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Abstract—Q-Learning and other value function based rein-
forcement learning (RL) algorithms learn optimal policies from
datasets of actions, rewards, and state transitions. However,
generating independent and identically distributed (IID) data
samples poses a significant challenge when the state transition
dynamics are stochastic and high-dimensional; this is due to
intractability of the associated normalizing integral. We address
this challenge with Hamiltonian Monte Carlo (HMC) sampling
since it offers a computationally tractable way to generate data
for training RL algorithms in stochastic and high-dimensional
contexts. We introduce Hamiltonian Q-Learning and use it to
demonstrate, theoretically and empirically, that Q values can be
learned from a dataset generated by HMC samples of actions,
rewards, and state transitions. Hamiltonian Q-Learning also
exploits underlying low-rank structure of the Q function using a
matrix completion algorithm for reconstructing the Q function
from Q value updates over a much smaller subset of state-action
pairs. Thus, by providing an efficient way to apply Q-Learning
in stochastic, high-dimensional settings, the proposed approach
broadens the scope of RL algorithms for real-world applications.

I. INTRODUCTION

In recent years, reinforcement learning (RL) has shown
remarkable success with sequential decision-making tasks
wherein an agent observes the current state of the environ-
ment, chooses an action, and receives a reward, before the
environment transitions to a new state [1], [2]. RL has been
applied to a variety of problems, such as control [3], robotics
[4], resource allocation [5], and chemical process optimization
[6]. However, existing model-free RL approaches typically
perform well only when the environment has been explored
long enough, and the algorithm has used a large enough
number of samples [7], [8]. This is inherently challenging
for high-dimensional stochastic problems.

Q-Learning is a model-free RL approach where an agent
chooses its actions based on a policy defined by the state-
action value function called the Q function [9], [10]. The
performance of Q-Learning algorithms in stochastic settings
depends strongly on the ability to access data samples that
can provide accurate estimates of the expected Q values.
As Q-Learning algorithms compute the expected Q values
by calculating the sample mean of Q values over a set
of independent and identically distributed (IID) samples,
they assume access to a simulator that can generate IID
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samples according to the state transition probability. When
the state transition probability distribution is high-dimensional,
generating IID samples poses significant challenges: the lack
of closed-form solutions and insufficiency of deterministic
approximations of the normalizing integral. Because these
prevent the use of existing RL methods, we were motivated to
ask the question: How can we develop value function based
RL methods when generating IID samples is impractical?

Crucial to developing such methods is identifying means to
draw samples from an unnormalized distribution. Importance
sampling offer techniques to draw samples from a distribution
without computing the corresponding normalizing integral.
Hamiltonian Monte Carlo (HMC) sampling is one such
method, and thus allows samples to be generated from the
unnormalized state transition distribution [11]. Our question is
then: How can we combine HMC sampling with Q-Learning
to learn optimal policies for high-dimensional problems?

In this paper, we introduce Hamiltonian Q-Learning to
address the question. We show that Hamiltonian Q-Learning
can infer optimal policies even when it calculates the expected
Q values using HMC samples instead of IID samples.
However, while HMC sampling overcomes the challenges
associated with drawing IID samples in high dimensions,
a large number of samples is still needed to learn the Q
function because high-dimensional spaces often lead to a large
number of state-action pairs, and thus high computational
costs and high sample complexity. We address these issues by
leveraging matrix completion techniques. It has been observed
that formulating planning and control tasks as Q-Learning
problems in a variety of contexts leads to low-rank structures
in the associated Q matrix [12]–[14]. Since these systems
naturally consist of a large number of states, exploiting the
low-rank structure in the Q matrix in an informed way can
reduce computational complexity. Hamiltonian Q-Learning
uses matrix completion to reconstruct the Q matrix from a
small subset of expected Q values making it data-efficient.

In related work, [12], [13] consider a model-free RL
approach that exploits structures of the state-action value
function. The work by [12] decomposes the Q matrix into a
low-rank and sparse matrix model and uses matrix completion
methods [15]–[17] to improve data-efficiency. A more recent
work [13] has shown that incorporating low rank matrix
completion methods to recover the Q matrix from a small
subset of Q values can improve learning of optimal policies.
The paper [14] extends this work by proposing a novel
matrix estimation method and providing theoretical guarantees
for the convergence to an ϵ-optimal Q function. Entropy
regularization techniques penalize excessive randomness in
the conditional distribution of actions for a given state and



provide an alternative means to implicitly exploit the low-
dimensional structure of the value function [18]–[20].

The main contributions of this work are threefold. First,
we introduce a modified Q-learning framework, called Hamil-
tonian Q-learning, which uses HMC sampling to provide
a data-efficient approach for using Q-learning in real-world
problems with high-dimensional state space and stochastic
state transition. Integration of this sampling approach with
matrix-completion enables us to update Q values for only a
small subset of state-action pairs and reconstruct the complete
Q matrix. Second, we provide theoretical guarantees that the
error between the optimal Q function and the Q function
computed by updating Q values using HMC sampling can be
made arbitrarily small. This result holds even when only a
small fraction of the Q values are updated using HMC samples
and the rest are estimated using matrix completion. We also
provide theoretical guarantee that the sampling complexity
of our algorithm matches the mini-max sampling complexity
proposed by [21]. Third, we apply Hamiltonian Q-learning to
a high-dimensional problem (stabilizing a double pendulum
on a cart) as well as to control tasks used as benchmarks in
the machine learning literature (inverted pendulum, double
integrator, cartpole, and acrobot). Our results show that the
proposed approach becomes more effective with increase in
state space dimension.

The rest of the paper is organized as follows. In Section II
we provide a brief background and propose the Hamiltonian
Q-Learning algorithm. We provide theoretical results and
experimental results in Section III and IV, respectively. We
provide a discussion and concluding remarks in Section V.

II. HAMILTONIAN Q-LEARNING

In this section we derive Hamiltonian Q-Learning, which
we also present in pseudocode and denote as Algorithm 1.

Learning an optimal Q∗ function through value iteration
requires updating Q values of state-action pairs using a sum
of the reward and a discounted expectation of Q values
associated with next states. Although the state dynamics are
assumed noisy, in this paper we assume that the reward r at
time step t is a deterministic function of state-action pairs
(st, at) at t. Our results can be extended to stochastic rewards
by replacing the reward with its expectation.

The update Qt+1 of the Q value at time step t+ 1 is

Qt+1(st, at) = r(st, at) + γE
(
max

a
Qt(st+1, a)

)
, (1)

where E denotes the expectation over the discrete probability
measure P and λ > 0 is the discount factor. When the state
space is high-dimensional and has large number of states in
each dimension, we encounter two key challenges to learning
the Q function: (i) difficulty in estimating the expectation
in (1) due to the impracticality of generating IID samples
and the high computational cost of exhaustive sampling; and
(ii) a sample complexity that increases quadratically with the
number of states and linearly with the number of actions.

A. HMC sampling for learning Q function

A number of importance-sampling methods [11], [22] have
been developed for estimating the expectation of a function
by drawing samples from the region with the dominant
contribution to the expectation. HMC is one such importance-
sampling method [11] that draws samples from the typical
set, i.e., the region that maximizes probability mass, which
provides the dominated contribution to the expectation. Since
the decay in Q function is significantly smaller compared
to the typical exponential or power law decay in transition
probability functions, HMC provides a better approximation
than E for the expectation of the Q value of the next states
[13], [14]. Let Ht denote the set of HMC samples drawn at
time step t. Then, in place of (1), we update the Q values as

Qt+1(st, at) = r(st, at) +
γ

|Ht|
∑
s∈Ht

max
a

Qt(s, a). (2)

HMC for a smooth truncated target distribution. Recall
that a region of states is a subset of a Euclidean space
given as [d−1 , d

+
1 ] × . . . × [d−Ds

, d+Ds
] ⊂ RDs , where Ds

is the dimension of the state space. Thus the main challenge
to using HMC sampling is to define a smooth continuous
target distribution P(s|st, at) on RDs with a sharp decay
at the boundary of the region of states [23], [24]. Here, we
generate the target distribution by first defining the transition
probability kernel from the conditional probability distribution
defined on RDs and then taking its product with a smooth
cut-off function.

We first consider a probability distribution P(·|st, at) :
RDs → R such that the following holds:

P(s|st, at) ∝
∫ s+ε

s−ε

P(s|st, at)ds (3)

for some arbitrarily small ε > 0. Then the target distribution
can be defined as

P(s|st, at) = P(s|st, at)×
Ds∏
i=1

[
1

1 + exp(−κ(d+i − si))
· 1

1 + exp(−κ(si − d−i ))

]
. (4)

Note that there exists a large κ > 0 such that if s ∈
[d−1 , d

+
1 ] × . . . × [d−Ds

, d+Ds
] then P(s|st, at) ∝ P(s|st, at)

and P(s|st, at) ≈ 0 otherwise. Let µ(st, at),Σ(st, at) be the
mean and covariance of the transition probability kernel. Here
we consider transition probability kernels of the form

P(s|st, at) ∝

exp

(
−1

2
(s− µ(st, at))

TΣ−1(st, at)(s− µ(st, at))

)
. (5)

Then from (3) the corresponding mapping can be given as a
multivariate Gaussian P(s|st, at) = N (µ (st, at),Σ(st, at)) .
From (4) it follows that the target distribution is

P(s|st, at) = N (µ (st, at),Σ(st, at))

Ds∏
i=1

1

1 + exp(−κ(d+i − si))

1

1 + exp(−κ(si − d−i ))
. (6)



Choice of potential energy and kinetic energy.
For brevity of notation we drop the explicit dependence

of P(·) on (st, at) and denote the target distribution as
P(s) defined over the Euclidean space RDs . We choose the
potential energy as U(s) = − log(P(s)) and kinetic energy
K(v, s) = − logP(v|s) = 1

2v
TM−1v where M−1 is the

covariance of the target distribution and v is the momentum
variable. For additional details on HMC sampling we refer
readers to [11].

B. Q-Learning with HMC and matrix completion

In this work we consider problems with a high-dimensional
state space and large number of distinct states along individual
dimensions. Although these problems admit a large Q matrix,
we can exploit low rank structure of the Q matrix to further
improve the sample efficiency.

At each time step t we randomly sample a subset Ωt

of state-action pairs (each state-action pair is sampled
independently with some probability p) and update the Q
function for state-action pairs in Ωt. Let Q̂t+1 be the updated
Q matrix at time t. Then from (2) we have

Q̂t+1(st, at) = r(st, at) +
γ

|Ht|
∑
s∈Ht

max
a

Qt(s, a), (7)

for any (st, at) ∈ Ωt. We recover the complete matrix Qt+1

by using matrix completion as follows:

Qt+1 = argmin
Q̃t+1∈R|S|×|A|

∥Q̃t+1∥∗

subject to JΩt

(
Q̃t+1

)
= JΩt

(
Q̂t+1

) (8)

where |S| × |A| is total number of state-action pairs and
JΩt is the observation operator, i.e. JΩ(x) = x if x ∈ Ω
and zero otherwise. Similar to the approach used in [13], we
approximate the rank of the Q matrix as the minimum number
of singular values needed to capture 99% of its nuclear norm.

Algorithm 1 Hamiltonian Q-Learning

Inputs: Discount factor γ; Range of state space; Time
horizon T ;
Initialization: Randomly initialize Q0

for t = 1 to T do
Step 1: Randomly sample a subset of state-action pairs Ωt

Step 2: HMC sampling phase - Sample a set of next
states Ht according to the target distribution defined in (4)
Step 3: Update phase - For all (st, at) ∈ Ωt

Q̂t+1(st, at) = r(st, at) +
γ

|Ht|
∑
s∈Ht

max
a

Qt(s, a)

Step 4: Matrix Completion phase
Qt+1 = argmin

Q̃t+1∈R|S|×|A|
∥Q̃t+1∥∗

subject to JΩt

(
Q̃t+1

)
= JΩt

(
Q̂t+1

)
end for

III. CONVERGENCE, BOUNDEDNESS AND SAMPLING
COMPLEXITY

In this section we provide theoretical results on HMC Q-
Learning. Because of space constraints we provide sketches
of proofs and refer to [25] for details of proofs.

First, we introduce the following regularity assumptions:
(A1) The state space S ⊆ RDs and the action space

A ⊆ RDa are compact subsets.
(A2) The reward function is bounded, i.e., r(s, a) ∈

[Rmin, Rmax] for all (s, a) ∈ S ×A.
(A3) The optimal value function Q∗ is C-Lipschitz, i.e.∣∣∣Q∗(s, a)−Q∗(s′, a′)

∣∣∣ ≤ C
(
||s− s′||F + ||a− a′||F

)
where || · ||F is the Frobenius norm (which is the same as
the Euclidean norm for vectors).

We provide theoretical guarantees that Hamiltonian Q-
Learning converges to an ϵ-optimal Q function with
Õ
(

1
ϵDs+Da+2

)
number of samples. This matches the mini-

max lower bound Ω
(

1
ϵDs+Da+2

)
proposed in [21]. First we

define a family of ϵ-optimal Q functions as follows.

Definition 1 (ϵ-optimal Q functions). Let Q∗ be the unique
fixed point of the Bellman optimality equation: (T Q)(s′, a′)
=

∑
s∈S P(s|s′, a′) (r(s′, a′) + γmaxa Q(s, a)), ∀(s′, a′) ∈

S ×A where T denotes the Bellman operator. Then, under
update rule (1), the Q function almost surely converges to the
optimal Q∗. We define ϵ-optimal Q functions as the family of
functions Qϵ such that ∥Q′ −Q∗∥∞ ≤ ϵ whenever Q′ ∈ Qϵ.

As ∥Q′ −Q∗∥∞ = max(s,a)∈S×A ∥Q′(s, a) −Q∗(s, a)∥,
any ϵ-optimal Q function is element wise ϵ-optimal. Our next
result shows that under the HMC sampling rule given in Step
3 of Hamiltonian Q-Learning (Algorithm 1), the Q function
converges to the family of ϵ-optimal Q functions.

Theorem 1 (Convergence of Q function under HMC Sam-
pling). Let T be an optimality operator under HMC sampling
given as (TQ)(s′, a′) = r(s′, a′) + γ

|H|
∑

s∈H maxa Q(s, a),
∀(s′, a′) ∈ S×A, where H is a subset of next states sampled
using HMC from the target distribution given in (4). Then,
under update rule (2) and for any given ϵ ≥ 0, there exists
nH, t′ > 0 such that ∥Qt −Q∗∥∞ ≤ ϵ, ∀t ≥ t′.

Proof. (sketch) We follow a similar approach to the proof
of Q-function convergence under exhaustive sampling, with
a key modification that accounts for the error incurred by
HMC sampling. We note that the Q-function error under
HMC sampling can be upper bounded by the summation of
(i) the Q-function error under exhaustive sampling and (ii)
the error between the empirical average under HMC sampling
and the expectation under exhaustive sampling. Thus, when
the Q-function is Lipschitz, from the central limit theorem
for HMC sampling we can upper bound the cumulative error
induced by the second term using a constant.

The next theorem shows that the Q matrix estimated
with a suitable matrix completion technique lies in the ϵ-
neighborhood of the corresponding Q function obtained with
exhaustive sampling.



Theorem 2 (Bounded Error under HMC with Ma-
trix Completion). Let Qt+1

E (st, at) = r(st, at) +
γ
∑

s∈S P(s|st, at)maxa Q
t
E(s, a), ∀(st, at) ∈ S × A be

the update rule under exhaustive sampling, and Qt be the
Q function updated according to Hamiltonian Q-Learning
(7)-(8). Then, for any given ϵ̃ ≥ 0, there exists nH =
minτ |Hτ |, t′ > 0, such that ∥Qt −Qt

E∥∞ ≤ ϵ̃, ∀t ≥ t′.

Proof. (sketch) Due to boundedness under matrix comple-
tion, the error between Q functions updated according to
Hamiltonian Q-Learning and exhaustive sampling can be
upper bounded using summation of (i) error between updated
Q̂t and optimal function Q∗ and (ii) error between updated
function Qt

E under exhaustive sampling and optimal function
Q∗. The proof follows from upper bounding the first term
using matrix completion boundedness results and the second
term using Theorem 1.

Finally we provide guarantees on the sampling complexity
of Hamiltonian Q-Learning (Algorithm 1).

Theorem 3. (Sampling complexity of Hamiltonian Q-
Learning) Let Ds, Da be the dimension of state space
and action space, respectively. Consider the Hamiltonian Q-
Learning algorithm presented in Algorithm 1. Then, under a
suitable matrix completion method, the Q function converges
to the family of ϵ-optimal Q functions with Õ

(
ϵ−(Ds+Da+2)

)
number of samples.

Proof. (sketch) Let Tϵ be the time step such that the learned
Q function under Hamiltonian Q-Learning is ϵ-optimal. Then,
the number of samples required by Hamiltonian Q-Learning
to learn an ϵ-optimal Q function is

∑Tϵ

t=1 |Ωt||Ht|. We first
prove results on the sample size |Ωt| required to bound the
error incurred due to matrix completion. Then we prove
results on the sample size |Ωt| required to bound the error
incurred by approximating the expectation of the next state
using HMC samples. The final result follows from combining
these results with the convergence and boundedness results
obtained in Theorems 1 and 2.

IV. NUMERICAL EXPERIMENTS

We illustrate convergence and sample efficiency of Hamilto-
nian Q-Learning using a high-dimensional control system and
four benchmark control tasks. Because Lipschitz convergence
in Frobenius norm of the Q function implies convergence in
the infinity norm, we use the Frobenius norm of the difference
between the learned Q function and optimal Q∗ to illustrate
that Hamiltonian Q-Learning converges to an ϵ-optimal Q
function. See [25] for dynamic equations for all systems.

A. Empirical Evaluation for a High-Dimensional System

Experimental setup for a double pendulum on a cart:
Let x, ẋ denote the position and velocity of the cart and
θ1, θ2, θ̇1, θ̇2 denote the joint angles and angular velocities of
the poles. We define the 6-dimensional state of the cart-pole
system as: s = (x, ẋ, θ1, θ̇1, θ2, θ̇2) where x ∈ [−2.4, 2.4],
ẋ ∈ [−3.5, 3.5], and θi ∈ [−π, π], θ̇i ∈ [−3.0, 3.0] for i =
1, 2. Also, we define the range of the scalar action as a ∈

[−10, 10]. Each state space dimension is discretized into 5
distinct values and the action space into 10 distinct values.
This leads to a Q matrix of size 15625×10. We consider that
the probabilistic state transition is governed by (5) with a Σ
which ensures that the range of the state space along direction
i is approximately equal to 6

√
Σi. To stabilize the pendulum

to an upright position, we define the reward function as
r(s, a) = cos4(15θ1) + cos4(15θ2). After initializing the Q
matrix using randomly chosen values from [0, 2], we sample
state-action pairs with probability p = 0.2 at each iteration.
Results: Figure 1(a) shows the change in the Frobenius
norm of the difference between the learned Q function
and optimal Q∗, thereby illustrating that Hamiltonian Q-
Learning converges to an ϵ optimal Q function. Note that
under exhaustive sampling we use 15625 samples for each
update. However, Hamiltonian Q-Learning uses only 200
samples for each update. As it is difficult to visualize policy
heat maps for a 6-dimensional state space, we show results
for the first two dimensions (i.e., θ1 and θ̇1) while keeping the
rest fixed (i.e., θ2 = 0, θ̇2 = 0, x = −1.2, and ẋ = 3.5). The
heat maps shown in Figures 1(b) and 1(c) illustrate that the
policy heat map for Hamiltonian Q-Learning is close to the
one from Q-Learning with exhaustive sampling. We also show
that the sample efficiency of Q-Learning can be significantly
improved by incorporating Hamiltonian Q-Learning. Figure
1(d) shows how the Frobenius norm of the difference between
the learned Q function and the optimal Q∗, normalized by
its maximum value, varies with increase in the number of
samples. The solid red line shows the accuracy for Q-Learning
with exhaustive sampling and the dashed black line shows
the same for Hamiltonian Q-Learning. These results show
that Hamiltonian Q-Learning converges to an ϵ-optimal Q
function with significantly fewer samples than Q-Learning
with exhaustive sampling.

B. Empirical Evaluation for Low-Dimensional Systems

Experimental setup: Here we investigate the applicability
of Hamiltonian Q-Learning in low-dimensional spaces where
IID samples are available, and compare its performance
against state-of-the-art algorithms on four benchmark control
tasks (inverted pendulum, double integrator, cartpole, and
acrobot). The dynamics of the inverted pendulum and double
integrator evolve on a 2-dimensional state space, and the
cartpole and acrobot evolve on a 4-dimensional state space.
We discretize each state space dimension of the inverted
pendulum and double integrator into 25 distinct values, and
each state space dimension of the cartpole and acrobot into
5 distinct values. The action variable associated with all four
control tasks is scalar, and we discretize each action space
into 10 distinct values. The size of the Q matrix is 625× 10.

Results: Figure 2 shows that the Frobenius norm of the
difference between the learned Q function and optimal Q∗

can achieve a much lower value when HMC samples are
used instead of IID samples. This illustrates that Hamiltonian
Q-Learning achieves better convergence than Q-Learning
with IID sampling. Note that, under exhaustive sampling



(a) Q Function Convergence (b) Exhaustive Sampling (c) HMC Sampling (d) Sample efficiency

Fig. 1: Figure 1(a) illustrates convergence of the Q function learned with Hamiltonian Q-Learning to an ϵ-optimal Q function. Figure
1(b) and 1(c) show policy heat maps for Q-Learning with exhaustive sampling and Hamiltonian Q-Learning, respectively (x = −1.2, ẋ =
1.75, θ2 = π/4, θ̇2 = 1.5). Figure 1(d) shows the change in the normalized value of the Frobenius norm with the number of samples, for
both Q-Learning with exhaustive sampling (Vanilla) and Hamiltonian Q-Learning (Vanilla + HMC).

Fig. 2: A comparison of convergence of Q function with Hamiltonian Q-Learning and Q-Learning with IID sampling.

Fig. 3: Policy heatmaps for Q-Learning with exhaustive sampling, Hamiltonian Q-Leaning and Q-Learning with IID sampling. The color
in each cell corresponds to the value of optimal action at the corresponding state.

we use 625 samples for each update, whereas learning with
IID sampling and Hamiltonian Q-Learning require only 100
samples for each update. Figure 3 shows policy heatmaps
for Q-Learning with exhaustive sampling, Hamiltonian Q-
Learning and Q-Learning with IID sampling. Our results
show that the policy heatmaps associated from Hamitonian
Q-Learning are closer to policy heatmaps obtained from Q-
Learning with exhaustive sampling. Figure 4 illustrates how

the normalized Frobenius norm of the difference between the
learned Q function and the optimal Q∗ varies with increase
in the number of samples. The solid red lines correspond to
Q-Learning with exhaustive sampling and the dashed black
lines correspond to Hamiltonian Q-Learning. These results
show that Hamiltonian Q-Learning can achieve the same
level of accuracy with significantly fewer samples.



Fig. 4: Frobenius norm vs number of samples of Q function for Q-Learning with exhaustive sampling (Vanilla), Q-Learning with HMC
sampling (Vanilla + HMC), Deep Q-Network (DQN) with exhaustive sampling, DQN with HMC sampling, Deep Deterministic Policy
Gradient (DDPG) with exhaustive sampling and DDPG with HMC sampling. Red solid curve corresponds to exhaustive sampling and back
dotted curve corresponds to HMC sampling.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced Hamiltonian Q-Learning,
a new model-free RL framework that can be utilized to
obtain optimal policies in high-dimensional spaces, where
generating IID samples is impractical. We showed, both
theoretically and empirically, that the proposed approach can
learn accurate estimates of the optimal Q function with many
fewer samples as compared to exhaustive sampling. Further,
we illustrated that Hamiltonian Q-Learning can be used to
improve sample efficiency of state-of-the-art algorithms in low
dimensional spaces as well. Leveraging these results, future
works will investigate how HMC sampling based methods
can improve sample efficiency in multi-agent Q-learning, a
system naturally very high-dimensional, with agents coupled
through both action and reward.
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