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Abstract
We discuss measures of collective intelligence in evolved and designed self-organizing ensembles, defining collective
intelligence in terms of the benefits to be gained through the exchange of information and other resources, as well as
through coordination or cooperation, in the interests of a public good. These benefits can be numerous, from estimating a
hard-to-observe cue to efficiently searching for resource. The measures should also account for costs to individuals, such as
in attention or energy, and trade-offs for the ensemble, such as the flexibility to respond to an important change in the
environment versus stability that is robust to unimportant variability. When there is a tension between the interests of the
individual and those of the group, game-theoretic considerations may affect the level of collective intelligence that can be
achieved. Models of individual rules that yield collective dynamics with multi-stable solutions provide a means to examine
and shape collective intelligence in evolved and designed systems.
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Introduction

Ensembles of individual units, in general, have the capacity
to perform better in a variety of ways than individuals on
their own, in part because individuals can share information
and other resources, they can coordinate or collaborate on
activities, and/or they have the potential for differentiation
of function, any or all of which can be leveraged in the
production or maintenance of a public good. However, for
these opportunities to be leveraged in the service of a public
good, the associated trade-offs that come from competing
demands, their costs, and the limitations of individuals,
must be well managed. Importantly, if the interests of the
individual and the ensemble are in tension, the ability of the

ensemble to maintain a public good will depend on the
ability of the individuals to cooperate.

A suitable measure of collective intelligence is thus the
difference in performance between what can be achieved by
the ensemble, and what can be achieved by individuals on their
own,when there is an accounting for the relevant trade-offs and
tensions. This measure could be the difference between all or
nothing if the emergent functionality of the ensemble is absent
for individuals, as in the case of cognition or the collective
transport of an object too large for an individual to carry alone.
Or it could be the difference in level of achievement, such as
how frequently a threat is correctly identified, or a resource is
successfully discovered, when individuals have limited sensing
and the environment is uncertain.
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Measuring collective intelligence in terms of perfor-
mance requires that performance be defined to reflect rel-
evant trade-offs and tensions. For example, when there are
multiple critical tasks to be simultaneously managed, like
identifying threats and discovering resource, and these
compete for the limited energy and attention of individuals,
performance should be defined in terms of the relative
benefits and relative costs of every task. Similarly, for an
ensemble in an uncertain or variable environment, the
measure of performance should reflect how well a balance
can be maintained between the robustness of the group’s
stability, that is, its ability to reject unimportant fluctuation
or events, and its flexibility (adaptability), that is, its ability
to respond to important signals or events, even if weak or
rare. In neural systems, this is called the stability–flexibility
dilemma (Liljenström, 2003).

In designed ensembles, in which rules for control of
individual elements can be imposed to improve perfor-
mance, the level of centralization of control is key. A
centralized approach to optimizing coordinating control is
possible when a central unit has access to all measurements
and can decide for, and direct, all the elements of the en-
semble, as in an air-traffic-control network (Gopalakrishnan
and Balakrishnan, 2021) and in the coordination of the
many actuators in an artificial hand (Matrone et al., 2010;
Piazza et al., 2019). In the centralized case, collective in-
telligence may be maximized, at least locally, subject to
tractability of the optimization problem, physical limitations
of the system, and uncertainty about the system and the
environment. However, centralization can become costly
for large-scale systems and problematic when communi-
cation between individuals and the central unit is unreliable
or the central unit experiences a failure.

In the case when centralized control is not possible or not
practical, control can instead be decentralized across the
many elements of the ensemble, and collective intelligence
can emerge from local rules much as in ensembles in bi-
ology. For decentralized ensembles, collective intelligence
is a public good, in the sense that it improves system-level
performance relative to what can be achieved by individuals
on their own. This is the case, for instance, for a team of
autonomous mobile robots (Bullo et al., 2009; Parker et al.,
2016). The team might be homogeneous, as for the con-
struction robots in (Werfel et al., 2014). Homogeneity can
provide robustness to failure since agents are inter-
changeable, and homogeneity does not preclude individuals
taking on different roles, although facilitating differentiation
may require artificial incentives. Alternatively, the team
might be heterogeneous, as for the underwater archaeology
robots of (Allotta et al., 2015), where, for instance, coor-
dination of agents with heterogeneous means of sensing,
actuation, and movement can serve the public good. In-
formation sharing, coordination, and/or cooperation
(Bizyaeva et al., 2022; Cao et al., 2013; Knorn et al., 2016;

Nedic et al., 2018; Olfati-Saber et al., 2007) will typically be
necessary for collective intelligence, for example, in adaptive
sampling of spatiotemporal processes (Paley andWolek, 2020),
explore-exploit decision-making (Kalathil et al., 2014;
Madhushani and Leonard 2019; Landgren et al., 2021), and
collective transport (Kube and Bonabeau, 2000; Farivarnejad
and Berman, 2022).

In biological ensembles, in which evolutionary forces act
to improve performance, the level of selection is key. In
evolution, differentiation of function raises game-theoretic
considerations since in general not all potential roles will
confer the same payoffs. Differentiation may thus only be
expected to occur through top-down enforcement, through
frequency-dependent stabilization of payoffs, or through
mechanisms like revenue-sharing that reward individuals
that engage in what would otherwise be lower payoffs.
When the level of selection is at the level of the ensemble, as
for example, in the evolution of brain function in which the
agents are individual neurons, one can expect that collective
intelligence will be maximized, at least in a local sense
mathematically, subject to constraints.

When the primary level of selection is at the level of
individual agents, however, the situation is different. Bird
flocks and fish schools provide examples. Collective in-
telligence in such circumstances is a public good similar to
that for decentralized ensembles in design. As is often true
for a public good in a social context, it may be the case for
evolved systems (as well as for designed systems) that the
only achievable Nash equilibria engender lower payoffs
than the social optima, although second-best solutions may
still provide improvements over what individuals might
realize on their own. Key in such cases is the emergence of
cooperation. That cooperation can take multiple forms; in
animal aggregation, for example, the issues include whether
or not to join a collective (Akçay et al., 2012; Pulliam et al.,
1982; Axelrod and Hamilton, 1981; Pulliam, 1973), as well
as matters of sharing of information (Torney et al., 2011),
coordination, collaboration, and positioning within the
aggregate (Hamilton, 1971).

We explore these and related issues in design and in
biology in the rest of this paper. We show how the same
measures of collective intelligence and the same models and
methods for understanding collective intelligence can often
be useful in both domains.

Collective intelligence and design

Collective intelligence can significantly enhance the per-
formance of technological systems comprised of many
individual units, from power grids (Liu et al., 2022), wind-
turbine farms (Shapiro et al., 2022), and industrial process
control (Christofides et al., 2013), to air traffic control
(Gopalakrishnan and Balakrishnan, 2021) and teams of
autonomous robotic vehicles (Bullo et al., 2009; Parker et al.,
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2016). Teams of robots have enormous potential to address
challenging problems in complex environments. Already,
they are being deployed, often in collaboration with human
partners, in a broad range of settings, including to search and
remediate a polluted environment (Zahugi et al., 2012),
identify and extinguish forest fires (Marjovi et al., 2009),
monitor animal populations and their habitats (Park et al.,
2019a), and provide search and rescue (Murphy et al., 2008;
Queralta et al., 2020).

Level of centralization of control

Ideally, in design, an omniscient, centralized decision-
making unit could solve for an evolving optimal solution
for the system as a whole and direct the actions of each
individual agent over time. This is the case in air-traffic-
control systems where centralization is critical
(Gopalakrishnan and Balakrishnan, 2021). However, in a
great many applications, a centralized controller is often
neither practical nor desirable. For a team of robots dis-
tributed in an uncertain environment, on land, in the ocean,
or in the air, where sensing, communication, and energy are
limited, relying on a single orchestrating unit may introduce
delays and inaccuracies and compromise robustness to
uncertainty and malfunction.

Instead, in the decentralized setting where individuals
have agency but may have limited (e.g., only local) access to
information about the environment and others in the group,
each individual agent should make its own decisions in
response to what it observes about the environment and
what it learns from others. Learning about others could be
acquired directly, for example, by sensing the activities of
nearby neighbors or sharing information over a commu-
nication network, or it could be acquired indirectly, for
example, through observing the influence of others on the
environment. There is a large and growing literature
(Bizyaeva et al., 2022; Bullo et al., 2009; Cao et al., 2013;
Christofides et al., 2013; Knorn et al., 2016; Nedic et al.,
2018; Olfati-Saber et al., 2007; Zhang et al., 2021) on
design methodologies for decentralized groups that provide
rules that individual agents should follow to make their own
choices on-the-fly that account for environmental cues and
the reward, state, and/or action of other agents, in the service
of a system-level goal. Such a goal might be fast, accurate,
and reliable estimation of a process from noisy measure-
ments, coverage or search over a spatially distributed re-
source, decision-making among alternative options or
strategies, dynamic allocation across tasks, synchronization
of oscillatory activity, or stabilization of motion patterns and
formations.

These design methodologies come with guarantees on
group-level (and individual-level) performance, for exam-
ple, accuracy, efficiency, and reliability, as a function of
parameters that characterize the environment, such as

likelihood of an event, magnitude of uncertainty, or vari-
ability in resource landscape, as well as parameters that
characterize the system, such as number of agents, differ-
ences among agents, and inter-agent network structure, that
is, who is sensing or communicating with whom. The
guarantees are derived from mathematical analyses of the
influence of these parameters on the evolving behavior,
possibly across multiple scales.

The analytical results can be further used to sys-
tematically formulate rules for individuals to adjust
parameters (like dials) inside their behavioral response
rules so that the system as a whole adapts as circum-
stances change. Formulating rules and guarantees can be
done using mathematical models, and especially those
that also help explain how biological groups adapt to
changing environments, such as the harvester ants that
regulate their foraging in response to changes in tem-
perature and humidity in the desert (Gordon, 2013;
Pagliara et al., 2018). In the multi-agent dynamic
opinion model of Bizyaeva et al. (2022), discussed
further in Recent models for explaining and shaping
collective intelligence in biology and design, a rule is
designed for the individual to modulate its attention
(susceptibility) to the opinions of others, in response to
its observations of how others are changing their en-
gagement in the opinion-forming process. The analysis
shows how parameters in this rule can be used to tune the
sensitivity of the collective response to an external
stimulus, that is, to adjust implicit thresholds that de-
termine how large in magnitude or long-lasting an ex-
ternal stimulus detected by one or more individuals will
need to be to elicit a group response.

Example: Decentralized estimation and learning
of an environmental signal

The decentralized estimation problem (Speyer, 1979;
Olfati-Saber, 2005; Spanos et al., 2005; Carli et al.,
2008; Park and Martins, 2017; Nedić et al., 2018) il-
lustrates well how an ensemble of individuals that share
information, even in a limited capacity, can outperform
those same individuals acting independently, in their
ability to estimate a multi-dimensional signal from noisy
measurements. The estimate for each individual in the
ensemble will be more accurate because of what it learns
from others; and even if it only measures part of the
signal, it can still achieve an accurate estimate of the full
signal, something it could not do on its own. Decen-
tralized estimation is foundational for a variety of
problems, like opinion-forming for decision-making in
groups (Bizyaeva et al., 2022), when individuals may
otherwise, on their own, know little about some of the
options. The decentralized estimation problem also il-
lustrates how a decentralized approach can be as good as
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a centralized approach, but without the costs of
centralization.

Consider the case in which each individual agent
takes a noisy measurement, regularly over time t, of
some part of a multi-dimensional signal x, which rep-
resents stimuli in the environment that evolve over time t
according to a known linear dynamic process. Assume
that together the individuals measure the full signal x.
When the agents act independently, each can filter its
own noisy measurements using a Kalman filter
(Anderson and Moore, 1979) to get the most accurate
estimate of x, at least in part, given what it has measured.
If, instead, there were a central unit with access to the
noisy measurements from all the agents, a Kalman filter
of the pooled measurements would provide an estimate
of x in full and more accurate than what any individual
could do on its own.

In the decentralized case, to recover the improved ac-
curacy and full estimate achieved in the centralized case,
the centralized pooling of information can be replaced by
the limited sharing of information over a communication
network. In the approach of Olfati-Saber (2005), agents
may only be able to share with a small number of other
agents, but the result is guaranteed as long as the com-
munication network is connected, that is, there is a path
through the network between every pair of agents, and
communication updates are sufficiently frequent. In this
approach, each agent performs its own local Kalman filter
and leverages the fusing of measurements and uncer-
tainties obtained from a consensus filter, which is a process
of averaging information over the network through indi-
vidual communication updates. Spanos et al. (2005)
showed how the rate of convergence of the estimate de-
pends on the network structure. The approach of Olfati-
Saber (2005) has been generalized in various ways, in-
cluding to reduce the computational complexity of the
distributed estimation algorithm for large-scale systems
with a very high-dimensional signal x (Khan and Moura,
2008) and to reduce the costs of frequent information
sharing in networks with a large number of nodes (Park
and Martins, 2017).

In a related decentralized problem, individuals share
information over a network so that they all learn about an
environmental signal, such as a route to be tracked or the
direction of an approaching threat, with the difference being
that only a small number of individuals can take mea-
surements of the signal. The individuals that do not sense
the signal rely on noisy observations of, or communication
with, some of the others (their neighbors in the network).
How accurately the group learns the signal depends on
where in the network the individuals are that sense the
signal—the best choice of the individuals that do the sensing
is the solution of an optimization problem (Patterson and
Bamieh, 2010; Clark et al., 2014; Lin et al., 2014). In Fitch

and Leonard (2016), it was shown that the individual with
the highest “information centrality,” a measure derived from
the network structure alone, is the optimal choice for a
single sensing agent, and a measure of “joint centrality”
determines the optimal choice for more than one sensing
agent. If the network structure is not known, and any agent
could in principle participate in the sensing, then in the
decentralized setting, rules would be defined based on local
information for individuals to determine if they should turn
on their sensor. Or, if only a fixed subset of agents has
sensing capability, then agents should have rules, which
depend on local information, to change network connec-
tions so that these agents become more central, much like
local rules designed to ensure network connectivity (Ando
et al., 1999; Bullo et al., 2009) or to maximize robustness
(Young et al., 2011).

Measures of collective intelligence

A suitable measure of collective intelligence in multi-
agent technological systems, as in the case of ensembles
of organisms, is the difference in performance between
what can be achieved by the group of individual agents,
and what can be achieved by the individuals on their own,
where performance accounts for trade-offs and tensions. A
related useful measure is the difference in performance
between what can be achieved by the system when there is
centralization and what can be achieved with decentral-
ization. It then becomes a matter of defining measures of
performance, which will depend on objectives and
context.

An important problem for collective intelligence in
decentralized multi-agent systems is in the coordinated
monitoring of spatiotemporal processes (Paley and Wolek,
2020), such as pollution, forest fires, and animal pop-
ulations. Fundamental to this problem is the distributed
positioning of the agents so that they “cover” the region of
interest (Cortes et al., 2004). Let q be a location in the
region, pi the location of agent i and d(q,pi) the distance
between q and pi. A larger distance d(q,pi) implies a greater
degradation in the ability of agent i to monitor location q.
Suppose that the information or probability of an event is
uniformly distributed over the region. Then, a measure of
coverage is the sum of the d(q,pi) over all locations q and all
agents i; the measure can be modified for nonuniform
distributions by weighting the distance to q by the value of
the distribution at q (Cortes et al., 2004) or a nonuniform
distance metric can be applied (Lekien and Leonard, 2009).
The optimal coverage problem is then to solve for the
positions of the agents pi that minimize the coverage metric,
that is, that minimize the distances between agents and
locations in the region. A uniformly (nonuniformly) dis-
tributed resource will yield a uniform (nonuniform) dis-
tribution of agents. In the decentralized approach of Cortes
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et al. (2004), the optimal solution is achieved on-the-fly if
each agent moves to the centroid of the domain comprised
of locations q closest to it. Each agent can determine its
“domain of dominance” merely from observations of the
relative locations of its nearest neighbors.

In the related problem of adaptive sampling, such as a
team of mobile robot sensors mapping the temperature,
salinity, or concentration of pollutant over a fixed volume of
the ocean, the goal is for the agents to move so that the
samples (measurements) they take along the way minimize
the uncertainty in the system-wide map over time and space
(Leonard et al., 2007). The measure of uncertainty, which is
inversely related to a measure of information in the data
collected, can be defined much like the coverage metric.
Because uncertainty decreases at the location where a
sample is taken, the agent should move away from that
location once it has taken the sample. If the field to be
mapped changes over time, the uncertainty will grow back
over time at any location that has been sampled and an agent
will need to come back to that location after some time.
Local rules that keep agents distributed over time and space,
consistent with the temporal and spatial scales of the dis-
tributed field, minimize the uncertainty metric (and thereby
maximize the information metric). In a field demonstration
of a network of autonomous underwater gliders mapping
temperature and salinity (Leonard et al., 2010), the de-
centralized rules for stabilizing motion patterns of agents
over time and space (Sepulchre et al., 2007, 2008), to be
consistent with the spatial and temporal scales of temper-
ature distribution, derive from an extension of coupled
oscillator dynamics.

In these coverage and mapping problems, collective
intelligence helps ensure performance even as conditions
change. For instance, in the adaptive sampling problem, if a
robot is removed, the remaining robots should move to fill in
the gap without sacrificing too much data elsewhere.
Collective actions such as these are not easily accomplished
by agents on their own, notably because of the lack of
coordination. The metric provides a means to evaluate how
well the robots manage their collective actions.

When agents monitor an uncertain environment in search
of resource or reward, for example, robots finding and
remediating pollutant, their collective intelligence can be
measured by how well they jointly manage the explore-
versus-exploit trade-off (Robbins, 1952). Exploiting is
sampling a patch known to yield high reward. Exploring is
sampling to find and utilize an unknown patch that might
yield even higher reward. The most rewarding exploitation
requires sufficient exploration, but too much exploration
can slow down accumulation of reward. There is a vast
literature on the multi-armed bandit (MAB) problem, which
provides a mathematical formulation of the explore-exploit
problem for a single decision-maker (Lai and Robbins,
1985; Auer et al., 2002). Kaufmann et al. (2012)

introduced the Bayesian MAB, where the decision-
maker might have priors and use these in its decision-
making according to Bayes’ rule. Reverdy et al. (2014)
extended this to a Bayesian decision-maker that uses a
soft-max (stochastic) decision rule for exploration with a
cooling schedule that tunes the amount of stochasticity
(like simulated annealing) and incurs costs for switching
from one patch to another. In Reverdy et al. (2017), the
decision-maker addresses an objective function that sat-
isfices rather than maximizes reward. Hills et al. (2015)
provide a review of the explore-exploit trade-off in a wide
diversity of contexts, from memory search to cultural
innovation.

In theMAB problem, performance is measured by regret,
which is the loss in reward that comes with sampling a
suboptimal rather than an optimal option. So, for a group,
minimizing the sum of each agent’s cumulative regret is
equivalent to maximizing the total cumulative reward. An
individual can be deployed to minimize its own accumu-
lated regret. However, collective intelligence is needed for
the agents to minimize total regret, for example, by sharing
information to learn the environment better or taking on
different roles to leverage differences in their capabilities or
location in the network. Total cumulative regret is a measure
of collective intelligence that provides a means to evaluate
how well the agents manage their collective decisions. The
measure can be augmented to include costs of communi-
cation (Madhushani and Leonard, 2020a).

To investigate the opportunities for collective intelli-
gence in a group of explore-exploit decision-makers, the
MAB has been derived for multiple decentralized agents
that are faced with the same explore-exploit problem and
seek to maximize their accumulation of reward, but take
advantage of what they can learn from others. In
Anandkumar et al. (2011); Gai and Krishnamachari (2014);
Kalathil et al. (2014), the agents do not communicate but
rather learn from others indirectly, such as when reward at
an option is reduced because others have selected the same
option. In Landgren et al. (2016, 2021); Martı́ nez-Rubio
et al. (2019), agents can share estimates through a com-
munication network, whereas in Chakraborty et al., 2017;
Kolla et al., 2018; Madhushani and Leonard, 2019, 2020a,
2021, agents can only observe the choices and value of
rewards received by their neighbors. Analytical results
include a derivation of explore-exploit centrality measures
(Landgren et al., 2016, 2021), based solely on network
structure, that predict which network structures yield lower
total regret and which individuals obtain lower regret by
virtue of their location in the network. For stochastic in-
teractions, agents that frequently observe neighbors do well
if those neighbors make infrequent observations of others
since then the neighbors do a lot of exploring, which
benefits those who observe them (Madhushani and Leonard,
2019).
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Other measures of collective intelligence are likewise
defined in case of other objectives, trade-offs, costs, and
benefits. Costs associated with risks to safety, energy
consumption, computation, and communication can be
included in general as warranted.When a group is to quickly
and efficiently coordinate decision-making or actions to
carry out a task together, performance, and thus collective
intelligence, can be measured by how well the group
manages the trade-off between speed and accuracy in the
accomplishment of the task. The speed-versus-accuracy
trade-off for collective decision-making in decentralized
systems, and the influence of network structure, has been
studied in, for example, Srivastava and Leonard (2014);
Valentini et al. (2016).

For systems operating in a complex, changing envi-
ronment, it can be critical for agents to manage the trade-off
between being robustly stable to unimportant fluctuations,
disturbances, and false-positives and responsive and
adaptable to important environmental cues, even if they are
weak or rare. The trade-off between robustness and
adaptability is fundamental to many fields, including control
and decision-making (Bizyaeva et al., 2022) and on-line
learning (Fukushima et al., 2021); in neural systems, it is
called the stability–flexibility dilemma (Liljenström, 2003).
Collective intelligence for managing this trade-off can be
measured in various ways. Zhong et al. (2021) study how a
group of agents responds to an external stimulus, when
agents share information over multiple network layers, each
representing a different sensing modality, and when they
differ in how readily they react. The trade-off is measured as
the difference between the benefit of responding to true-
positives and the cost of responding to false-positives. The
methodology determines where in the given multi-layer
network to locate more readily responsive individuals
and where to locate less readily responsive individuals so
that at the level of the group the measure is optimized
(Zhong et al., 2021).

Cooperation and coordination

That agents have rules that enable them to come to a
mutually cooperative or coordinated solution is often a
critical part of collective intelligence, and especially so in
the decentralized setting where agents do not have access to
full information about the system, and may have conflicting
individual goals, such as when each has its own rewarding
task that it can do on its own (Fisac et al., 2019; Marden and
Shamma, 2018; Menache and Ozdaglar, 2011; Parise and
Ozdaglar, 2021). The rules that govern the actions of agents
may derive from objective functions that make them look
much like a biological system with selection at the level of
the individual with strategies that evolve over time. An
important difference is the opportunity in design to impose
coordination or cooperation, for example, by facilitating

explicit communication among agents or context-dependent
“altruism,” such as when an agent that communicates with a
large number of other agents is incentivized to do more
exploring for the benefit of the group at a cost to its own
reward (Madhushani and Leonard, 2021). This has a strong
analogy with similar trade-offs in animal behavior. The
design problem becomes more challenging when designed
agents partner with people (Dresner and Stone, 2008;
Mirsky et al., 2021; Nikolaidis et al., 2017), for example, in
human–robot interactive tasks such as on a construction site,
and the robots need rules to elicit cooperation or coordinated
responses from their human partners.

A useful measure of collective intelligence in these
contexts is the size of the region of attraction of the dy-
namics to a mutually cooperative or coordinated solution
that benefits individuals and/or yields the highest payoff to
the group. The region of attraction of an equilibrium is the
set of all initial conditions that lead the system to converge
over time to the equilibrium. The larger is the region of
attraction for the cooperative or coordinated solution the
more likely it is that the agents will converge on that so-
lution. How local rules of response and interaction tune this
region of attraction is a focus of the derivations and in-
vestigations of the analytically tractable model of multi-
agent opinion dynamics presented in (Bizyaeva et al.,
2022), which is discussed further in Recent models for
explaining and shaping collective intelligence in biology
and design.

In the model of Bizyaeva et al. (2022), individuals use a
nonlinear rule for updating their opinions in response to
observations of their neighbors’ opinions. This nonline-
arity allows for the emergence of multi-stability-that is,
more than one equilibrium is stable for the same set of
parameter values. There can be multi-stability of the
equilibria corresponding to all agents agreeing on one of
the available options as the preferred option. This is useful
for consensus decision-making since if there is no evi-
dence to distinguish options, the agents will randomly
select one option to agree on, rather than getting stuck in a
deadlock about which to choose. And if there is evidence
or internal bias that distinguishes one option over the
others, the agents will agree on that option. Likewise, there
can be multi-stability of the equilibria corresponding to
disagreement among agents as to which options they
prefer. This can be useful for task allocation since agents
will distribute themselves over the tasks whether or not
there is evidence or internal biases to help distinguish
which agents should attend to which tasks (Franci et al.,
2021).

The multi-stability emerges when the level of attention
individuals pay to the opinions of others grows above a
critical threshold. The relative size of the region of attraction
for each of the stable solutions can be shaped by design
parameters (dials), including relative attention levels,
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network structure, and individual differences in response,
such as whether an individual is attracted to, or repelled
from, the opinions of its neighbors.

These nonlinear opinion dynamics and the opportunity to
shape and grow the region of attraction of a coordinated or
cooperative solution has been recently studied in the context
of multi-agent games, when the game is repeated over time
and there is the opportunity for agents to observe the
opinions (strategies) of at least some of their opponents
(Park et al., 2022). The approach addresses social dilemmas
like the prisoner’s dilemma and the public goods game, in
which a sufficient level of cooperation is necessary for a
rewarding outcome for all and avoidance of the non-
cooperative Nash equilibrium, which, in the public goods
game corresponds to no individual making an investment.
The approach also addresses coordination problems like the
stag-hunt game and the battle-of-the-sexes, where the
payoff-dominant coordinated solution may by risky and/or
have a small region of attraction.

In the dynamic modeling approach of Park et al. (2022),
strategies are options and an agent’s relative opinions about
those options map to mixed strategies. The opinion update
rule, which is driven by payoffs, and by observations of the
opinions of others, can be shown to provide reciprocity,
functioning much like a Tit-for-Tat strategy, which is well-
known to lead to mutual cooperation (Axelrod, 1984). In
games like the prisoner’s dilemma and the public goods
game, where mutual defection is the only Nash equilibrium,
it is shown in (Park et al., 2022) how mutual cooperation
emerges in the model as a second stable equilibrium for
large enough attention to others and how the region of
attraction to mutual cooperation grows with growing at-
tention. Similarly, in coordination games, the region of
attraction of coordination increases with increasing atten-
tion and other parameters. The level of an individual’s at-
tention can be interpreted as its expectation of the durability
of the interactions, well-known to be a key determinant of
cooperative behavior (Axelrod, 1984). For multiple agents
making observations over a network, for example, in the
public goods game, it is shown analytically how the network
structure, that is, who is paying attention to the opinions/
strategies of whom, can be varied to modify the region of
attraction of a mutually cooperative solution (Park et al.,
2022).

Cooperation can be designed to improve system-level
performance, but it can introduce costs, such as those
associated with communication. There are also sce-
narios in which information-sharing can diminish
system-level performance, for example, when explora-
tion is hampered by too much information-sharing about
optimal options (Madhushani and Leonard, 2020b). And
there are scenarios in which too much imposed altruism
can lead to a deadlock, for example, when a set of mobile
robots, driven by their individual objective functions,

find themselves headed for a collision and so they come
to a stop. Thus, the most useful measures of collective
intelligence account not only for the benefits of coop-
eration, but also for its costs, including hesitancy and
deadlock. Deadlock (indecision) is overcome in
(Bizyaeva et al., 2022), even if there is no evidence or
bias to distinguish options, when the attention indi-
viduals pay to others in the group exceeds a critical
threshold. The mechanism is inspired by the collective
behavior of house hunting honeybees (Seeley et al.,
2012; Pais et al., 2013) and animal groups on the move
(Couzin et al., 2005; Nabet et al., 2009; Leonard et al., 2012).

Collective intelligence and biology

Collective intelligence is observed in biological en-
sembles at all scales wherein the group performs better
than what individuals can do on their own. When
evolutionary forces act to improve performance, the
level of selection is key.

Emergence and levels of selection

Even in the ontogenetic development of an organism,
natural selection must operate on the rules that guide
development, rather than printing out end products ac-
cording to blueprints; hence, errors and multiple end re-
sults are possible. Theories of development thus focus on
how local rules of interaction can give rise to global
patterns, and the influence of the local context on devel-
opment (Turing, 1952; Waddington, 1957; Wolpert, 1969).
Waddington’s developmental landscape makes clear that,
at the level of individual cells and tissues, there are de-
cision points that determine the future fate of the tissue
among alternative pathways; but there are higher-order
constraints that regulate the relative proportions of dif-
ferent kinds of end-products, such as organs and ap-
pendages. There is differentiation of function among the
genetically identical cells.

For ensembles of genetically distinct individuals, the
individual agents are likely to respond more selfishly to
payoffs, and hence, the collective performance will
suffer. With the possible exception of selection acting on
groups of genetically related individuals, such as the
social insects (Hamilton, 1964, 1964b), natural selection
for group performance will in general be weaker than
selection for individual performance; nonetheless, for
example, through reciprocal altruism, individual se-
lection should favor behaviors, such as the tendency to
cooperate with others, that will ultimately improve in-
dividual fitness. Collective intelligence and other col-
lective properties can then emerge from those individual
interactions, just as in the development of an individual
organism from the behaviors of its cells; but top-down
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constraints are likely to be looser in such cases than for
individual development, and the potential for alternative
outcomes greater.

Collective intelligence and selection at the
system level

In the development of an organism, local rules give rise to
global patterns. Those global patterns are the objective
functions of natural selection, which must shape the global
patterns by shaping the local rules. Much like in adaptive
control (Åström and Wittenmark, 1995), opinion dynamics
with time-varying attention (Bizyaeva et al., 2022), and
other forms of iterated learning in artificial systems, where
feedback laws are updated over time, local rules that give
rise to more favorable outcomes are reinforced over evo-
lutionary time, gradually improving the eventual outcome
and making the ontogenetic process more reliable. In this
way, reliable systems are built, involving cooperation
among individual units, as for example, in brain function.
System-level selection hence can impose local rules, though
these are not in general uniquely determined.

Kauffman and Levin (Kauffman & Levin, 1987) illus-
trate this point by imitating an evolutionary dynamic to
solve the traveling salesman problem, rewarding mutations
and rearrangements that lead to shorter paths, and show that
the dynamic can find any of multiple local optima; mech-
anisms analogous to simulated annealing or stochastic
resonance (Levin and Miller, 1996; Gammaitoni et al.,
1998) may allow more favorable optima to be found, but
no guarantee of global optimality exists. In biological
evolution, the number of such local optima may be very
large, encompassing the rich diversity of ways organisms
solve similar problems. Given sufficient geographical iso-
lation, different outcomes may be realized in distinct areas,
though species invasions, for example, due to the activities
of humans can lead to displacement of the resident species,
often because of the absence of the natural enemies of the
invaders. Economists and political scientists explore similar
phenomena, called Tiebout migration (Tiebout, 1956), in
which individuals move among communities to select those
most aligned with their preferences. In both cases, the global
optimum may never be reached, especially if the differences
in benefits realized among local optima are small.

This process is fundamentally different from say the
emergence of trophic networks, nutrient cycling, or other
system-level properties of ecosystems. In these cases, the
primary selective pressures are at levels below the whole
system, and the study of the emergence of cooperation, for
example, in the maintenance of public goods such as critical
nutrients, requires a game-theoretic approach rather than
optimization. One can of course ask what the collective
optimum would be, but one should expect the realized level
of cooperation to result in something short of that optimum.

As an example, plants in a forest compete as well as co-
operate through their above- and below-ground branching
structures, sharing nutrients through biogeochemical cy-
cling, while competing through shading, root grafting, and
allelochemics. These considerations apply as well to the
situations discussed in the previous paragraph, once it is
recognized that the movements of individuals among lo-
calities alters the distribution of fitnesses or utilities, due to
density or frequency effects, as in the El Farol problem
(Arthur, 1994). This means that in these cases as well,
optimization considerations must give way to ones couched
in game theory, including modern advances in the theory of
mean-field games (Lasry and Lions, 2006; Guéant et al.,
2011; Nourian et al., 2011; Huang et al., 2010).

Thus, in any ecological community, intelligence can be
measured at various levels. Most species could not survive
without “collective intelligence” as manifest though co-
evolutionary processes. Indeed, collective intelligence is not
limited to multispecies assemblages, but perhaps is even
more obvious within species. Bacteria rely on “quorum
sensing” to form biofilms, producing extracellular polymers
that provide signals of abundance, and matrices for growth
(Miller and Bassler, 2001; Nadell et al., 2008b; Drescher
et al., 2014). Producing those polymers is costly, but es-
sential for biofilm formation, introducing game-theoretic
issues (Nadell et al., 2008a). Similar trade-offs can be found
at all levels of biological organization, including especially
aggregations of animals from insects to bird flocks and fish
schools (Levin, 2014). We turn to consideration of such
assemblages in the next section.

Collective intelligence and selection at the
individual level

A wide range of animals live and move in groups, at least
some of the time, even when selection is at the level of the
individual (Parrish and Hammer, 1997; Krause and Ruxton,
2002; Sumpter, 2010). This implies that even a self-
interested individual can benefit more from being part of
the group than it could on its own (Pulliam, 1973). Groups
of socially interacting individuals can do better than solitary
individuals in various ways, including, for example, in
maintaining vigilance for predators, foraging for food,
migrating, conserving energy, heat, and water, searching for
a mate, and reducing risk (Krause and Ruxton, 2002). That
animals living in groups often manage all of these tasks and
others, despite the trade-offs that arise from limited re-
sources, for example, to search for predators versus to
search for food (Rubenstein, 1978), provides evidence for a
high level of collective intelligence.

However, the collective intelligence that makes group
advantage possible can also impose costs on individuals.
For example, the cohesive movement of a group is enabled
only if individuals in the group invest effort in observing
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the relative motion of their neighbors. Typically, there is
uncertainty in the observations and in the decisions the
animals make in response to what they observe. Cohe-
siveness of the group is more robust to uncertainty when
individuals observe a greater number of neighbors, but
this comes at a greater cost to the individuals. Costs can
be expected to increase in more complex systems, where
managing uncertainty in maintaining cohesiveness is
just one of many critical tasks to be accomplished. In
aggregations with regular arrangement, these costs may
be uniformly distributed, as in the synchronized
movement of a starling flock, where it has been argued
that each starling pays attention to the same number (six
or seven) of its nearest neighbors, independent of flock
density (Ballerini et al., 2008; Bialek et al., 2012), at
least under specific conditions. Yet even if the cost is the
same for each individual, when selection is at the individual
level, an exhibited collective intelligence suggests that the
benefit to the individual from being part of the group out-
weighs the cost.

The data collected on starling flocks (Ballerini et al.,
2008), moving in the absence of a threat, were analyzed in
(Young et al., 2013) using an analytically tractable math-
ematical model of consensus-forming under uncertainty.
The goal was to investigate the role of number of nearest
neighbors attended to by each starling in the trade-off be-
tween the benefit to the flock in robustness to uncertainty
and the cost to the individual in effort. A useful measure of
collective intelligence, which accounts for the benefit and
cost in this setting, is the per-neighbor contribution of an
average bird in the flock to the robustness to uncertainty in
the cohesiveness of the flock’s motion. This can be in-
terpreted as a public-goods game where robust cohesiveness
of the group is the public good. Young et al. (2013) showed
for the measured positions of between 440 and 2600
starlings in each of nearly 400 datasets, assuming each bird
pays attention to the same number of nearest neighbors, that
this measure of collective intelligence is maximized when
that number is six or seven, the same number found by
Ballerini et al. (2008).

While robustness to uncertainty benefits the group, too
much of it can negatively impact the benefits of other kinds
of collective intelligence, notably the ability of the group
to respond rapidly to new environmental cues such as the
detection of a predator or the discovery of a high-quality
food source. This is much like the stability–flexibility
dilemma of neural systems as discussed in Collective
intelligence and design, although it can also be formulated
as an explore-exploit trade-off (Cohen et al., 2007). For
example, the number of neighbors attended to by each
individual in the group for maximal robustness of cohe-
siveness (stability) to uncertainty may limit the flexibility
needed for individuals and the group as a whole to be
responsive to an environmental cue. Using an evolutionary

dynamic model with fitness defined at the level of the
individual, Brush et al. (2016) showed how context matters
in the evolution of individual behaviors, such as the
number of neighbors attended to by individuals, and the
balance of different kinds of collective intelligence. They
show that the emergent optimal number of neighbors
tracked varies greatly with the task at hand, for example,
from foraging to predator avoidance or defense.

There are also costs to those individuals in the group that
invest in the environmental cue, for example, in sensing the
predator, identifying the migration route, or finding the
high-quality patch of food. All members of a socially in-
teracting group benefit when their collective intelligence
yields effective group-level anti-predator vigilance, mi-
gration, and foraging. Yet, to achieve a level of collective
intelligence that yields net reward, at least some of the (self-
interested) individuals should invest in the cue rather than
free-ride. The trade-off can be represented by the public
goods game, as discussed in Cooperation and coordination.
The problem is also closely related to the collective learning
of an environmental signal discussed in Example: Decen-
tralized estimation and learning of an environmental signal.

Observations of collective intelligence of animal groups
in the wild tell us that this kind of cooperation exists. Just
how much cooperation there is depends on environmental
conditions. For example, how many individuals interrupt
their feeding to scan for threats can depend on group size as
well as on the abundance of food and the extent of obstacles
to vigilance found in the group’s habitat; see, for example,
for birds (Beauchamp, 2008), Mongolian gazelle (Zhang
et al., 2018), and plains zebra (Chen et al., 2021).

Likewise, the influence of environmental conditions on
the evolution of collective migration of socially interacting
groups in motion and the strategies individuals adopt for
acquiring information were studied using numerical sim-
ulations in (Guttal and Couzin, 2010) and analytically
tractable mathematical models in (Torney et al., 2010) and
(Pais and Leonard, 2014). In these works, specialization of
the migrating population into those that invest in the en-
vironmental cue and those that rely on social cues was
shown to be a stable evolutionary outcome, meaning that it
resists invasion by more exploitative strategies. But this
kind of collective intelligence is fragile, which can be re-
lated to the sensitivity to environmental conditions of the
size of the region of attraction for the cooperative solution.
When costs are too high, that is, in a fragmented envi-
ronment, there may not be enough individual investment in
the cue and the group will lose the ability to migrate. Even
worse, the models predict a hysteretic effect in the loss and
recovery of migration ability (Pais and Leonard, 2014), that
is, recovery requires a reduction of costs below the point at
which migration ability was lost.

In an examination of cooperation in foraging populations
(Torney et al., 2011), it was shown how a form of reciprocity
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among communicating individuals, in which some individ-
uals cooperatively signal to others when they find a resource,
is an evolutionary stable solution for certain distributions of
resource in the environment. The multi-agent multi-armed
bandit framework, described in Measures of collective in-
telligence, has been defined and used to study social foraging,
and the social explore-exploit trade-off more generally, when
individuals are self-interested but cooperate through the
sharing of information (Chakraborty et al., 2017; Kolla et al.,
2018; Landgren et al., 2016, 2021, Madhushani and Leonard,
2019, 2020a, 2021; Mart́ınez-Rubio et al., 2019). For ex-
ample, Madhushani and Leonard (2020a) showed how dy-
namic signaling strategies can provide low-cost improvement
to collective foraging.

The measure of collective intelligence is closely related
to the question of whether individuals should join a group,
and the related question of how any excess benefits to
individuals in a group should be apportioned among the
members. The simplest manifestation of this puzzle is that
of two individuals, who must decide whether to cooperate in
carrying out a task, or go it alone (Akçay et al., 2012). More
broadly, however, this raises the issue of what constitutes an
optimal group size (Hamilton, 1971; Brown, 1982; Pulliam
and Caraco, 1984), a key trade-off being the possible
conflict between the fitness advantages to an individual if it
joins the group and the possible negative implications for
current members of the group.

Transformational evolution, cultural evolution, and
emergence of collective intelligence

The most familiar and robust mechanism shaping be-
haviors is evolution through natural selection operating on
individuals, but cultural group selection is sometimes
claimed as a complementary mechanism that selects for
operative behaviors (Wilson and Wilson, 2007). Extreme
care must be exercised in invoking such arguments to the
extent that they rely upon genotypic mechanisms, because
selection is much stronger at levels below the groups to
which individuals belong, and because the lack of group
integrity can easily undermine selection for group prop-
erties (Maynard Smith, 1974; Maynard Smith and Warren,
1982). However, transformational evolution (Lewontin,
1977, 1978, 1985), similar to what Lenton calls sequen-
tial selection (Lenton et al., 2018), can also affect what we
observe in Nature. This is not evolution in the traditional
sense of fitter agents leaving more offspring that carry their
genes, but rather a filtering process over ecological time, in
which units (like cultural groups) with favorable properties
will last longer, and are thus more likely to be observed
(Levin, 1999). In that collective intelligence can confer
collective benefits to group members, we can expect that it
may also emerge through a transformational process. The
importance of group selection in cultural evolution

remains one of the most debated in evolutionary biology
because of disagreement about the strength of selection
processes at the group level (Fracchia and Lewontin, 1999)
and is beyond the scope of this paper.

Recent models for explaining and shaping
collective intelligence in biology and design

Measuring and assessing collective intelligence in both
natural and technological groups requires a deep under-
standing of local rules, how they may evolve, how they can
enable different kinds of global patterns, and how they may
address the many trade-offs that arise both for the individual
and for the group. Mathematical models of local rules that
define the interactions of individuals with one another, and
with the external environment, have proved enormously
useful in uncovering principled explanations for collective
intelligence and testable predictions for the sensitivity of
collective intelligence to differentiation among individuals
and possibly changing environmental conditions, and
means for actively shaping collective intelligence; see, for
example, Couzin et al. (2005); Sumpter (2010); Bialek et al.,
2012; Seeley et al., 2012; Leonard (2014); Pagliara et al.
(2018); Marden et al. (2009); Acemoglu and Ozdaglar
(2011); Jia et al. (2015); and Ye et al. (2021).

Models well suited to this agenda allow for a wide range
of alternative outcomes and the possibility for rapid and
reliable collective response to even very weak stimuli or
asymmetry. One such model, introduced in Collective in-
telligence and design, is given by the nonlinear multi-agent,
multi-option opinion dynamics defined and studied in
(Bizyaeva et al., 2022). This model, inspired in part by
biophysical models of neuronal networks (Wilson and
Cowan, 1972; Hopfield, 1982), supports multiple spatial
and temporal scales, complex network interconnections, as
well as cooperative and competitive interactions. The model
exhibits nonlinear responsiveness and tunable sensitivity to
input and uncertainty, allowing for a rigorous examination
of the stability–flexibility trade-off. The model describes a
fundamental mechanism for how agents that exchange
information over a network can form an opinion, that is,
avoiding indecision and deadlock even when all options are
perceived as equal, and robustly come to one of multiple
stable equilibria corresponding to agreement or disagree-
ment solutions. Moreover, the model is analytically trac-
table, which is critical to a comprehensive identification,
analysis, and shaping of mechanisms that influence col-
lective intelligence.

The nonlinear dynamics of (Bizyaeva et al., 2022) de-
scribe how the multi-dimensional opinion state of each
individual in a group evolves over time in response to the
individual’s opinions, its observed opinions of others, and
its predispositions or information about options that the
individual may have acquired through payoffs or

10 Collective Intelligence



environmental cues. Unlike many existing models based on
the classical model of DeGroot (1974) in which each in-
dividual updates its opinions according to a weighted av-
erage of its neighbors’ opinions (Altafini, 2013; Cisneros-
Velarde et al., 2021; Friedkin and Johnsen, 1999; Olfati-
Saber and Murray, 2004), this model imposes a saturation
on the opinion exchanges. The saturation, motivated by
models in biology, physics, and social science, provides a
naturally smooth limit on social influence and avoids the
paradox of the linear update wherein the stronger the dif-
ference in opinions between a pair of interacting agents, the
great the strength of their mutual response. The saturation
also makes the update fundamentally nonlinear. As a result
of the nonlinearity, opinions form through a point of ultra-
sensitivity (a bifurcation point, which is a singular point in
the dynamics), where a neutral or deadlocked opinion be-
comes unstable and multiple, simultaneously stable solu-
tions of agreement or disagreement among individuals
emerge. The ultra-sensitivity near the bifurcation point
means that which of the alternative solutions is realized can
depend on small and unpredictable signals or asymmetries.
The relative size of the region of attraction for each of the
stable solutions, under symmetric or asymmetric conditions,
can be predicted (and thus shaped) by parameters that
describe the system, interactions, and environment.

In Bizyaeva et al. (2022), each individual has associated
to it a variable that represents its attention, or suscepti-
bility, to social information. The authors study what
happens when an individual’s attention changes over time
according to dynamics that depend on a leaky accumu-
lation of the saturated measurement of the strength of
opinions of its neighbors. They show how every member
of the group can become engaged in the opinion-forming
process through a cascade, even if only a few individuals
are initially engaged or are in receipt of an external cue.
Analysis of the coupled opinion-attention dynamics
predicts how parameters in these dynamics tune implicit
thresholds that govern the sensitivity and robustness of
the formation of the collective state and its transitions
among alternative solutions. The role of this sensitivity in
enabling the kind of collective intelligence that allows for
dynamic task allocation in a changing environment was
studied in (Franci et al., 2021). As discussed in Coop-
eration and coordination, in the case of agents choosing
among strategies in a coordination game or a social di-
lemma, such as the prisoner’s dilemma or the public
goods game, an increase in attention to social cues models
an increase in reciprocal behavior and the emergence of a
stable mutually cooperative solution (Park et al., 2022).
The dynamics have been used to study the stability–
flexibility dilemma in cognitive control (Musslick
et al., 2019) and to investigate how things can go
awry, as in the case of political polarization (Leonard
et al., 2021).

There are other kinds of mathematical models well-
suited to the examination of collective intelligence that
are also analytically tractable. For example, the multi-agent
N-armed-bandit model, discussed above and in Collective
intelligence and design, represents the explore-exploit
trade-off present for each individual making sequential
choices over N options with uncertain reward, as in the case
of a social group foraging over N patches in an environment
with uncertain spatial and temporal distribution of resource.
In one version of this model (Madhushani and Leonard,
2019), each agent k observes the choice and reward of each
of its neighbors with probability pk (defining its “socia-
bility”) and combines this information with its own mea-
surements to update its next choice of option using an
algorithm that seeks to maximize its own cumulative reward
(Auer et al., 2002). Collective intelligence can be analyzed
in terms of bounds on the group’s cumulative regret rate,
which can be used to evaluate, for example, the influence of
individual differences in sociability.

The replicator–mutator dynamics (Bürger, 1998; Page
and Nowak, 2002) provide another example of an analyt-
ically tractable model that exhibits a rich set of alternative
stable solutions. This model describes the evolutionary
dynamics of the game-theoretic interactions of subgroups
within a population as they modify their adoption of
competing strategies where mutation, a key aspect of the
theory of selection, is represented by the possibility of
individuals randomly switching between strategies. The
model has been applied in a number of contexts, notably to
the evolution of grammar acquisition (Nowak et al., 2001;
Komarova and Levin, 2010). Hofbauer and Sandholm
(2009) developed a method for finding conditions on the
payoff function in a class of evolutionary dynamics, called
stable or contractive games, that guarantees convergence of
strategies to the Nash equilibrium. Fox and Shamma (2013)
showed that stable games are “passive” in the sense of
feedback systems theory and generalized the method of
Hofbauer and Sandholm using the tools of passivity theory
(Willems, 1972a; 1972b). The results were further devel-
oped in (Park et al., 2019b) and extended to the case in
which a networked group of agents experience communi-
cation and computational delays in learning the payoffs.
Park et al. (2021) use a replicator model and the stabilization
method to derive decision-making rules with performance
guarantees for allocation of agents over tasks in real-time in
a changing environment. The approach is demonstrated in a
multi-robot trash collection problem, where robots make
decisions for moving among patches to pick up trash that is
accumulating nonuniformly over time so that trash volume
is minimized.

Because mathematical models allow for the abstraction
of principles that underlie collective intelligence, they can
be used broadly, including for explorations in the per-
forming arts. As part of a novel project to facilitate a kind of
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creative collective intelligence (Özcimder et al., 2019), the
replicator–mutator model with a nonlinear fitness function
was used to find new ways to experiment with artistic
composition in the collaborative making of a dance piece
called “There Might Be Others,” which premiered in New
York City in March 2016. The piece is a structured im-
provisation in which the dancers (and musicians) make
compositional choices on-the-fly that are inspired and
constrained by choreographed performance rules. Com-
municating only through motion, the dancers jointly per-
form their way through a sequence of dance modules,
choosing anew in each performance how to order, juxta-
pose, and vary the modules to meet the aesthetic goals of the
piece. The model was used to investigate an artistic explore-
exploit trade-off identified in the piece and ways in which
the performance rules could be designed to enhance the
dancers’ ever-evolving invention of beautiful patterns and
moments of human connection. A key to this was a non-
linear analysis of the replicator-mutator model with the
nonlinear fitness function, which revealed a hysteresis
among the multiple equilibria and a dial, representing how
likely the dancers were to spontaneously switch among
modules, that controlled the pacing and periodicity of the
dancers’ explorations.

Conclusions

Mechanisms leading to collective intelligence of various
forms have arisen multiple times during evolution, from
bacteria and slime molds to human groups. In Nature,
collective intelligence which is manifest both at the level of
the individual and at the level of the group implies a degree
of cooperation, including information sharing and activity
coordination, among individuals, typically involving costs
to individuals in exchange for the benefits of sharing in-
formation with others. When it does arise, in general, we
expect that the expected payoffs to an individual engaging
in cooperative behavior exceeds what that individual would
receive by going it alone. Thus, one useful measure of
collective intelligence is the size of the region of attraction
to the mutually cooperative solution. A similar definition
can be applied as well in engineered ensembles, such as a
decentralized group of autonomous robots, where feedback
laws that govern individual behaviors are designed to yield
an intelligence at the level of the group that is unattainable
by agents on their own.

For the designed system, unlike the evolved system, it
might not be necessary that every individual is better off in
the collective, especially if it is the performance of the
ensemble that is the key design objective. However, in both
natural and designed settings, useful measures of collective
intelligence should account for trade-offs that arise among
the many possible benefits, and costs, of collective intel-
ligence, for example, between flexibility in the face of

change and robustness to disturbance or between accu-
mulation of resource and reduction of risk. Mathematical
models, like in Bizyaeva et al. (2022), that exhibit a wide
range of outcomes, including multi-stability of solutions,
and also allow for analytical tractability, can provide a
systematic means for examining collective intelligence and
the measures that define it.

One challenge for future work will be suitable defini-
tions of collective intelligence for hierarchical systems,
like corporations, in which there are trade-offs, for ex-
ample, between the interests of the corporation, its ex-
ecutives, and its workers. More crucially, our cities and
societies are facing a raft of challenges to their sustain-
ability that are not solvable without collective intelligence,
of a variety of forms: information retrieval, information
sharing, decision-making, and—most importantly—find-
ing the best of solutions in the coordination game that will
determine our survival. Garrett Hardin (Hardin, 1968)
highlighted the problem of the tragedy of the commons,
and argued that the solution was in “mutual coercion,
mutually agreed upon,” and Elinor Ostrom and her col-
laborators showed how those mutualisms could emerge
from the individual up (Ostrom, 1990; Desouza, 2008). We
need to understand what collective intelligence means for
our heterogeneous world, and how in particular to in-
corporate the intelligence and desires of unborn future
generations. This is perhaps the greatest open challenge for
collective intelligence.
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Özcimder K, Dey B, Franci A, et al. (2019) Social decision-making
driven by artistic explore-exploit tension. Interdisciplinary
Science Reviews 44(1): 55–81. DOI: 10.1080/03080188.2018.
1544806.

Page KM and Nowak MA (2002) Unifying evolutionary dy-
namics. Journal of Theoretical Biology 219(1): 93–98. DOI:
10.1006/jtbi.2002.3112.

Pagliara R, Gordon DM and Leonard NE (2018) Regulation of
harvester ant foraging as a closed-loop excitable system. PLoS
Computational Biology 14(12): e1006200. doi: 10.1371/

16 Collective Intelligence

https://doi.org/10.1109/LCSYS.2020.3042459
https://doi.org/10.1109/LCSYS.2020.3042459
https://doi.org/10.1109/TSMCB.2009.2017273
https://doi.org/10.1109/TSMCB.2009.2017273
https://doi.org/10.1146/annurev-control-060117-105102
https://doi.org/10.1146/annurev-control-060117-105102
https://doi.org/10.1146/annurev-control-060117-105102
https://doi.org/10.1109/IROS.2009.5354598
https://ora.ox.ac.uk/objects/uuid:89855f93-5a45-4554-9cda-7e21c22ab41d
https://ora.ox.ac.uk/objects/uuid:89855f93-5a45-4554-9cda-7e21c22ab41d
https://doi.org/10.1186/1743-0003-7-16
https://doi.org/10.1186/1743-0003-7-16
https://doi.org/10.1016/0022-5193(74)90110-6
https://www.jstor.org/stable/2408109
https://doi.org/10.2200/S00330ED1V01Y201101CNT009
https://doi.org/10.2200/S00330ED1V01Y201101CNT009
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.48550/arXiv.2106.12113
https://arxiv.org/abs/2106.12113
https://arxiv.org/abs/2106.12113
https://par.nsf.gov/servlets/purl/10125021
https://par.nsf.gov/servlets/purl/10125021
https://doi.org/10.1007/s00332-008-9038-6
https://doi.org/10.1186/jbiol87
https://doi.org/10.1371/journal.pbio.0060014
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1145/2909824.3020253
https://doi.org/10.1145/2909824.3020253
https://doi.org/10.2316/Journal.206.2011.1.206-3426
https://doi.org/10.2316/Journal.206.2011.1.206-3426
https://doi.org/10.1126/science.291.5501.114
https://doi.org/10.1126/science.291.5501.114
https://doi.org/10.1109/CDC.2005.1583486
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1080/03080188.2018.1544806
https://doi.org/10.1080/03080188.2018.1544806
https://doi.org/10.1006/jtbi.2002.3112
https://doi.org/10.1371/journal.pcbi.1006200


journal.pcbi.1006200. Available at: https://doi.org/10.1371/
journal.pcbi.1006200.

Pais D, Hogan PM, Schlegel T, et al. (2013) A mechanism for
value-sensitive decision-making. PLoS ONE 8(9):
e73216–e732169. DOI: 10.1371/journal.pone.0073216.

Pais D and Leonard NE (2014) Adaptive network dynamics and
evolution of leadership in collective migration. Physica D:
Nonlinear Phenomena 267: 81–93. DOI: 10.1016/j.physd.
2013.04.014.

Paley DA and Wolek A (2020) Mobile sensor networks and
control: adaptive sampling of spatiotemporal processes. Annual
Review of Control, Robotics, and Autonomous Systems 3:
91–114. DOI: 10.1146/annurev-control-073119-090634.

Parise F and Ozdaglar A (2021) Analysis and interventions in large
network games. Annual Review of Control, Robotics, and
Autonomous Systems 4: 455–486. doi: 10.1146/annurev-
control-072020-084434. Available at: https://doi.org/10.1146/
annurev-control-072020-084434.

Park S, Martins NC and Shamma JS (2019b) From population
games to payoff dynamics models: a passivity-based approach.
In:Proceedings of the 58th IEEE conference on decision and
control (CDC), Nice, France, 11-13 Dec, 2019, 6584–6601.
DOI: 10.1109/CDC40024.2019.9029756.

Park S, Zhong YD and Leonard NE (2021) Multi-robot task al-
location games in dynamically changing environments. In:
International Conference on Robotics and Automation (ICRA),
Xi’an, China, 30 May-5 June, 2021: 8678–8684. DOI: 10.
1109/ICRA48506.2021.9561809.

Park H, Aschenbach KH, Ahmed M, et al. (2019a) Animal-borne
wireless network: remote imaging of community ecology.
Journal of Field Robotics 36(6): 1141–1165. doi: 10.1002/rob.
21891.

Park S, Bizyaeva A and Kawakatsu M (2022) Tuning cooperative
behavior in games with nonlinear opinion dynamics. IEEE
Control System Letters 6: 2030–2035. doi: 10.1109/LCSYS.
2021.3138725. Available at: https://doi.org/10.1109/LCSYS.
2021.3138725.

Park S and Martins NC (2017) Design of distributed LTI observers
for state omniscience. IEEE Transactions on Automatic Control
62(20): 561–576. DOI: 10.1109/TAC.2016.2560766.

Parker LE, Rus D and Sukhatme GS (2016) Multiple mobile robot
systems. In: Siciliano B and Khatib O (eds). Springer Hand-
book of Robotics. Berlin: Springer, 1335–1384. Available at:
https://www.springerprofessional.de/en/multiple-mobile-
robot-systems/10539196.

Parrish J and Hamner W (eds) (1997) Animal Groups in Three
Dimensions: How Species Aggregate. Cambridge, UK: Cam-
bridge University Press.

Patterson S and Bamieh B (2010) Leader selection for optimal
network coherence. In: Proceedings of the 49th IEEE con-
ference on decision and control, Atlanta, GA, USA, 15-17 Dec.
2010, 2692–2697. DOI: 10.1109/CDC.2010.5718151.

Piazza C, Grioli G, CatalanoMG, et al. (2019) A century of robotic
hands. Annual Review of Control, Robotics, and Autonomous

Systems 2: 1–32. DOI: 10.1146/annurev-control-060117-
105003.

Pulliam HR (1973) On the advantages of flocking. Journal of
Theoretical Biology 38(2): 419–422. DOI: 10.1016/0022-
5193(73)90184-7.

Pulliam HR and Caraco T (1984) Living in groups: is there an
optimal group size? In: Davies JR and Krebs NB (eds). Be-
havioral Ecology: An Evolutionary Approach. Sunderland,
Mass: Sinauer Associates, 127–147.

Pulliam HR, Pyke GH and Caraco T (1982) The scanning behavior
of juncos: a game-theoretical approach. Journal of Theoretical
Biology 95(1): 89–103. DOI: 10.1016/0022-5193(82)90289-2.

Queralta JP, Taipalmaa J, Can Pullinen B, et al. (2020) Collabo-
rative multi-robot search and rescue: planning, coordination,
perception, and active vision. IEEE Access 8: 191617–191643.
DOI: 10.1109/ACCESS.2020.3030190.

Reverdy PB, Srivastava V and Leonard NE (2014). Modeling
human decision making in generalized gaussian multiarmed
bandits. Proceedings of the IEEE 102(4): 544–571. DOI: 10.
1109/JPROC.2014.2307024. Correction at: (2019). Com-
puterScienceArXiv. https://arxiv.org/abs/1307.6134v5

Reverdy P, Srivastava V and Leonard NE (2017) Satisficing in
multi-armed bandit problems. IEEE Transactions on Au-
tomatic Control 62(8): 3788–3803. 10.1109/TAC.2016.
2644380. Correction at: (2021). IEEE Transactions on
Automatic Control 66(1): 476–478. DOI: 10.1109/
TAC.2020.2981433.

Robbins H (1952) Some aspects of the sequential design of ex-
periments. Bulletin of the American Mathematical Society
58(5): 527–535. DOI: 10.1090/S0002-9904-1952-09620-8.

Rubenstein DI (1978) On predation, competition, and the ad-
vantages of group living. In: Bateston PPG and Klopfer PH
(eds). Social Behavior. New York, NY: Plenum Press, 3,
205–231. Available at: http://dx.doi.org/10.1007/978-1-4684-
2901-5_9.

Seeley TD, Visscher PK, Schlegel T, et al. (2012) Stop signals
provide cross inhibition in collective decision-making by
honeybee swarms. Science (New York, N.Y.) 335(6064):
108–111. DOI: 10.1126/science.1210361.

Sepulchre R, Paley DA and Leonard NE (2007) Stabilization of
planar collective motion: all-to-all communication. IEEE
Transactions on Automatic Control 52(5): 811–824. DOI: 10.
1109/TAC.2007.898077.

Sepulchre R, Paley DA and Leonard NE (2008) Stabilization of
planar collective motion with limited communication. IEEE
Transactions on Automatic Control 53(3): 706–719. DOI: 10.
1109/TAC.2008.919857.

Shapiro CR, Starke GM and Gayme DF (2022) Turbulence and
control of wind farms. Annual Review of Control, Robotics, and
Autonomous Systems. Advance Online Publication 5(1). DOI:
10.1146/annurev-control-070221-114032.

Spanos DP, Olfati-Saber R and Murray RM (2005) Distributed
kalman filtering in sensor networks with quantifiable perfor-
mance. Proceedings of the fourth international symposium on

Leonard and Levin 17

https://doi.org/10.1371/journal.pcbi.1006200
https://doi.org/10.1371/journal.pcbi.1006200
https://doi.org/10.1371/journal.pcbi.1006200
https://doi.org/10.1371/journal.pone.0073216
https://doi.org/10.1016/j.physd.2013.04.014
https://doi.org/10.1016/j.physd.2013.04.014
https://doi.org/10.1146/annurev-control-073119-090634
https://doi.org/10.1146/annurev-control-072020-084434
https://doi.org/10.1146/annurev-control-072020-084434
https://doi.org/10.1146/annurev-control-072020-084434
https://doi.org/10.1146/annurev-control-072020-084434
https://doi.org/10.1109/CDC40024.2019.9029756
https://doi.org/10.1109/ICRA48506.2021.9561809
https://doi.org/10.1109/ICRA48506.2021.9561809
https://doi.org/10.1002/rob.21891
https://doi.org/10.1002/rob.21891
https://doi.org/10.1109/LCSYS.2021.3138725
https://doi.org/10.1109/LCSYS.2021.3138725
https://doi.org/10.1109/LCSYS.2021.3138725
https://doi.org/10.1109/LCSYS.2021.3138725
https://doi.org/10.1109/TAC.2016.2560766
https://www.springerprofessional.de/en/multiple-mobile-robot-systems/10539196
https://www.springerprofessional.de/en/multiple-mobile-robot-systems/10539196
https://doi.org/10.1109/CDC.2010.5718151
https://doi.org/10.1146/annurev-control-060117-105003
https://doi.org/10.1146/annurev-control-060117-105003
https://doi.org/10.1016/0022-5193(73)90184-7
https://doi.org/10.1016/0022-5193(73)90184-7
https://doi.org/10.1016/0022-5193(82)90289-2
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1109/JPROC.2014.2307024
https://doi.org/10.1109/JPROC.2014.2307024
https://arxiv.org/abs/1307.6134v5
https://doi.org/10.1109/TAC.2016.2644380
https://doi.org/10.1109/TAC.2016.2644380
https://doi.org/10.1090/S0002-9904-1952-09620-8
http://dx.doi.org/10.1007/978-1-4684-2901-5_9
http://dx.doi.org/10.1007/978-1-4684-2901-5_9
https://doi.org/10.1126/science.1210361
https://doi.org/10.1109/TAC.2007.898077
https://doi.org/10.1109/TAC.2007.898077
https://doi.org/10.1109/TAC.2008.919857
https://doi.org/10.1109/TAC.2008.919857
https://doi.org/10.1146/annurev-control-070221-114032


information processing for sensor networks (IPSN’05), Boise,
ID, USA, 15-15 April 2005, 133–139. DOI: 10.1109/IPSN.
2005.1440912.

Speyer J (1979) Computation and transmission requirements for a
decentralized linear-quadratic-gaussian control problem. IEEE
Transactions on Automatic Control 24(2): 266–269. DOI: 10.
1109/TAC.1979.1101973.

Srivastava V and Leonard NE (2014) Collective decision-making
in ideal networks: the speed-accuracy tradeoff. IEEE Trans-
actions on Control of Network Systems 1(1): 121–132. DOI: 10.
1109/TCNS.2014.2310271.

Sumpter DJT (2010) Collective Animal Behavior. Princeton, NJ:
Princeton University Press. Available at: https://doi.org/10.
1515/9781400837106.

Tiebout CM (1956) A pure theory of local expenditures. Journal of
Political Economy 64(5): 416–424. https://www.journals.
uchicago.edu/doi/10.1086/257839

Torney CJ, Berdahl A and Couzin ID (2011) Signalling and the
evolution of cooperative foraging in dynamic environments.
Plos Computational Biology 7(9): e1002194. DOI: 10.1371/
journal.pcbi.1002194.

Torney CJ, Levin SA and Couzin ID (2010) Specialization and
evolutionary branching within migratory populations. Proceed-
ings of the National Academy of Sciences of the United States of
America 107(47): 20394–20399. doi: 10.1073/pnas.1014316107.
Available at: https://doi.org/10.1073/pnas.1014316107.

Turing AM (1952) The chemical basis of morphogenesis. Phil-
osophical Transactions of the Royal Society of London, Series
B, Biological Sciences 237(641): 37–72. DOI: 10.1098/rstb.
1952.0012.

Valentini G, Ferrante E, Hamann H, et al. (2016) Collective de-
cision with 100 kilobots: speed versus accuracy in binary
discrimination problems. Autonomous Agents and Multi-Agent
Systems 30: 553–580. DOI: 10.1007/s10458-015-9323-3.

Waddington CH (1957) The Strategy of the Genes: A Discussion of
Some Aspects of Theoretical Biology. London, UK: George
Allen & Unwin. Available at: https://wellcomecollection.org/
works/nzwm3z65.

Werfel J, Petersen K and Nagpal R (2014) Designing collective
behavior in a termite-inspired robot construction team. Science
(New York, N.Y.) 343(6172): 754–758. DOI: 10.1126/science.
1245842.

Willems JC (1972a) Dissipative dynamical systems part I: general
theory. Archive for Rational Mechanics and Analysis 45:
321–351. DOI: 10.1007/BF00276493.

Willems JC (1972b) Dissipative dynamical systems part II: linear
systems with quadratic supply rates. Archive for Rational
Mechanics and Analysis 45: 352–393. DOI: 10.1007/
BF00276494.

Wilson HR and Cowan JD (1972) Excitatory and inhibitory in-
teractions in localized populations of model neurons. Biophys-
ical Journal 12(1): 1–24. 10.1016/S0006-3495(72)86068-5.

Wilson DS and Wilson EO (2007) Rethinking the theoretical
foundation of sociobiology. The Quarterly Review of Biology
82(4): 327–348. DOI: 10.1086/522809.

Wolpert L (1969) Positional information and the spatial pattern of
cellular differentiation. Journal of Theoretical Biology 25(1):
1–47. DOI: 10.1016/S0022-5193(69)80016-0.
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