig-

nificant cases (p < 0.05) are highlighted in green. . . . . . . . . . . . . . . 131

xx



5.8 Comparison of hypotheses {H04,H4} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 132

5.9 Comparisonofhypotheses{H01,H1} acrossWatts-Strogatz graphswithβ =

0.2. Each data point is calculated using 500 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 136

5.10 Comparisonofhypotheses{H01,H1} acrossWatts-Strogatz graphswithK =

4. Each data point is calculated using 1000 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 137

5.11 Comparisonofhypotheses{H02,H2} acrossWatts-Strogatz graphswithβ =

0.2. Each data point is calculated using 500 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 138

5.12 Comparisonofhypotheses{H02,H2} acrossWatts-Strogatz graphswithK =

4. Each data point is calculated using 1000 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 139

5.13 Comparisonofhypotheses{H03,H3} acrossWatts-Strogatz graphswithβ =

0.2. Each data point is calculated using 500 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 141

5.14 Comparisonofhypotheses{H03,H3} acrossWatts-Strogatz graphswithK =

4. Each data point is calculated using 1000 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 142

xxi



5.15 Comparisonofhypotheses{H04,H4} acrossWatts-Strogatz graphswithβ =

0.2. Each data point is calculated using 500 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 143

5.16 Comparisonofhypotheses{H04,H4} acrossWatts-Strogatz graphswithK =

4. Each data point is calculated using 1000 Monte Carlo runs and statisti-

cally significant cases (p < 0.05) are highlighted in green. . . . . . . . . . . 144

5.17 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 147

5.18 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.19 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 151

5.20 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.21 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 154

xxii



5.22 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.23 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 157

5.24 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.25 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500MonteCarlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 160

5.26 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.27 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500MonteCarlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 163

xxiii



5.28 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.29 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500MonteCarlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 165

5.30 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.31 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500MonteCarlo runs

and statistically significant cases (p < 0.05) are highlighted in green. . . . . 168

5.32 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connectednodes and statistically significant cases (p < 0.05) are highlighted

in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.33 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xxiv



5.34 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.35 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.36 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.37 Comparison of hypotheses {H05,H5} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.38 Comparison of hypotheses {H06,H6} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxv



5.39 Comparison of hypotheses {H07,H7} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)

are highlighted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.40 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100 Monte Carlo runs and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 191

5.41 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100 Monte Carlo runs and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 192

5.42 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100 Monte Carlo runs and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 194

5.43 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100 Monte Carlo runs and

statistically significant cases (p < 0.05) are highlighted in green. . . . . . . 195

xxvi



List of Figures

2.1 Evolution of a scalar linear stochastic process given by (2.1) with a = 1,

noise variance q = 1, mean of initial condition x0 = 0, and variance of

initial condition σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Samplings of the stochastic process seen in Figure (2.1) by a network ofN =

3 sensors each with noise variance r = 25. . . . . . . . . . . . . . . . . . . 16

2.3 Influence of communication noise in consensus dynamics on error variance

across 200,000 Monte Carlo runs for distributed filtering algorithm (2.10)

and (2.12) withN = 3, q = 1, and r = 25 for an undirected line graph. We

see that the error variance diverges with the number of consensus rounds.

Repeated from Figure (8.1). . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Optimal ℓ and ζ as a function of consensus roundsm and communication

noise standard deviation σc with N = 3, r = 25, and q = 1 for an undi-

rected line graph. Repeated from Figure (8.2). . . . . . . . . . . . . . . . 27

xxvii



2.5 Influence of communication noise in consensus dynamics on error variance

across 200,000 Monte Carlo runs for our novel distributed filtering algo-

rithm withN = 3, r = 25, and q = 1 for an undirected line graph. Even as

σc increases the error variance no longer diverges as more consensus rounds

are performed. Repeated from Figure (8.3). . . . . . . . . . . . . . . . . . 29

2.6 Asymptotic error variances across individual nodes for our novel distributed

filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1, and ζ = 0.1 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Negative eigenvalues of the cost function Hessian for our novel distributed

filtering algorithm with N = 3, r = 25, q = 1, σ2c = 1, and consensus

roundsm = 1 for an undirected line graph. . . . . . . . . . . . . . . . . . 34

2.8 Negative eigenvalues of the cost function Hessian for our novel distributed

filtering algorithm with N = 3, r = 25, q = 1, σ2c = 1, and consensus

roundsm = 2 for an undirected line graph. . . . . . . . . . . . . . . . . . 34

2.9 Negative eigenvalues of the cost function Hessian for our novel distributed

filtering algorithm with N = 3, r = 25, q = 1, σ2c = 1, and consensus

roundsm = 3 for an undirected line graph. . . . . . . . . . . . . . . . . . 35

2.10 Negative eigenvalues of the cost function Hessian for our novel distributed

filtering algorithm with N = 3, r = 25, q = 1, σ2c = 1, and consensus

roundsm = 4 for an undirected line graph. . . . . . . . . . . . . . . . . . 35

2.11 Negative eigenvalues of the cost function Hessian for our novel distributed

filtering algorithm with N = 3, r = 25, q = 1, σ2c = 1, and consensus

roundsm = 5 for an undirected line graph. . . . . . . . . . . . . . . . . . 36

xxviii



2.12 Second derivative d2J
dℓ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus rounds m = 5, and ζ = 0 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Second derivative d2J
dℓ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus rounds m = 5, and ζ = 0.5 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 Second derivative d2J
dℓ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus rounds m = 5, and ζ = 1 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.15 Second derivative d2J
dζ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus roundsm = 5, and ℓ = 0.01 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.16 Second derivative d2J
dζ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus rounds m = 5, and ℓ = 0.5 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.17 Second derivative d2J
dζ2 for our novel distributed filtering algorithmwithN =

3, r = 25, q = 1, σ2c = 1, consensus rounds m = 5, and ℓ = 1 for an

undirected line graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 A diagram illustrating the closed loop consisting of the LTI system, dis-

tributed estimation, (linear) consensus, and state feedback. Repeated from

Figure (9.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xxix



3.2 Plots of the optimal value of (a) γ for the estimation component design

(3.19), (b) γ′ for the control component design (3.21), and (c) the product

γ ∗ γ′, where the critical value of 1 is drawn as a dotted line. Repeated from

Figure (9.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Formation control withm = 4 rounds of linear consensus showing (a) tra-

jectories in the xy-plane, (b) vxi , and (c) v
y
i of all 4 vehicles as they maintain

a line formation while avoiding a stationary obstacle at (10, 0). Repeated

from Figure (9.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Distributions of actuation or sensing across a line graphwithN = 4 agents.

Class A includes one agent controlling all three states, class B includes one

agent controlling two states and one agent controlling the remaining one

state, and class C includes three agents controlling one unique state each.

The class definitions are the same for sensing. . . . . . . . . . . . . . . . . 64

3.5 Distributions of actuation or sensing across a ring graphwithN = 4 agents.

The class definitions and color scheme are as in Figure 3.4. . . . . . . . . . 65

3.6 Distributions of actuation or sensing across a star graphwithN = 4 agents.

The class definitions and color scheme are as in Figure 3.4. . . . . . . . . . 66

3.7 Unique values of ξ for line, ring, and star graphs withN = 4 agents. . . . . 67

4.1 Distribution of optimal actuation weights across a line graph with N = 5

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Distribution of betweenness centrality (BC) across a line graph withN = 5

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xxx



4.3 Distribution of optimal actuation weights and betweenness centrality (BC)

across a graph withN = 5 nodes. . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Distribution of norms for unique selections of individual actuation agents

across a graph withN = 5 nodes. . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Distribution of optimal actuation weights and betweenness centrality (BC)

across an irregular graph withN = 5 nodes. . . . . . . . . . . . . . . . . . 76

4.6 Distribution of norms for unique selections of individual actuators across a

graph withN = 5 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Erdos-Renyi graph withN = 10 nodes and connection probability ρ = 0.3. 84

4.8 Erdos-Renyi graph withN = 10 nodes and connection probability ρ = 0.7. 84

4.9 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs. Each data

point is calculated using 2000Monte Carlo runs. . . . . . . . . . . . . . . 89

4.10 Erdos-Renyi graph withN = 6 and edge connection probability ρ = 0.7.

Nodes 1 and 6 are fully connected. . . . . . . . . . . . . . . . . . . . . . 92

4.11 Normalized α weightings for an Erdos-Renyi graph with N = 6 and edge

connection probability ρ = 0.7. Nodes 1 and 6 are fully connected. . . . . 92

4.12 Distribution of graph types used for comparison of hypotheses {H01,H1}

for Erdos-Renyi graphs withN = 6 nodes. . . . . . . . . . . . . . . . . . 93

4.13 Distribution of graph types used for comparison of hypotheses {H01,H1}

for Erdos-Renyi graphs withN = 13 nodes. . . . . . . . . . . . . . . . . . 94

xxxi



4.14 Difference between norms with actuation weighting as a function of close-

ness centrality andbetweenness centrality vs. distance fromacomplete graph

for Erdos-Renyi graphs withN = 10 and ρ = 0.4. 1000 data points com-

prise this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.15 Difference between norms with actuation weighting as a function of close-

ness centrality andbetweenness centrality vs. distance fromacomplete graph

for Erdos-Renyi graphs withN = 10 and ρ = 0.7. 1000 data points com-

prise this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.16 Comparisonofhypotheses{H01,H1} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes. . . . . . 97

4.17 Comparisonofhypotheses{H02,H2} acrossErdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs. . . . . . . . . . . . . . . 99

4.18 Comparisonofhypotheses{H02,H2} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes. . . . . . 100

4.19 Comparisonof hypotheses{H03,H3} across Erdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs. . . . . . . . . . . . . . . 101

4.20 Comparisonofhypotheses{H03,H3} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes. . . . . . 102

4.21 Comparisonofhypotheses{H04,H4} acrossErdos-Renyi graphs. Eachdata

point is calculated using 2000Monte Carlo runs. . . . . . . . . . . . . . . 104

4.22 Comparisonofhypotheses{H04,H4} acrossErdos-Renyi graphs. The statis-

tics are generated only using graphs with no fully connected nodes. . . . . . 105

xxxii



4.23 Comparison of hypotheses {H′
01,H′

1} across Erdos-Renyi graphs. Each data

point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . . . . 109

4.24 Comparisonofhypotheses{H′
02,H′

2} acrossErdos-Renyi graphs. Eachdata

point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . . . . 110

4.25 Comparisonof hypotheses{H′
03,H′

3} across Erdos-Renyi graphs. Eachdata

point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . . . . 112

4.26 Comparisonofhypotheses{H′
04,H′

4} acrossErdos-Renyi graphs. Eachdata

point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . . . . 113

4.27 Erdos-Renyi graph withN = 7 and connection probability ρ = 0.5. . . . . 115

4.28 Minimum γ∗ values when weighting sensors by the various centrality mea-

sures of interest for an Erdos-Renyi graph withN = 7 and ρ = 0.5. . . . . 115

5.1 Barabasi-Albert graph with N = 20 nodes. This graph was seeded with a

three node line graph and each sequentially added node connected to n = 1

existing nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Barabasi-Albert graph with N = 20 nodes. This graph was seeded with a

three node line graph and each sequentially added node connected to n = 2

existing nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Barabasi-Albert graph with N = 20 nodes. This graph was seeded with a

three node line graph and each sequentially added node connected to n = 3

existing nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Comparison of hypotheses {H01,H1} across Barabasi-Albert graphs. Each

data point is calculated using 3000Monte Carlo runs. . . . . . . . . . . . 123

xxxiii



5.5 Comparison of hypotheses {H01,H1} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes. . . 124

5.6 Comparison of hypotheses {H02,H2} across Barabasi-Albert graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 125

5.7 Comparison of hypotheses {H02,H2} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes. . . 126

5.8 Comparison of hypotheses {H03,H3} across Barabasi-Albert graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 128

5.9 Comparison of hypotheses {H03,H3} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes. . . 129

5.10 Comparison of hypotheses {H04,H4} across Barabasi-Albert graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 130

5.11 Comparison of hypotheses {H04,H4} across Barabasi-Albert graphs. The

statistics are generated only using graphs with no fully connected nodes. . . 131

5.12 Watts-Strogatz graphwithN = 10 nodes, mean degreeK = 4, and rewiring

probability β = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.13 Watts-Strogatz graphwithN = 10 nodes, mean degreeK = 4, and rewiring

probability β = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.14 Watts-Strogatz graphwithN = 10 nodes, mean degreeK = 4, and rewiring

probability β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.15 Comparison of hypotheses {H01,H1} across Watts-Strogatz graphs. Each

data point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . 136

xxxiv



5.16 Comparison of hypotheses {H01,H1} across Watts-Strogatz graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 137

5.17 Comparison of hypotheses {H02,H2} across Watts-Strogatz graphs. Each

data point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . 138

5.18 Comparison of hypotheses {H02,H2} across Watts-Strogatz graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 139

5.19 Comparison of hypotheses {H03,H3} across Watts-Strogatz graphs. Each

data point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . 140

5.20 Comparison of hypotheses {H03,H3} across Watts-Strogatz graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 142

5.21 Comparison of hypotheses {H04,H4} across Watts-Strogatz graphs. Each

data point is calculated using 500Monte Carlo runs. . . . . . . . . . . . . 143

5.22 Comparison of hypotheses {H04,H4} across Watts-Strogatz graphs. Each

data point is calculated using 1000Monte Carlo runs. . . . . . . . . . . . 144

5.23 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs. 147

5.24 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.25 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs. 150

xxxv



5.26 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.27 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs. 153

5.28 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.29 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with one

actuator failing. Each data point is calculated using 1500Monte Carlo runs. 156

5.30 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with one

actuator failing. The statistics are generated only using graphs with no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.31 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500Monte Carlo runs. 160

5.32 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.33 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500Monte Carlo runs. 162

5.34 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xxxvi



5.35 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500Monte Carlo runs. 165

5.36 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.37 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with two

actuators failing. Each data point is calculated using 1500Monte Carlo runs. 167

5.38 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs with two

actuators failing. The statistics are generated only using graphswith no fully

connected nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.39 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 176

5.40 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 178

5.41 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 180

5.42 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 181

xxxvii



5.43 Comparison of hypotheses {H05,H5} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 184

5.44 Comparison of hypotheses {H06,H6} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 186

5.45 Comparison of hypotheses {H07,H7} across Erdos-Renyi graphs where no

individual node has full control of the process. Each data point is calculated

using 1000Monte Carlo runs. . . . . . . . . . . . . . . . . . . . . . . . . 187

5.46 Comparison of hypotheses {H01,H1} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100Monte Carlo runs. . . . . 190

5.47 Comparison of hypotheses {H02,H2} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100Monte Carlo runs. . . . . 192

5.48 Comparison of hypotheses {H03,H3} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100Monte Carlo runs. . . . . 193

5.49 Comparison of hypotheses {H04,H4} across Erdos-Renyi graphs withN =

50 nodes. Each data point is calculated using 100Monte Carlo runs. . . . . 195

8.1 Influence of communication noise in consensus dynamics on error variance

across 200,000 Monte Carlo runs for distributed filtering algorithm (8.7)

and (8.9) withN = 3, r = 25, and q = 1 for an undirected line graph. We

see that the error variance diverges with the number of consensus rounds. . 214

8.2 Optimal ℓ and ζ as a function of consensus rounds m and σc with N = 3,

r = 25, and q = 1 for an undirected line graph. . . . . . . . . . . . . . . . 221

xxxviii



8.3 Influence of communication noise in consensus dynamics on error variance

across 200,000Monte Carlo runs for the distributed filtering algorithm de-

fined in §8.4 withN = 3, r = 25, and q = 1 for an undirected line graph.

Even as σc increases the error variance no longer diverges as more consensus

rounds are performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.1 A diagram illustrating the closed loop consisting of the LTI system, dis-

tributed estimation, (linear) consensus, and state feedback. . . . . . . . . . 229

9.2 Plots of the optimal value of (a) γ for the estimation component design

(9.24), (b) γ′ for the control component design (9.25), and (c) the product

γ ∗ γ′, where the critical value of 1 is drawn as a dotted line. . . . . . . . . . 242

9.3 Formation control withm = 4 rounds of linear consensus showing (a) tra-

jectories in the xy-plane, (b) vxi , and (c) v
y
i of all 4 vehicles as they maintain a

line formation while avoiding a stationary obstacle at (10, 0). . . . . . . . . 244

1



Part I

Design of Distributed Estimation and

Control for Networked Multiagent

Systems

2



1
Introduction

Networked systems are ubiquitous throughout our society. Examples include transporta-

tion networks, power grids, robotic networks, financial markets, as well as social interaction

networks1,2. In themost basic sense, anetwork is a collection ofnodes and edgeswhere an edge

represent an identifiable connection between a pair of nodes. In the case of a social network,

nodes could represent people on a social networking site and edges could represent friend-
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ship. In the context of dynamical systems theory it is common to refer to nodes as agents,

where agents are considered to be entities which can perceive the environment using sensors

or act on the environment using actuators3,4. We refer to a collection of agents which can po-

tentially interact with one another as amultiagent system. When such agents are connected

in a network according to an underlying structure, we refer to this as a networkedmultiagent

system. A great benefit of multiagent systems is that, while individual agents can be relatively

simplistic in terms of their sensing or actuation capabilities, through sophisticated feedback

dynamics and inter-agent interactions the collective group is capable of completing sophisti-

cated tasks5. When considering a large-scale system, it is evident that utilizingmultiple agents

may afford unique benefits6. If a small number of agents become inoperative, it is possible

to design into the system a smooth degradation in performance which allows for built-in ro-

bustness. Furthermore, if it is relatively simple to add additional agents into the system, then

it allows for easy scalability within the system. If individual agents are relatively cheap to pro-

duce with respect to the entire system architecture, then we can also see benefits in terms of

cost reductions.

We are interested in problems related to utilizing networked multiagent systems to per-

form estimation and control tasks. Just as multiagent systems can provide unique benefits

as previously mentioned, they also offer unique challenges in terms of design. With respect

to estimation, typically the information that is collected by sensors in a multiagent system is

distributed in nature. There are a variety of reasons for this. Individual agents could be mea-

suring data that differs either spatially or temporally (or both). Individual agents could also

be equippedwith different types of sensors and tasked tomeasure fundamentally different at-

tributes of some external process of interest. Because of the fact that agents could bemeasur-
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ing disparate data in this sense, the environment could be partially observable to an individual

agent. Partial observability brings with it particular challenges for decision making in mul-

tiagent systems. One example is that optimal planning of a multiagent system under partial

observability can be intractable7. There is also the issue of sensor fusion, which refers to the

problem of determining how best to combine the sensor measurements of different agents

so as to increase the collective knowledge of the group as a whole8,56,92,9,10,76. In Chapter 2

we investigate novel ways to achieve sensor fusion in the presence of communication noise.

We show how communication noise degrades the performance of a distributed filtering al-

gorithm outlined in56 and propose an innovative algorithm which avoids such degradation.

The study summarized in Chapter 2 has been published and appears as Savas, Srivastava, and

Leonard11. The paper can be found in Chapter 8 of Part II of this dissertation. The study

was done in collaboration with Vaibhav Srivastava and my advisor Naomi Leonard.

With respect to performing control tasks, typically the control in multiagent systems is

decentralized. In such schemes there is not a centralized hub that communicates with ev-

ery agent in the architecture and provides commands, but rather each individual agent is

responsible for its own decision-making. One obvious benefit to decentralized control is

there is built-in robustness to the system that is not afforded by centralized methods. In

well-designed systems if a small number of agents are removed from the architecture it is pos-

sible to still meet a desired control objective, which is not true if a centralized controller were

to be removed from within a centralized framework. One popular method to address the

general problem of decision-making in multiagent systems has been the field of game theory,

where each agent is assumed to be rational and strategic12. In this dissertation we focus on

collaborative multiagent systems where the agents work together to achieve a common con-
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trol objective. Examplesmight include formation control ofmobile agents13,14,88, multiagent

rendezvous problems15, or cooperative manipulation by robots16. Often in such networked

systems agents have limited (local) information regarding the process of interest or the data

known to the other agents in the network. If an agent is influenced by the actions of other

agents in the network but does not have access to those other agents’ data, then the system

has a nonclassical information structure89. Optimal solutions to such nonclassical decentral-

ized systems differ greatly from well-known results in the centralized setting. For example,

in90 the author shows that for a linear system subject to Gaussian noise when the objective

is to minimize the expectation of some quadratic criterion, a nonlinear control law exists

which outperforms all affine laws when the information structure is nonclassical. Finding

the analytical form for the optimal nonlinear control law to this celebrated Witsenhausen’s

counterexample is still an open problem today91.

Another well-known result from the centralized setting which is not generally applicable

when the control and estimation is distributed over a network is the separation principle. In

feedback systems theory, the separation principle states that solving for the optimal controller

and state estimator can be decoupled under certain conditions17. This notion of a separation

principle was introduced in18,19. The underlying idea is that one chooses as a control at each

instant in time the conditional expectation of what would be the optimal control if there was

no uncertainty. In other words, one designs the control law assuming perfect information,

and then separately designs the estimator such that the estimator errors converge to zero. This

is closely related to the idea of certainty equivalence20. The pioneering idea to use a class of

control laws which are functions of the estimates was proposed in21.

There have been efforts to extend this notion of a separation principle to networked sys-
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tems. In22 authors propose and prove the existence of a separation principle for observer-

based discrete-timenetworked control systemswith randompacket drops. A separationprin-

ciple is proved for a linear quadratic control problem in a team-based distributed setting in23.

InChapter 3we consider a distributed control problem and propose a new frameworkwhich

allowsus todesign the control and estimationparameters separately under certain conditions.

We also make use of linear consensus dynamics to extend the operating regime of our algo-

rithm. The study summarized in Chapter 3 is in preparation for submission and appears as

Savas, Park, Poor, and Leonard24. The paper can be found in Chapter 9 of Part II of this

dissertation. The study was done in collaboration with Shinkyu Park and my advisors H.

Vincent Poor and Naomi Leonard.

We are also interested in the problem of sensor and actuator selection. Typically, one has a

configuration of sensors and actuators and then designs controllers and observers to best use

that given configuration to achieve some desired objective. However, in large-scale systems

utilizing all of the sensors and actuators in a given architecture could be infeasible both froma

computational standpoint or an economic one. Thus, it is a worthwhile endeavor to develop

methods to select appropriate subsets of available sensors and actuators for practical use cases.

Much of the literature considers the problem of graceful degradation in performance relative

to the optimal Kalman filter or Linear Quadratic Regulator that makes use of all of the sens-

ing or actuating capabilities available, which in general is a difficult combinatorial problem.

A convex sensor selection methodology for a problem with linear measurements corrupted

by additive noise is given in25 which utilizes heuristics to approximately solve the problem.

In26 the author proposes using a genetic algorithm for actuator selection. In this instance

an aerospace application is considered in which there are many possible candidate locations
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for actuator placement, and the genetic algorithm is used to determine the minimum num-

ber of actuators needed to meet a design objective. Obviously enumerating all of the possi-

ble combinations in such an application quickly becomes cumbersome and infeasible as the

size of the decision space grows. Looking at the joint sensor and actuator selection problem

for vibration control of flexible structures, Powell’s iterative method for multidimensional

function minimization has been used to optimize sensor and actuator placement in an H2

sense27 and gradient-based techniques based on the gradient of the controlled system’s H2

norm are used in28 to inform actuator and sensor placement. In a fluid dynamics application,

H2 optimal sensor and actuator placement was explored for the linearized Ginzburg-Landau

system29. An alternating direction method of multipliers algorithm for joint sensor and ac-

tuator placement is proposed in30. Joint sensor and actuator selection is also evident in the

leader selection problem in consensus networks. A convex relaxation is employed in31 and

an analytical solution is given for one or two leaders in32.

We consider the problemof sensor and actuator selection for our novel distributed control

framework summarized inChapter 3 and detailed inChapter 9, focusing primarily on actua-

tor selection. Rather than tackling the problem of optimally selecting subsets of sensors and

actuators, we instead explore how various centrality measures from graph theory might be

utilized as heuristics. In Chapter 4, we use hypothesis testing to compare between select cen-

trality measures with the goal being to minimize a key norm. A benefit to such an approach

is that one could use these statistically discovered heuristics as seeds to “warm-start” a given

numerical optimization procedure. As previously discussed, solving the optimal sensor and

actuator selection problem is computationally intensive and can become infeasible as the size

of the architecture grows. Utilizing a suboptimal solution as a seed for such optimizations
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could vastly improve computation times. In addition, a heuristic such as these centralitymea-

sures could be employed in online algorithms that must respond to changes in the network

architecture where one does not have the time to reoptimize. We explore situations related

to this, specifically irrecoverable actuator failure, in Chapter 5.

1.1 Outline and Contributions

In this dissertation we focus on the design of estimation and control frameworks for dis-

tributedmultiagent systems. We begin by considering the distributed filtering problemwith

the added caveat that communication between agents is a noisy process. We show the detri-

mental effects such communication noise has on consensus filters in the literature and pro-

pose a novel filtering algorithm which is resilient to such effects. We then consider the joint

problem of distributed estimation and control over a network of agents. By utilizing the

small-gain theorem we are able to provide conditions under which the design of the estima-

tion and control parameters can be done independently akin to the celebrated separation

principle in optimal control theory. We then use this distributed control framework as a ba-

sis to develop heuristics for sensor and actuator placement. We employ statistical hypothesis

testing to compare heuristics and analyze the robustness and scalability of our results.

The dissertation is separated into two parts. Part I contains a summary of all key work as

well as unpublished results. Part II, consisting of Chapters 7-9, contains work that has been

published or that is in preparation for submission.

In Chapter 2 we introduce the distributed linear filtering problem and summarize results

from Chapter 8. We consider two-stage consensus filters and demonstrate that communica-

tion noise inherently destabilizes filters from the literature. We develop an innovative two-
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stage filter which is robust to communication noise and rigorously analyze its properties. We

also provide analytical results on how the performance of individual agents differs depending

on their location in the network. We conclude with a preliminary investigation of the con-

vexity of a proposed cost function integral to our algorithm design.

In Chapter 3 we consider distributed control of linear time-invariant systems and sum-

marize results from Chapter 9. We employ the small-gain theorem and characterize linear

matrix inequality conditions under which a weaker notion of the separation principle holds

for the design of the estimator and control parameters. We also explore how to utilize linear

consensus dynamics to extend the region of applicability of our framework. We show how

our framework can handle nonlinear control laws and consider a multi-vehicle platooning

example as an application.

InChapter 4we use statistical hypothesis testing to compare heuristics for sensor and actu-

ator selection with respect to the distributed control framework proposed in Chapters 3 and

9. We compare a set of centrality measures against one another and compute statistics over

Erdos-Renyi random graphs. We show that there is strong statistical evidence that, among

the centrality measures considered, betweenness centrality is the best heuristic given a suffi-

cient edge density.

In Chapter 5 we explore how our statistical results extend to additional graph generation

methods, actuator failure, sparse control authority, as well as network scale. We find strong

statistical evidence that betweenness centrality remains the most effective heuristic for actua-

tor selection given sufficient edge density except in the paradigm of sparse control authority.

We consider systems in which individual agents do not have full controllability of the pro-

cess; rather, there is only joint controllability at the network level. In such caseswe find strong
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statistical evidence that degree centrality becomes the most effective heuristic for actuator se-

lection.

In Chapter 6 we summarize the main results and provide commentary on possible future

directions of this work.
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2
Distributed Filtering with Noisy

Communication

We now investigate the problem of distributed filtering in a networked multiagent system

of a scalar linear stochastic process under noisy communication. Sections 2.1-2.5 summa-

rize results which are presented in Part II: Chapter 8 which appears as Savas, Srivastava, and
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Leonard11. In Section 2.1 we define precisely what we mean by the distributed linear filter-

ing problem. In Section 2.2 we provide an overview of linear consensus dynamics which are

a key component of our algorithm. In Section 2.3 we introduce one two-stage distributed fil-

ter from the literature. We define what we mean by noisy communication within the sensor

network and analyze how such communication noise impacts the performance of said filter.

In Section 2.4 we propose and rigorously analyze a novel algorithm to mitigate such issues.

Sections 2.6-2.7 cover new results, not published in11 of Chapter 8. In Section 2.6 we ex-

plore how the performance of individual nodes is related to their location in the network. In

Section 2.7 we provide preliminary analysis on the convexity of a pertinent cost function.

2.1 Distributed Linear Filtering Problem Setup

Consider the following scalar linear stochastic process

x(k+ 1) = ax(k) + w(k), x(0) = X0, (2.1)

for each k ∈ Z≥0, where a ∈ R is a constant, {w(k)}k∈Z≥0 is a sequence of independent

identically distributed (i.i.d.) zero-mean Gaussian noise with variance q ∈ R>0, and X0 is

a Gaussian random variable with mean x0 and variance σ. For simplicity, we will consider

the case with a = 1 but note that the following analysis is generalizable to the case a ̸= 1.

An example evolution for the stochastic process defined in (2.1) with a = 1, process noise

variance q = 1, mean of initial condition x0 = 0, and variance of initial condition σ = 1 is

shown in Figure (2.1).
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Figure 2.1: Evolution of a scalar linear stochastic process given by (2.1) with a = 1, noise variance q = 1, mean of
initial condition x0 = 0, and variance of initial condition σ = 1.

Now suppose that a sensor is tasked to sample such a stochastic process at each discrete time

k to obtain a noisy measurement given by

y(k) = x(k) + n(k), for each k ∈ Z≥0, (2.2)

where {n(k)}k∈Z≥0 is a sequence of i.i.d. zero-mean Gaussian noise with variance r ∈ R>0.

Using sensor measurements y(k) given in (2.2) to estimate the state x(k) in (2.1) is known

as the standard scalar Kalman filtering problem70. We now extend these ideas to a network

of sensing nodes which can communicate over a fixed undirected graph G = {V , E}, where

V = {1, . . . ,N} is the vertex set, E ∈ V × V is the edge set, and N is the total number of

nodes. In this analysis we only consider connected graphs, meaning that every node has an

existing path to every other node in the network. Nowassume that eachnode i ∈ {1, . . . ,N}
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samples the stochastic process (2.1) at discrete times k and generates noisy measurements

defined by

yi(k) = x(k) + ni(k), for each i ∈ {1, . . . ,N}, (2.3)

where {ni(k)}k∈Z≥0 are i.i.d. zero-meanGaussian noises with variance r. Note that each sens-

ing node is assumed to have the same noise variance r. We further assume the noise sequences

ni(k) are independent for different i ∈ {1, . . . ,N}. We can write (2.3) in vector form as

y(k) = x(k)1N + n(k), (2.4)

where y(k) and n(k) are the N-column vectors of yi(k)’s and ni(k)’s, respectively, and 1N is

the N-column vector of all ones. As an illustrative example, consider a network of N = 3

nodes which each take noisy samples of the process x(k) seen in Figure (2.1). If each sensor

has noise variance r = 25, which indicates a relatively high sensor-to-process noise ratio, then

typical sensor output described by (2.3) is shown in Figure (2.2).
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Figure 2.2: Samplings of the stochastic process seen in Figure (2.1) by a network ofN = 3 sensors each with noise
variance r = 25.

We will now focus on the distributed estimation problem in which the sensing nodes can

only use local communication within the network to construct and update their estimates

of the process x(k). In other words, each node in the network does not have global knowl-

edge of the other nodes’ estimates for any given discrete time and must instead use informa-

tion flowwithin the network to improve their individual estimates. Specifically, we focus on

consensus-based dynamics and their applications to distributed estimation59,60,71.

2.2 Consensus Dynamics

In consensus dynamics each node at each discrete time will average its state (in this case, its

estimate) with that of its neighbors in the communication graph59,68,72. Let F ∈ RN×N be

the matrix of convex weights a node assigns to its neighbors. Note that Fii is node i’s self-

weight. To construct such a consensus matrix we employ the adjacency matrixA ∈ RN×N

16



of the graph, defined as

Aij =

 1 if (i, j) ∈ E

0 otherwise
(2.5)

The graph LaplacianL ∈ RN×N is then defined as

Lij =

 −Aij for i ̸= j∑N
k=1Aik for i = j

(2.6)

We can then construct a consensus matrix F as60

F = IN − εL (2.7)

where IN is the identity matrix of order N and 0 < ε < 1
max
i
(
∑N

k=1 Aik)
. It is well-known

that this matrix F is nonnegative and row-stochastic, and for a connected and undirected

graph has only one simple eigenvalue at unity and every other eigenvalue is inside the unit

disk59,68,71,72. Furthermore, for unsigned graphs F is also column-stochastic. Note that row-

stochasticity of F simply means that
∑N

j=1 Fij = 1 for each i ∈ {1, . . . ,N}, whereas column-

stochasticity yields
∑N

i=1 Fij = 1 for each j ∈ {1, . . . ,N}. We will denote the eigenvalues of

F as {λ0, ..., λN−1}with λ0 = 1. With these properties of F in mind, a key limiting behavior

is

lim
m→∞

Fm =
1
N
1N1TN (2.8)
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Thus, for any vector v ∈ RN we have

lim
m→∞

[Fmv]i =
1
N

N∑
i=1

vi, for each i ∈ {1, . . . ,N}. (2.9)

In other words, if we takem as the number of consensus rounds, in the limit asm → ∞we

see that each element of Fmvwill converge to the element-wise average value of v, which is pre-

cisely what wemean by achieving consensus. As an illustrative example, for a line graph with

N = 3nodes and taking ε = 0.4wecan construct a consensusmatrixF =


0.6 0.4 0

0.4 0.2 0.4

0 0.4 0.6

,

and it can be seen that F∞ =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 as expected. We now discuss one

method in which consensus dynamics have been employed to tackle the aforementioned dis-

tributed estimation problem.

2.3 A Two-Stage Distributed Linear Filter

We will focus on one particular method credited to Carli et al.56 which was put forth to

address the estimation problem posed in Section 2.1. The authors propose a two-stage dis-

tributed algorithm consisting of ameasurement and prediction stage followed by a consensus

stage. We now summarize the algorithm.
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2.3.1 Measurement and Prediction Stage

At discrete time k each sensing node i ∈ {1, . . . ,N} computes a convex combination of its

predictive estimate of the current state of the process x(k) which uses observations up until

time k − 1, denoted as x̂i(k|k − 1), and its current observation yi(k) to generate its estimate

of the process given observations until time k, denoted as x̂i(k|k). We can write this as

x̂(k|k) = (1− ℓ)x̂(k|k− 1) + ℓy(k), (2.10)

where x̂(k|k) and x̂(k|k− 1) are vectors of x̂i(k|k) and x̂i(k|k− 1), respectively, and ℓ ∈ [0, 1]

is the gain. It is important to note here that the gain ℓ is assumed constant, which differs

from the optimal Kalman filter gain. Thus, the distributed filter resulting from constant

choice of ℓ will not necessarily be optimal; however, the authors show in56 that this two-

stage distributed algorithm leads to estimation error with bounded variance. This implies

that choosing a constant gain ℓwill in fact be stabilizing.

2.3.2 Consensus Stage

The second stage of the algorithm utilizes consensus dynamics. Between two consecutive

discrete timesk andk+1 there arem roundsof consensusdynamicswhichoperate on the local

estimates x̂i(k|k). As mentioned previously, such consensus dynamics ensure that the local

estimate x̂i(k+ 1|k) of each node converges towards the average of the group 1
N
∑N

j=1 x̂j(k|k).

We write this stage as

x̂
(
k+

h
m

∣∣∣k) = Fx̂
(
k+

(h− 1)
m

∣∣∣k), h ∈ {1, . . . ,m}. (2.11)
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Note that for such a two-stage algorithm a timescale separation between the dynamics of the

stochastic process x(k) and the consensus dynamics is inherently assumed. In other words,

it is assumed that the communication and consensus dynamics of the sensing nodes operate

at a much faster rate than the process dynamics. This is necessary if the sensors are expected

to perform m rounds of consensus in between taking measurements of the process at dis-

crete times k and k + 1. We see that after the consensus rounds are completed, the second

stage (2.11) yields the estimate vector x̂(k + 1|k) which is then used in the first stage (2.10)

to generate the estimate x̂(k + 1|k + 1). We also note that this algorithm is initialized with

x̂(0| − 1) = x01N where x0 is the mean of the Gaussian random variable used to initialize the

process x(k). The estimates at future times are then computed recursively using (2.10) and

(2.11). After computing the covariance of the estimation error for this algorithm, Carli et

al.56 used it to find the optimal filter gain ℓ that minimizes the trace of the error covariance

matrix in the limit as k → ∞, otherwise known as the asymptotic error covariance matrix.

Assuming that the consensus step (2.11) occurs noiselessly, the described algorithm is sta-

bilizing and will lead to bounded error covariance. However, we believe that the notion of

noiseless consensus is an optimistic one and propose a modification to the consensus step to

account for communication noise between nodes.

2.3.3 ImplementingNoisy Communication

We will now assume that each node receives noisy estimates of each of its neighbors’ states

each time consensus is performed. This models the expected communication noise which

will be present during the information transfer. Since themodification occurs in the consen-

sus steps, the first stage of the algorithm remains the same as that outlined in (2.10). However,
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we modify the second stage (2.11) to include noisy communication as

x̂
(
k+

h
m

∣∣∣k) = Fx̂
(
k+

(h− 1)
m

∣∣∣k)+ σcu
(
k+

h
m

)
, (2.12)

where u(k + h/m) is the N-variate zero-mean Gaussian noise with covariance IN, for each

k ∈ Z≥0 and h ∈ {1, . . . ,m}, u(k + h/m) are independent, and σ2c is the communication

noise variance. Note thatwe assume that the communication noise experienced by each node

has the same variance σ2c . We can define the estimation error at each discrete time k as

x̃(k|k− 1) = x(k)1N − x̂(k|k− 1). (2.13)

We now investigate how the modified algorithm comprised of (2.10) and (2.12) performs

with respect to the sum of the error variances across all nodes.

2.3.3.1 Numerical Performance UnderNoisy Communication

We considerN = 3 nodes communicating over an undirected line graph. As described ear-

lier, we construct a consensus matrix as F = I3 − εL, where we choose ε = 0.4. We analyze

ten discrete time instances of the stochastic process (2.1) with a = 1, i.e., k ∈ {0, ..., 9},

and between each consecutive pair of time instances we applym consensus rounds. For this

analysis we considerm ∈ {0, 1, 2, 3, 4, 5} and assume that the process noise variance is q = 1

and the sensor noise variance is r = 25. Furthermore, we use filter gain ℓ = 0.25. We per-

form 200,000Monte Carlo simulations as a way to estimate the trace of the error covariance

matrix. Figure (2.3) shows the trace of the error covariance matrix for k = 4, which can be

represented as
∑3

i=1 var(x̃i(4|3)), as a function of the number of consensus roundsm for a
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range of values of communication noise variance σc.
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Figure 2.3: Influence of communication noise in consensus dynamics on error variance across 200,000 Monte Carlo runs
for distributed filtering algorithm (2.10) and (2.12) withN = 3, q = 1, and r = 25 for an undirected line graph. We
see that the error variance diverges with the number of consensus rounds. Repeated from Figure (8.1).

We can immediately see that for large enough values of σc the trace of the error covariance

actually increases as more consensus rounds are performed, suggesting that the two-stage

estimation algorithm is no longer stabilizing in the presence of communication noise. We

observe that the trace of the error covariance diverges as the number of consensus rounds

increases, which clearly is not a desired property of a distributed filtering algorithm which

invokes consensus dynamics. Wemust note here that such destabilizing behavior is not unex-

pected since consensus dynamics inherently have one eigenvalue at unity asmentioned previ-

ously. This unit eigenvalue acts to integrate the communication noise across each consensus

round, and the integrated noise has asymptotically infinite variance. Thus, it is clear that a

distributed filtering strategy which has been deliberately designed as in56 for noiseless com-
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munication does not and should not immediately extend to situations with communication

noise. We will now introduce our novel two-stage distributed filter and rigorously show that

it remains stabilizing even in the presence of noisy communication.

2.4 ANovel Two-Stage Distributed Linear Filter

We now describe our novel two-stage distributed filter which modifies and expands on the

algorithm of Carli et al.56 to account for and mitigate the effects of communication noise.

The first stage of our algorithm remains the same as in (2.10), i.e.,

x̂(k|k) = (1− ℓ)x̂(k|k− 1) + ℓy(k), (2.14)

with x̂(0| − 1) = x01N. However, we modify the consensus dynamics in the following way.

We define z(k|k) = x̂(k|k) for each k ∈ Z≥0. We update z through m consensus rounds

between consecutive time instances k and k+ 1 as

z
(
k+

h
m

∣∣∣k) = Fz
(
k+

(h− 1)
m

∣∣∣k)+ σcu
(
k+

h
m

)
+ x̂(k|k) (2.15)

for h ∈ {1, . . . ,m}. Note that in (2.15), each node i ∈ {1, . . . ,N} now remembers its

own estimate x̂i(k|k) at discrete time k and re-injects it during each subsequent consensus

round. To see the inspiration for such a modification, consider starting from a deterministic

initial condition z(k|k) = x̂(k|k). Afterm rounds of consensus the dominating component

of the variance of z(k + 1|k) will be mσ2c (see Figure (2.3)). If we re-inject x̂(k|k) at each

consensus step, we ensure that the dominating component of the expected value of zi(k+1|k)

is m+1
N
∑N

j=1 x̂j(k|k) for each i ∈ {1, . . . ,N}. Finally, if we divide z(k + 1) by (m + 1), the
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resultingmean is 1
N
∑N

j=1 x̂j(k|k) and variance ismσ2c /(m+1)2which goes to 0 asm → +∞.

Thus, for largem we recover the performance of the noise-free algorithm. An issue arises if

m is small since the communication noise will still degrade the performance of the estimator.

For this reason, we design the update x̂(k + 1|k) as the convex sum of x̂(k|k) and z(k + 1|k)

as

x̂(k+ 1|k) = ζx̂(k|k) + (1− ζ)
z(k+ 1|k)
m+ 1

, (2.16)

where ζ ∈ [0, 1] is a constant. The parameter ζ is a way for us to trade off the variance of the

two estimators x̂(k|k) and z(k + 1|k). As we intuitively explained earlier, for largem we can

choose ζ close to 0 and for smallm we can choose ζ close to 1. We note that the distributed

filtering algorithm in56 has only one tunable parameter ℓ, whereas our algorithm in contrast

has two tunable parameters ℓ and ζ. In a similar way to56 we can choose these two parameters

such that the asymptotic error covariance of our estimator is minimized. With this in mind,

we will now analyze the error covariance of this new algorithm.

2.5 Analysis of the Novel Two-Stage Distributed Linear Filter

We now analyze the properties of our novel distributed linear filter. We begin by deriving an

expression for the asymptotic error covariance of our estimator.

2.5.1 Error Covariance of Estimator

We first define the predictive and posterior errors as

x̃(k+ 1|k) = x(k+ 1)1N − x̂(k+ 1|k),

and x̃(k+ 1|k+ 1) = x(k+ 1)1N − x̂(k+ 1|k+ 1),
(2.17)
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respectively. Let

P(k+ 1|k) = E[x̃(k+ 1|k)x̃(k+ 1|k)⊤]

and P(k+ 1|k+ 1) = E[x̃(k+ 1|k+ 1)x̃(k+ 1|k+ 1)⊤]
(2.18)

be predictive and posterior error covariancematrices. With these definitions in place, we now

state the main result.

Theorem 1 (Asymptotic Error Covariance11). For the scalar linear stochastic dynamics

(2.1) with a = 1 and the distributed linear filtering algorithm with noisy communication

defined by (2.14), (2.15) and (2.16), the following statements hold:

1. The asymptotic error covariance is

lim
k→∞

P(k|k− 1) = ℓ2r
∞∑
i=0

(1− ℓ)2iF†(i+1)(F†(i+1))⊤ +
q

1− (1− ℓ)2
1N1⊤N

+

(
1− ζ
m+ 1

)2

σ2c
∞∑
i=0

(1− ℓ)2i
m−1∑
j=0

F†iFj(Fj)⊤(F†i)⊤,
(2.19)

where F† = ζIN +
(

1−ζ
m+1

)∑m
i=0 Fi;
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2. The trace of the asymptotic covariance matrix is

tr
(
lim
k→∞

P(k|k− 1)
)
=

ℓ2r+ qN+
(1− ζ)2σ2cm
(m+ 1)2

1− (1− ℓ)2

+ ℓ2r
N−1∑
h=1

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2
1− (1− ℓ)2

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2

+

(
1− ζ
m+ 1

)2

σ2c
N−1∑
h=1

(
1− |λh|2m

1− |λh|2

)

1− (1− ℓ)2
∣∣∣∣( 1− ζ

m+ 1

)
λ̄h + ζ

∣∣∣∣2 ,
(2.20)

where λ̄h =
∑m

n=0 λnh .

Importantly, note that the steady-state error covariance (2.20) is bounded and hence our dis-

tributed estimation algorithm is stabilizing in the mean squared sense. However, our algo-

rithm is not necessarily optimal because we assume that the convex weights ℓ and ζ are both

constant. Even with this fact, we can still select optimal parameters ℓ and ζ with respect to our

algorithm.

2.5.2 Methodology to Tune Parameters

As previouslymentioned, our novel distributed algorithm requires tuning of the two param-

eters ℓ and ζ. For a given graph structure with a fixed number of agents N and consensus

matrix F, given process, measurement and communication variance q, r, and σc, and a given

number of consensus roundsm, we choose these parameters to minimize the asymptotic er-
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ror covariance (2.20). We define the relevant cost function as

J(ℓ, ζ) = tr
(
lim
k→∞

P(k|k− 1)
)
. (2.21)

Note the special case with no consensus (m = 0) when determining the optimal (ℓ, ζ)which

minimize J. In this case, the modified algorithm will only involve (2.14) and (2.16). From

(2.16) we see that the only appropriate formulation would have ζ = 1. With ζ = 1 and

m = 0 we see that (2.20) simplifies to J|m=0 =
(ℓ2r+q)N
1−(1−ℓ)2

. We then use fmincon in MATLAB

to minimize J|m=0 and solve for the optimal ℓ. Likewise, form > 0 we can use fmincon to

solve for the optimal ℓ and ζwhichminimize J. The trends of optimal ℓ and ζ as a function of

number of consensus roundsm and communication noise standard deviation σc are shown

in Figure (2.4).
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Figure 2.4: Optimal ℓ and ζ as a function of consensus roundsm and communication noise standard deviation σc with
N = 3, r = 25, and q = 1 for an undirected line graph. Repeated from Figure (8.2).
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We see that the optimal ℓ value increases withm, whereas the optimal ζ value does not display

a monotonic trend withm. We attribute the initial trend of ζ for smaller values ofm to the

transient consensus dynamics. Furthermore, note that the optimal value of ζ goes toward

zero as the number of consensus roundsm increases. This is precisely the behavior we would

expect and aligns with the intuition we outlined earlier.

2.5.3 Numerical Simulations

We now numerically investigate the performance of our novel distributed linear filter. We

again consider an undirected line graph withN = 3 nodes. We choose the same simulation

parameters as in Figure (2.3) and again choose as our performancemetric
∑3

i=1 var(x̃i(4|3)).

For each pertinent combination ofm and σc valuesweuse the optimal ℓ and ζ in the algorithm

as determined in Section 2.5.2. The summed error variance metric versus the number of

consensus roundsm for our novel estimation algorithm is shown in Figure (2.5) for various

values of the communication noise standard deviation σc.
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Figure 2.5: Influence of communication noise in consensus dynamics on error variance across 200,000 Monte Carlo runs
for our novel distributed filtering algorithm withN = 3, r = 25, and q = 1 for an undirected line graph. Even as σc
increases the error variance no longer diverges as more consensus rounds are performed. Repeated from Figure (8.3).

Note that there is a slight difference in scale between the vertical axes in Figures (2.3) and (2.5).

We see that with our novel algorithm the error variance does not increase in an unbounded

way asmore consensus rounds are performed, which contrasts with what we observed in Fig-

ure (2.3). Instead,weobserve that the trend in error variance versus consensus rounds is closer

to the monotonically decreasing ideal that one would expect from a distributed filter with-

out communication noise. This holds true even for the larger values of σc that we simulated.

We see that our novel algorithm performs effectively despite the inclusion of communication

noise in the dynamics.
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2.6 IndividualNodeDifferences forNovel Two-StageDistributed Linear

Filter

We are also interested in how the asymptotic error variances of individual nodes within a

graph differ from one another as opposed to just looking at the trace of the asymptotic error

covariance matrix. Table 2.1 serves as a reminder of the relevant nomenclature.

Parameter Definition
ℓ Filter gain
r Sensor noise variance
q Process noise variance
N Total number of nodes
ζ Algorithm parameter used to form convex combination of estimators
σ2c Communication noise variance
m Rounds of consensus dynamics
λ Eigenvalue of consensus matrix, F

Table 2.1: Nomenclature relevant to our novel distributed estimation algorithm.

To determine individual node error variances for our novel distributed estimation algorithm

defined by (2.14), (2.15) and (2.16), we first let the diagonalization of F be given by

F = UΛU∗ (2.22)

where

Λ =



λ0 0 ... 0

0 λ1 ... 0
...

... . . . ...

0 0 ... λN−1


(2.23)
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and the column vectors of U are the right eigenvectors of F where U∗ denotes the complex

conjugate transpose of the matrix U. Given that F is a normal matrix, we have that U is a

unitary matrix such that UU∗ = U∗U = IN. Specifically, we choose the eigenvectors of F

such thatU forms an orthonormal basis ofCN. Having done this, we let

U =

[
u0 u1 ... uN−1

]
(2.24)

where u0 through uN−1 are the appropriate eigenvectors described above. With this formu-

lation, the asymptotic error variance of node i is given by

Vari =
N−1∑
h=0

|uh(i)|2
{
ℓ2r
∣∣∣∣( 1− ζ

m+ 1

)
λ̄h + ζ

∣∣∣∣2 + ( 1− ζ
m+ 1

)2

σ2c

(
1− |λh|2m

1− |λh|2

)}

1− (1− ℓ)2
∣∣∣∣( 1− ζ

m+ 1

)
λ̄h + ζ

∣∣∣∣2 +
q

1− (1− ℓ)2

(2.25)

where λ̄h =
∑m

n=0 λnh. Thus, the difference in asymptotic error variance between nodes is

determined by the respective elements of each eigenvector of the consensus matrix F. As an

example, consider an undirected line graph withN = 3 nodes. We denote nodes 1 and 3 as

the periphery nodes, respectively, and node 2 as themiddle node. For a process noise variance

of q = 1, sensor noise variance of r = 25, communication noise variance of σ2c = 1, and

ζ = 0.1, asymptotic error variances for each individual node in the line graph as a function

of ℓ are shown form ∈ {1, 2, 3, 4} in Figure (2.6).
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Figure 2.6: Asymptotic error variances across individual nodes for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and ζ = 0.1 for an undirected line graph.

There are some things to highlight. First we see that the individual node error variances for

nodes 1 and3 are identical, which is expected as these nodes are indistinguishablewith regards

to the estimation problem. We also observe that the error variance for node 2, the middle

node, is the lowest across the ℓ andm values studied. This again aligns with our expectation

since this node has the most immediate access to information within the network due to

the way the information flows given the consensus mechanism at play. Furthermore, we see

that as the number of consensus rounds m increases the node variances for the periphery

nodes begin to converge to that for the middle node. This is a visualization of the consensus

dynamics at work. We now provide a brief examination of the convexity of the trace of the

asymptotic error covariance matrix with respect to algorithm parameters.
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2.7 Convexity of Trace of Asymptotic Error CovarianceMatrix

In Section 2.5.2 we described how we utilize fmincon in MATLAB to solve for the optimal

ℓ and ζ which minimize the cost function J(ℓ, ζ) = tr
(
limk→∞ P(k|k − 1)

)
. However, it

is important to be able to characterize the convexity of J(ℓ, ζ) with respect to ℓ and ζ. If the

cost function is not convex in these parameters then it is possible that fminconwould return

a local minimum and not a global minimum. While finding a local minimum would not

render our novel algorithm ineffective, it is obvious that we would like to select ℓ and ζ such

that the cost function is as small as possible. We define L := [0, 1] andZ := [0, 1]. Let ℓ ∈ L

and ζ ∈ Z and letA ⊂ L×Z. Awell-known result is that a given function J(ℓ, ζ) : A → R is

convex in ℓ and ζ onA if and only if its Hessianmatrix of second partial derivatives is positive

semidefinite on A50. Thus, we require

 ∂2J
∂ℓ2

∂2J
∂ℓ∂ζ

∂2J
∂ζ∂ℓ

∂2J
∂ζ2

 ⪰ 0 (2.26)

onA. By observing (2.20) we note that the Hessian will be a relatively complicated function

of ℓ and ζ. To expedite our analysis we useMathematica to calculate theHessian. For a simple

line graph with N = 3 nodes and with process noise variance q = 1, sensor noise variance

r = 25, and communication noise variance σ2c = 1, Figures (2.7) - (2.11) plot the real parts

of any negative eigenvalues in the operating (ℓ, ζ) space for consensus rounds fromm = 1 to

m = 5.
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Figure 2.7: Negative eigenvalues of the cost function Hessian for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and consensus roundsm = 1 for an undirected line graph.

Figure 2.8: Negative eigenvalues of the cost function Hessian for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and consensus roundsm = 2 for an undirected line graph.
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Figure 2.9: Negative eigenvalues of the cost function Hessian for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and consensus roundsm = 3 for an undirected line graph.

Figure 2.10: Negative eigenvalues of the cost function Hessian for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and consensus roundsm = 4 for an undirected line graph.
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Figure 2.11: Negative eigenvalues of the cost function Hessian for our novel distributed filtering algorithm withN = 3,
r = 25, q = 1, σ2c = 1, and consensus roundsm = 5 for an undirected line graph.

The existence of negative eigenvalues means that the Hessian is not positive semidefinite on

A and indicates that the trace of the asymptotic error covariance matrix is not convex with

respect to the parameters ℓ and ζ. However, we can further investigate if it may be biconvex

in the parameters of interest. The function J(ℓ, ζ) : A → R is a biconvex function if, when

fixing ℓ, the function Jℓ(ζ) = J(ℓ, ζ) is convex over Z and similarly, whenfixing ζ, the function

Jζ(ℓ) = J(ℓ, ζ) is convex over L. Figures (2.12) - (2.14) show how the second derivative d2J
dℓ2

varies over L for fixed values of ζ and form = 5 consensus rounds.
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Figure 2.12: Second derivative d2J
dℓ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ζ = 0 for an undirected line graph.

Figure 2.13: Second derivative d2J
dℓ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ζ = 0.5 for an undirected line graph.
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Figure 2.14: Second derivative d2J
dℓ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ζ = 1 for an undirected line graph.

Similarly, Figures (2.15) - (2.17) show how the second derivative d2J
dζ2 varies over Z for fixed

values of ℓ and form = 5 consensus rounds.

Figure 2.15: Second derivative d2J
dζ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ℓ = 0.01 for an undirected line graph.
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Figure 2.16: Second derivative d2J
dζ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ℓ = 0.5 for an undirected line graph.

Figure 2.17: Second derivative d2J
dζ2 for our novel distributed filtering algorithm withN = 3, r = 25, q = 1, σ2c = 1,

consensus roundsm = 5, and ℓ = 1 for an undirected line graph.

Weobserve that for the tested cases, the cost function J(ℓ, ζ) appears to be biconvex in ℓ and ζ.
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Wemust stress that this is a very preliminary analysis of the biconvexity of the cost function

which only looks at a simple line graph with three nodes. Further analysis is needed to prove

biconvexity over a larger operating regime involving more general networks. Nevertheless,

assuming that biconvexity can be shown, there aremethods to obtain the globalminimum73.

40



3
Distributed Control and Estimation of a

Linear Time-invariant System

We now investigate the problem of distributed estimation and control in a networked mul-

tiagent system of a multidimensional linear process. In this chapter we summarize results

presented in Part II: Chapter 9 which appears as Savas, Park, Poor, and Leonard24. In Sec-
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tion 3.1 we formulate our main problem and state conditions under which we are able to

design pertinent estimation and control parameters separately from one another. In Section

3.2 we propose key LMI formulations which solve our problem and also analyze how the fre-

quency of information exchange through linear consensus affects the feasibility of the LMI.

In Section 3.3we validate ourmain results through simulations of amulti-vehicle platooning

example.

In Section 3.4 we introduce new results, not published in24 of Chapter 9, which provide a

cursory look at the role of the network structure on the performance of our algorithm. This

notion of how the network affects our distributed control algorithm, along with how an ac-

tuator or sensor’s location in the network influences the performance of the network as a

whole, is explored more in depth in Chapters 4 and 5.

3.1 ProblemDescription

Consider a discrete-time LTI system given by

x(k+ 1)=Ax(k) +
∑N

i=1 Biui(k), x(0) ∈ Rn (3.1a)

yi(k) = Cix(k), i ∈ {1, · · · ,N} (3.1b)

where x(k) ∈ Rn is the state, ui(k) ∈ Rqi is the i-th input, and yi(k) ∈ Rri is the i-th

output of the system. The network is comprised ofN agents with each agent i having output

yi(k) and control input ui(k). The agents can also communicate over a fixed directed graph

G = (V,E). Each vertex i in V = {1, · · · ,N} represents agent i and each edge (j, i) ∈ E

indicates that agent j can transmit information to agent i. The neighborhood setNi = {j ∈
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V | (j, i) ∈ E} specifies a subset of agents that can transmit information to agent i.

We assume that G is strongly connected, meaning that there is an edge path from each

agent to every other agent. We further assume that (3.1) is jointly controllable and observ-

able, meaning that both pairs (A,B) and (C,A) are controllable and observable, respectively,

where B= (B1, · · · ,BN) and C= (CT
1 , · · · ,CT

N)
T. To make clear what we mean by control-

lable and observable we leverage the following definitions.

Definition 1 (Controllable subspace,49). Given two times k1 > k0 ≥ 0, the controllable

subspace C[k0, k1] consists of all states x0 for which there exists an input u : [k0, k1] → Rq that

transfers the state from x(k0) = x0 to x(k1) = 0.

Definition 2 (Controllable system,49). Given two times k1 > k0 ≥ 0, the pair (A,B) is

controllable on [k0, k1] if C[k0, k1] = Rn, i.e., if every state can be transferred to the origin.

Furthermore, there is a duality between controllability and observability. A pair (C,A) is

observable if and only if the dual pair (AT,CT) is controllable49. In amore descriptive sense, a

system is observable if one can reconstruct an initial state x(k0) given future input and output

data u(k) and y(k) for k ∈ [k0, k1] for some k0 and k1. However, we note that in our problem

setting individual agents do not necessarily have full controllability or observability of the

system. This means that for every i in V, pairs (A,Bi) and (Ci,A) may not be controllable

and observable, respectively. Hence, without communication with others, each agent can

neither estimate the full state of the system nor stabilize it. Below we provide an example of

(3.1) and G.

Example 1. Consider a system of N vehicles moving on the plane where each vehicle has control

over its ownmotion and can observe its own position. This is an example of a jointly controllable
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and jointly observable system. The state and parameters of the system’s model (3.1) are given as

x = (pT1 , vT1 , · · · , pTN, vTN)T (3.2a)

A = IN ⊗

I2 0.5I2

0 I2

 (3.2b)

Bi= ei ⊗

0

I2

 , Ci= eTi ⊗
(
I2 0

)
, i∈{1,· · ·,N} (3.2c)

where pi, vi ∈ R2 are, respectively, the positionandvelocity of the i-th vehicle and ei is a canonical

basis inRN whose elements are all zero except the i-th element, which is 1. In Section 3.3 we use

this example to illustrate our main results. In particular, we consider line and ring graphs and

observe how the graph structure affects key algorithmparameters. We then apply our framework

to a multi-vehicle formation control problem utilizing a nonlinear control law.

Parameter Definition
n the order of the linear time-invariant system

qi, ri the dimensions of the i-th input and output, respectively
N the number of agents in the network
m the number of rounds of linear consensus
ei the canonical basis with i-th entry equal to 1, rest equal to 0
⊗ the Kronecker product

Table 3.1: List of basic notation.

A summary of basic notation is provided in Table 3.1. Each agent i computes a state es-

timate x̂i(k), uses local communication to exchange and fuse the estimate with those of its
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Figure 3.1: A diagram illustrating the closed loop consisting of the LTI system, distributed estimation, (linear) consensus,
and state feedback. Repeated from Figure (9.1).

neighbors, and then uses the fused state estimate to compute a control input ui(k). The goal

is to design thenetworkof agents such that the control actions stabilize the system. Toachieve

this, we implement state feedback, distributed estimation, and linear consensus at each agent

(see Figure 3.1 for an illustration of the closed loop consisting of the three components and

the LTI system).

State feedback Let x̂i(k)be the state estimate of agent i. The agent computes its control

input ui(k) according to

ui(k) = Kix̂i(k). (3.3)

In this framework, the agent needs to utilize only its own state estimate to compute ui(k).

We further assume that {Ki}i∈V satisfy thatA+
∑

i∈V BiKi is Schur stable with eigenvalues

inside the unit circle in the complex plane.
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Distributed estimation Agent i computes its state estimate x̂i(k) by recursively up-

dating it according to

x̂i(k+ 1) = Ax̂i(k) + Li (yi(k)− Cix̂i(k))

+
∑

j∈V BjKjx̂i(k) +
∑

j∈Ni
Wij

(
x̂j(k)− x̂i(k)

)
, (3.4)

whereKi is the control gainmatrix in (3.3) andWij ∈ Rn×n,Li ∈ Rn×ri are the parameters to

be designed. The formulation (3.4), which ismotivatedby the existing distributed estimation

approaches proposed, for instance, in53,75,76,77, utilizes the partial output yi(k), the state esti-

mates {x̂j(k)}j∈Ni from the agent’s neighbors, and the estimate
∑

j∈V BjKjx̂i(k) of the control

input applied to (3.1) in order to update an agent’s state estimate x̂i(k). Importantly, each

agent must estimate the control input applied to (3.1) using only locally available informa-

tion. According to (3.3), the control input applied to (3.1) is given by
∑

j∈V BjKjx̂j(k)which

depends on every agent j’s state estimate. However, an individual agent does not have access

to the estimates of the other agents in the network. Due to this, the agent uses only its own

state estimate in lieu of those of all other agents. With awell-designed algorithm, the estimate

errors will converge to zero, validating such a framework.

m-round linear consensus This framework allows additional information exchange

between agents in the form of m-round linear consensus. The agents can utilize consensus

to exchange and fuse their state estimates with neighbors. Letting {x̂j(k)}j∈V be the state

estimates of the agents at the beginning of the linear consensus, the output x̂+i (k) at each
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agent i is determined as follows:

x̂+i (k) =
∑

j∈V P̄ijx̂j(k). (3.5)

P is a stochasticmatrix that conformswithG = (V,E). In other words, if an edge (j, i) /∈ E,

then Pij = 0. We then define P̄ = Pm ∈ RN×N, where m is a non-negative integer. Note

that the parameter P̄ij ≥ 0 for each i, j ∈ V. We see that x̂+i (k) is thus agent i’s updated state

estimate after applying the m consensus rounds with consensus matrix P. Each agent’s state

estimate is then updated as x̂i(k) = x̂+i (k) and subsequently fed into (3.3) and (3.4). This is

illustrated in Figure 3.1.

As previously mentioned, in order for this algorithm to be well-designed we require the

state estimates x̂i(k) to converge to the true state x(k) for each agent i inV. In the absence of

state feedback, the work of83,75,76 presents technical conditions on the system (3.1) and the

graph G under which there are parameters {Wij}i,j∈V, {Li}i∈V that ensure the convergence

of that state estimates of each agent to the true state. When also considering state feedback,

more recentwork in77 describes how to jointly compute {Ki}i∈V, {Wij}i,j∈V, and{Li}i∈V to

stabilize (3.1) using (3.3) and (3.4).

Similarly to the problem studied in77, we investigate how to design the state feedback and

distributed estimation to achieve system stabilization. However, our work is distinct from77.

We specifically consider the case in which the gain matrices {Ki}i∈V are designed indepen-

dently of the parameters {Wij}i,j∈V and {Li}i∈V. We provide technical conditions under

which the network of agents stabilizes (3.1) andutilize a framework of twodecoupled numer-

ical methods to compute {Ki}i∈V and {Wij}i,j∈V, {Li}i∈V which achieves this stabilization.

Being able to separately design the system parameters is a nontrivial result. This allows for
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more freedom in design such that updating a parameter in the control scheme, for instance,

does not require one to then redesign the estimation scheme. This is very important due to

the nature of the numerical methods utilized. As we describe in Section 3.3.1, finding the

parameters for (3.4) involves finding a solution to a large-size linear matrix inequality, which

can be computationally expensive. For this reason, whenever possible, it is preferred not to

re-compute the parameters of (3.4) when the state feedback is revised. Our results can also

be applied to scenarios in which nonlinear state feedback is adopted, as discussed in Section

3.2.3. In such cases, analysis such as in77 cannot be directly applied.

Wealsohighlight that our framework considers communicationbetween agents at discrete-

times, with further information exchange allowed through utilization ofm-round linear con-

sensus. Our methodology and main results can thus be applied to varied engineering prob-

lems in which agents might only be able to exchange information a limited number of times

over finite time intervals. This makes our problem setting distinct from that investigated

in82,80.

We formalize our main problem as follows.

Problem 1. For fixed m ≥ 0, compute the parameters {Wij}i,j∈V, {Li}i∈V and identify the

set of state feedback gains {Ki}i∈V for which the control inputs determined by (3.3) and (3.4)

stabilize the system (3.1).

3.2 Parameter Design for State Feedback andDistributed Estimation

As mentioned previously, our goal is to compute the parameters of (3.4) that result in the

stability of (3.1). We begin by considering the case with no linear consensus (m = 0), and

provide analysis regarding the general case, withm ≥ 0, in Section 3.2.2.
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We define the estimation error for each agent as x̃i(k) = x(k)− x̂i(k). Using (3.1), (3.3)-

(3.5), the state equation for the error x̃i(k) can be derived as follows:

x̃i(k+ 1)=(A−LiCi) x̃i(k) +
∑

j∈V BjKj
(
x̃i(k)−x̃j(k)

)
+
∑

j∈Ni
Wij

(
x̃j(k)− x̃i(k)

)
. (3.6)

We seek to provide a framework in which we can design pertinent control and estimation

parameters independently. As a means to achieve this, we cast (3.6) as a feedback intercon-

nection of two components – the control component (3.7) and the estimation component (3.8)

which are defined below. We then find sufficient conditions for the feedback interconnection

of the two components to attain the convergence limk→∞ ∥x̃i(k)∥2 = 0 for each agent i ∈ V.

This ensures that each agent’s estimation error converges to zero. We then use this result to

address Problem 1 and, given a set of state feedback gains, find the parameters {Wij}i,j∈V and

{Li}i∈V which stabilize (3.1).

We first split up the parameters Wij into two parts, one of which will be utilized in the

control component and the other which will be utilized by the estimation component. Let

Wij = WE
ij +WC

ij and define

ṽi(k) =
∑

j∈V BjKj(x̃i(k)− x̃j(k))−
∑

j∈Ni
WC

ij (x̃i(k)− x̃j(k)) (3.7)

x̃i(k+ 1) = (A− LiCi) x̃i(k)−
∑

j∈Ni
WE

ij(x̃i(k)− x̃j(k)) + ṽi(k). (3.8)

The first thing to note is that the feedback interconnection of (3.7) and (3.8) is equivalent to

(3.6). Wehave just used ṽi(k) as ameans to contain all pertinent parameters related to the con-
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trol aspect of ourproblem. Let us first consider (3.7). Thefirst term
∑

j∈V BjKj(x̃i(k)−x̃j(k))

is an indication of the error in agent i’s estimate of the control action applied to the system.

We then use
∑

j∈Ni
WC

ij (x̃i(k) − x̃j(k)) as a means to counteract this error. At first glance it

might seem ideal to select WC
ij = BjKj. However, such choice of WC

ij turns out to not be

optimal in our formulation. We explore what we mean by this more in Section 3.4. In Sec-

tion 3.3, we use a linear matrix inequality (LMI) to construct an appropriate optimization

problem and solve for the most advantageousWC
ij . Now considering (3.8), we see that it is

equivalent to (3.6) except that we are now representing the control input estimation error

term by ṽi(k) and instead adopt {WE
ij}i,j∈V in place of {Wij}i,j∈V.

The key to being able to separately design the control and estimationparameters is through

the use of the small-gain theorem [84, Chapter 5.4] to specify conditions on the parameter

selection that ensure the convergence in (3.6). To achieve this, we represent the estimation

component (3.8) as an LTI system with state x̃(k) = (x̃1(k), · · · , x̃N(k)) ∈ RnN and input

ṽ(k) = (ṽ1(k), · · · , ṽN(k)) ∈ RnN as follows:

x̃(k+ 1) = Ãx̃(k) + ṽ(k), (3.9)

where Ã ∈ RnN×nN is defined as

Ã = diag(A− L1C1, · · · ,A− LNCN) +WE (3.10)
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andWE is a block matrix whose i, j-th block element is

[WE]ij =


WE

ij if j ∈ Ni\{i}

−
∑

l∈Ni\{i} W
E
il if j = i

0n otherwise.

(3.11)

Also, we rewrite the control component (3.7) as

ṽ(k) = D̃x̃(k), (3.12)

where D̃ is a block matrix whose i, j-th block element is

[D̃]ij=


−BjKj +WC

ij if j∈Ni\{i}∑
l∈V\{i} BlKl−

∑
l∈Ni\{i} W

C
il if j= i

−BjKj otherwise.

3.2.1 LMI Formulation for Parameter Design

Let G̃ be the (input-to-state) transfer functionmatrix of (3.9). As an application of the small-

gain theorem [84, Chapter 5.4], the feedback interconnection of the estimation component

(3.9) and the control component (3.12) is L2-stable if it holds that ∥G̃∥H∞∥D̃∥2 < 1.

Let us consider a more general condition ∥G̃∥H∞ < γ for some positive real γ. It is well-

known that the bounded real lemma for discrete-time LTI systems85,86 can be used to estab-
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lish the following equivalence:

∥G̃∥H∞ <γ⇔



−X XÃ InN 0nN

ÃTX −X 0nN X

InN 0nN −γInN 0nN

0nN X 0nN −γInN


≺0 (3.13)

where γ is a positive real number andX ∈ RnN×nN is a symmetric andpositive-definitematrix.

In the following lemma, we provide a sufficient condition under which a solution X, γ exists

for (3.13).

Lemma 1 (24). Suppose that there are
{
WE

ij

}
i,j∈V

, {Li}i∈V for which Ã given in (3.10) is Schur

stable. Then, a solution X = XT ≻ 0, γ > 0 exists for (3.13).

Remark 1. InLemma1we operate under the assumption that parameters
{
WE

ij

}
i,j∈V

,{Li}i∈V

exist for which Ã is Schur stable. However, this assumption, given the specifications of our prob-

lem, is justified. The results of76,83,75 from the distributed estimation literature address the

existence of the parameters
{
WE

ij

}
i,j∈V

, {Li}i∈V for which Ã is Schur stable when the system

(3.1) is jointly observable and the graph G is strongly connected. The result of76,83 is based on

state augmentation and that of75 leverages the systemmodel structure (3.1) and connectivity of

the underlying graph. With these results, Lemma 1 implies that the joint observability of (3.1)

and the strong connectivity of G are sufficient for the LMI (3.13) to have a solution.

We now use Lemma 1 as a basis to address our main problem of finding estimation and
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control parameters to stabilize the system (3.1). First, given γ2 > 0, we define

Kγ2 = {{Ki}i∈V |A +
∑

i∈V BiKi is Schur stable,min{WC
ij }i,j∈V ∥D̃∥2 < γ2}.

The setKγ2 refers to the control gains {Ki}i∈V for which ∥D̃∥2 < γ2, where the design pa-

rameters {WC
ij}i,j∈V are selected tominimize the norm. In addition, these control gainsmust

also satisfy A+
∑

i∈V BiKi being Schur stable. Given this definition, we have the following

Theorem.

Theorem 2 (24). Suppose given parameters {WE
ij}i,j∈V, {Li}i∈V of the estimation component

G̃ satisfy ∥G̃∥H∞ < γ, e.g., (3.13) has a solution with the same γ. Assuming that Kγ−1 is

nonempty, for any state feedback gains {Ki}i∈V belonging toKγ−1 there is {WC
ij}i,j∈V such that

the control inputs determined by (3.3) and (3.4) stabilize the system (3.1).

Note that it is possible thatKγ−1 is an empty set if γ in the statement of Theorem 2 is too

large. In other words, when theH∞-norm of the estimation component is too large, there is

no control gain that stabilizes (3.1) while satisfying the inequality min{WC
ij }i,j∈V ∥D̃∥2 < γ−1

for the small-gain theorem tohold. This iswhere utilizingm-round linear consensus becomes

critical. In Section 3.2.2, we show thatwithmore frequent information exchange the setKγ−1

becomes larger. In other words, the agents have more options to select state feedback gains

that stabilize (3.1) and satisfy the inequality condition for the small-gain theorem to hold. In

effect, linear consensus is used to extend the operating regime of our algorithm.
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3.2.2 Effect of Linear Consensus on Stability

We now consider the case in which agents can utilize a consensus matrix P to fuse their state

estimates with estimates of the neighbors using m-round linear consensus (3.5). Without

loss of generality, we assume thatm is an even number, G is undirected, and P is symmetric.

We define x̃′(k) = Qm/2x̃(k) and ṽ′(k) = Qm/2ṽ(k), where Q = P⊗ In. Note that we can

handle the case of oddmby setting x̃′(k)=Q⌊m/2⌋x̃(k) and ṽ′(k)=Q⌊m/2⌋ṽ(k)where thefloor

function ⌊·⌋ is given by ⌊x⌋ = max{y ∈ Z | y ≤ x}. By using (3.1), (3.3)-(3.5) and following

similar steps to obtain (3.9) and (3.12) in Section 3.2, we can derive the state equations for

the control and estimation components as follows:

ṽ′(k) = Qm/2D̃Qm/2x̃′(k) (3.14)

x̃′(k+ 1) = Qm/2ÃQm/2x̃′(k) + ṽ′(k) (3.15)

We can now refine the definition of Kγ2 under the paradigm of linear consensus. Given

γ2 > 0,

Kγ2,m = {{Ki}i∈V |A+
∑

i∈V BiKi is Schur stable,min{WC
ij }i,j∈V ∥Q

m/2D̃Qm/2∥2 < γ2}.

Similarly, we can extend Theorem 2 to the case where agents are able to employm-rounds

of linear consensus.

Theorem 3 (24). For any given γ2 > 0, there is m∗ ≥ 0 for which Kγ2,m is non-empty for

m ≥ m∗. For sufficiently large m, we can design parameters {Wij}i,j∈V, {Li}i∈V for which the

LTI system (3.1) is stable with any {Ki}i∈V belonging to Kγ−1,m, where γ is the H∞-norm of
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(3.15).

This is a powerful result regarding the applicability of our algorithm. If a sufficiently large

number of consensus roundsm are able to be performed, Theorem 3 implies thatKγ−1,m will

be nonempty and we can always find gains {Ki}i∈V to stabilize the system. This also implies

that by increasingmwe can design the parameters {Wij}i,j∈V, {Li}i∈V to allow the agents to

adopt arbitrarily large state feedback gains {Ki}i∈V.

We now detail how our algorithm can be extended to employ nonlinear control.

3.2.3 Extension

Suppose that (3.3) consists of linear and nonlinear parts:

ui(k) = Kix̂i(k) + μi (x̂i(k)) . (3.16)

This type of a control law could be utilized to maneuver multiple vehicles as in Example 1.

The linear partKix̂i(k) canbeused for vehicle formation control. Thenonlinear partμi(x̂i(k))

can then be used for obstacle avoidance as the nonlinearities allow for a more reactive action.

With the nonlinear feedback, we can represent (3.4) by the following two components:

ṽi(k) =
∑

j∈V Bj(μj(x̂i(k)) − μj(x̂j(k))) −
∑

j∈Ni
Bj(μj(x̂i(k)) − μj(x̂j(k))) (3.17)

where we assume that there is a constant γC for which ∥ṽ(k)∥2 ≤ γC∥x̃(k)∥2 holds and

x̃i(k+1)=(A−LiCi) x̃i(k)+
∑

j∈V BjKj(x̃i(k)− x̃j(k))−
∑

j∈Ni
WE

ij(x̃i(k)− x̃j(k))+ ṽi(k).

(3.18)
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There are important distinctions with this formulation and that discussed in Section 3.2.

Here,we substituteWij(x̂j(k)−̂xi(k)) in (3.4)with the followingnonlinear function:Wij(x̂j(k), x̂i(k))=

WE
ij(x̂j(k)−x̂i(k))+Bj(μj(x̂i(k))−μj(x̂j(k))). This means that there are no longer design pa-

rametersWC
ij , so there is no optimization being performed for the ṽi(k) component. Also,

the design of the parameters {WE
ij}i,jV, {Li}i∈V for the estimation component will depend

on the linear part {Ki}i∈V of (3.16). In this case, the small-gain theorem can be used to es-

tablish the stability results as in Theorems 2 and 3 if it holds that ∥G̃∥H∞ < γ−1
C , where G̃ is

the transfer function of (3.18).

3.3 Simulations

Wenowconsider theLTI system fromExample 1 over line and ring graphs alongwith amulti-

vehicle formation control problem to validate our analytical results.

3.3.1 Parameter Design

Recall that the control gains {Ki}i∈V are assumed to be given. As such, the key design pa-

rameters in our framework are P,
{
WE

ij

}
i,j∈V

,
{
WC

ij

}
i,j∈V

, and {Li}i∈V. We select P to be a

stochastic matrix with smallest second eigenvalue which conforms with G. This allows the

agents to fuse the estimates with those of their neighbors as fast as possible. In addition, we

can simplify our analysis by choosingWE
ij = PijA as motivated by the approach of76.

We are then left with the design parameters {Li}i∈V and {WC
ij}i,j∈V. Since we want to

afford ourselves the largest safety factor when satisfying the small-gain theorem, we seek to

compute {Li}i∈V and {WC
ij}i,j∈V that minimize theH∞-norm of (3.15) and the 2-norm of

(3.14), respectively. Utilizing the bounded-real lemma condition for the estimation compo-
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nent, we can minimize theH∞-norm of (3.15) as

minimizeγ,X,{Li}i∈V
γ (3.19)

subject to



−X X
(
Qm/2ÃQm/2

)
InN 0nN(

Qm/2ÃQm/2
)TX −X 0nN X

InN 0nN −γInN 0nN

0nN X 0nN −γInN


≺0

where γ > 0, X = XT ≻ 0, and Q = P ⊗ In. Note that (3.19) is a non-convex op-

timization. Similarly, when minimizing the norm of the control component we have that

∥Qm/2D̃Qm/2∥2 = σmax[Qm/2D̃Qm/2] where σmax[M] is the maximum singular value of ma-

trixM. The constraint σmax[Qm/2D̃Qm/2] < γ′ for positive and real γ′ can be written as the

convex LMI50  γ′InN Qm/2D̃Qm/2(
Qm/2D̃Qm/2

)T γ′InN

 ≻ 0. (3.20)

Thus, we can minimize the 2-norm of (3.14) as

minimizeγ′,{WC
ij}i,j∈V

γ′ (3.21)

subject to (3.20).

3.3.2 Simulation Results

Consider Example 1 withN = 4 agents. In particular, we consider undirected line and ring

graphs as possible underlying communication structures. For each graph, we compute the
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Figure 3.2: Plots of the optimal value of (a) γ for the estimation component design (3.19), (b) γ′ for the control com‐
ponent design (3.21), and (c) the product γ ∗ γ′, where the critical value of 1 is drawn as a dotted line. Repeated from
Figure (9.2).

parameters of (3.4) by solving (3.19) and (3.21) form = 0, 2, 4, 6, where the state feedback

gain, motivated by the centralized LQR controller, is given by

Ki= eTi ⊗

−0.192 0 −0.284 0

0 −0.192 0 −0.284

 (3.22)

Here the vector ei is a canonical basis of dimension 4.

Figure 3.2 depicts the minimal costs γ and γ′ obtained in the optimizations (3.19) and

(3.21) as the number of consensus roundsm increases over both line and ring graphs. Note

that both the estimation and control component norms decrease with increasing consensus

rounds. This illustrates how linear consensus can be used to extend the operating regime of

our algorithm. If agents are able to communicate more frequently, then a larger safety factor

can be established within which the small-gain theorem is satisfied. This affords advantages

in parameter design. Given an estimation strategy, with more rounds of consensusm agents
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have greater flexibility to select state feedback gains which achieve system stabilization. We

also note that for a given value ofm, the norm values γ and γ′ are smaller for the ring graph

than for the line graph. Intuitively this makes sense as the ring graph has one additional edge

compared to the line graph. This additional edge increases information flow for estimate

sharing between agents and results in a faster rate of consensus. Another observation is that

the small-gain theorem is not satisfied for all simulated values of m. Recall that we require

γ∗γ′ < 1 for the small-gain theorem tobe satisfied. Figure 3.2(c) shows thatm ≥ 2 consensus

rounds are needed to meet this criterion for the control gain we select in (3.22). Given these

control gains, we see that linear consensus is necessary for our algorithm to be stabilizing.

To illustrate the performance of our algorithm using the nonlinear control scheme out-

lined in Section 3.2.3, we consider a formation control problem. Again, we employ the LTI

system from Example 1 with N = 4 vehicles. The goal is for the vehicles to move along

the x-axis direction at a speed of 0.2 m/s while maintaining a line formation with an inter-

vehicle spacing of 2 m. We further assume that vehicle 1 is the leader in that it will control

for its speed as well as maneuver for obstacle avoidance while the rest of the vehicles control

to remain in formation. The linear part of the control law keeps all of the vehicles in the

desired formation, while the nonlinear control is only employed by the leader whenever it de-

tects an obstacle. To formalize this, we adopt (3.16) to with a different notation. We define
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ui(k) = ulinear
i (k) + μi (x̂i(k))with u

linear
i (k) = (ulinear,x

i (k), ulinear,y
i (k)) as

ulinear,x
1 (k) = −

∑
j∈V(kp(p̂x1(k)− p̂xj (k) + d1j) + kv(v̂x1(k)− v̂xj (k))) + kv(v̂x1(k)− 0.2))

ulinear,y
1 (k)=−

∑
j∈V(kp(p̂

y
1(k)−p̂yj (k))+kv(v̂

y
1(k)−v̂yj (k))) + kv(v̂

y
1(k)))

ulinear,x
i (k) = −

∑
j∈V(kp(p̂xi (k)− p̂xj (k) + dij) + kv(v̂xi (k)− v̂xj (k)))

ulinear,y
i (k)=−

∑
j∈V(kp(p̂

y
i (k)−p̂yj (k))+kv(v̂

y
i (k)−v̂yj (k)))

for i ∈ {2, 3, 4}, where dij = 2(i − j). We select kp = 0.16 and kv = 0.3. This setup

wasmotivated by the approach in88 to achieve the desired formation control. Note that such

a control scheme will drive the leaders x-velocity to 0.2 m/s and y-velocity to 0 m/s. Ad-

ditionally, the inter-vehicle distances in the x-direction will be driven to 2 m, whereas the

inter-vehicle distances in the y-direction will be driven to 0 m. The velocities of the vehi-

cles in both the x-direction and y-direction will also be driven to be identical. Thus, we see

that the linear part of the control law is responsible for the formation control aspect of the

problem.

To avoid an obstacle, the leader uses the nonlinear control μi = (μxi , μ
y
i ) defined below.

μx1 (x̂(k))=0, (3.23a)

μy1 (x̂(k))=



ξ
|ξ| if ∥p̂1(k)−po(k)∥≤1

−ξ+2 ξ
|ξ| if 1<∥p̂1(k)−po(k)∥≤2

0 otherwise

(3.23b)

where ξ = p̂y1(k)−pyo(k) and μi(x̂(k)) = (0, 0), i ∈ {2, 3, 4}. Note that we assume that
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Figure 3.3: Formation control withm = 4 rounds of linear consensus showing (a) trajectories in the xy‐plane, (b) vxi , and
(c) vyi of all 4 vehicles as they maintain a line formation while avoiding a stationary obstacle at (10, 0). Repeated from
Figure (9.3).

the vehicles can measure the location po = (pxo, p
y
o) of the obstacle. Each vehicle estimates

the state of the system based on (3.18), which includes the linear part of the state feedback in

computing its parameters.

Figure 3.3 illustrates the simulation results on the formation control. Figure 3.3(a) illus-

trates the vehicle trajectories in the xy-plane across the simulation. An obstacle is located at

(x, y) = (10, 0). We see the vehicles move from their initial positions down to the x-axis, at

which point they enter into the desired line formation. When the leader nears the vicinity of

the obstacle, it employs the nonlinear part of the control law (3.23) and successfully avoids

the obstacle. The remaining vehicles move in formation with the leader, and the formation

then continues traveling along the x-direction. We see in Figure 3.3(b) that after initial tran-

sients the vehicles maintain the desired velocity of 0.2 m/s along the x-axis. Furthermore,

we see in Figure 3.3(c) that after initial transients the vehicles begin to maintain the desired

velocity of 0m/s in the y-direction. However, once the leader detects that is is near the ob-
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stacle and employs the nonlinear control, we see the y-velocities of the vehicles spike during

the avoidance maneuver before once again settling down to 0m/s as desired.

We now provide a brief analysis of the role of the network structure on the performance

of our algorithm.

3.4 RoleofNetworkStructureonPerformanceofDistributedAlgorithm

Our algorithm formulation allows us to investigate the role of the network structure on the

norms of the estimation and control components. We can also get a sense of how the distri-

bution of control authority and the distribution of sensing across the agents each affects these

norms. We use as a comparisonmetric the quantity ξ = γ ∗ γ′. A smaller ξ can be thought of

as requiring less or even no consensus to satisfy the small-gain theorem. So, we can compare

different graph structures and different distributions of control and sensing authority using

ξ.

We present simulation results where we consider a state x(k) ∈ R3 with state transition

matrix A = I3 and actuation and sensing being performed by N = 4 agents. Each case is

jointly controllable and jointly observable. We consider three graph classes: line graphs, ring

graphs, and star graphs. For each graph class we consider unique distributions of control and

sensing authority among the agents.

Recall that each agent i actuates qi states and senses ri states. For the actuation, we consider

all unique distributions of only one agent controlling all three states, one agent controlling

two states and one agent controlling the remaining one state, and three agents controlling

one unique state each. Similarly for sensing, we consider all possible distributions of only one

agent sensing all three states, one agent sensing two states andone agent sensing the remaining

62



one state, and three agents sensing one unique state each.

For simplicity, we consider identical actuation effort among actuator agents, meaning that

if we denote column j of the matrix BiKi as [biki]j for j ∈ {1, 2, 3}, then [biki]j = −0.1ej if

agent i controls state jwhere ej is the j-th basis vector forR3, and [biki]j = 0 otherwise where

0 is the 3 × 1 vector of zeros. Further, the rows of the matrix Ci equal eTj if agent i senses

state j (note that each Ci has ri rows, so we simply ensure that each row contains a unique

eTj for each sensed state j). Furthermore, we consider cases with no additional consensus, i.e.,

m = 0.

Recall that we use the bounded real lemma for discrete-time LTI systems to assert that the

condition ∥G̃∥H∞ < γ holds given that the LMI (3.13) holds. However, we noted that the

optimization minimizing γ is not convex. In order to simplify the following analysis we can

perform a change of variables to transform the problem into a convex one. Let Q = XL̃

and R = XWE where L̃ = −diag(L1, . . . ,LN). Defining C̃ = diag(C1, . . . ,CN), we have

∥G̃∥H∞ < γ holds given that there exists a symmetric and diagonal X ∈ RnN×nN where

X ≻ 0 such that



−X XÃ+ QC̃+ R InN 0nN

∗ −X 0nN X

∗ ∗ −γInN 0nN

∗ ∗ ∗ −γInN


≺ 0 (3.24)

where repeated blocks within the symmetric matrix have been omitted for brevity. Note that

we have restricted X to be diagonal. While the conditions for the bounded real lemma are

still satisfied, we have restricted the dimensionality of the problem andmay now only be able

63



to find suboptimal solutions. However, such a restriction along with the change in variables

turns the problem into a convex one, greatly simplifying the computation.

3.4.1 Line Graphs

Consider the uniqueways to distribute actuation or sensing across four agents in a line graph:

Figure 3.4: Distributions of actuation or sensing across a line graph withN = 4 agents. Class A includes one agent
controlling all three states, class B includes one agent controlling two states and one agent controlling the remaining one
state, and class C includes three agents controlling one unique state each. The class definitions are the same for sensing.

There are ten unique distributions shown in Figure 3.4. Thus, we can consider the 100

unique combinations of actuation and sensing which are possible for line graphs ofN = 4

agents. We find that for actuation distributionsA-II andB-V,when no peripheral agents have

any control authority, we get the smallest gain γ′ = 0.1, whereas for the other eight distribu-

tions we get γ′ = 0.1414. Similarly, sensing distributions A-II and B-V, when no peripheral

agents do any sensing, yield the smallest gain γ = 3.054, whereas the other distributions all
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yield γ = 4.036. Thus, there are only four combinations of actuation and sensing which

produce distinct values of ξ, and all are stabilizing without using consensus.

3.4.2 Ring Graphs

The unique ways to distribute actuation or sensing across four agents in a ring graph are

shown in Figure 3.5.

Figure 3.5: Distributions of actuation or sensing across a ring graph withN = 4 agents. The class definitions and color
scheme are as in Figure 3.4.

While there are 16 unique combinations of actuation and sensing which are possible for

ring graphs ofN = 4 agents, all combinations yield the same value of ξ, with γ = 2.332 and

γ′ = 0.071, and thus all are stabilizing without using consensus.
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3.4.3 Star Graphs

The unique ways to distribute actuation or sensing across four agents in a star graph are

shown in Figure 3.6.

Figure 3.6: Distributions of actuation or sensing across a star graph withN = 4 agents. The class definitions and color
scheme are as in Figure 3.4.

There are 49 unique combinations of actuation and sensing distribution for star graphs of

N = 4 agents. For actuation distribution A-II, where the center agent does all the control,

we get γ′ = 0, whereas for the other six cases we get γ′ = 0.1414. Similarly, for sensing

distribution A-II, where the center agent does all the sensing, we find γ = 1, whereas we have

γ = 4.036 for the other six distributions. The star alone is best for the stability margin, but

all combinations are stabilizing without consensus.
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Figure 3.7: Unique values of ξ for line, ring, and star graphs withN = 4 agents.

A comparison of unique values of ξ for the three graph classes is shown in Figure 3.7. The

best-performing star graph combination outperforms the best-performing ring graph combi-

nation, which in turn outperforms the best-performing line graph combination. We classify

the best-performing combinations as those which provide the largest stability margin with

regard to satisfying the small-gain theorem. It is easy to observe from Figure 3.7 that all of

the combinations considered here stabilize the LTI system (3.1) without needing consensus

as the small-gain theorem is satisfied form = 0.

We also point out a result related to the optimal values ofWC
ij . Take actuation distribution

B-II for the star graph in Figure 3.6. Solving for theWC
ij parameters which minimize γ′, we

find thatWC
32 = B1K1+B2K2. In other words, agent 3 is weighting its communication with

neighbor agent 2 is such a way as to diminish the influence on the norm of the control com-

ponent from both agent 1, which is not a neighbor of agent 3, and agent 2. It is thus optimal
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in certain scenarios to weight communication with a neighbor to cancel out the influence of

n-hop neighbors where n > 1.

3.5 Conclusions

We investigated the design of a network of agents for the estimation and control of LTI sys-

tems. Since the separation principle does not hold, the estimation and control strategies need

to be jointly designed, which involves finding a solution to a large-scale optimization. This

could be a disadvantage if the agents need to change their control strategieswithout re-solving

the optimization. We have presented LMI formulations to characterize the conditions under

which the design of estimation and control can be decoupled, and shown how the frequency

of information exchange between agents affects the establishment of the conditions. Our

simulation results illustrate an application of our framework to multi-vehicle platooning.

We also briefly investigated the influence of the network structure on algorithm performance

across various actuation and sensing distributions.
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4
Actuator and Sensor Allocation for

Distributed Control and Estimation

Wenow explore amethodology for allocating actuators and sensors across a given network of

nodes, focusing heavily on the actuation side of the problem. We consider the distributed es-

timation and control framework summarized inChapter 3 and described in detail inChapter
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9 and use as a comparison metric the quantity ξ = γ∥D̃∥2 where D̃ is a block matrix whose

i, j-th block satisfies

[D̃]ij =


−BjKj +WC

ij if j ∈ Ni\{i}∑
ℓ∈V\{i} BℓKℓ −

∑
ℓ∈Ni\{i} W

C
iℓ if j = i

−BjKj otherwise.

(4.1)

Here γ is an upper bound on the normof the transfer function of the estimation component,

which is related to the graph structure through an associated LMI.Thus, we can take ξ to rep-

resent the worst case product of the norms. A smaller ξ can be thought of as requiring less or

even no consensus to satisfy the small-gain theorem constraint. Thus, we seek to minimize

the metric ξ. Note that for this analysis we have assumed that there are no consensus rounds

performed in the algorithm (m = 0).

In Section 4.1 we introduce our methodology for actuator selection and formulate the

main problem. In Section 4.2 we build intuition using simple graphs. Sections 4.3-4.11 de-

scribe the simulation study as well as the statistical techniques used to answer ourmain ques-

tion. We also review pertinent centralitymeasures and specify howwewill compare different

measures against one another as heuristics for actuator selection. Sections 4.12-4.15 illustrate

our statistical results across our test suite. In Section 4.16 we consider the analogous sensor

selection problem. Finally, we summarize key results and conclude in Section 4.17.

4.1 Actuator Allocation

We would like to identify ”important” nodes to select as actuators. This concept is illus-

trated by scenarios in which we have a fundamental limit on how much actuation capacity
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we can sustain. For instance, if we have a limited amount of battery power, we would like

to distributed our available actuation effort to those agents that can contributed the most to

minimizing ξ and, thereby, providing us with a larger stability margin. To get at this ques-

tion, we consider convexly weighting actuators to minimize ∥D̃∥2. For ease of discussion,

consider a scalar process x with state transition matrix A = 1. Let Bi = 1 with actuator

weightsKi = −0.1αi for each i ∈ [1, . . . ,N]with

N∑
i=1

αi = 1 (4.2)

This scheme allows us to control if an actuator is active or inactive through the allocation of

the αi terms. If αi = 0 then node i is inactive in an actuation sense. Note that a requirement

of our algorithm is that we design Ki such that the quantity A +
∑N

i=1 BiKi is Schur stable.

With A = 1 our convex weighting scheme yields

A+
N∑
i=1

BiKi = 1+
N∑
i=1

(1)(−0.1αi)

= 1− 0.1
N∑
i=1

αi

= 1− 0.1(1)

= 0.9

(4.3)

which is Schur stable. Given a predefined set of Bi values, we can use a semidefinite program

to find feasibleWC
ij and αi for i, j ∈ [1, . . . ,N] which minimize ∥D̃∥2. Recall that ∥D̃∥2 is
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just the maximum singular value of D̃. The constraint

σmax[D̃] ≤ Σ (4.4)

for Σ ∈ R≥0 can be written as the convex LMI50

ΣInN D̃

D̃T ΣInN

 ⪰ 0. (4.5)

Thus, a semidefinite program can be formulated to find feasible WC
ij and αi which satisfy

(4.5) while minimizing Σ while also satisfying the convexity constraint (4.2). We first analyze

some simple graphs to get intuition.

4.2 Building Intuition

We first look at a line graph withN = 5 nodes. Minimizing ∥D̃∥2 yields the optimal distri-

bution of actuation weights seen in Figure (4.1).

Figure 4.1: Distribution of optimal actuation weights across a line graph withN = 5 nodes.

The optimal selection of active actuators giving the most weight to node i = 3 naturally

leads us to wonder if node centrality could provide a guide. We note that the distribution of

actuation for this simple case trends with the distribution of betweenness centrality (BC) as
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seen in Figure (4.2).

Figure 4.2: Distribution of betweenness centrality (BC) across a line graph withN = 5 nodes.

4.2.1 Betweenness Centrality

Betweenness centrality is a measure of how many shortest paths between pairs of nodes a

particular node lies on33. For a graph G := (V,E) the betweenness centrality of a node

i ∈ V is given by

BC(i) =
∑

j ̸=i̸=k∈V

σjk(i)
σjk

(4.6)

where σjk represents the total number of shortest paths between a given node j to another

node k and σjk(i) is the total number of shortest paths between these nodes which also pass

through node i.

4.2.2 Impact ofMultiple Actuators

We next investigate a simple graph withN = 5 nodes. We see in Figure (4.3) the distribution

of actuation weights which minimizes ∥D̃∥2, where the betweenness centrality has also been

included for ease of comparison.
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Figure 4.3: Distribution of optimal actuation weights and betweenness centrality (BC) across a graph withN = 5
nodes.

Again we see that the trend observed between optimal actuation weighting and betweenness

centrality holds for this simple case. We also note that allowing for multiple actuators im-

proves upon the case with only a single actuation node. In themultiple actuation case shown

in Figure (4.3) we achieve ∥D̃∥2 = 0.0427; however, if we restrict ourselves to only allowing

for one agent to actuate, i.e., αi = 1 for some node i, we obtain the optimal results shown in

Figure (4.4).
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Figure 4.4: Distribution of norms for unique selections of individual actuation agents across a graph withN = 5 nodes.

Note that the smallest we can make ∥D̃∥2 is 0.1155 assuming a single actuating node i with

BiKi = −0.1, which was readily improved upon by allowing for heterogeneous actuation

and multiple actuators in the optimization.

We can also look at more irregular graph structures. Results from repeating the analysis for a

different graph withN = 5 nodes are shown in Figure (4.5).

75



Figure 4.5: Distribution of optimal actuation weights and betweenness centrality (BC) across an irregular graph with
N = 5 nodes.

We once again see the trend between optimal heterogeneous actuation weights and between-

ness centrality. Similar to the graphs analyzed in Figures (4.3)-(4.4), we also see an improve-

ment by allowing for multiple heterogeneous actuators compared to the cases with only a

single actuator. In the heterogeneous case shown in Figure (4.5) we achieve ∥D̃∥2 = 0.0645.

If we only allow for a single active actuator the optimal norms for each unique single actuator

placement are shown in Figure (4.6).
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Figure 4.6: Distribution of norms for unique selections of individual actuators across a graph withN = 5 nodes.

We see that allowing for multiple heterogeneous actuators improves upon the minimum

norm of 0.1155 in the single actuation cases. While it would be ideal to determine an an-

alytical expression which can be used to ascertain which qualities of a node’s centrality in

the graph might influence its optimality in an actuation sense, we nevertheless can resort to

statistical simulation techniques to determine probabilities of certain centrality measures be-

ing better indicators of actuation node selection than others. This will be the topic of the

following section.

4.3 Simulation Study

One method to inform if certain centrality measures are good indicators of which nodes to

use as actuators is to conduct a statistical simulation analysis. There is precedent for obtaining
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statistics from simulations in the graph theory literature34,35,36. Specifically, we will make

use of null hypothesis testing to further understand how different centrality measures could

aid in actuator selection. We can consider selecting the heterogeneous actuation weights as

functions of respective centrality measures. This implies that the actuation effort of an agent

would be selected proportional to its centrality measure, with more central agents exerting

larger actuation magnitudes. Before describing the logistics of the simulation study we will

first introduce some important concepts from statistical hypothesis testing.

4.4 Statistical Hypothesis Testing

Statistical hypothesis testing involves comparing a null hypothesis, H0, with an alternative

hypothesis, H1
37. The comparison of these two hypotheses is considered to be statistically

significant if, according to some threshold probability, the observed data would be unlikely

to occur given the truth of the null hypothesis. If this predetermined condition is met, one

chooses to reject the null hypothesis in favor of the alternative hypothesis. Note that speci-

fying this threshold probability is a means to control for the risk of incorrectly rejecting the

null hypothesis when it is in fact true37.

4.5 Two-sample testing

The idea of two-sample testing is where we observe two independent random samples z =

(z1, z2, . . . , zn) and y = (y1, y2, . . . , ym)which are drawn frompossibly different probability

distributions. After observing these samples, we wish to test the validity of our null hypoth-

esis which can be stated as

78



H0: There is no difference between the means z̄ of z and ȳ of y.

The hypothesis test begins with determining a test statistic θ̂ which measures the effect we

are looking for. For example, if we expect that z̄ > ȳ, then we can choose as an alternative

hypothesis

H1: The mean z̄ of z is greater than the mean ȳ of y.

To put this into perspective, z could represent the test scores of students who studied and

y could represent the test scores of students who didn’t study. Our alternative hypothesis

would then be a sensible one, stating that the test scores of studious students should on aver-

age be higher than those who do not study. In this case, we could choose as our test statistic

θ̂ = z̄ − ȳ, which we would expect to be positive if studying works. In regards to the hy-

pothesis testing, if we cannot decisively reject the truth of H0 then we cannot demonstrate

the superiority of studying over not studying in relation to test scores. The hypothesis test is

just a formal way to determine whether or not we should rejectH0.

Going back to the test-taking example, if the null hypothesis H0 is not true then we would

expect the test statistic θ̂ to be larger than ifH0 is true. One nice thing about hypothesis test-

ing is we do not need to quantify what we mean here by ”larger”, only that larger values of

θ̂ imply more evidence to rejectH0. The next important concept is the achieved significance

level (ASL) of the test. The ASL is defined to be the probability of observing at least as large
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of a value of the test statistic θ̂when the null hypothesisH0 is true. Mathematically we have

ASL = ProbH0{θ̂
∗
≥ θ̂} (4.7)

A smaller ASL implies stronger evidence against H0. Note that θ̂
∗
is a hypothetical random

variable with the H0 distribution. In other words, it is the distribution of θ̂ if H0 is true.

The hypothesis test would then be to compute the ASL and make a decision on whether or

not to reject H0 according to a conventional threshold. One thing to immediately note is

that the computation of the ASL requires knowledge of the underlying distribution of H0.

However, there need not be one single distribution to describeH0. Thankfully, there are sim-

ulation techniques which we can use to get estimates of the statistics for our null hypothesis

of interest.

4.6 CentralityMeasures of Interest

To apply the machinery of hypothesis testing as just described to our framework, we need a

way to determine relevant statistics for the null hypothesis. Before getting into the method-

ology for achieving that, we will first describe the various centrality measures, in addition to

betweenness centrality, which will be considered as possible heuristics for actuator selection.

For all definitions we assume a graphG := (V,E)with node setV and edge set E.

4.6.1 Closeness Centrality

The closeness centrality (CC) of a node is classically defined as the inverse of the sum of the

distances between that node and all other nodes in the graph38. The closeness centrality of a
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node i ∈ V is

CC(i) =
1∑

j∈V d(i, j)
(4.8)

where d(i, j) is the distance between nodes i and j.

4.6.2 Degree Centrality

The degree centrality (DC) of a node is defined simply as

DC(i) = deg(i) (4.9)

where deg(i) represents the total number of edges incident to node i. Note that for directed

graphswe have two notions of degree centrality, in-degree and out-degree. In-degree is a count

of howmany edges direct toward an agent (signalling that the agent can transmit information

to others) and out-degree is a count of howmany edges direct away from an agent (signalling

that the agent can receive information from others). In the cases which follow we consider

graphs in which the in-degree and out-degree are equal and just consider the degree.

4.6.3 Eigenvector Centrality

Eigenvector centrality (EC) assigns relative scores to nodes in a graph under the assumption

that connections to high-scoring nodes are weightedmore heavily in a node’s score than con-

nections to low-scoring nodes. Given the adjacency matrixA of the graph we can define the

relative score of a node i as

xi =
1
λ
∑
j∈V

Aijxj (4.10)
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which in vector notation is the eigenvalue equationAx = λx39. The eigenvector centrality

EC(i) of a node i is then the i-th component of the eigenvector associated with the unique

largest eigenvalue for this given eigenvalue equation.

4.6.4 Information Centrality

Information centrality (IC) is related to how much information is contained in a path be-

tween any two nodes40,41. The information in a path between two nodes i and j is defined

as the inverse of the path length between these two nodes. The total information between

nodes i and j, Itotij , is the sumof the information contained in every pathwhich connects nodes

i and j and is given by

Itotij = (L†
ii + L†

jj − 2L†
ij)

−1 (4.11)

where L is the graph Laplacian. We can then define the information centrality of node i as

IC(i) =

 1
N
∑
j∈V

1
Itotij

−1

(4.12)

which is just theharmonic average of the total informationbetweennode i and all other nodes

in the graph.

4.7 Monte Carlo Simulations

To show how we can incorporate our problem statement within the framework of hypothe-

sis testing, consider the following null and alternative hypotheses.

82



H0: Selecting actuators by weighting as a function of betweenness centrality provides no

benefit over selecting actuators by weighting as a function of degree centrality.

H1: Selecting actuators by weighting as a function of betweenness centrality is better than

selecting actuators by weighting as a function of degree centrality.

Weighting an actuator i as a function of a specific centrality measure is accomplished by se-

lecting

αi =
CM(i)∑
j∈V CM(j)

(4.13)

where CM(·) is the centrality measure of interest. For exposition purposes let’s consider

comparingH0 andH1.

4.7.1 Erdos-Renyi Graphs

To generate the samples of interest we employ Erdos-Renyi random graphs42,43. Such graphs

allow us to easily explore the actuator selection problem as a function of network density.

The version of the model we use constructs a graph by connecting pairs of nodes according

to a given connection probability. Let G(N, ρ) be an Erdos-Renyi graph withN nodes and

connection probability ρ, meaning that each edge between a pair of nodes is included in the

graph with probability ρ independently of every other edge. Thus, ρ is a parameter which we

can tune to generate graphs with varying edge densities. Example graphs for G(10, 0.3) and

G(10, 0.7) are shown in Figures (4.7) and (4.8), respectively.
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Figure 4.7: Erdos‐Renyi graph withN = 10 nodes and connection probability ρ = 0.3.

Figure 4.8: Erdos‐Renyi graph withN = 10 nodes and connection probability ρ = 0.7.

Note that for our analysis we only consider connected graphs.
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4.8 Generation of Samples

To compare the hypothesesH0 andH1 we generateMC Erdos-Renyi random graphs where

MC is the number of Monte Carlo rounds. The first actuation weighting scheme generates

weights as

αi =
DC(i)∑
j∈V DC(j)

(4.14)

whereDC(i) is thedegree centrality ofnode i. Thiswill giveus the samplesDC = (dc1, dc2, . . . , dcMC)

where dci = [∥D̃∥2]i for i ∈ [1, . . . ,MC]. In other words, the samples are the values of ∥D̃∥2

for each simulated case where an associated LMI is solved to find feasibleWC
ij terms to mini-

mize the norm given the α actuation weights calculated using (4.14). Similarly, for the same

MC Erdos-Renyi random graphs the second actuation weighting scheme assigns actuation

weights as

αi =
BC(i)∑
j∈V BC(j)

(4.15)

whereBC(i) is thebetweenness centrality ofnode i. Thiswill give samplesBC = (bc1, bc2, . . . , bcMC)

where bci = [∥D̃∥2]i for i ∈ [1, . . . ,MC] where the norm is again minimized by solving a

new LMI which selects appropriateWC
ij terms.

4.9 Hypothesis Testing

Given the samples DC and BC, we also calculate the sample mean and sample variance of

each as D̄C, σ2DC and B̄C, σ2BC, respectively. We now define the test statistic as

θ̂ =
D̄C− B̄C√

σ2DC/MC+ σ2BC/MC
(4.16)
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Note that if we expect the norms on average to be smaller whenweighting actuators as a func-

tion of betweenness centrality (H0 is not true), thenwewould expect larger values of θ̂ than if

H0 was true. Going back to the previousmethodology, the next step in the hypothesis testing

would be to calculate the ASL; however, we don’t necessarily have access to the distribution

statistics of theH0 case. To solve this we can make use of bootstrapping methods.

4.10 Bootstrapping

Bootstrapping methods allow us to estimate the statistics of the null hypothesis under con-

sideration37. Wewill construct a sampling distribution that the test statistic would have if the

perceived effects of weighting according to betweenness centrality rather than degree central-

ity were not present in the population. Then, we can locate the test statistic on this new

distribution which we have created and compare with our observed test statistic to construct

the ASL. To construct a sampling distribution under the assumption of the null hypothesis

H0, which says that weighting according to betweenness centrality is no better than weight-

ing according to degree centrality, we can construct two new data sets with the appropriate

null hypothesis underlying them. Let

dc′i = dci − D̄C+ ā (4.17)

and

bc′i = bci − B̄C+ ā (4.18)

for i ∈ [1, . . . ,MC]where ā is themean of the combined sampleDC+BC. These new sam-

ples now operate under the pretense of the null hypothesis. We are now ready to implement
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bootstrapping. We draw a random sample (dc∗i ) of sizeMCwith replacement from dc′i as well

as another random sample bc∗i of sizeMCwith replacement from bc′i. We then calculate a new

test statistic

θ̂
∗
=

D̄C∗ − B̄C∗√
σ∗2DC/MC+ σ∗2BC/MC

(4.19)

We then repeat this bootstrapping B times for some large value of B (we use B = 10000).

We now have B values of the test statistic θ̂
∗
. We can estimate the ASL, or the p-value, of the

hypothesis test as

p =
∑B

i=1 I{θ̂
∗
i ≥ θ̂}

B
(4.20)

where I is the indicator function equaling 1 if its argument is true and 0 otherwise. We now

have a statistical approach to compare our hypotheses against one another. If the calculated

p-value is below a determined threshold we choose to reject the null hypothesis in favor of

the alternative hypothesis. While this discussion comparedH0 withH1, we can see how the

machinery can be extended to comparing other hypotheses against one another.

4.11 Test Cases

We consider the following hypotheses:

H01: Selecting actuators by weighting as a function of betweenness centrality provides no

benefit over selecting actuators by weighting as a function of closeness centrality.

H1: Selecting actuators by weighting as a function of betweenness centrality is better than

selecting actuators by weighting as a function of closeness centrality.
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H02: Selecting actuators by weighting as a function of betweenness centrality provides no

benefit over selecting actuators by weighting as a function of degree centrality.

H2: Selecting actuators by weighting as a function of betweenness centrality is better than

selecting actuators by weighting as a function of degree centrality.

H03: Selecting actuators by weighting as a function of betweenness centrality provides no

benefit over selecting actuators by weighting as a function of eigenvector centrality.

H3: Selecting actuators by weighting as a function of betweenness centrality is better than

selecting actuators by weighting as a function of eigenvector centrality.

H04: Selecting actuators by weighting as a function of betweenness centrality provides no

benefit over selecting actuators by weighting as a function of information centrality.

H4: Selecting actuators by weighting as a function of betweenness centrality is better than

selecting actuators by weighting as a function of information centrality.

We perform hypothesis testing to compare each pair of hypotheses {H01,H1}, {H02,H2},

{H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20). Our test suite

consists of Erdos-Renyi graphsG(N, ρ)withN ∈ [6, 7, 8, 9, 10, 11, 12, 13] and

ρ ∈ [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7]. This allows us to investigate graphs with
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disparate numbers of nodes and varying edge densities.

4.12 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits (in the sense of minimiz-

ing∥D̃∥2) overweighting actuators as a functionof closeness centrality. Aplot of appropriate

p-values vs. ρ is shown in Figure (4.9).

Figure 4.9: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs.

An accepted practice is for p-values < 0.05 we can claim that the results provide statistically

significant evidence for accepting hypothesisH1 overH01. Table 4.1 highlights the statistically

significant cases in green.
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Table 4.1: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs. Each data point is calculated using 3000
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for many cases with ρ ≥ 0.6 (excluding those for 9 ≤ N ≤ 12) the hypothesis

testing informs us that there is significant evidence that weighting actuators as a function of

betweenness centrality provides a marked benefit over weighting actuators as a function of

closeness centrality. Note that for larger values of ρ the generated Erdos-Renyi graphs have

proportionally higher average edge densities where the edge density for an undirected graph

G := (V,E) is defined as

EdgeDensity =
|E|

n(n− 1)/2
(4.21)

where |E| is the cardinality of the edge set and n(n − 1)/2 is the total number of possible

edges. Note that in the limit as the number of generated Erdos-Renyi graphs goes to∞ the

average edge density goes to ρ.

4.12.1 Impact of Fully ConnectedNodes

Amajor driving factor behind thefinding that p-values tend tobecome statistically significant

as ρ increases is the emergence of fully connected nodes. We have the following definition of

a fully connected node:
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Definition: A fully connected node for an undirected graph G := (V,E) is a node i ∈ V

such that
∑

j∈VA(i, j) = N− 1 whereA is the adjacency matrix of graphG and |V| = N.

Recall that to minimize ∥D̃∥2 we use a semidefinite program to find feasibleWC
ij and αi for

i, j ∈ Vwhich satisfy the relevant LMI while minimizing the maximum singular value of D̃.

Conjecture: Let M be the set of all fully connected nodes in V with M ⊆ V. It is opti-

mal in the norm-minimizing sense to select αi = 1
|M| for all i ∈ M and αj = 0 for all j /∈ M.

In other words, the optimal distribution of actuation for a graph with fully connected nodes

is to proportionally weight those nodes and not weight any other nodes, meaning that only

the fully connected nodes end up actively actuating. Weighting in this way yields ∥D̃∥2 = 0.

This has been observed in all numerical simulations considered. In order to develop this

idea further, we now consider the optimal weighting scheme along with weighting using the

centrality measures as heuristics. An example Erdos-Renyi graph G(6, 0.7) with two fully

connected nodes is shown in Figure (4.10), and the distribution of normalized αi values as a

function of node i for various weighting schemes along with the optimal weighting scheme

on this graph is shown in Figure (4.11).

91



Figure 4.10: Erdos‐Renyi graph withN = 6 and edge connection probability ρ = 0.7. Nodes 1 and 6 are fully
connected.

Figure 4.11: Normalized α weightings for an Erdos‐Renyi graph withN = 6 and edge connection probability ρ = 0.7.
Nodes 1 and 6 are fully connected.
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Immediately note how actuation weighting as a function of betweenness centrality yields a

minimum norm which is closest to the optimal case that is achieved by only weighting fully

connected nodes 1 and 6. In all cases, each weighting scheme puts the most weight on the

fully connected nodes, with the optimal scheme weighting no other nodes and betweenness

centrality placing relatively little actuation effort on nodes 3 and 5. In contrast, the other cen-

trality measures all put nonzero weights on the remaining nodes, resulting in higher overall

norms. Looking at the distribution of graphs which comprise the data in Figure (4.9) and

Table 4.1 we see that for a givenN as ρ increases there is a larger proportion of graphs which

have at least one fully connected node. Graphdistributions forN = 6 andN = 13 are shown

in Figure (4.12) and Figure (4.13), respectively, to illustrate this point.

Figure 4.12: Distribution of graph types used for comparison of hypotheses {H01,H1} for Erdos‐Renyi graphs with
N = 6 nodes.
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Figure 4.13: Distribution of graph types used for comparison of hypotheses {H01,H1} for Erdos‐Renyi graphs with
N = 13 nodes.

More evidence that thepresenceof fully connectednodesprovides a situation inwhichweight-

ing as a function of betweenness centrality tends to outperform weighting as a function of

closeness centrality can be seen by looking at the difference in norm values under these two

weighting schemes as a function of distance from a complete graph. The assumption is that

as ρ increases and graphs get closer to a complete graph in the sense of the Frobenius norm,

the prevalence of graphs with at least one fully connected node will increase and yield lower

overall normswhenweighting as a function of betweenness centrality compared toweighting

as a function of closeness centrality. Figure (4.14) and Figure (4.15) illustrate findings in this

regard for Erdos-Renyi graphsG(10, 0.4) andG(10, 0.7), respectively.
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Figure 4.14: Difference between norms with actuation weighting as a function of closeness centrality and betweenness
centrality vs. distance from a complete graph for Erdos‐Renyi graphs withN = 10 and ρ = 0.4. 1000 data points
comprise this figure.

Figure 4.15: Difference between norms with actuation weighting as a function of closeness centrality and betweenness
centrality vs. distance from a complete graph for Erdos‐Renyi graphs withN = 10 and ρ = 0.7. 1000 data points
comprise this figure.
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We can see that when there is a high proportion of graphs with at least one fully connected

node the average difference in norm values in more positive than the case when there are

mostly graphs with no fully connected nodes. This implies that on average ∥D̃∥2 will be

lower when weighting actuators as a function of betweenness centrality than it would when

weighting actuators as a function of closeness centrality when there are larger proportions of

graphs with at least one fully connected node.

Since there is evidence that the presence of fully connected nodes provides a situation in

which weighting as a function of betweenness centrality tends to outperform weighting as a

function of other centrality measures, it is illuminating to look at the statistics only consid-

ering those graphs which have no fully connected nodes. These tend to be the graph types

in which the benefits of weighting by betweenness centrality are not as statistically signifi-

cant. Hypothesis testing comparing the hypotheses {H01,H1} only considering the graphs

with no fully connected nodes is shown in Figure (4.16) and statistically significant cases are

highlighted in green in Table 4.2.
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Figure 4.16: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes.

Table 4.2: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

A significant result is that there are still statistically significant cases which provide evidence

in support of the hypothesis that weighting as a function of betweenness centrality provides

benefit over weighting as a function of closeness centrality even when only considering graphs

with no fully connected nodes. In particular, these statistically significant cases tend to be for
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largerN as well as larger ρ. This is an important results as it provides us with more evidence

toward a more systematic methodology to select actuators. We are seeking a heuristic which

can be applied to general networks in which there may or may not be fully connected nodes.

For robustness reasons, if there is only one node which is fully connected it may not be desir-

able to put all of the actuation on that node (even if it is optimal in the sense of norm min-

imization). Furthermore, one link failure could change whether a node is fully connected,

motivating the desire to use a heuristic with more built-in redundancy. These statistical re-

sults imply that betweenness centrality would be a good heuristic to use that still allows us to

get close to optimal performance without sacrificing resilience.

4.13 Comparing Betweenness Centrality with Degree Centrality

We can similarly perform hypothesis testing for the other pertinent pairs of hypotheses we

laid out previously. Comparing the pair of hypotheses {H02,H2} allows us to investigate

if weighting actuators as a function of betweenness centrality provides any tangible benefits

over weighting actuators as a function of degree centrality. A plot of appropriate p-values vs.

ρ is shown in Figure (4.17) and statistically significant cases are highlighted in Table 4.3.
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Figure 4.17: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs.

Table 4.3: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (4.18)

and Table 4.4.
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Figure 4.18: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes.

Table 4.4: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

There is again strong statistical evidence to support that for largerN and larger ρ weighting

actuators as a function of betweenness centrality provides improvement over weighting ac-

tuators as a function of degree centrality.
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4.14 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators

as a function of betweenness centrality improves over weighting actuators as a function of

eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure (4.19) and

statistically significant cases are highlighted in Table 4.5.

Figure 4.19: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs.
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Table 4.5: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (4.20)

and Table 4.6.

Figure 4.20: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes.
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Table 4.6: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

Once again networkswith largerN and larger ρ exhibit strong statistical evidence thatweight-

ing actuators as a function of betweenness centrality provides a benefit over weighting actua-

tors as a function of eigenvector centrality. Even when only considering graphs with no fully

connected nodes these trends remain.

4.15 Comparing Betweenness Centrality with Information Centrality

Finally we compare the pair of hypotheses {H04,H4}, allowing us to investigate whether

weighting actuators as a function of betweenness centrality provides any benefit over weight-

ing actuators as a function of information centrality. A plot of appropriate p-values vs. ρ is

shown in Figure (4.21) and statistically significant cases are highlighted in Table 4.7.
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Figure 4.21: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs.

Table 4.7: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs. Each data point is calculated using 2000
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (4.22)

and Table 4.8.
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Figure 4.22: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes.

Table 4.8: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

We again see statistical evidence which shows that for largerN and larger ρ betweenness cen-

trality may provide benefits over information centrality when weighting actuators. These

results also hold when only considering graphs with no fully connected nodes.
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4.16 Sensor Allocation

Up until this point we have focused on studying the actuator assignment problem. Now we

seek to gain insight into how similar techniques can be utilized to understand the analogous

sensor assignment problem. This necessitates investigating the estimation component of our

distributed control and estimation framework. Denoting the transfer functionmatrix of the

estimation component as G̃, recall that in Chapter 3 we considered the general condition

∥G̃∥H∞ < γ for γ ∈ R>0. We have encountered γ in the metric ξ = γ ∗ γ′ which we seek

to minimize. We now set out to identify important nodes to select as sensors and consider

convexly weighting sensors to minimize γ. For ease of discussion we consider a scalar process

x with state transition matrix A = 1. Let Ci = 1 with observer gains Li = αi for each

i ∈ [1, . . . ,N]with
N∑
i=1

αi = 1 (4.22)

This scheme allows us to control if a sensor is active or inactive through the allocation of the

αi terms. If αi = 0 then node i is inactive in a sensing sense. The same reasons that apply

for using only a subset of available actuators extend to the sensing case. We are operating

under the assumptions of power limitations or a hierarchy of sensing tasks where we may

only allocate a subset of sensors to a specific task for a limited amount of time. Here the

relative magnitude of αi values correspond to the magnitude of observer gains used in the

estimation process. To compare across our centralitymeasures of interest, we weight a sensor

i as a function of a specific centrality measure by selecting

αi =
CM(i)∑
j∈V CM(j)

(4.23)
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whereCM(·) is the centrality measure of interest. Recall that in Section 3.4 of Chapter 3 we

used a convex version of the estimation component LMI given in (3.24) to greatly simplify

the analysis. We again employ this formulation for the following simulations. Recall that

the LMI (3.24) is a function of X, A, Li, Ci, and WE
ij for i, j ∈ [1, . . . ,N]. Thus, given a

predefined set ofCi values andwithobserverweights givenby (4.23),we canuse a semidefinite

program to find feasible X ≻ 0 and WE
ij for i, j ∈ [1, . . . ,N] which satisfy (3.24) while

minimizing γ.

4.16.1 Test Cases

We consider the following hypotheses:

H′
01: Selecting sensors by weighting as a function of betweenness centrality provides no ben-

efit over selecting sensors by weighting as a function of closeness centrality.

H′
1: Selecting sensors by weighting as a function of betweenness centrality is better than se-

lecting sensors by weighting as a function of closeness centrality.

H′
02: Selecting sensors by weighting as a function of betweenness centrality provides no ben-

efit over selecting sensors by weighting as a function of degree centrality.

H′
2: Selecting sensors by weighting as a function of betweenness centrality is better than se-

lecting sensors by weighting as a function of degree centrality.
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H′
03: Selecting sensors by weighting as a function of betweenness centrality provides no ben-

efit over selecting sensors by weighting as a function of eigenvector centrality.

H′
3: Selecting sensors by weighting as a function of betweenness centrality is better than se-

lecting sensors by weighting as a function of eigenvector centrality.

H′
04: Selecting sensors by weighting as a function of betweenness centrality provides no ben-

efit over selecting sensors by weighting as a function of information centrality.

H′
4: Selecting sensors by weighting as a function of betweenness centrality is better than se-

lecting sensors by weighting as a function of information centrality.

We perform hypothesis testing to compare the pair of hypotheses {H′
01,H′

1}, {H′
02,H′

2},

{H′
03,H′

3}, and {H′
04,H′

4} and generate appropriate p-values given by (4.20). Our test suite

consists ofErdos-Renyi graphsG(N, ρ)withN ∈ [6, 8, 10, 12, 14] and ρ ∈ [0.3, 0.4, 0.5, 0.6, 0.7].

4.16.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H′
01,H′

1} allows us to investigate if weighting sensors as a

function of betweenness centrality provides any tangible benefits over weighting sensors as a

function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure (4.23)

and a table highlighting statistically significant cases is shown in Table 4.9.
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Figure 4.23: Comparison of hypotheses {H′
01,H′

1} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs.

Table 4.9: Comparison of hypotheses {H′
01,H′

1} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for all simulated cases there is extremely strong statistical evidence that weighting

sensors as a function of betweenness centrality provides a benefit to weighting sensors as a

function of closeness centrality, save for the case with N = 12 and ρ = 0.7. This p-value,

while not below our defined threshold for statistical significance, is noted to still be relatively

small in magnitude.
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4.16.3 Comparing Betweenness Centrality with Degree Centrality

Comparing the pair of hypotheses {H′
02,H′

2} allows us to investigate if weighting sensors as

a function of betweenness centrality provides any tangible benefits over weighting sensors as

a function of degree centrality. A plot of appropriate p-values vs. ρ is shown in Figure (4.24)

and a table highlighting statistically significant cases is shown in Table 4.10.

Figure 4.24: Comparison of hypotheses {H′
02,H′

2} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs.
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Table 4.10: Comparison of hypotheses {H′
02,H′

2} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for all simulated cases there is extremely strong statistical evidence that weighting

sensors as a function of betweenness centrality provides a benefit to weighting sensors as a

function of degree centrality, save for the case withN = 12 and ρ = 0.7. This p-value, while

not below our defined threshold for statistical significance, is noted to still be relatively small

in magnitude.

4.16.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H′
03,H′

3} allows us to investigate if weighting sensors as

a function of betweenness centrality provides any tangible benefits over weighting sensors as

a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(4.25) and a table highlighting statistically significant cases is shown in Table 4.11.
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Figure 4.25: Comparison of hypotheses {H′
03,H′

3} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs.

Table 4.11: Comparison of hypotheses {H′
03,H′

3} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for all simulated cases there is extremely strong statistical evidence that weighting

sensors as a function of betweenness centrality provides a benefit to weighting sensors as a

function of eigenvector centrality, save for the case withN = 12 and ρ = 0.7. This p-value,

while not below our defined threshold for statistical significance, is noted to still be relatively

small in magnitude.
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4.16.5 Comparing Betweenness Centrality with Information Centrality

Comparing the pair of hypotheses {H′
04,H′

4} allows us to investigate if weighting sensors as

a function of betweenness centrality provides any tangible benefits over weighting sensors as

a function of information centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(4.26) and a table highlighting statistically significant cases is shown in Table 4.12.

Figure 4.26: Comparison of hypotheses {H′
04,H′

4} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs.
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Table 4.12: Comparison of hypotheses {H′
04,H′

4} across Erdos‐Renyi graphs. Each data point is calculated using 500
Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for all simulated cases there is extremely strong statistical evidence that weighting

sensors as a function of betweenness centrality provides a benefit to weighting sensors as a

function of information centrality, save for the case withN = 12 and ρ = 0.7. This p-value,

while not below our defined threshold for statistical significance, is noted to still be relatively

small in magnitude.

4.16.6 Typical Values for Upper Bound on Estimation BlockNorm

For the Erdos-Renyi graphG(7, 0.5) shown in Figure (4.27), the minimum γ∗ values achiev-

able when weighting sensors according to the centrality measures of interest as in (4.23) are

displayed in Figure (4.28).
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Figure 4.27: Erdos‐Renyi graph withN = 7 and connection probability ρ = 0.5.

Figure 4.28: Minimum γ∗ values when weighting sensors by the various centrality measures of interest for an Erdos‐
Renyi graph withN = 7 and ρ = 0.5.

115



We see that when weighting sensors using betweenness centrality, we achieve a minimum

γ∗ = 6.233. Weighting sensors according to the other centralitymeasures of interest result in

largerminimumachievable values of γ∗, with the largest occurringwhenweighting sensors by

closeness centrality which yields γ∗ = 6.975. This is but one example, but it gives a good idea

of typical values of γ∗ which are achievable for the Erdos-Renyi graphs under consideration.

4.17 Conclusions

We have considered the problem of actuator and sensor allocation for the distributed esti-

mation and control framework detailed in Chapter 3. We considered a set of centrality mea-

sures as heuristics for actuator and sensor allocation. Specifically, we considered between-

ness, closeness, degree, and information centrality measures. We outlined a methodology to

use such centrality measures as weighting schemes for agent selection. With the goal of min-

imizing a key norm, we compared the results across of suite of Erdos-Renyi random graphs.

We showed that for a given connected graph, it is optimal to select fully-connected agents as

actuators. We further showed that among the centrality measures considered, in cases both

with and without the presence of fully connected agents, betweenness centrality statistically

has themost evidence suggesting that it is the best heuristic to use for actuator selection given

a sufficient edge density. We also showed that these results extend to the problem of sensor

selection, although in this case seemingly without the edge density restriction.
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5
Robustness and Scalability for Distributed

Control and Estimation

We are interested in assessing how our statistical conclusions regarding actuator selection ex-

tend fromboth a robustness and a scalability standpoint. The areas of robustnesswewill con-

sider include performance under graph generation methods other than Erdos-Renyi graphs,
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under irrecoverable node failure, and under sparsely available control authority.

In Section 5.1 we consider different graph generationmethods in addition to Erdos-Renyi

graphs. Specifically, we look at Barabasi-Albert graphs as well as Watts-Strogatz graphs. In

Section 5.2 we consider the impact of irrecoverable actuator failures. We consider cases in

which one or two actuators fail, respectively. In Section 5.3 we analyze the impact of sparsely

available control authority on our statistical results. These are cases in which individual

agents do not have full controllability of the system. Rather, the network must rely on the

joint controllability amongst all of the agents. We show that this paradigm change does result

in different statistical conclusions being drawn; specifically, degree centrality shows strong

statistical evidence as being the best actuator selection heuristic in these cases rather than be-

tweenness centrality for networks with sufficient edge density. In Section 5.4 we consider

how our statistical results generalize to larger networks. Finally, in Section 5.5 we provide a

summary of key conclusions and takeaways.

5.1 Robustness to Graph GenerationMethod

We previously considered graphs generated using the Erdos-Renyi model. While this model

is extremely useful in facilitating general conclusions on graphs in a randomway, it does have

certain limitations when comparing Erdos-Renyi-generated graphs to some graphs typically

encountered in design. We will highlight some of these limitations and discuss additional

graph generation methods which specifically address these concerns.
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5.1.1 Barabasi-AlbertModel

One belief among researchers is that many real-world and technological networks approxi-

mately exhibit power-law degree distributions where the fraction P(k) of nodes in the net-

work having degree k is given for large k by

P(k) ∼ k−γ (5.1)

where typically 2 < γ < 344. Such networks are called scale-free and exhibit relatively few

hub nodes with high degrees of connectivity. Examples of studied networks with purported

power-law degree distributions include the movie actor collaboration network (where nodes

are actors and edges indicate that connected actors haveworked in amovie together) as well as

phone call networks (where nodes are phone numbers and edges indicate a completed phone

call directed from the caller to the receiver)45. Note that this contrasts with the Erdos-Renyi

model which produces networks with degree distributions that converge to a Poisson distri-

bution45.

Barabasi-Albert networks have also been shown to have applications to robotic networks,

with one example being drone swarms foraging in dynamic environments46. Such scale-free

networks work to accelerate the collective response of the swarm to help cope with environ-

mental changes, but at the cost of a less coherent collective design. Since relatively few hubs

exert a large degree of influence on the network, collective decision-making can become fickle

in these types of networks.

The Barabasi-Albert model begins with an initial connected seed network consisting of n0

nodes. New nodes are then sequentially added to the network, with each additional node
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connecting to n ≤ n0 existing nodes with a probability that is proportional to the current

nodes’ existing degrees. The probability pi that this newnodewill connectwith existing node

i is

pi =
ki∑
j kj

(5.2)

where ki is the degree of node i and index j sums over all of the currently existing nodes.

It is clear that hub nodes which have high degrees will accumulate new nodes over time in a

mechanismknownas preferential attachment, withnewnodes “preferring” to attach tomore

well-connected nodes over their less well-connected peers. Given a three node line graph as

the seed network, Figures (5.1) - (5.3) show networks with N = 20 nodes generated using

the Barabasi-Albert model with n = 1, n = 2, and n = 3, respectively. Note that the n = 1

case corresponds to tree structures since each additional node connects to only one other

node and, correspondingly, there are no loops in these networks. As such, one can expect the

results for the n = 1 cases to have pertinent differences to the n = 2 and n = 3 cases due to

the inherent differences in graph structure.
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Figure 5.1: Barabasi‐Albert graph withN = 20 nodes. This graph was seeded with a three node line graph and each
sequentially added node connected to n = 1 existing nodes.

Figure 5.2: Barabasi‐Albert graph withN = 20 nodes. This graph was seeded with a three node line graph and each
sequentially added node connected to n = 2 existing nodes.
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Figure 5.3: Barabasi‐Albert graph withN = 20 nodes. This graph was seeded with a three node line graph and each
sequentially added node connected to n = 3 existing nodes.

5.1.1.1 Test Cases

As inChapter 3,weperformhypothesis testing to compare eachpair of hypotheses{H01,H1},

{H02,H2}, {H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20).

Our test suite consists of Barabasi-Albert graphs with N ∈ [10, 20, 30] and n ∈ [1, 2, 3]

where the seed networks are three node line graphs.

5.1.1.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality is an improvement over weighting actuators as a func-

tion of closeness centrality. A plot of p-values vs. n is shown in Figure (5.4) and a table

highlighting statistically significant cases is shown in Table 5.1.
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Figure 5.4: Comparison of hypotheses {H01,H1} across Barabasi‐Albert graphs. Each data point is calculated using
3000 Monte Carlo runs.

Table 5.1: Comparison of hypotheses {H01,H1} across Barabasi‐Albert graphs. Each data point is calculated using
3000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We again provide data only considering graphs with no fully connected nodes in Figure (5.5)

and Table 5.2.
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Figure 5.5: Comparison of hypotheses {H01,H1} across Barabasi‐Albert graphs. The statistics are generated only using
graphs with no fully connected nodes.

Table 5.2: Comparison of hypotheses {H01,H1} across Barabasi‐Albert graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

There is statistical evidence that in all cases considered with n = 2 and n = 3 betweenness

centrality provides benefits over closeness centrality when weighting actuators. We see that

there is not strong statistical evidence for betweenness centrality in the cases with n = 1 and

tree graph structure. We note that the tree graphs are not very dense compared to the n = 2

and n = 3 cases for a givenN. As we have seen evidence that betweenness centrality works

well for denser graph structures, this result aligns with our intuition. These results also apply
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when only considering graphs with no fully connected nodes.

5.1.1.3 Comparing Betweenness Centrality with Degree Centrality

Comparing the pair of hypotheses {H02,H2} allows us to investigate if weighting actuators

as a function of betweenness centrality is an improvement over weighting actuators as a func-

tion of degree centrality. A plot of p-values vs. n is shown in Figure (5.6) and a table high-

lighting statistically significant cases is shown in Table 5.3.

Figure 5.6: Comparison of hypotheses {H02,H2} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs.
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Table 5.3: Comparison of hypotheses {H02,H2} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We again provide data only considering graphs with no fully connected nodes in Figure (5.7)

and Table 5.4.

Figure 5.7: Comparison of hypotheses {H02,H2} across Barabasi‐Albert graphs. The statistics are generated only
using graphs with no fully connected nodes.
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Table 5.4: Comparison of hypotheses {H02,H2} across Barabasi‐Albert graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

There is statistical evidence that for Barabasi-Albert graphs with N = 10 nodes and n =

2, 3 that weighting actuators as a function of betweenness centrality provides a benefit over

weighting as a function of degree centrality. When only considering graphs that have no fully

connected nodes, the statistically significant case is only for N = 10 nodes and n = 3. We

see that betweenness centrality is not as clear-cut an improvement over degree centrality for

certain Barabasi-Albert graphs, but as n increases for the cases considered here there is more

andmore evidence toward rejecting the null hypothesisH02 in favor of betweenness centrality

providing an edge over degree centrality for actuator weighting. Note that for a given n, as

we increaseN the overall density of the graph will decrease. Thus, we expect for each n that

the statistical evidence favoring betweenness centrality will decrease asN increases, and this

trend is generally observed. Likewise, for a givenN as we increase n the overall density of the

graphwill increase. As expected, we observe that the statistical evidence favoring betweenness

centrality increases for a givenN as n increases.

5.1.1.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators as

a function of betweenness centrality is an improvement over weighting actuators as a func-
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tion of eigenvector centrality. A plot of p-values vs. n is shown in Figure (5.8) and a table

highlighting statistically significant cases is shown in Table 5.5.

Figure 5.8: Comparison of hypotheses {H03,H3} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs.

Table 5.5: Comparison of hypotheses {H03,H3} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We again provide data only considering graphs with no fully connected nodes in Figure (5.9)

and Table 5.6.
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Figure 5.9: Comparison of hypotheses {H03,H3} across Barabasi‐Albert graphs. The statistics are generated only
using graphs with no fully connected nodes.

Table 5.6: Comparison of hypotheses {H03,H3} across Barabasi‐Albert graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

We again see strong statistical evidence for scenarios where weighting actuators as a func-

tion of betweenness centrality would provide improvements over weighting as a function

of eigenvector centrality. Note the qualitatively different result here compared to previous

cases, however. Now we observe that even for tree graph structures with n = 1 that there is

strong statistical evidence for cases withN = 20 andN = 30 favoring betweenness central-

ity. We conjecture that this is evidence that for our framework eigenvector centrality is not
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an appropriate centrality measure in acyclic graphs.

5.1.1.5 Comparing Betweenness Centrality with Information Centrality

Comparing the pair of hypotheses {H04,H4} allows us to investigate if weighting actuators

as a function of betweenness centrality is an improvement over weighting actuators as a func-

tion of information centrality. A plot of p-values vs. n is shown in Figure (5.10) and a table

highlighting statistically significant cases is shown in Table 5.7.

Figure 5.10: Comparison of hypotheses {H04,H4} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs.
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Table 5.7: Comparison of hypotheses {H04,H4} across Barabasi‐Albert graphs. Each data point is calculated using
1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.11)

and Table 5.8.

Figure 5.11: Comparison of hypotheses {H04,H4} across Barabasi‐Albert graphs. The statistics are generated only
using graphs with no fully connected nodes.
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Table 5.8: Comparison of hypotheses {H04,H4} across Barabasi‐Albert graphs. The statistics are generated only using
graphs with no fully connected nodes and statistically significant cases (p < 0.05) are highlighted in green.

For theBarabasi-Albert graphs studiedwe see for thosewithn = 2, 3 there is strong statistical

evidence that betweenness centralitywould provide benefit over information centralitywhen

weighting actuators. We again see that there is not strong statistical evidence for betweenness

centrality in the cases with n = 1 and tree graph structure. Note that these results trend with

those seen when comparing to closeness centrality. In fact, information centrality reduces to

closeness centrality for tree graphs with n = 1, so the similarities in statistics compared to our

comparisons with closeness centrality is to be expected here.

5.1.1.6 Summary of Results

Our statistical analysis over select Barabasi-Albert graphs reveals that there is strong statistical

evidence in favor of betweenness centrality being an appropriate heuristic for actuator selec-

tion, especially as the overall density of the graph increases. Wenote that for tree graphs struc-

tures with n = 1 that betweenness centrality does not perform well except when compared

to eigenvector centrality; however, this could very well be due to the fact that eigenvector

centrality is not a useful measure for our framework when the graphs are acyclic.
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5.1.2 Watts-StrogatzModel

Besides not accounting for the formation of hubs, another shortcoming of the Erdos-Renyi

model is it produces graphswith low clustering. Since the Erdos-Renyimodel employs a con-

stant probability to connect nodes, we can intuitively see that local clustering or cliques of

nodes will not arise. The Watts-Strogatz model was developed as a simple way to randomly

generate graphs which naturally have high clustering, an attractive property since social net-

works as well as power grid networks have been shown to have clustering properties47. An-

other property ofWatts-Strogatz graphs is that they have short average path lengths similar to

Erdos-Renyi graphs, where the average path length is just the average number of hops along

the shortest paths between each pair of nodes in a graph. These two properties, a high degree

of clustering alongwith short average path lengths, give rise towhat are known as small-world

networks.

Small-worldnetworks logically have certain advantages for thedesignof largemobile robotic

teams where both local and global collaboration are required48. Specifically, the clustering

inherent to small-world networks is beneficial for local interactions, whereas the short aver-

age path lengths are conducive to global interactions.

TheWatts-Strogatz model generates undirected graphs withN nodes and NK
2 edges where

K is themean degree (assumed to be an even integer). First a regular ring lattice is constructed

havingNnodes each connected toK total neighborswith K
2 neighbors on each side. For every

node i, each edge connecting node i to its K
2 rightmost neighbors is rewired with probability

0 ≤ β ≤ 1. Rewiring is done by replacing an edge with another edge selected uniformly

at random from the remaining possible edges after excluding self-loops and edge duplica-

tion. Figures (5.12) - (5.14) showWatts-Strogatz networks withN = 10 nodes, mean degree
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K = 4, and β = 0, β = 0.2, and β = 1, respectively.

Figure 5.12: Watts‐Strogatz graph withN = 10 nodes, mean degreeK = 4, and rewiring probability β = 0.

Figure 5.13: Watts‐Strogatz graph withN = 10 nodes, mean degreeK = 4, and rewiring probability β = 0.2.
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Figure 5.14: Watts‐Strogatz graph withN = 10 nodes, mean degreeK = 4, and rewiring probability β = 1.

5.1.2.1 Test Cases

As inChapter 3,weperformhypothesis testing to compare eachpair of hypotheses{H01,H1},

{H02,H2}, {H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20).

Our test suite consists of Watts-Strogatz graphs with N ∈ [10, 20, 30] and K ∈ [4, 6] for

β = 0.2, as well asN ∈ [10, 20, 30] and β ∈ [0.1, 0.3, 0.5] forK = 4.

5.1.2.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate whether weighting ac-

tuators as a function of betweenness centrality provides an improvement over weighting ac-

tuators as a function of closeness centrality. A plot of p-values vs. K for β = 0.2 is shown in

Figure (5.15) and a table highlighting statistically significant cases is shown in Table 5.9.
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Figure 5.15: Comparison of hypotheses {H01,H1} across Watts‐Strogatz graphs. Each data point is calculated using
500 Monte Carlo runs.

Table 5.9: Comparison of hypotheses {H01,H1} across Watts‐Strogatz graphs with β = 0.2. Each data point is
calculated using 500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that there is strong statistical evidence that weighting actuators as a function of be-

tweenness centrality improves overweighting as a functionof closeness centrality for the cases

with N = 10 nodes and mean degree K = 6. This corresponds to the densest selection of

graphs in the test suite. We will now compare the hypotheses as β varies. A plot of p-values

vs. β forK = 4 is shown in Figure (5.16) and a table highlighting statistically significant cases

is shown in Table 5.10.
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Figure 5.16: Comparison of hypotheses {H01,H1} across Watts‐Strogatz graphs. Each data point is calculated using
1000 Monte Carlo runs.

Table 5.10: Comparison of hypotheses {H01,H1} across Watts‐Strogatz graphs withK = 4. Each data point is
calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see in Figure (5.16) that the p-values do not appreciably change as β is varied. Intuitively

this makes sense since the overall density of the graph will not be altered by changing β. We

have seen that graph density is tied to the performance of betweenness centrality as a heuristic

to weight actuators, so this falls in line with our observations here.
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5.1.2.3 Comparing Betweenness Centrality with Degree Centrality

Comparing the pair of hypotheses {H02,H2} allows us to investigate whether weighting ac-

tuators as a function of betweenness centrality provides an improvement over weighting ac-

tuators as a function of degree centrality. A plot of p-values vs. K for β = 0.2 is shown in

Figure (5.17) and a table highlighting statistically significant cases is shown in Table 5.11.

Figure 5.17: Comparison of hypotheses {H02,H2} across Watts‐Strogatz graphs. Each data point is calculated using
500 Monte Carlo runs.

Table 5.11: Comparison of hypotheses {H02,H2} across Watts‐Strogatz graphs with β = 0.2. Each data point is
calculated using 500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.
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We again see that there is strong statistical evidence that weighting actuators as a function

of betweenness centrality improves over weighting as a function of degree centrality for the

cases withN = 10 nodes and mean degreeK = 6. This corresponds to the densest selection

of graphs in the test suite. Wewill now compare the hypotheses as β varies. A plot of p-values

vs. β forK = 4 is shown in Figure (5.18) and a table highlighting statistically significant cases

is shown in Table 5.12.

Figure 5.18: Comparison of hypotheses {H02,H2} across Watts‐Strogatz graphs. Each data point is calculated using
1000 Monte Carlo runs.

Table 5.12: Comparison of hypotheses {H02,H2} across Watts‐Strogatz graphs withK = 4. Each data point is
calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.
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We again see in Figure (5.18) that the p-values do not appreciably change as β is varied.

5.1.2.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate whether weighting ac-

tuators as a function of betweenness centrality provides an improvement over weighting ac-

tuators as a function of eigenvector centrality. A plot of p-values vs. K for β = 0.2 is shown

in Figure (5.19) and a table highlighting statistically significant cases is shown in Table 5.13.

Figure 5.19: Comparison of hypotheses {H03,H3} across Watts‐Strogatz graphs. Each data point is calculated using
500 Monte Carlo runs.
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Table 5.13: Comparison of hypotheses {H03,H3} across Watts‐Strogatz graphs with β = 0.2. Each data point is
calculated using 500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

There is strong statistical evidence that weighting actuators as a function of betweenness

centrality improves over weighting as a function of eigenvector centrality for the cases with

N = 10 nodes andmean degreeK = 6. We do observe that the observed p-values are lower in

magnitude than comparable cases seen in previous hypotheses tests involvingWatts-Strogatz

graphs. We will now compare the hypotheses as β varies. A plot of p-values vs. β forK = 4 is

shown in Figure (5.20) and a table highlighting statistically significant cases is shown inTable

5.14.
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Figure 5.20: Comparison of hypotheses {H03,H3} across Watts‐Strogatz graphs. Each data point is calculated using
1000 Monte Carlo runs.

Table 5.14: Comparison of hypotheses {H03,H3} across Watts‐Strogatz graphs withK = 4. Each data point is
calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

There is evidence to reject thenull hypothesisH03 in favor of thehypothesisH3 thatweighting

actuators as a function of betweenness centrality is beneficial toweighting them as a function

of eigenvector centrality for some of the tested cases as seen in Table 5.14.
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5.1.2.5 Comparing Betweenness Centrality with Information Centrality

Comparing the pair of hypotheses {H04,H4} allows us to investigate whether weighting ac-

tuators as a function of betweenness centrality provides an improvement over weighting ac-

tuators as a function of information centrality. A plot of p-values vs. K for β = 0.2 is shown

in Figure (5.21) and a table highlighting statistically significant cases is shown in Table 5.15.

Figure 5.21: Comparison of hypotheses {H04,H4} across Watts‐Strogatz graphs. Each data point is calculated using
500 Monte Carlo runs.

Table 5.15: Comparison of hypotheses {H04,H4} across Watts‐Strogatz graphs with β = 0.2. Each data point is
calculated using 500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.
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As in all the other tested cases for Watts-Strogatz graphs there is strong statistical evidence

that weighting actuators as a function of betweenness centrality improves over weighting as

a function of information centrality for graphs withN = 10 nodes and mean degreeK = 6.

We will now compare the hypotheses as β varies. A plot of p-values vs. β forK = 4 is shown

in Figure (5.22) and a table highlighting statistically significant cases is shown in Table 5.16.

Figure 5.22: Comparison of hypotheses {H04,H4} across Watts‐Strogatz graphs. Each data point is calculated using
1000 Monte Carlo runs.

Table 5.16: Comparison of hypotheses {H04,H4} across Watts‐Strogatz graphs withK = 4. Each data point is
calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

There are no strong statistical conclusions that can me made from these test cases. We again

144



see that the statistics do not dramatically change for a given (N,K) as β varies.

5.1.2.6 Summary of Results

Our statistical analysis over selectWatts-Strogatz graphs shows the importance of graph den-

sity on the performance of betweenness centrality as a heuristic. As we vary β for a select

value of K we see that the statistics do no appreciably change, which is expected as varying

β will not change the overall graph density for a given N. Likewise, for a given value of β

as we increase K the overall density of the graph will increase for a given N. Indeed, we see

that in general the p-values decrease for a givenN asK increases, implying that there is more

and more statistical evidence favoring betweenness centrality. The only scenarios in which

we do not observe this trend are when comparing betweenness centrality with eigenvector

centrality forN = 20 and N = 30 nodes. The observed increases in p-values are relatively

small in magnitude, however. We also note that for the comparisons between betweenness

and eigenvector centralities that a relatively modest 500 Monte Carlo runs were performed.

It is possible that a larger data set would provide more converged statistics.

5.2 Robustness to Actuator Failure

Wenow investigate how the conclusions of our hypothesis testingmay changeunder actuator

failure. We implement failure in a very simple way. If an actuator i fails we set αi = 0,

otherwise we weight the actuator i as a function of a specific centrality measure as before

by selecting αi = CM(i)∑
j∈V CM(j) where CM(·) is the centrality measure of interest. Note that

if an actuator fails it is unable to provide actuation effort for the entirety of the simulation

and has no hope of being recovered. A failed actuator is however still able to communicate
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information to its neighbors. It is important to note that in the case of actuator failure we no

longer satisfy the condition
∑N

i=1 αi = 1. We will have 0.9 < A +
∑N

i=1 BiKi < 1, which is

still Schur stable.

5.2.1 One Actuator Fails

We first consider the case where one actuator fails. Within each simulation only a single actu-

ator loses its actuation capability, where the failed actuator is chosen at random within each

network.

5.2.1.1 Test Cases

Weagainperformhypothesis testing to compare eachpair of hypotheses{H01,H1},{H02,H2},

{H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20). Our test suite

consists ofErdos-Renyi graphswithN ∈ [6, 7, 8, 9, 10, 11, 12, 13] and ρ ∈ [0.3, 0.4, 0.5, 0.6, 0.7].

5.2.1.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.23) and a table highlighting statistically significant cases is shown in Table 5.17.
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Figure 5.23: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with one actuator failing. Each data point
is calculated using 1500 Monte Carlo runs.

Table 5.17: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with one actuator failing. Each data point
is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that forN ∈ [6, . . . , 13] and ρ ∈ [0.6, 0.7] there is strong statistical evidence to accept

the hypothesisH1 that weighting actuators as a function of betweenness centrality provides
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a marked benefit over weighting as a function of closeness centrality. If we compare this to

Figure (4.9) and Table 4.1 we see that there is indeed degraded performance compared to

when there were no node failures; however, these results suggest that if we are in the regime

0.6 ≤ ρ ≤ 0.7 that our statistical conclusions do not change even with a single node failure.

We again provide data only considering graphswith no fully connectednodes in Figure (5.24)

and Table 5.18.

Figure 5.24: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes.
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Table 5.18: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

Even when only considering networks with no fully connected nodes we still see cases in

which there is statistical evidence that weighting actuators as a function of betweenness cen-

trality provides benefits overweighting as a function of closeness centrality, particularlywhen

10 ≤ N ≤ 13 and 0.6 ≤ ρ ≤ 0.7. In other words, there is evidence that betweenness cen-

trality remains a good heuristic for denser graphs and, likewise, for graphs with more overall

nodes. If we contrast this with the analogous results with no actuation failures and networks

with no fully connected nodes in Figure (4.16) and Table 4.2 we see that indeed when there

is a single actuation failure there are fewer tested cases with strong evidence to reject H01 in

favor ofH1. However, it must be noted that statistically significant cases still remain.

5.2.1.3 Comparing Betweenness Centrality with Degree Centrality

We can similarly perform hypothesis testing for the other pertinent pairs of hypotheses we

laid out previously. Comparing the pair of hypotheses {H02,H2} allows us to investigate
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if weighting actuators as a function of betweenness centrality provides any tangible benefits

over weighting actuators as a function of degree centrality. A plot of appropriate p-values vs.

ρ is shown in Figure (5.25) and a table highlighting statistically significant cases is shown in

Table 5.19.

Figure 5.25: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with one actuator failing. Each data
point is calculated using 1500 Monte Carlo runs.
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Table 5.19: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with one actuator failing. Each data point
is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We once more see that for simulated cases with 0.6 ≤ ρ ≤ 0.7 there is strong statistical

evidence to accept the hypothesisH2 that weighting actuators as a function of betweenness

centrality is beneficial compared to weighting them as a function of degree centrality even

with a single actuator failure. We again provide data only considering graphs with no fully

connected nodes in Figure (5.26) and Table 5.20.
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Figure 5.26: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes.

Table 5.20: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

We observe that while certain simulated cases, particularly those with 6 ≤ N ≤ 8, no

longer yield statistically significant conclusions when compared with the simulations includ-
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ing networks with fully connected nodes, we still see that in general for 9 ≤ N ≤ 13 and

0.6 ≤ ρ ≤ 0.7 that we still see strong statistical evidence that weighting actuators as a

function of betweenness centrality provides benefit over weighting as a function of degree

centrality. Again, betweenness centrality shows itself to be a good heuristic for denser graphs

and for graphs with more overall nodes.

5.2.1.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.27) and a table highlighting statistically significant cases is shown in Table 5.21.

Figure 5.27: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with one actuator failing. Each data
point is calculated using 1500 Monte Carlo runs.
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Table 5.21: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with one actuator failing. Each data point
is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that once again for 0.6 ≤ ρ ≤ 0.7 there is strong statistical evidence in favor of

accepting the hypothesis H3 that actuation weighting by betweenness centrality is benefi-

cial to actuation weighting by eigenvector centrality. We also note that there are also cases

with ρ = 0.5, particularly withN = 6, 11, 12, 13, which provide strong statistical evidence

to acceptH3. This suggests that there is evidence for betweenness centrality outperforming

eigenvector centrality over a larger range of graph densities than in the cases when compar-

ing with other centrality measures. This aligns with our previous results over Erdos-Renyi

graphs suggesting that eigenvector centrality is outperformed by betweenness centrality over

a larger range of simulated cases. We again provide data only considering graphswith no fully

connected nodes in Figure (5.28) and Table 5.22.
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Figure 5.28: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes.

Table 5.22: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

Again, even when considering graphs with no fully connected nodes we see cases with strong

statistical evidence to acceptH3, particularly for 8 ≤ N ≤ 13 and 0.5 ≤ ρ ≤ 0.7.
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5.2.1.5 Comparing Betweenness Centrality with Information Centrality

Finally we compare the pair of hypotheses {H04,H4}, allowing us to investigate whether

weighting actuators as a function of betweenness centrality provides any benefit over weight-

ing actuators as a function of information centrality. A plot of appropriate p-values vs. ρ is

shown in Figure (5.29) and a table highlighting statistically significant cases is shown inTable

5.23.

Figure 5.29: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with one actuator failing. Each data
point is calculated using 1500 Monte Carlo runs.
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Table 5.23: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with one actuator failing. Each data point
is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.30)

and Table 5.24.

Figure 5.30: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes.
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Table 5.24: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with one actuator failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

For simulated cases with 0.6 ≤ ρ ≤ 0.7 we see strong statistical evidence to accept the

hypothesisH4 that weighting actuators as a function of betweenness centrality provides ben-

efit to weighting actuators as a function of information centrality. This is true both when

considering the full set of Erdos-Renyi graphs as well as the subset with no fully connected

nodes. We do note that for graphs with no fully connected nodes only for 8 ≤ N ≤ 13 do

we see strong statistical evidence to acceptH4. This again suggest that betweenness centrality

performs well for denser graphs as well as for graphs with more overall nodes.

5.2.1.6 Summary of Results

For all simulated cases we again see strong statistical evidence favoring betweenness centrality

over the other centrality measures as the overall density of the graphs increase as well as for

graphswithmore overall nodes. The results trendwith our previous results over Erdos-Renyi

graphs with no actuator failures. We note that when one actuator fails, the overall graph den-
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sity required for statistical significance in support of betweenness centrality increases. Intu-

itively, this suggests that the degradation in performance due to the actuator failure must be

offset by more density in the network.

5.2.2 Two Actuators Fail

We now consider the case where two actuators fail. Within each simulation the two failed

actuators are chosen at random within each network.

5.2.2.1 Test Cases

Weagainperformhypothesis testing to compare eachpair of hypotheses{H01,H1},{H02,H2},

{H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20). Our test suite

consists ofErdos-Renyi graphswithN ∈ [6, 7, 8, 9, 10, 11, 12, 13] and ρ ∈ [0.3, 0.4, 0.5, 0.6, 0.7].

Combined conclusions can be found after the presentation of the data.

5.2.2.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.31) and a table highlighting statistically significant cases is shown in Table 5.25.
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Figure 5.31: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs.

Table 5.25: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with two actuators failing. Each data point
is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.32)

and Table 5.26.
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Figure 5.32: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes.

Table 5.26: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.
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5.2.2.3 Comparing Betweenness Centrality with Degree Centrality

Comparing the pair of hypotheses{H02,H2} allows us to investigate ifweighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of degree centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.33) and a table highlighting statistically significant cases is shown in Table 5.27.

Figure 5.33: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs.
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Table 5.27: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.34)

and Table 5.28.

Figure 5.34: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes.
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Table 5.28: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

5.2.2.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.35) and a table highlighting statistically significant cases is shown in Table 5.29.
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Figure 5.35: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs.

Table 5.29: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.36)

and Table 5.30.

165



Figure 5.36: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes.

Table 5.30: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.
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5.2.2.5 Comparing Betweenness Centrality with Information Centrality

Finally we compare the pair of hypotheses {H04,H4}, allowing us to investigate whether

weighting actuators as a function of betweenness centrality provides any benefit over weight-

ing actuators as a function of information centrality. A plot of appropriate p-values vs. ρ is

shown in Figure (5.37) and a table highlighting statistically significant cases is shown inTable

5.31.

Figure 5.37: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs.
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Table 5.31: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with two actuators failing. Each data
point is calculated using 1500 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Weagain provide data only considering graphswith no fully connectednodes in Figure (5.38)

and Table 5.32.

Figure 5.38: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes.
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Table 5.32: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs with two actuators failing. The statistics
are generated only using graphs with no fully connected nodes and statistically significant cases (p < 0.05) are high‐
lighted in green.

5.2.2.6 Combined Conclusions

We see that in comparing the sets of hypotheses{H01,H1},{H02,H2},{H03,H3}, and{H04,H4}

that in all cases there is strong statistical evidence to reject the null hypotheses for 0.6 ≤

ρ ≤ 0.7. This means that even with two actuators failing for Erdos-Renyi graphs with

6 ≤ N ≤ 13 and 0.6 ≤ ρ ≤ 0.7 there is evidence that weighting actuators as a function

of betweenness centrality is beneficial to weighting actuators as functions of either closeness

centrality, degree centrality, eigenvector centrality, or information centrality. When consid-

ering only graphs with no fully connected nodes the statistically significant cases suggesting

to reject the null hypotheses remain in the regime 0.6 ≤ ρ ≤ 0.7; however, in these cases we

only have statistical significance if 8 ≤ N ≤ 13. This again suggests that the degradation in

performance due to actuator failure must be offset by increased density within the network

or by having more overall nodes present to aid in robustness.
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5.3 Robustness to Sparsely Available Control Authority

One important property of all the cases studied up until this point is that every node has

full controllability of the system. This is trivially obvious since we have considered a one-

dimensional process x with state transition matrix A = 1 and matrices Bi = 1 for each

i ∈ [1, . . . ,N]. However, we now consider the case where each node doesn’t individually

have full control of the system and it is only at the level of the entire network that we have

joint controllability.

5.3.1 Multi-dimensional Process with Joint Controllability

Consider a process x ∈ R3 with state transition matrix A = I3. For ease of exposition con-

sider a network with N = 3 nodes. Each node has three actuation channels, i.e. ui ∈ R3

for i ∈ [1, 2, 3], and we let B1 =


1 0 0

0 0 0

0 0 0

, B2 =


0 0 0

0 1 0

0 0 0

, and B3 =


0 0 0

0 0 0

0 0 1

. Note that each node individually is unable to control the process. This is

readily seen by constructing the controllability matrices for eachmatrix pair (A,B1), (A,B2),

and (A,B3) and checking their row ranks. Let the controllability matrices for each matrix

pair (A,Bi) be denoted Ci =
[
Bi ABi A2Bi

]
for i ∈ [1, 2, 3]. It is well-known that

the system is controllable by an individual node i if the row rank of Ci is equal to the dimen-

sion of the process x49, or 3 in this case. It is trivial to see that rank(Ci) = 1 < 3 for each

i ∈ [1, 2, 3], showing the result that each node does not individually have full control of the
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process. Intuitively this is obvious from the structure of theBimatrices since we see that each

node i is only able to control a single dimension of the three-dimensional process x. How-

ever, from the standpoint of the network of nodes as a whole we can intuit that the process

is controllable at the network level. We can show this by constructing the joint controllabil-

ity matrix Cjoint for the matrix pair
(
A,
[
B1 B2 B3

])
. We see that rank(Cjoint) = 3,

which shows that the process is indeed jointly controllable at the network level.

5.3.2 Methodology to Investigate Joint Controllability

We can expand on these ideas to easily investigate how our previous findings on the efficacy

of certain centrality measures for actuator selection extend to scenarios in which individual

nodes do not have full controllability of the process of interest but, rather, there is joint con-

trollability at the level of the network. Consider a network withN nodes actuating a process

x ∈ Rnwith state transitionmatrixA = In. We restrictn ≥ 2 so thatwe are in a realmwhere

joint controllability without individual node controllability is possible. Let ei ∈ Rn be the

standard unit vector with a 1 as the i-th element and zeros elsewhere. We assign Bi ∈ Rn×n

columnwise as

Bi(:, j) =

 ei for j = i

0n×1 for j ∈ [1, . . . , n]\{i}
(5.3)

for i ∈ [1, . . . , n]where 0n×1 is the n-dimensional column vector of zeros. We further assign

Bi+(k)(n) ∈ Rn×n as

Bi+(k)(n) = Bi (5.4)

∀k ∈ Z>0 such that i + (k)(n) ≤ N. This ensures that every node i is only actuating in

one dimension. To ensure that joint controllability is possible we further require N ≥ n,
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which plainly means that there are at least as many nodes as dimensions of the process x. We

can see that there will be n subsets of nodes where nodes within a subset all actuate the same

singular dimension of the process x. Given a node set V, we define these subsets Si ⊂ V for

i ∈ [1, . . . , n] to contain all nodes which actuate the i-th dimension of the process x.

5.3.2.1 ActuatorWeights forMulti-dimensional Process

Previously we have only considered actuator weights αi for each node i since each node was

only actuating a scalar process x. However, we now have actuation in n dimensions, necessi-

tating the use of n actuationweights so that we can tune the actuation in each dimension sep-

arately. Let’s immediately specialize to a process x ∈ R3 with state transition matrix A = I3

for ease of exposition. Since n = 3 we will have 3 subsets of nodes: S1 which contains all

nodes that actuate the first dimension of process x; S2 which contains all nodes that actuate

the second dimension of process x; and S3 which contains all nodes that actuate the third di-

mension of process x. From our previous definition (5.3) we see that B1 =


1 0 0

0 0 0

0 0 0

,

B2 =


0 0 0

0 1 0

0 0 0

, and B3 =


0 0 0

0 0 0

0 0 1

. For nodes i with i ∈ [4, . . . ,N] we

appropriately assign Bi matrices according to (5.4). We consider actuator gain matrices of

the form Ki =


−0.1αi 0 0

0 −0.1βi 0

0 0 −0.1γi

 for i ∈ [1, . . . ,N]. This form for the gain

matrices is general in that it allows for each node to actuate all three dimensions of the pro-
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cess x, but it is important to note that because of the specialized assignment of Bi matrices in

(5.3) and (5.4) any individual node only ends up actuating a single dimension of the process.

Thus, we can think of the α parameters as actuation weights along the first dimension, the β

parameters as actuation weights along the second dimension, and the γ parameters as actua-

tionweights along the third dimension. Recall that a requirement of our algorithm is that we

designKi such that the quantity A+
∑N

i=1 BiKi is Schur stable. We impose the constraints

∑
i∈S1

αi =
∑
i∈S2

βi =
∑
i∈S3

γi = 1 (5.5)
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This restricts all α, β, and γweights to be convexwithin the subsets S1, S2, and S3, respectively.

We can easily see that the matrix sum becomes

A+
N∑
i=1

BiKi = A+
∑
i∈S1

BiKi +
∑
i∈S2

BiKi +
∑
i∈S3

BiKi

= I3 +
∑
i∈S1


1 0 0

0 0 0

0 0 0



−0.1αi 0 0

0 −0.1βi 0

0 0 −0.1γi



+
∑
i∈S2


0 0 0

0 1 0

0 0 0



−0.1αi 0 0

0 −0.1βi 0

0 0 −0.1γi



+
∑
i∈S3


0 0 0

0 0 0

0 0 1



−0.1αi 0 0

0 −0.1βi 0

0 0 −0.1γi



= I3 +
∑
i∈S1


−0.1αi 0 0

0 0 0

0 0 0

+
∑
i∈S2


0 0 0

0 −0.1βi 0

0 0 0



+
∑
i∈S3


0 0 0

0 0 0

0 0 −0.1γi



=


0.9 0 0

0 0.9 0

0 0 0.9



(5.6)
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which is Schur stable. Weighting an actuator i as a function of a specific centrality measure

is accomplished by selecting

αi =


CM(i)∑
j∈S1

CM(j) for i ∈ S1

0 otherwise
(5.7)

βi =


CM(i)∑
j∈S2

CM(j) for i ∈ S2

0 otherwise
(5.8)

γi =


CM(i)∑
j∈S3

CM(j) for i ∈ S3

0 otherwise
(5.9)

where CM(·) is the centrality measure of interest. It is important to highlight here that in

general there could be cases in which
∑

j∈Si BC(j) = 0 for some i ∈ [1, . . . , n]where n is the

dimension of the process x and BC(j) is the betweenness centrality of node j. In these cases

we set the actuator weights for nodes within the subset Si of interest to be equal to 1
|Si| where

|Si| is the cardinality of the subset Si. As in the one-dimensional cases analyzed previously,

given a predefined set of BiKi and with actuator weights α, β, and γ as defined in (5.7)-(5.9)

we can use a semidefinite program to find feasibleWC
ij for i, j ∈ [1, . . . ,N]which satisfy the

LMI given in (4.5) while minimizing Σ.

5.3.3 Test Cases

We perform hypothesis testing to compare each pair of hypotheses {H01,H1}, {H02,H2},

{H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20). Our test suite

consists ofErdos-Renyi graphsG(N, ρ)withN ∈ [6, 7, 8, 9, 10, 11, 12, 13] and ρ ∈ [0.3, 0.4, 0.5, 0.6, 0.7].
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We note that here when we refer to centralities we are computing an individual node’s cen-

trality over the whole network, not within its given subset Si. We do this in an effort to keep

our procedure more systematic and robust to changes in node assignment between subsets.

5.3.4 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.39) and a table highlighting statistically significant cases is shown in Table 5.33.

Figure 5.39: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.
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Table 5.33: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

Wesee that there is extremely strong evidence to accept the null hypothesisH01 thatweighting

actuators as a function of betweenness centrality provides no benefit over weighting them as

a function of closeness centrality. This is a marked change from our previous results when

all nodes individually had full control of the process. One reason for such a change in perfor-

mance could be that we are still considering a node’s centrality over the whole network when

weighting actuation. However, in our formulation each subset of nodes is independently

actuating a single dimension of the process. Thus, the betweenness centrality of a node in

relation to the network as a whole seems to no longer provide asmuch useful information on

its performance due to the partitioning of actuation arising from the problem setup.

5.3.5 Comparing Betweenness Centrality with Degree Centrality

We can similarly perform hypothesis testing for the other pertinent pairs of hypotheses we

laid out previously. Comparing the pair of hypotheses {H02,H2} allows us to investigate
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if weighting actuators as a function of betweenness centrality provides any tangible benefits

over weighting actuators as a function of degree centrality. A plot of appropriate p-values vs.

ρ is shown in Figure (5.40) and a table highlighting statistically significant cases is shown in

Table 5.34.

Figure 5.40: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.
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Table 5.34: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

Again, we see strong evidence to accept the null hypothesisH02 that weighting actuators as a

function of betweenness centrality provides no benefit over weighting them as a function of

degree centrality.

5.3.6 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.41) and a table highlighting statistically significant cases is shown in Table 5.35.
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Figure 5.41: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.

Table 5.35: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

We see strong evidence to accept the null hypothesisH03 that weighting actuators as a func-

tion of betweenness centrality provides nobenefit overweighting themas a function of eigen-
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vector centrality.

5.3.7 Comparing Betweenness Centrality with Information Centrality

Finally we compare the pair of hypotheses {H04,H4}, allowing us to investigate whether

weighting actuators as a function of betweenness centrality provides any benefit over weight-

ing actuators as a function of information centrality. A plot of appropriate p-values vs. ρ is

shown in Figure (5.42) and a table highlighting statistically significant cases is shown inTable

5.36.

Figure 5.42: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.
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Table 5.36: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

Finally, we see strong evidence to accept the null hypothesisH04 that weighting actuators as

a function of betweenness centrality provides no benefit over weighting them as a function

of information centrality. These results prompt us to consider additional hypothesis tests to

help identify which centrality measure, if any, provides a marked benefit over the others as a

weighting heuristic for actuation.

5.3.8 Additional Test Cases

Since there is extremely strong evidence that betweenness centrality is no longer the right cen-

trality measure to leverage for cases in which no node individually has full control over the

process, we will shift our attention to degree centrality and compare it against closeness cen-

trality, eigenvector centrality, and information centrality. We formalize this as the following

additional hypotheses:
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H05: Selecting actuators by weighting as a function of degree centrality provides no bene-

fit over selecting actuators by weighting as a function of closeness centrality.

H5: Selecting actuators by weighting as a function of degree centrality is better than selecting

actuators by weighting as a function of closeness centrality.

H06: Selecting actuators by weighting as a function of degree centrality provides no bene-

fit over selecting actuators by weighting as a function of eigenvector centrality.

H6: Selecting actuators by weighting as a function of degree centrality is better than selecting

actuators by weighting as a function of eigenvector centrality.

H07: Selecting actuators by weighting as a function of degree centrality provides no bene-

fit over selecting actuators by weighting as a function of information centrality.

H7: Selecting actuators by weighting as a function of degree centrality is better than selecting

actuators by weighting as a function of information centrality.

We perform hypothesis testing to compare each pair of hypotheses {H05,H5}, {H06,H6},

and {H07,H7} and generate appropriate p-values given by (4.20). Our test suite will again

consist ofErdos-Renyi graphsG(N, ρ)withN ∈ [6, 7, 8, 9, 10, 11, 12, 13] and ρ ∈ [0.3, 0.4, 0.5, 0.6, 0.7].
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5.3.9 Comparing Degree Centrality with Closeness Centrality

Comparing the pair of hypotheses {H05,H5} allows us to investigate if weighting actuators

as a function of degree centrality provides any tangible benefits over weighting actuators as a

function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure (5.43)

and a table highlighting statistically significant cases is shown in Table 5.37.

Figure 5.43: Comparison of hypotheses {H05,H5} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.
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Table 5.37: Comparison of hypotheses {H05,H5} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

We see strong evidence to reject the null hypothesisH05 and accept the alternative hypothesis

H5 that weighting actuators as a function of degree centrality provides a benefit over weight-

ing actuators as a function of closeness centrality. The statistically significant cases are in the

regime 0.4 ≤ ρ ≤ 0.7 and 6 ≤ N ≤ 13, and we also see statistical significance if ρ = 0.3

andN = 13.

5.3.10 Comparing Degree Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H06,H6} allows us to investigate if weighting actuators

as a function of degree centrality provides any tangible benefits over weighting actuators as

a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.44) and a table highlighting statistically significant cases is shown in Table 5.38.
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Figure 5.44: Comparison of hypotheses {H06,H6} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.

Table 5.38: Comparison of hypotheses {H06,H6} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

We see that none of the simulated cases yield strong statistical significance to reject H06 in

favor ofH6. This implies that there is not strong evidence that weighting actuators as a func-
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tion of degree centrality provides benefits over weighting actuators as a function of eigenvec-

tor centrality. We do, however, see that asN and ρ increase respectively that themagnitude of

the calculated p-values decrease toward the threshold of statistical significance. This suggests

that if we were to simulate cases withN ≥ 13 and/or ρ ≥ 0.7 it is likely that we would begin

to see cases emerge with statistical significance in favor of rejecting the null hypothesisH06.

5.3.11 Comparing Degree Centrality with Information Centrality

Comparing the pair of hypotheses {H07,H7} allows us to investigate if weighting actuators

as a function of degree centrality provides any tangible benefits over weighting actuators as

a function of information centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.45) and a table highlighting statistically significant cases is shown in Table 5.39.

Figure 5.45: Comparison of hypotheses {H07,H7} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs.
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Table 5.39: Comparison of hypotheses {H07,H7} across Erdos‐Renyi graphs where no individual node has full control
of the process. Each data point is calculated using 1000 Monte Carlo runs and statistically significant cases (p < 0.05)
are highlighted in green.

We see that for 0.6 ≤ ρ ≤ 0.7 the simulated cases show strong statistical evidence that

weighting actuators as a function of degree centrality is beneficial to weighting actuators as

a function of information centrality. In addition, we also see statistically significant evidence

for accepting the hypothesisH7 for ρ = 0.5 and 11 ≤ N ≤ 13.

5.3.12 Summary of Results

In cases in which no individual node has full control of the process, we find that betweenness

centrality over the whole network is no longer a useful heuristic for actuator selection. In

situations in which subsets of nodes actuate given dimensions of a process, there is statistical

evidence that degree centrality is the most appropriate heuristic out of the centrality mea-

sures considered. This implies that the number of connections a node has to other nodes is

an important metric in this case. Intuitively, if nodes within a certain actuation subset Si are

separated within the network, havingmore connections provides a node withmore informa-
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tion pathways throughwhich to get its information out to other nodes within its subset. It is

akin to sending out an email with many people carbon copied and hoping that one of those

people has a clear line of communication with the desired recipients in your given subset.

We conjecture that this is why eigenvector centrality performs well in this case, as we see that

there is the least amount of statistical evidence in favor of degree centrality when comparing

with eigenvector centrality. This makes sense according to the previous line of reasoning as

eigenevctor centrality givesmore weight to a node if it is in turn connectedwith high ranking

nodes. However, we must note that for the cases considered, while no statistical conclusion

can be drawn when comparing degree and eigenvector centrality, we do see the p-values de-

creasingwith increasing ρ, implying that as the networks becomemore dense there is growing

statistical evidence in favor of degree centrality being amore appropriate heuristic than eigen-

vector centrality. We note that in all cases whenwe compute centralitymeasures we compute

them over the whole network, not just within a node’s designated subset.

5.4 Robustness to Scale

We will now investigate how our statistical conclusions extend to larger networks. For our

purposes we will consider an Erdos-Renyi network withN = 50 nodes to be “large” as it is a

roughly 4x increase over the largest network previously considered atN = 13.

5.4.1 Test Cases

We perform hypothesis testing to compare each pair of hypotheses {H01,H1}, {H02,H2},

{H03,H3}, and {H04,H4} and generate appropriate p-values given by (4.20). Our test suite

consists of Erdos-Renyi graphs G(N, ρ) withN = 50 and ρ ∈ [0.3, 0.4, 0.5]. We note that
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due to excessive computational intensity and simulation times we only simulate 100 Monte

Carlo runs for all of our test cases.

5.4.2 Comparing Betweenness Centrality with Closeness Centrality

Comparing the pair of hypotheses {H01,H1} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of closeness centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.46) and a table highlighting statistically significant cases is shown in Table 5.40.

Figure 5.46: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs.
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Table 5.40: Comparison of hypotheses {H01,H1} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for N = 50 nodes and ρ = 0.5 that there is strong statistical evidence that

weighting actuators as a function of betweenness centrality provides a benefit to weighting

actuators as a function of closeness centrality. This suggests that for Erdos-Renyi graphs our

results from simulating cases with 6 ≤ N ≤ 13 seem to be scale-independent.

5.4.3 Comparing Betweenness Centrality with Degree Centrality

Comparing the pair of hypotheses{H02,H2} allows us to investigate ifweighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of degree centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.47) and a table highlighting statistically significant cases is shown in Table 5.41.
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Figure 5.47: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs.

Table 5.41: Comparison of hypotheses {H02,H2} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that none of the simulated cases show statistically significant evidence to reject the null

hypothesisH02 in favor of the alternative hypothesisH2 thatweighting actuators as a function

of betweenness centrality provides a marked benefit over weighting actuators as a function

of degree centrality. However, we note that for N = 50 and ρ = 0.5 that the calculated

p-value is 0.0872. While we set the threshold for statistical significance at a p-value of 0.05,

the p-values are observed to be decreasing in magnitude as ρ increases in Figure (5.47). This

192



suggests that if we were to simulate Erdos-Renyi graphs withN = 50 and ρ > 0.5 we might

find cases that yield statistically significant evidence to rejectH02.

5.4.4 Comparing Betweenness Centrality with Eigenvector Centrality

Comparing the pair of hypotheses {H03,H3} allows us to investigate if weighting actuators as

a function of betweenness centrality provides any tangible benefits over weighting actuators

as a function of eigenvector centrality. A plot of appropriate p-values vs. ρ is shown in Figure

(5.48) and a table highlighting statistically significant cases is shown in Table 5.42.

Figure 5.48: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs.
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Table 5.42: Comparison of hypotheses {H03,H3} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

We see that for Erdos-Renyi graphs with N = 50 and ρ = 0.5 that there is strong statisti-

cal evidence that weighting actuators as a function of betweenness centrality is beneficial to

weighting actuators as a function of eigenvector centrality.

5.4.5 Comparing Betweenness Centrality with Information Centrality

Finally, we compare the pair of hypotheses {H04,H4} allowing us to investigate whether

weighting actuators as a function of betweenness centrality provides any benefit over weight-

ing actuators as a function of information centrality. A plot of appropriate p-values vs. ρ is

shown in Figure (5.49) and a table highlighting statistically significant cases is shown inTable

5.43.
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Figure 5.49: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs.

Table 5.43: Comparison of hypotheses {H04,H4} across Erdos‐Renyi graphs withN = 50 nodes. Each data point is
calculated using 100 Monte Carlo runs and statistically significant cases (p < 0.05) are highlighted in green.

Again, we see that forN = 50 and ρ = 0.5 there is strong statistical evidence that weighting

actuators as a function of betweenness centrality provides a benefit over weighting actuators

as a function of information centrality.

5.4.6 Summary of Results

We see the repeated trend that as the density of the network increases, there is statistical ev-

idence that betweenness centrality is a good heuristic for actuator selection when compared
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with closeness, degree, and eigenvector centrality. This implies that our previous results for

6 ≤ N ≤ 13 are robust to network size. We note that as the number of nodes increases,

the computational complexity of the associated LMI becomes greater. For this reason, statis-

tics in this section are generated using only 100 Monte Carlo runs. Although the test suite

consists of less data, the statistical trends are still evident.

5.5 Conclusions

We have analyzed how our initial statistical results over Erdos-Renyi graphs extend to other

graph generation methods, to scenarios in which there are actuator failures, to cases with

sparse control authority, as well as to larger networks. We saw that for Barabasi-Albert and

Watts-Strogatz graphs, respectively, there continues to be strong statistical evidence that be-

tweenness centrality is a goodheuristic to use for actuator selection. We see that graphdensity

remains a strong predictor of the efficacy of betweenness centrality as a selection heuristic.

These results also held for instances in which one or two actuators irrecoverably fail dur-

ing operation and for larger networks on the order of 50 agents. However, in scenarios in

which we only have joint controllability at the network level but no agent individually has

full controllability of the process, betweenness centrality no longer seems to be an appropri-

ate heuristic. In this case, there is statistical evidence that, among the centrality measures we

considered, degree centrality is a good heuristic to inform actuator selection.
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6
Final Remarks

In this dissertation, we developed and analyzed algorithms for distributed control and esti-

mation of networked multiagent systems. In Chapter 2 we considered the problem of dis-

tributed filtering of a scalar linear stochastic process where communication between agents is

corrupted by Gaussian noise. We considered a two-stage consensus filter from the literature

and showed how the introduction of communication noise results in destabilization. We

197



noted that this is not unexpected as consensus dynamics are inherently not robust to noise

and, in fact, act as integrators on such noise. We proposed a novel two-stage distributed fil-

tering algorithm that is robust to communication noise and achieves a bounded asymptotic

error covariance. We analyzed how to optimize two tunable parameters in our algorithm to

minimize the asymptotic error covariance of the estimator. We showed how the asymptotic

error variances of individual agents within a graph are determined by the respective elements

of each eigenvector of the consensusmatrix. We provided a preliminary analysis into the con-

vexity of the trace of the asymptotic error covariance matrix.

In Chapter 3 we considered a framework for distributed control of linear time-invariant

systems. We used the small-gain theorem to characterize linear matrix inequality conditions

underwhich aweaker notion of the separation principle holds in the estimator and controller

design. We showed how linear consensus dynamics can be applied to extend the regime of

applicability of our algorithm. This is important as there could be situations in which, given

a set of designed estimator parameters, there is no control gain that can stabilize the system

while simultaneously satisfying the small-gain theorem. In these scenarios, multiple rounds

of linear consensus can be utilized to allow agents more options in choosing state feedback

gains which meet the desired criteria. We further showed how our framework can handle

nonlinear control laws, which may be useful for applications such as collision avoidance.

In Chapter 4 we proposed a statistical hypothesis testing framework to aid in the problem

of sensor and actuator selection for our distributed control methodology, focusing on the ac-

tuator selection part of the problem. We considered a set of centrality measures as heuristics

for actuator selection with the goal being to minimize a key matrix norm related to the actu-

ation. We considered Erdos-Renyi random graphs and showed that there is strong statistical
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evidence that betweenness centrality is the best performing heuristic for actuator selection

given sufficient edge density.

In Chapter 5 we examined how our previous statistical conclusions extend to additional

scenarios of interest. In particular, we extended our statistical analysis to additional graph

generation methods, actuator failures, lack of controllability at an individual agent, as well

as larger network scale. We founds strong statistical evidence that, given sufficient edge den-

sity, betweenness centrality remained the best heuristic for actuator selection in each of these

domains except when considering sparser control authority. When each individual agent no

longer had full controllability of the process and instead had to rely on joint controllability

at the level of the network, we found strong statistical evidence that degree centrality became

the best heuristic for actuator selection.

6.1 FutureWork

We see many exciting future directions for this work. We mentioned in Chapter 3 that solv-

ing for the appropriate estimation and control parameters through optimizations (3.19) and

(3.21) can be computationally expensive, especially when the networks under consideration

grow in size. This is a main motivating factor behind developing a framework in which we

can separately design these parameters so that if, for whatever reason, we need to update one

set it doesn’t necessitate a reoptimization to determine the other set. However, this does

not change the fact that these optimizations may need a lot of computing resources in the

first place. Thus, one exciting area of research we believe could be applicable to this class of

problems is graph neural networks. Indeed, graph neural networks are being applied to the

problem of distributed control93,94. The neural networks learn maps from the sensor inputs
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to the control outputs and can be trained using imitation learning of a set of chosen con-

trollers. It is a possible area of exploration to use the estimator and controller designs from

the optimizations (3.19) and (3.21) in Chapter 3 as training data for a graph neural network.

This would allow for interpolation between different networks or being able to handle time-

varying networks by using the controllers and estimators from Chapter 3 as a guide.

Another area of future work is analytically analyzing the influence of the network struc-

ture on the distributed control algorithm in Chapter 3. We resorted to statistical methods

in Chapters 4 and 5 to begin exploring the role of the network structure, and in particular

how an agent’s location in the network influences its performance on actuation and sens-

ing. However, given the scope of the problem we were only able to look at a chosen set of

centralitymeasures as heuristics. If analytical results could be obtainedwhich exploit the net-

work structure within the relevant LMIs, it could then inform further statistical analyses and

perhaps introduce more applicable centrality measures of interest.
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Published Work
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7
Outline and Contributions

Part II of this dissertation contains one chapter covering work that has been published in a

peer-reviewed conference and a second chapter covering work that has been submitted for

publication.
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7.1 Outline

InChapter 8 we present a novel algorithm for distributed filtering of a scalar linear stochastic

process which shows mitigated degradation in performance when communication between

agents is noisy11. We show that a two-stage distributed filter proposed in56 consisting of a

measurement andprediction stage followedby a consensus stage suffers in performancewhen

allowing for communication between agents to be corrupted by Gaussian noise. In partic-

ular, we show that under certain communication noise conditions the trace of the error co-

variancematrix actually increases asmore rounds of consensus between agents are performed,

which is clearly not a desirable property of a distributed filter which utilizes consensus. We

note that such behavior is not totally unexpected as consensus dynamics are inherently non-

robust to noise and act as an integrator on the noise. After highlighting how such distributed

filters fail in the presence of communication noise, we propose and rigorously analyze an in-

novative filtering algorithm which retains stabilizing properties even when exposed to com-

munication noise.

In Chapter 9 we investigate a weaker notion of the separation principle for distributed

control of LTI systems24. We use the small-gain theorem alongwith the bounded real lemma

for discrete time LTI systems to characterize linearmatrix inequality conditions under which

agents in the network are able to change their control inputs without needing to change their

estimation strategies and still achieve a stabilizing design. We additionally utilize linear con-

sensus dynamics and show howwe can extend the operating regime of our algorithm by tun-

ing the frequency of information exchange between agents during consensus.
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7.2 Contributions

In Chapter 8, Vaibhav Srivastava and I framed the main questions. I developed the algo-

rithm along with Vaibhav Srivastava. I performed all analysis and wrote all of the simula-

tions. Naomi Leonard and Vaibhav Srivastava revised and edited the manuscript. Chapter 8

appeared in the Proceedings of the 2017AmericanControl Conference11, where I presented

the work.

In Chapter 9, Shinkyu Park and I framed the main questions with guidance fromNaomi

Leonard andH.Vincent Poor. I developed the framework alongwith ShinkyuPark. Shinkyu

Park and I collaboratively performed the analysis andwrote the simulations. NaomiLeonard,

H. Vincent Poor, and Shinkyu Park revised and edited the manuscript. Chapter 9 has been

submitted for publication.
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8
OnDistributed Linear Filtering with Noisy

Communication

* We consider distributed filtering of a scalar linear stochastic process under communication

corrupted by Gaussian noise. We investigate how communication noise degrades the per-

*This chapter was published as Savas, Srivastava, and Leonard in theAmericanControl Conference onMay
24, 201711.
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formance of an existing distributed algorithm and develop a novel algorithm that mitigates

these problems. We rigorously investigate the properties of the new distributed estimator

and discuss optimal tuning of (fixed) gains that minimize the asymptotic error covariance.

We demonstrate the effectiveness of our algorithm through numerical simulations.

8.1 Introduction

Distributed estimation is a problem of fundamental interest in a variety of problems ranging

from robotic networks, transportation networks, power networks, and synthetic biological

networks. With increasing deployment of networked multiagent systems the algorithms for

distributed estimation are of increasing importance. Some of the desired features of these

algorithms include scalability, adaptability, and resilience.

In this paper, we investigate the problem of distributed filtering in a networked multia-

gent system of a scalar linear stochastic process under communication corrupted by Gaus-

sian noise. There is a significant and growing literature on distributed filtering in networked

systems51,52,53,54,55,56,57,58. Typically, however, these works assume no communication noise.

We design algorithms that are robust to the communication noise in such networks.

Distributed filtering in a networked multiagent system is designed to allow each individ-

ual agent to improve its estimate of the state of a dynamical system by sharing measurements

or estimates through a communication network. In consensus-based distributed filtering,

agents update their estimates with measurements or estimates communicated from others

using linear consensus dynamics59,60. Olfati-Saber53 considered distributed linear filtering

with two consensus dynamics: one for weighted measurements and one for precision matri-
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ces, see61 for related work. Distributed linear filtering in continuous timewas examined in54.

Spanos et al.62 investigated the distributed least-squares estimation problem using consensus

dynamics. Speranzon et al.63 studied distributed linear filtering of a noisy time-varying signal

using adaptive time-varying consensus.

In the context of robotic networks, cooperative Kalman filtering techniques have been

used to explore noisy scalar fields in the plane58. Lynch et al.64 studied the problem of infor-

mation maximization in a scalar uncertain field using optimal filtering and consensus tech-

niques.

We investigate the problem of consensus-based distributed filtering under noisy communi-

cation. The robustness of consensus dynamics under noisy communication has been studied

in57,65 and in the context of decision-making66,67.

The consensus algorithm has its root in the sociology literature and is the same as the fa-

mous DeGroot model68. The modification to the consensus protocols that we propose to

mitigate effects of communication noise has similarities with the DeGroot-Friedkin model

in sociology69. The analysis in this paper suggests that theDeGroot-Friedkinmodelmayhave

superior robustness properties under noisy communication.

To address the problem of distributed filtering of a scalar linear stochastic process under

noisy communication, we build upon the algorithm proposed by Carli et al. in56. They pro-

pose an algorithm comprising discrete-time sampling of the noisy process and a fixed number

of consensus rounds between sampling instances. We develop a new algorithm thatmitigates

the effect of communication noise on the performance of the distributed filter. The major

challenge consensus-based strategies face under noisy communication is the presence of in-

tegrator dynamics in consensus protocols which aggregate noise over time leading to large
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variances and poor estimation performance. Here, we design novel consensus dynamics that

alleviate this problem.

The major contributions of this paper are threefold. First, we examine the algorithm pro-

posed in56 for distributed filtering of a scalar linear stochastic process and show how the per-

formance of this algorithm degrades under noisy communication. Second, we build upon56

to develop a novel algorithm that mitigates the effects of noisy communication. Third, we

rigorously analyze the new algorithm and discuss methods to tune its parameters to optimize

performance.

The remainder of the paper is organized as follows. In §8.2, we formally pose the dis-

tributed linear filtering problem. In §8.3, we recall the distributed filtering algorithm from56

and study its performance under noisy communication. In §8.4, we develop a novel algo-

rithm to provide robustness to communication noise. We analyze this algorithm and illus-

trate in §8.5, and we conclude in §8.6.

8.2 Problem Setup

Consider the following scalar linear stochastic process

x(k+ 1) = ax(k) + w(k), x(0) = X0, (8.1)

for each k ∈ Z≥0, where a ∈ R is a constant, {w(k)}k∈Z≥0 is a sequence of i.i.d. zero-mean

Gaussian noise with variance q ∈ R>0, and X0 is a Gaussian random variable with mean

x0 and variance σ. Suppose a sensor samples this process at each time k to obtain a noisy
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measurement

y(k) = x(k) + n(k), for each k ∈ Z≥0, (8.2)

where {n(k)}k∈Z≥0 is a sequence of i.i.d. zero-mean Gaussian noise with variance r ∈ R>0.

The estimation of state x(k) in (8.1) using measurements y(k) in (8.2) is the standard scalar

Kalman filtering problem70.

We consider the problem of distributed estimation of the state x(k) using multiple com-

municating agents. For simplicity, we assume a = 1 but our analysis is generalizable to the

case a ̸= 1. Specifically, we consider the estimation of the white noise process

x(k+ 1) = x(k) + w(k), x(0) = X0. (8.3)

We consider a multiagent network in which agents can communicate over a fixed graph

G = {V , E}, where V = {1, . . . ,N} is the vertex set, E ∈ V × V is the edge set, and N

is the total number of agents. We assume that the graph is undirected and connected in the

sense that there exists a path from each node to every other node. We assume that each agent

i ∈ {1, . . . ,N} samples the process (8.3) at times k and collects a noisy measurement yi(k)

of the process x(k) defined by

yi(k) = x(k) + ni(k), for each i ∈ {1, . . . ,N}, (8.4)

where {ni(k)}k∈Z≥0 are i.i.d. zero-mean Gaussian noises with variance r. We further assume

the noise sequences ni(k) are independent for different i ∈ {1, . . . ,N}. We can write (8.4)
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in vector form as

y(k) = x(k)1N + n(k), (8.5)

where y(k) and n(k) are the N-column vectors of yi(k)’s and ni(k)’s, respectively, and 1N is

theN-column vector of all ones.

We focus on consensus-based dynamics for distributed estimation59,60,71. However, in

contrast to standard approaches to this problem we assume that the communication among

agents is noisy. We recall that in consensus dynamics each agent at each (discrete) time av-

erages its state with its neighbors in the communication graph59,68,72. Here we assume that

each agent receives a noisy estimate of the state of each of its neighbors and it uses these noisy

estimates in the consensus dynamics. Let Q be the consensus matrix, i.e., the matrix of the

(convex)weights an agent i assigns to its neighbor j. Then the consensus dynamicswith noisy

communication are

z(l+ 1) = Qz(l) + σcu(l), (8.6)

where z(l) is the vector of states of agents at times l ∈ Z≥0, σ2c is the variance of the communi-

cation noise, and {u(l)}l∈Z≥0 is the sequence of i.i.d. N-variate zero-mean Gaussian random

vectors with covariance IN, where IN is the identity matrix of orderN. Here for simplicity,

we have assumed that the communication noise for each agent has the same variance σ2c .

It is well-known that the matrixQ is row stochastic and for a connected undirected graph

is irreducible, i.e., thematrixQ has only one simple eigenvalue at unity and every other eigen-

value is inside the unit disk59,68,71,72. Moreover, the eigenvalue at unity corresponds to the

eigenvector 1√
N1N. Weassume thatQ is doubly stochastic anddenote its eigenvalues as{λ0, ..., λN−1}

with λ0 = 1.
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8.3 A state-of-the-art distributed linear filter

The estimation problem posed in §8.2 was studied by Carli et al.56 and they proposed a two-

stage algorithm that we summarize in this section. We then apply their algorithm to the set-

ting of noisy communication and observe that it is no longer stabilizing. This is to be ex-

pected since consensus dynamics have one eigenvalue at unity and consequently integrate

noise. The integrated noise has asymptotically infinite variance. So any strategy that is de-

signed for noise-free communication doesn’t immediately extend to noisy communication.

8.3.1 A two-stage distributed linear filter under noise-free communica-

tion

In this section we recall the two-stage distributed linear filter proposed in56. During the first

stage, at time k each agent i computes the estimate of process x(k) given measurements until

time k, i.e., x̂i(k|k), by computing a convex combination of the predictive estimate of the

current state using observations until time k− 1, i.e., x̂i(k|k− 1) and the current observation

yi(k). Formally, the first stage updates the state as

x̂(k|k) = (1− ℓ)x̂(k|k− 1) + ℓy(k), (8.7)

where x̂(k|k) and x̂(k|k − 1) are vectors of x̂i(k|k) and x̂i(k|k − 1), respectively, and ℓ ∈

[0, 1] is the gain. Note that, unlike the optimal Kalman filter, here the gain ℓ is assumed

constant. This means that the resulting filter is not necessarily optimal. However, as shown

in56 this leads to a bounded variance of estimation error and, hence, the choice of constant ℓ

is stabilizing.
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The second stage comprisesm rounds of the consensus dynamics (8.6) between two con-

secutive time instances k and k + 1 using local estimates x̂i(k|k). The consensus dynamics

ensure that the local estimate x̂i(k + 1|k) of each agent converges towards the average of the

group 1
N
∑N

j=1 x̂j(k|k). Formally, the second stage is

x̂
(
k+

h
m

∣∣∣k) = Qx̂
(
k+

(h− 1)
m

∣∣∣k), h ∈ {1, . . . ,m}, (8.8)

Here, a timescale separation between process dynamics and consensus dynamics is assumed,

i.e., the communication and consensus dynamics are much faster than the process dynamics.

Note that at the end of the consensus rounds, update (8.8) yields x̂(k+ 1|k) that can be used

with update (8.7) to compute x̂(k + 1|k + 1). The distributed linear filtering algorithm is

initialized with x̂(0| − 1) = x01N and the estimates at future times are computed recursively

using (8.7) and (8.8).

Carli et al.56 computed the covariance of the estimation error for the above algorithm and

used it to find the optimal ℓ that minimizes the trace of the asymptotic error covariance ma-

trix.

The above algorithm is easy to implement and under noise-free communication is stabi-

lizing, i.e., always leads to bounded error covariance. In the next section, we investigate the

performance of this algorithm under noisy communication.

8.3.2 Performance under noisy communication

Wenowconsider the two-stage distributed linear filtering algorithm in §8.3.1withnoisy com-

munication in the consensus dynamics. The first stage of the algorithm remains identical to

update (8.7). In the second stage the update (8.8) is replaced by noisy consensus dynamics
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x̂
(
k+

h
m

∣∣∣k) = Qx̂
(
k+

(h− 1)
m

∣∣∣k)+ σcu
(
k+

h
m

)
, (8.9)

where u(k + h/m) is the N-variate zero-mean Gaussian noise with covariance IN, for each

k ∈ Z≥0 and h ∈ {1, . . . ,m}, u(k + h/m) are independent, and σ2c is the communication

noise variance. The estimation error at time k is defined by

x̃(k|k− 1) = x(k)1N − x̂(k|k− 1). (8.10)

We numerically investigate the performance of the two-stage algorithm described in §8.3.1

under noisy communication. Consider a set of three agents {1, 2, 3} communicating over an

undirected line graph. Let Q = I3 − εL, where I3 is the identity matrix and ε = 0.4 is a

constant.

We examine ten time instances of the process (8.3), i.e., k ∈ {0, ..., 9}, and between each

consecutive pair of time instances we applym consensus rounds. We illustrate performance

for values ofm from 0 to 5. We assume the process noise variance is q = 1 and the measure-

ment noise variance is r = 25.

We employ the distributed filtering algorithm (8.7) and (8.9) with convexity parameter

ℓ = 0.25. We performed 200, 000 Monte-Carlo simulations to estimate the trace of the

error covariance matrix. Fig. 8.1 shows the trace of the error covariance matrix for k = 4,

which can be represented as
∑3

i=1 var(x̃i(4|3)), as a function of the number of consensus

roundsm for a range of values of σc. It can be seen that for large enough values of σc the trace

of the error covariance actually increases asmore consensus rounds are performed, suggesting

that the two-stage estimation algorithm in §8.3.1 is not stabilizing, i.e., the trace of the error
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covariance diverges as the number of consensus rounds are increased.

This is not totally unexpected because the consensus dynamics are inherently non-robust

due to thepresence of an eigenvalue of unity. This eigenvalue at unity acts as an integrator and

integrates noise. As we integrate more andmore noise the covariance of the system diverges.
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Figure 8.1: Influence of communication noise in consensus dynamics on error variance across 200,000 Monte Carlo runs
for distributed filtering algorithm (8.7) and (8.9) withN = 3, r = 25, and q = 1 for an undirected line graph. We see
that the error variance diverges with the number of consensus rounds.

8.4 A novel two-stage distributed linear filter

As discussed in the previous section, the filter in §8.3.1 suffers under noisy communication.

In this section, we modify the algorithm of Carli et al.56 to mitigate the effects of noisy com-

munication.
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We keep the update in the first stage of the algorithm the same as in (8.7), i.e.,

x̂(k|k) = (1− ℓ)x̂(k|k− 1) + ℓy(k), (8.11)

with x̂(0| − 1) = x01N.

Wemodify the second stage, i.e., the consensus dynamics, in the following way. We define

z(k|k) = x̂(k|k) for each k ∈ Z≥0. We update z through m consensus rounds between

consecutive time instances k and k+ 1 as follows:

z
(
k+

h
m

∣∣∣k) = Qz
(
k+

(h− 1)
m

∣∣∣k)+ σcu
(
k+

h
m

)
+ x̂(k|k). (8.12)

In (8.12), each agent i ∈ {1, . . . ,N} remembers its estimate x̂i(k|k) at time k and re-injects it

at each consensus round. Loosely speaking, the intuition for such an update is that starting

from a deterministic initial condition z(k|k) = x̂(k|k) and afterm rounds of consensus the

dominating component of the variance of z(k + 1|k) is mσ2c (see Fig. 8.1). By re-injecting

x̂(k|k) at each step, we ensure that the dominating component of the expected value of zi(k+

1|k) is m+1
N
∑N

j=1 x̂j(k|k), for each i ∈ {1, . . . ,N}. Finally, if we divide z(k+1)by (m+1), the

resultingmean is 1
N
∑N

j=1 x̂j(k|k) and variance ismσ2c /(m+1)2which goes to 0 asm → +∞.

Thus, for largem we recover the performance of the noise-free algorithm. However, ifm is

small noise still degrades performance, so we set the update x̂(k + 1|k) as the convex sum of

x̂(k|k) and z(k+ 1|k) as below

x̂(k+ 1|k) = ζx̂(k|k) + (1− ζ)
z(k+ 1|k)
m+ 1

, (8.13)
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where ζ ∈ [0, 1] is a constant. ζ trades off the variance of the two estimators x̂(k|k) and

z(k+ 1|k). Thus, for largemwe can choose ζ close to 0 and for smallmwe can choose ζ close

to 1.

In contrast to the distributed filtering algorithm in56 which has only one tunable param-

eter ℓ, our algorithm has two tunable parameters ℓ and ζ. Similar to56, these parameters can

be chosen to minimize asymptotic error covariance of the estimator. Towards this end, we

analyze the error covariance of the new algorithm in the next section.

8.5 Analysis of the novel two-stage distributed linear filter

In this section we analyze the properties of the novel distributed linear filter proposed in

§8.4. We first derive an expression for the asymptotic error covariance and then analyze its

properties. Our analysis follows similarly to56.

8.5.1 Error covariance of the estimator

We define the predictive and posterior errors as

x̃(k+ 1|k) = x(k+ 1)1N − x̂(k+ 1|k),

and x̃(k+ 1|k+ 1) = x(k+ 1)1N − x̂(k+ 1|k+ 1),
(8.14)

respectively. Let

P(k+ 1|k) = E[x̃(k+ 1|k)x̃(k+ 1|k)⊤]

and P(k+ 1|k+ 1) = E[x̃(k+ 1|k+ 1)x̃(k+ 1|k+ 1)⊤]
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be predictive and posterior error covariance matrices. We are now ready to state the main

result of this section.

Theorem 4 (Asymptotic Error Covariance). For the scalar linear stochastic dynamics (8.3)

and thedistributed linearfilteringalgorithmwithnoisy communicationdefinedby (8.11), (8.12)and (8.13),

the following statements hold:

1. the asymptotic error covariance is

lim
k→∞

P(k|k− 1)

= ℓ2r
∞∑
i=0

(1− ℓ)2iQ†(i+1)(Q†(i+1))⊤ +
q

1− (1− ℓ)2
1N1⊤N

+

(
1− ζ
m+ 1

)2

σ2c
∞∑
i=0

(1− ℓ)2i
m−1∑
j=0

Q†iQj(Qj)⊤(Q†i)⊤, (8.15)

where Q† = ζIN +
(

1−ζ
m+1

)∑m
i=0 Qi;
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2. the trace of the asymptotic covariance matrix is

tr
(
lim
k→∞

P(k|k− 1)
)
=

ℓ2r+ qN+
(1− ζ)2σ2cm
(m+ 1)2

1− (1− ℓ)2

+ ℓ2r
N−1∑
h=1

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2
1− (1− ℓ)2

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2

+

(
1− ζ
m+ 1

)2

σ2c
N−1∑
h=1

(
1− |λh|2(m−1)

1− |λh|2

)

1− (1− ℓ)2
∣∣∣∣( 1− ζ

m+ 1

)
λ̄h + ζ

∣∣∣∣2 , (8.16)

where λ̄h =
∑m

n=0 λnh .

Proof. From (8.14) and (8.11) it follows that

x̃(k|k) = (1− ℓ)x̃(k|k− 1)− ℓn(k). (8.17)

Then

P(k|k) = (1− ℓ)2P(k|k− 1) + ℓ2rIN. (8.18)

Further note that (8.12) can be solved explicitly to obtain

z(k+ 1|k) =
m∑
i=0

Qix̂(k|k) + σc
m∑
i=1

Qm−iu
(
k+

i
m

)
. (8.19)
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Substituting z(k+ 1|k) in (8.13) and using (8.14), we obtain

x̃(k + 1|k) = Q†x̃(k|k) + w(k + 1)1N −
(

1− ζ
m+ 1

) m∑
i=1

Qm−iσcu
(
k +

i
m

)
, (8.20)

whereQ† = ζIN +
(

1−ζ
m+1

)∑m
i=0 Qi. It follows that

P(k+ 1|k) = Q†P(k|k)(Q†)⊤ + q1N1⊤N +

(
1− ζ
m+ 1

)2

σ2c
m−1∑
i=0

Qi(Qi)⊤. (8.21)

Since Q is row-stochastic with Q1N = 1N, it can be shown that Q†1N = 1N, i.e., Q† is also

row-stochastic. Using row-stochasticity ofQ†, (8.18) and (8.21) we obtain

P(k+ 1|k) = (1− ℓ)2Q†P(k|k− 1)(Q†)⊤ + ℓ2rQ†(Q†)⊤

+ q1N1⊤N +

(
1− ζ
m+ 1

)2

σ2c
m−1∑
i=0

Qi(Qi)⊤. (8.22)

We can solve (8.22) with initial condition P(0| − 1) to obtain:

P(k|k− 1) = (1− ℓ)2kQ†kP(0| − 1)(Q†k)⊤

+ ℓ2r
k−1∑
i=0

(1− ℓ)2iQ†(i+1)(Q†(i+1))⊤ + q
k−1∑
i=0

(1− ℓ)2i1N1⊤N

+

(
1− ζ
m+ 1

)2

σ2c
k−1∑
i=0

(1− ℓ)2i
m−1∑
j=0

Q†iQj(Qj)⊤(Q†i)⊤. (8.23)

Taking the limit k → +∞ and using the geometric series summation formula, we establish

(i).
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The second statement follows using model decomposition ofQ and the result that

tr
(
Q†im(Q†im)⊤

)
=

N−1∑
h=0

∣∣∣∣( 1− ζ
m+ 1

)
λ̄h + ζ

∣∣∣∣2im . (8.24)

Note that the steady-state error covariance (8.16) is bounded and hence our distributed

estimation algorithm is stabilizing in themean squared sense. Our algorithm is notnecessarily

optimal since it assumes convexweights ℓ and ζ tobe constant. However, givenour algorithm,

we can choose optimal parameters ℓ and ζ as we discuss in the next section.

8.5.2 Tuning parameters ℓ and ζ

The algorithm defined in §8.4 requires two parameters ℓ and ζ to be tuned. For a given graph

structure (fixed Q and N), given process, measurement and communication variance (fixed

r, q, and σc), and a given number of consensus rounds (fixed m), we choose these param-

eters to minimize the asymptotic error covariance (8.16). In the following, let J(ℓ, ζ) =

tr
(
limk→∞ P(k|k− 1)

)
.

When determining the optimal (ℓ, ζ) which minimize J, we note a special case for m =

0. In this case of no consensus the modified algorithm will only involve (8.11) and (8.13).

Inspecting (8.13) we see that the only appropriate formulation would have ζ = 1. With

ζ = 1 and m = 0 we see that (8.16) simplifies to J|m=0 =
(ℓ2r+q)N
1−(1−ℓ)2

. We then minimize

J|m=0 using fmincon inMATLAB to solve for the optimal ℓ. Likewise, form > 0 we can use

fmincon to solve for the optimal ℓ and ζwhich minimize J.

The trends of optimal ℓ and ζ as a function of number of consensus roundsm and σc are
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Figure 8.2: Optimal ℓ and ζ as a function of consensus roundsm and σc withN = 3, r = 25, and q = 1 for an
undirected line graph.

shown in Fig. 8.2. Note that optimal ℓ increases withm, while ζ does not follow amonotonic

trend. The initial trend of ζ is attributed to the transient consensus dynamics. As the number

of consensus rounds increases, the value ζ goes to zero as discussed in §8.4.

8.5.3 Numerical Simulations

We numerically investigate the performance of the modified estimation algorithm developed

in §8.4. We consider an undirected line graph with N = 3 nodes. We choose the same

parameters as in Fig. 8.1 and again choose as our performance metric
∑3

i=1 var(x̃i(4|3)). For

each value of m and σc we use the optimal ℓ and ζ in the algorithm as determined in §8.5-

B. Fig. 8.3 shows for the modified estimation algorithm the summed error variance metric

versus the number of consensus roundsm, with the color of the lines designating the value

of σc in (8.12). Comparing with Fig. 8.1, we see that the error variance no longer increases
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Figure 8.3: Influence of communication noise in consensus dynamics on error variance across 200,000 Monte Carlo runs
for the distributed filtering algorithm defined in §8.4 withN = 3, r = 25, and q = 1 for an undirected line graph. Even
as σc increases the error variance no longer diverges as more consensus rounds are performed.

in an unbounded way as more consensus rounds are performed. Rather, the trend in error

variance versus consensus rounds is much closer to the monotonically decreasing trend one

expects in a distributed filter without communication noise. Even for larger values of σc we

see the error variance decreases with additional consensus rounds, which is how an effective

estimation algorithm should perform. Note the slight difference in scale between the vertical

axes in Figs. 8.1 and 8.3.

8.6 Conclusions

In this paperwe studied consensus-based distributed linear filtering under noisy communica-

tion. We investigated how noisy communication affects the performance of the distributed

filtering algorithm proposed in56. We showed that under noisy communication the error co-
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variance of the estimator obtained using this algorithm diverges. We modified the algorithm

from56 to develop a novel distributed filtering algorithm that achieves a bounded asymptotic

error covariance under noisy communication. We discussed how the parameters of this new

algorithm can be tuned.

Future directions include examining the convexity of the asymptotic error covariancewith

respect to algorithmparameters, extending to vector-valued dynamical processes, and explor-

ing the influence of the network graph on the performance.
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9
A Separation Principle in the Design of

Distributed Control for LTI Systems

* The separation principle in a (centralized) estimation and control problem gives us the flex-

ibility to design a feedback controller independent of the state estimator. However, the same

*This chapter is in preparation for submission and appears as Savas, Park, Poor, and Leonard24.
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principle does not hold when the estimation and control are distributed over a network. In

this case, the estimator needs to be redesigned whenever the control strategy is revised, which

can be computationally expensive. We investigate a weaker notion of the separation princi-

ple in the distributed control of linear time-invariant (LTI) systems. As a main contribution,

we characterize the notion using linear matrix inequalities (LMIs) under which agents in the

network can change their feedback control without redesigning the estimator. We also an-

alyze how the frequency of information exchange between neighboring agents can extend

the regime in which the separation principle holds. We validate our analytical results using a

multi-vehicle platooning example through simulations.

9.1 Introduction

Consider the problemof designing a network of agents for estimation and control of discrete-

time linear time-invariant (LTI) systems. Each agent in the network assesses a partial output

of an LTI system, communicates with its neighbors to estimate the system’s state, and applies

control input to stabilize the system based on available local information – the partial system

output and its neighbors’ state estimates. Such design problems arise in a wide range of con-

trol engineering domains including formation control of networked robots, efficient power

transfer in large-scale power systems, and traffic flow control in transportation networks.

An interesting aspect of the problem is that each agent computes control input based on

its own set of information which is different from that of other agents. Hence, such a prob-

lem setting imposes a non-classical information structure under which changing the control

strategy of an agent to improve the systemperformancewould negatively affect the network’s
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estimation performance and require redesigning the estimation strategy, which is computa-

tionally expensive.

In a centralized counterpart, where a single agent estimates and controls the system’s state,

the separation principle gives the agent the freedom to adopt any stabilizing feedback con-

troller independent of the estimator design74. However, because of the non-classical infor-

mation structure, the same separation principle does not hold in our problem unless every

agent is broadcasting its locally available information across the network. Hence, the estima-

tion and control strategies across the network would need to be jointly designed.

There is a large literature, including53,75,76, that presents computational methods and per-

formance analysis for designofnetworks to estimate the state ofLTI systems,where consensus-

type algorithms are adopted to exchange and fuse state estimates among neighboring agents.

More recent work77 proposes a control framework based on distributed estimation to de-

sign a network of agents to stabilize LTI systems and discusses performance of the proposed

framework. LMI-based approaches for joint design of distributed observer and controller are

discussed in78,79.

Also,80 discusses a decentralized approach fordesigning adistributed controller for continuous-

timeLTI systems inwhich the agents are required to share their local informationwith neigh-

bors at every time instance over the continuous-time domain. The authors of81 propose

a consensus-based distributed observer over a rate-limited communication network to de-

sign linear state feedback systems. The work of82 investigates a distributed approach to the

design of a distributed observer and controller for spatially interconnected systems in the

continuous-time domain.

As a complement to the existing literature, we address the following question: “Under
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what conditions can the agents change their feedback control without revising their estimation

strategies?” Ourmain contribution is to provideLMI formulations that characterize aweaker

notion of the separation principle underwhich the agents can revise their state feedback strat-

egy without updating parameters of their distributed estimation strategy. In addition, we

investigate how the frequency of information exchange through consensus impacts the es-

tablishment of the separation principle. Unlike the continuous-time domain problems as

in82,80, the problem of designing distributed control in the discrete-time domain has its own

unique technical challenges.

The paper is organized as follows. In §9.2, we present our framework and explain themain

problem on the distributed estimation and control design. In §9.3, we propose and prove

LMI formulations as a solution to the main problem, and we provide analysis on how the

frequency of information exchange affects the feasibility of the LMI. In §9.4, using simula-

tions, we illustrate our main results in a multi-vehicle platooning example. We conclude the

paper in §9.5.

9.2 ProblemDescription

Consider a discrete-time LTI system given by

x(k+ 1)=Ax(k) +
∑N

i=1 Biui(k), x(0) ∈ Rn (9.1a)

yi(k) = Cix(k), i ∈ {1, · · · ,N} (9.1b)

where x(k) ∈ Rn is the state, ui(k) ∈ Rqi is the i-th input, and yi(k) ∈ Rri is the i-th output

of the system. We design a network of N agents where each agent i assesses its associated
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system output yi(k), communicates over a fixed directed graph G = (V,E), and assigns

control inputui(k). Each vertex i inV = {1, · · · ,N} represents agent i and each edge (j, i) ∈

E indicates that agent j can transmit information to agent i. We define the neighborhood set

Ni = {j ∈ V | (j, i) ∈ E} to specify a subset of agents that can transmit information to

agent i.

We assume that G is strongly connected and (9.1) is jointly controllable and observable:

bothpairs (A,B) and (C,A) are controllable andobservable, respectively,whereB=(B1, · · · ,BN)

and C= (CT
1 , · · · ,CT

N)
T. However, individual agents do not necessarily have full controlla-

bility or observability of the system: For every i in V, pairs (A,Bi) and (Ci,A) may not be

controllable and observable, respectively. Hence, without communication with others, each

agent can neither estimate the full state of the system nor stabilize it. Below we provide an

example of (9.1) and G.

Example 2. Consider a system of N vehicles moving on the plane where each vehicle can apply

a force to control its own motion and can observe its own position. The system is thus jointly

controllable and jointly observable. The state and parameters of the system’s model (9.1) are

given as

x = (pT1 , vT1 , · · · , pTN, vTN)T (9.2a)

A = IN ⊗

I2 0.5I2

0 I2

 (9.2b)

Bi= ei ⊗

0

I2

 , Ci= eTi ⊗
(
I2 0

)
, i∈{1,· · ·,N} (9.2c)
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Figure 9.1: A diagram illustrating the closed loop consisting of the LTI system, distributed estimation, (linear) consensus,
and state feedback.

where pi, vi ∈ R2 are, respectively, the positionandvelocity of the i-th vehicle and ei is a canonical

basis in RN whose elements are all zero except the i-th element, which is 1. In §9.4, using this

example, we illustrate the main results of our work over line and ring graphs, and apply our

framework to a multi-vehicle formation control problem.

Our main goal is to design the network of agents in which each agent i computes a state

estimate x̂i(k), exchanges and fuses the estimate with those of its neighbors, and uses the

fused state estimate to compute control input ui(k) for system stabilization. To design the

network, we implement state feedback, distributed estimation, and linear consensus at each

agent (see Fig. 9.1 for an illustration of the closed loop consisting of the three components

and the LTI system):

State feedback Let x̂i(k) be the state estimate of agent i. The agent computes ui(k)

according to

ui(k) = Kix̂i(k). (9.3)
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Note that the agent uses only its own state estimate to computeui(k). Throughout the paper,

we assume that {Ki}i∈V satisfy thatA+
∑

i∈V BiKi is Schur stable having eigenvalues inside

the unit circle in the complex plane.

Distributed estimation Agent i computes x̂i(k) by recursively updating it according

to

x̂i(k+ 1) = Ax̂i(k) + Li (yi(k)− Cix̂i(k))

+
∑

j∈V BjKjx̂i(k) +
∑

j∈Ni
Wij

(
x̂j(k)− x̂i(k)

)
, (9.4)

where Ki is the control gain matrix in (9.3) andWij ∈ Rn×n, Li ∈ Rn×ri are the parameters

that need to be determined. (9.4), which is motivated by the existing distributed estimation

approaches proposed, for instance, in53,75,76,77, updates x̂i(k) using the partial output yi(k),

the information {x̂j(k)}j∈Ni from the agent’s neighbors, and the estimate
∑

j∈V BjKjx̂i(k) of

the control input applied to (9.1).†

m-round linear consensus When additional information exchange is allowed, the

agents exchange their state estimates and fuse the exchanged information usingm-round lin-

ear consensus. Letting {x̂j(k)}j∈V be the state estimates of the agents at the beginning of the

linear consensus, the output x̂+i (k) at each agent i is determined as follows:

x̂+i (k) =
∑

j∈V P̄ijx̂j(k). (9.5)

†According to (9.3), the control input applied to (9.1) is given by
∑

j∈V BjKjx̂j(k)which depends on every
agent’s state estimate.
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The parameter P̄ij ≥ 0 is the i, j-th element of a matrix defined as P̄ = Pm ∈ RN×N, where

m is a non-negative integer and P is a stochastic matrix that conforms with G = (V,E), i.e.,

(j, i) /∈ E ⇐⇒ Pij = 0. Hence, x̂+i (k) denotes agent i’s updated state estimate after apply-

ing them rounds of linear consensus with matrix P. We refer tom and P as the total number

of consensus rounds and the consensus matrix, respectively. The outcome x̂+i (k) is then fed

into (9.3) and (9.4) to update each agent’s state estimate, x̂i(k) = x̂+i (k), as illustrated in

Fig. 9.1.

Theworkof83,75,76 presents technical conditions on the system (9.1) and the graphG under

which there are parameters {Wij}i,j∈V, {Li}i∈V that ensure convergence of x̂i(k) to x(k) for

every i in V, when there is no state feedback, i.e., Ki = 0, ∀i ∈ V. More recent work in77

describes how to jointly compute {Ki}i∈V, {Wij}i,j∈V, {Li}i∈V to stabilize (9.1) using (9.3)

and (9.4).

In our work, similar to77, we investigate the problem of designing the state feedback and

distributed estimation for system stabilization. However, our work is distinct from77 in that

we consider the case where the gain matrices {Ki}i∈V are designed independently of the pa-

rameters {Wij}i,j∈V, {Li}i∈V. In particular, our main result establishes technical conditions

that ensure the stability of (9.1) when {Ki}i∈V and {Wij}i,j∈V, {Li}i∈V are computed using

two decoupled numerical methods. As discussed in §9.3.3 in detail, our result can be applied

to scenarios where each agent needs to update its control gain without re-computing the pa-

rameters of the distributed estimation over the entire network‡, or nonlinear state feedback

is adopted. In both cases, the analysis of77 cannot be directly applied.
‡As we describe in §9.4.1, finding the parameters for (9.4) involves finding a solution to a large-size linear

matrix inequality, which can be computationally expensive. For this reason, whenever possible, it is preferred
not to re-compute the parameters of (9.4) when the state feedback is revised.
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Alsoourwork allows communication among agents to takeplace at discrete-time instances,

different from the problem setting investigated in82,80. This makes our proposed framework

and main theorems not only technically distinct but also applicable to a wide range of en-

gineering problems in which agents can only exchange information for a limited number of

times over any given finite time interval.

We formalize our main problem as follows.

Problem 2. For fixed m ≥ 0, compute the parameters {Wij}i,j∈V, {Li}i∈V and identify the

set of state feedback gains {Ki}i∈V for which the control inputs determined by (9.3) and (9.4)

stabilize the system (9.1).

9.3 Parameter Design for State Feedback andDistributed Estimation

We present a linear matrix inequality (LMI) formulation to compute the parameters of (9.4)

that result in the stability of (9.1), and discuss the existence of a solution to the LMI formu-

lation. We start with m = 0, i.e., no linear consensus and address the general case, where

m ≥ 0, in §9.3.2.

Webegin bydefining the estimation error as x̃i(k) = x(k)− x̂i(k). Using (9.1), (9.3)-(9.5),

the state equation for x̃i(k) can be derived as follows:

x̃i(k+ 1)=(A−LiCi) x̃i(k) +
∑

j∈V BjKj
(
x̃i(k)−x̃j(k)

)
+
∑

j∈Ni
Wij

(
x̃j(k)− x̃i(k)

)
. (9.6)

In what follows, we cast (9.6) as a feedback interconnection of two components – the

control component (9.7) and estimation component (9.8) defined below – and find sufficient
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conditions for the feedback interconnectionof the twocomponents to attain the convergence

limk→∞ ∥x̃i(k)∥2 = 0, ∀i ∈ V. We will use this result to address Problem 2.

LetWij = WE
ij +WC

ij and define

ṽi(k) =
∑

j∈V BjKj(x̃i(k)− x̃j(k))−
∑

j∈Ni
WC

ij (x̃i(k)− x̃j(k)) (9.7)

x̃i(k+ 1) = (A− LiCi) x̃i(k)−
∑

j∈Ni
WE

ij(x̃i(k)− x̃j(k)) + ṽi(k). (9.8)

Note that the feedback interconnection of (9.7) and (9.8) is equivalent to (9.6). In (9.7), the

first term
∑

j∈V BjKj(x̃i(k)−x̃j(k)) denotes the difference between the control input applied

to the system and the estimate of it by agent i, and the second term
∑

j∈Ni
WC

ij (x̃i(k)− x̃j(k))

is adopted to counteract the error in the control input estimation. A simple choice ofWC
ij

isWC
ij = BjKj. However, such choice ofWC

ij would not be optimal in our formulation. In

§9.4, we present LMI-based optimization to find the best selection ofWC
ij . (9.8) is equivalent

to (9.6) except that we represent the control input estimation error term by ṽi(k) and adopt

{WE
ij}i,j∈V in place of {Wij}i,j∈V.

We use the small-gain theorem [84, Chapter 5.4] to specify conditions on the parameter

selection that ensure the convergence in (9.6). To this end, let us represent (9.8) as an LTI sys-

tem with state x̃(k) = (x̃1(k), · · · , x̃N(k)) ∈ RnN and input ṽ(k) = (ṽ1(k), · · · , ṽN(k)) ∈

RnN as follows:

x̃(k+ 1) = Ãx̃(k) + ṽ(k), (9.9)
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where Ã ∈ RnN×nN is defined as

Ã = diag(A− L1C1, · · · ,A− LNCN) +WE (9.10)

andWE is a block matrix whose i, j-th block element is

[WE]ij =


WE

ij if j ∈ Ni\{i}

−
∑

l∈Ni\{i} W
E
il if j = i

0n otherwise.

(9.11)

Also, we rewrite (9.7) as

ṽ(k) = D̃x̃(k), (9.12)

where D̃ is a block matrix whose i, j-th block element is

[D̃]ij=


−BjKj +WC

ij if j∈Ni\{i}∑
l∈V\{i} BlKl−

∑
l∈Ni\{i} W

C
il if j= i

−BjKj otherwise.

9.3.1 LMI Formulation for Parameter Design

Let G̃ be the (input-to-state) transfer functionmatrix of (9.9). As an application of the small-

gain theorem [84, Chapter 5.4], the feedback interconnection of the estimation component

(9.9) and the control component (9.12) is L2-stable if it holds that ∥G̃∥H∞∥D̃∥2 < 1.
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Adopting the bounded real lemma for discrete-time LTI systems85,86, we establish the fol-

lowing equivalence:

∥G̃∥H∞ <γ⇔



−X XÃ InN 0nN

ÃTX −X 0nN X

InN 0nN −γInN 0nN

0nN X 0nN −γInN


≺0 (9.13)

where γ is a positive real number andX ∈ RnN×nN is a symmetric andpositive-definitematrix.

In the following lemma, we provide a sufficient condition under which a solution X, γ exists

for (9.13).

Lemma 2. Suppose that there are
{
WE

ij

}
i,j∈V

, {Li}i∈V for which Ã given in (9.10) is Schur

stable. Then, a solution X = XT ≻ 0, γ > 0 exists for (9.13).

Proof. Based on [87, Lemma 5.1 (iii)] and by applying the Schur complement, (9.13) can be

equivalently expressed as

X ≺ γ2InN (9.14a)

ÃTXÃ−X+ InN−ÃTX
(
X−γ2InN

)−1 XÃ ≺ 0 (9.14b)

Note that the last term in (9.14b) goes to zero as γ tends to infinity. Since Ã is assumed to

be Schur stable, there is X=XT≻0 satisfying ÃTXÃ−X≺−InN. Consequently, the same X

satisfies (9.14) for sufficiently large γ. This completes the proof.

Remark 2. The results of76,83,75 from the distributed estimation literature address the exis-

tence of the parameters
{
WE

ij

}
i,j∈V

, {Li}i∈V for which Ã is Schur stable when the system (9.1) is
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jointly observable and the graph G is strongly connected. The result of76,83 is based on state aug-

mentation ideas and that of75 leverages the structure in the system model (9.1) and the graph

connectivity. Therefore, in conjunction with the results from those references, Lemma 2 implies

that the joint observability of (9.1) and the strong connectivity of G are sufficient for (9.13) to

have a solution.

Based onLemma 2, in the following theorem, we address Problem 2. Given γ2 > 0, define

Kγ2 = {{Ki}i∈V |A +
∑

i∈V BiKi is Schur stable,min{WC
ij }i,j∈V ∥D̃∥2 < γ2}.

Theorem 5. Suppose given parameters {WE
ij}i,j∈V, {Li}i∈V of the estimation component G̃ sat-

isfy ∥G̃∥H∞ < γ, e.g., (9.13) has a solution with the same γ. Assuming thatKγ−1 is nonempty,

for any state feedback gains {Ki}i∈V belonging toKγ−1 there is {WC
ij}i,j∈V such that the control

inputs determined by (9.3) and (9.4) stabilize the system (9.1).

Proof. Since, under the assumptions on ∥G̃∥H∞ and ∥D̃∥2, the small-gain theorem holds, we

have that limk→∞ ∥x̃(k)∥2 = 0. By applying (9.3) to (9.1a), we obtain

x(k+ 1) = (A+
∑

i∈V BiKi)x(k)−
∑

i∈V BiKix̃i(k).

SinceA+
∑

i∈V BiKi is Schur stable and the last term converges to zero as k tends to infinity,

the state x(k) converges to zero. This completes the proof.

Note that when γ in the statement of Theorem 5 is too large,Kγ−1 would be an empty set.

In other words, when the H∞-norm of the estimation component is too large, there is no

control gain that stabilizes (9.1) while satisfying the inequality min{WC
ij }i,j∈V ∥D̃∥2 < γ−1 for
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the small-gain theorem to hold. In §9.3.2, we address the effect ofm-round linear consensus

on the state feedback design. In particular, we show that with more frequent information

exchange (m large), the agents have more options to select state feedback gains that stabilize

(9.1) and satisfy the inequality condition for the small-gain theorem to hold.

9.3.2 Effect of Linear Consensus on Stability

Suppose that the agents are allowed to fuse their state estimates usingm-round linear consen-

sus (9.5) with a consensus matrix P. Without loss of generality, we assume thatm is an even

number and G is undirected (and we select P to be symmetric). Define x̃′(k) = Qm/2x̃(k)

and ṽ′(k) = Qm/2ṽ(k), whereQ = P⊗ In.§ By using (9.1), (9.3)-(9.5) and following similar

steps to obtain (9.9) and (9.12) in §9.3, we can derive the state equations for the control and

estimation components as follows:

ṽ′(k) = Qm/2D̃Qm/2x̃′(k) (9.15)

x̃′(k+ 1) = Qm/2ÃQm/2x̃′(k) + ṽ′(k) (9.16)

We refine the definition ofKγ2 as follows: Given γ2 > 0,

Kγ2,m = {{Ki}i∈V |A+
∑

i∈V BiKi is Schur stable,min{WC
ij }i,j∈V ∥Q

m/2D̃Qm/2∥2 < γ2}.

We extend Theorem 5 to the case where the agents are allowed to usem-rounds of linear

consensus.

§For oddm, we let x̃′(k)=Q⌊m/2⌋x̃(k) and ṽ′(k)=Q⌊m/2⌋ṽ(k).
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M1=


−X∗ X∗ (A−∑i∈V L∗

i Ci
)

In 0n(
A−
∑

i∈V L∗
i Ci
)T X∗ −X∗ 0n X∗

In 0n −γ∗In 0n
0n X∗ 0n −γ∗In

 , M2=


−X∗ 0n In 0n
0n −X∗ 0n X∗

In 0n −γ∗In 0n
0n X∗ 0n −γ∗In


(9.17)

Theorem 6. For any given γ2 > 0, there is m∗ ≥ 0 for whichKγ2,m is non-empty form ≥ m∗.

For sufficiently largem, we candesign parameters{Wij}i,j∈V, {Li}i∈V for which the LTI system

(9.1) is stable with any {Ki}i∈V belonging toKγ−1,m, where γ is the H∞-norm of (9.16).

Proof. Notice that since D̃(1N⊗ In) = 0 holds, ∥Qm/2D̃Qm/2∥2 converges to zero asm tends

to infinity. Alsowenote that sinceQ is a stochasticmatrix,∥Qm1/2D̃Qm1/2∥2 ≤ ∥Qm2/2D̃Qm2/2∥2

ifm1 ≥ m2. Hence, given fixed γ2 > 0, we can findm∗ for whichKγ2,m is non-empty for all

m ≥ m∗. It remains to show that for sufficiently largem, we can find {WE
ij}i,j∈V, {Li}i∈V for

which ∥G̃′∥H∞∥Qm/2D̃Qm/2∥2 < 1 holds, where G̃′ is the (input-to-state) transfer function

of (9.16).

Since the system (9.1) is jointly observable, we canfind{L∗
i }i∈V such thatA−

∑
i∈V L∗

i Ci is

Schur stable. Consider the matrixM1 defined in (9.17). Suppose that we select the matrices

{L∗
i }i∈V and a symmetric positive-definite matrix X∗ ∈ Rn×n that satisfy M1 ≺ 0 with

smallest γ∗ > 0.¶ Also we can verify that

1
N
11T ⊗M1 +

(
InN − 1

N
11T
)
⊗M2 ≺ 0 (9.18)

whereM1 andM2 are defined in (9.17).
¶By similar arguments as in Lemma 2 such matrices exist for some γ∗.

238



DefineWE
ij = PijA and Li = NL∗

i and express (9.16) as

x̃′(k+1)=(Pm+1⊗A−Qm/2L̄C̄Qm/2)x̃′(k)+ṽ′(k) (9.19)

with L̄ = diag(NL∗
1 , · · · ,NL∗

N), C̄ = diag(C1, · · · ,CN). Using the same LMI formulation

as in (9.13), but with Ã = Pm+1⊗A−Qm/2L̄C̄Qm/2 and X = IN ⊗ X∗, we have that

∥G̃′∥H∞<γ∗⇔



−X XÃ InN 0nN

ÃTX −X 0nN X

InN 0nN −γ∗InN 0nN

0nN X 0nN −γ∗InN


≺0. (9.20)

Since limm→∞ Pm/2 = limm→∞ Pm+1 = 1
N1N1

T
N, when m tends to infinity, the matrices in

(9.18) and (9.20) are identical up to permutation. With the same choice ofX∗, γ∗ as in (9.18),

the LMI (9.20) holds for sufficiently largem. Therefore, theH∞-norm of (9.19) approaches

γ∗, which is theH∞-norm of the centralized estimator, as a large number of rounds of linear

consensus is allowed. In conjunction with the fact that limm→∞ ∥Qm/2D̃Qm/2∥2 = 0, we

conclude that when m is sufficiently large, we can compute {Wij}i,j∈V, {Li}i∈V for which

∥G̃′∥H∞∥Qm/2D̃Qm/2∥2 < 1 holds for any {Ki}i∈V belonging toK(γ∗)−1,m.

Theorem6 implies thatwhen sufficiently frequent information exchange is allowed,Kγ−1,m

will be nonempty andwe can always find gains {Ki}i∈V to stabilize the system. Furthermore,

by increasingmwecandesign the parameters{Wij}i,j∈V, {Li}i∈V to allow the agents to adopt

arbitrarily large state feedback gains {Ki}i∈V.

239



9.3.3 Extension

Suppose that (9.3) consists of linear and nonlinear parts:

ui(k) = Kix̂i(k) + μi (x̂i(k)) . (9.21)

Such state feedback can be applied, for instance, to maneuver multiple vehicles as in Exam-

ple 2. The linear partKix̂i(k) canbe designed tomaintain a desired formation and the nonlin-

ear part μi(x̂i(k)) would be used, whenever necessary, for the vehicles to keep a safe distance

from obstacles nearby. In this case, we can perform the stability analysis by representing (9.4)

with the following two components:

ṽi(k) =
∑

j∈V Bj(μj(x̂i(k)) − μj(x̂j(k))) −
∑

j∈Ni
Bj(μj(x̂i(k)) − μj(x̂j(k))) (9.22)

where we assume that there is a constant γC for which ∥ṽ(k)∥2 ≤ γC∥x̃(k)∥2 holds and

x̃i(k+1)=(A−LiCi) x̃i(k)+
∑

j∈V BjKj(x̃i(k)− x̃j(k))−
∑

j∈Ni
WE

ij(x̃i(k)− x̃j(k))+ ṽi(k).

(9.23)

Note that, unlike the approach discussed in §9.3, we substituteWij(x̂j(k)−x̂i(k)) in (9.4)

with the followingnonlinear function:Wij(x̂j(k), x̂i(k))=WE
ij(x̂j(k)−̂xi(k))+Bj(μj(x̂i(k))−

μj(x̂j(k))). Also, the design of the parameters {WE
ij}i,jV, {Li}i∈V for the estimation compo-

nentwill dependon the linear part {Ki}i∈V of (9.21). In this case, the small-gain theoremcan

be used to establish the stability results as in Theorems 5 and 6 if it holds that ∥G̃∥H∞ < γ−1
C ,

where G̃ is the transfer function of (9.23).
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9.4 Simulations

9.4.1 Parameter Design

Recall that the control gains {Ki}i∈V are assumed to be given, and the key design parameters

in our framework are P,
{
WE

ij

}
i,j∈V

,
{
WC

ij

}
i,j∈V

, and {Li}i∈V. We select P to be a stochastic

matrix with smallest second eigenvalue and conforming with G to allow the agents to fuse

the estimates as fast as possible. For simplicity, we chooseWE
ij = PijA as motivated by the

approach of76.

We solve the following twooptimization formulations to compute{Li}i∈V and{WC
ij}i,j∈V

that minimize theH∞-norm of (9.16) and the 2-norm of (9.15), respectively.

minimizeγ,X,{Li}i∈V
γ (9.24)

subject to (9.20)

minimizeγ′,{WC
ij}i,j∈V

γ′ (9.25)

subject to

 γ′InN Qm/2D̃Qm/2(
Qm/2D̃Qm/2

)T γ′InN

 ≻ 0

where γ > 0, X = XT ≻ 0, andQ = P⊗ In. Note that (9.24) is a non-convex optimization.

9.4.2 Simulation Results

Consider Example 2 with N = 4 and two types of communication graphs: undirected line

and ring graphs. For each graph, we compute the parameters of (9.4) by solving (9.24) and
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Figure 9.2: Plots of the optimal value of (a) γ for the estimation component design (9.24), (b) γ′ for the control compo‐
nent design (9.25), and (c) the product γ ∗ γ′, where the critical value of 1 is drawn as a dotted line.

(9.25) form = 0, 2, 4, 6, where the state feedback gain, motivated by the centralized LQR

controller, is given by

Ki= eTi ⊗

−0.192 0 −0.284 0

0 −0.192 0 −0.284

 (9.26)

The vector ei is a canonical basis of dimension 4.

Fig. 9.2 depicts the minimal costs obtained in the optimization (9.24) and (9.25) with the

increasing number of consensus roundsm over line and ring graphs. We can observe that as

m increases, both norms of the estimation and control components decrease. In conjunc-

tion with Theorem 6, this suggests that when the agents are allowed to communicate more

frequently (whenm is large), they would have more flexibility in selecting the state feedback

gains without re-computing the parameters of the estimation strategy. We can also observe

that since the ring graph has one additional edge between agents 1 and 4, which gives the
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agents more paths over which to share state estimates, the consensus on the state estimates

takes place faster over the ring graph. Consequently, the ring graph attains smaller norms for

both components than does the line graph. Fig. 9.2(c) shows thatm ≥ 2 consensus rounds

are needed to satisfy the small-gain theorem for the control gain we select in (9.26).

With the same example, we next consider a formation control scenario: 4 vehicles move

along the x-axis at the speed of 0.2m/swhilemaintaining a line formationwhere each vehicle

is spaced a distance of 2m apart. The vehicles communicate over the line graph and vehicle 1

acts as a leader in the formation. When the leader detects an obstacle, it moves to the side to

avoid collision while the rest of the vehicles stay in the formation. We adopt (9.21) to design

nonlinear control with a different notation. We define ui(k) = ulinear
i (k) + μi (x̂i(k)) with

ulinear
i (k) = (ulinear,x

i (k), ulinear,y
i (k)) as

ulinear,x
1 (k) = −

∑
j∈V(kp(p̂x1(k)− p̂xj (k) + d1j) + kv(v̂x1(k)− v̂xj (k))) + kv(v̂x1(k)− 0.2))

ulinear,y
1 (k)=−

∑
j∈V(kp(p̂

y
1(k)−p̂yj (k))+kv(v̂

y
1(k)−v̂yj (k))) + kv(v̂

y
1(k)))

ulinear,x
i (k) = −

∑
j∈V(kp(p̂xi (k)− p̂xj (k) + dij) + kv(v̂xi (k)− v̂xj (k)))

ulinear,y
i (k)=−

∑
j∈V(kp(p̂

y
i (k)−p̂yj (k))+kv(v̂

y
i (k)−v̂yj (k)))

for i ∈ {2, 3, 4}, wheredij = 2(i−j). We select kp = 0.16 and kv = 0.3. Thiswasmotivated

by the approach in88 to achieve the desired formation control.
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Figure 9.3: Formation control withm = 4 rounds of linear consensus showing (a) trajectories in the xy‐plane, (b) vxi , and
(c) vyi of all 4 vehicles as they maintain a line formation while avoiding a stationary obstacle at (10, 0).

The nonlinear part μi = (μxi , μ
y
i ) is defined below to achieve obstacle avoidance.

μx1 (x̂(k))=0, (9.27a)

μy1 (x̂(k))=



ξ
|ξ| if ∥p̂1(k)−po(k)∥≤1

−ξ+2 ξ
|ξ| if 1<∥p̂1(k)−po(k)∥≤2

0 otherwise

(9.27b)

where ξ= p̂y1(k)−pyo(k) and μi(x̂(k)) = (0, 0), i ∈ {2, 3, 4}. We assume that the vehicles

canmeasure the location po = (pxo, p
y
o) of the obstacle. Each vehicle estimates the state of the

system based on (9.23), which includes the linear part of the state feedback in computing its

parameters.

Fig. 9.3 illustrates the simulation results on the formation control. We observe that un-

der the control ui(k), the vehicles achieve the desired line formation while maintaining the

pre-assigned velocity of 0.2 m/s along the x-axis, as illustrated in Figs. 9.3(a),9.3(b). When
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vehicle 1 approaches the stationary obstacle, it uses (9.27) to avoid colliding with it; this is

illustrated in Figs. 9.3(a),9.3(c).

9.5 Conclusions

We investigated the design of a network of agents for the estimation and control of LTI sys-

tems. Since the separation principle does not hold, the estimation and control strategies need

to be jointly designed, which involves finding a solution to a large-scale optimization. This

could be a disadvantage if the agents need to change their control strategieswithout re-solving

the optimization. We have presented LMI formulations to characterize the conditions under

which the design of estimation and control can be decoupled, and shown how the frequency

of information exchange between agents affects the establishment of the conditions. Our

simulation results illustrate an application of our framework to multi-vehicle platooning.
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