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Abstract— The separation principle in a centralized estima-
tion and control problem gives us the flexibility to design a
feedback controller independent of the state estimator. However,
the same principle does not hold when the estimation and
control are distributed over a network of agents. In this case,
the estimator may need to be redesigned when the controller is
revised, which can be computationally expensive. We investigate
a weaker notion of the separation principle in the distributed
estimation and control of linear time-invariant (LTI) systems.
As a main contribution, applying the small-gain theorem, we
characterize the notion using matrix inequalities and compute
a set of feedback controllers that agents in the network can
adopt without redesigning the estimator. We also analyze how
the frequency of information exchange between neighboring
agents affects the characterization. We illustrate our analytical
results through simulations of a multi-vehicle system problem.

I. INTRODUCTION

Consider the problem of designing a network of agents for
estimation and control of a discrete-time linear time-invariant
(LTI) system. Each agent can only partially observe the LTI
system output and only partially control the LTI system state;
thus, it cannot stabilize the LTI system on its own. However,
suppose that jointly the agents can fully observe the system
output and fully control the system state, and each agent
can communicate over the network with its neighbors. The
problem is to design the estimation dynamics and feedback
control law for each agent, given its own set of information,
so that jointly the agents stabilize the LTI system. Such a
design problem arises in a wide range of control engineering
domains including formation control of networked robots,
efficient power transfer in large-scale power systems, and
traffic flow control in transportation networks.

An interesting aspect of the problem is that each agent
computes its control input based on its own set of informa-
tion, which is different from the set of information available
to other agents. Hence, the problem setting imposes a non-
classical information structure [1], under which changing
the feedback controller of an agent to improve the sys-
tem performance negatively affects the network’s estimation
performance and requires redesigning the estimator. Such a
redesign can be computationally expensive.

In a centralized counterpart, where a single agent estimates
and controls the system’s state, the separation principle gives
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the agent the freedom to adopt any stabilizing feedback
controller independent of the estimator design [2]. However,
because of the non-classical information structure, the same
separation principle does not hold in our problem unless
every agent can broadcast its locally available information to
every other agent. When this is not possible, the estimator
and controller across the network need to be jointly designed.

A large body of literature, including [3]–[7] and references
therein, presents methods and performance analysis for de-
sign of networks to estimate the state of LTI systems, where
consensus-type algorithms are adopted to exchange and fuse
state estimates among neighboring agents. Recent work [8]
proposes a control framework based on distributed estimation
to design a network of agents to stabilize LTI systems. LMI-
based approaches for joint design of a distributed observer
and controller are discussed in [9], [10].

In [11] a decentralized approach is discussed for designing
a distributed controller for continuous-time LTI systems in
which the agents are required to share their local information
with neighbors at every time instance over the continuous-
time domain. The authors of [12] propose a consensus-
based distributed observer over a rate-limited communication
network to design linear feedback control systems. The work
of [13] investigates a distributed approach to the design of
a distributed observer and controller for spatially intercon-
nected systems in the continuous-time domain.

As a complement to the existing literature, we address
the following question: “Under what conditions can the
agents change their feedback control without revising their
estimation strategies?” As we have explained above, in our
problem setting, the agents cannot arbitrarily change their
feedback control without revision of the estimator design.
Our main contribution is to characterize and compute a set of
state feedback controllers from which the agents can select
for a given fixed estimator design. Thus, if agents change
their feedback control to improve system performance such
that the controller is from this set, there is no need for
a redesign of the estimator. Further, we show that more
frequent information exchange through consensus allows the
agents to select from a larger set of controllers.

The paper is organized as follows. In §II, we present
our framework and explain the main problem on distributed
estimation and control design. In §III, we propose matrix in-
equality formulations to find a solution to the main problem,
and we analyze the effect of the frequency of information
exchange on the formulations. In §IV, we illustrate our main
results using simulations. We conclude the paper in §V.



Fig. 1. A diagram illustrating the closed loop consisting of the LTI system,
distributed estimation, m-round (linear) consensus, and state feedback.

II. PROBLEM DESCRIPTION

Consider a discrete-time LTI system given by

x(k + 1) = Ax(k) +
∑N

i=1 Biui(k), x(0) ∈ Rn (1a)
yi(k) = Cix(k), i ∈ {1, · · · , N} (1b)

where x(k) ∈ Rn is the state, ui(k) ∈ Rqi is the i-th
input, and yi(k) ∈ Rri is the i-th output of the system.
We design a network of N agents where each agent i
assesses its associated system output yi(k), communicates
over a fixed directed graph G = (V,E), and assigns control
input ui(k). Each vertex i in V = {1, · · · , N} represents
agent i and each edge (j, i) ∈ E indicates that agent j can
transmit information to agent i. We define the neighborhood
set Ni = {j ∈ V | (j, i) ∈ E} to specify a subset of agents
that can transmit information to agent i.

We assume that G is strongly connected and (1) is
jointly controllable and observable: pairs (A,B) and (C,A)
are controllable and observable, respectively, where B =
(B1, · · · , BN ) and C = (CT

1 , · · · , CT
N )T . However, indi-

vidual agents do not necessarily have full controllability
or observability of the system: For every i in V, pairs
(A,Bi) and (Ci, A) may not be controllable and observable,
respectively. Hence, without communication with others,
each agent can neither estimate the full state of the system
nor stabilize it.

Our main goal is to design the network dynamics so that
each agent i computes an estimate x̂i(k) of x(k), exchanges
and fuses the estimate with those of its neighbors, and uses
the fused state estimate to compute control input ui(k)
for joint system stabilization. To design the network, we
implement three components for each agent: state feedback,
distributed estimation, and linear consensus (see Fig. 1 for
an illustration of the closed loop consisting of the three
components and the LTI system):

State feedback: Let x̂i(k) be the state estimate of
agent i. The agent computes ui(k) according to

ui(k) = Kix̂i(k). (2)

Note that the agent uses only its own state estimate to
compute ui(k). Throughout the paper, we assume that gain
matrices {Ki}i∈V make A+

∑
i∈V BiKi Schur stable, i.e.,

has eigenvalues inside the unit circle in the complex plane.

Distributed estimation: Agent i computes x̂i(k) by
recursively updating it according to

x̂i(k + 1) = Ax̂i(k) + Li (yi(k)− Cix̂i(k))

+
∑

j∈V BjKj x̂i(k) +
∑

j∈Ni
Wij (x̂j(k)− x̂i(k)) , (3)

where Ki is the control gain matrix in (2) and Wij ∈ Rn×n,
Li ∈ Rn×ri are the parameters that need to be determined.
Eq. 3, which is motivated by the existing distributed esti-
mation approaches proposed, for instance, in [3]–[5], [8],
updates x̂i(k) using the partial output yi(k), the information
{x̂j(k)}j∈Ni from the agent’s neighbors, and the estimate∑

j∈V BjKj x̂i(k) of the control input applied to (1).1

m-round linear consensus: When additional informa-
tion exchange is allowed, the agents exchange their state
estimates and fuse the exchanged information using m-round
linear consensus, which takes place between two consecutive
estimation updates defined by (3). Letting {x̂j(k)}j∈V be the
state estimates of the agents at the beginning of the linear
consensus, the output x̂+

i (k) at agent i is determined by

x̂+
i (k) =

∑
j∈V P̄ij x̂j(k). (4)

The parameter P̄ij ≥ 0 is the i, j-th element of a matrix
defined as P̄ = Pm ∈ RN×N , where m is a non-negative
integer and P is a stochastic matrix that conforms with G =
(V,E), i.e., (j, i) /∈ E ⇔ Pij = 0. Hence, x̂+

i (k) denotes
agent i’s updated state estimate after applying the m rounds
of linear consensus with matrix P . We refer to m and P
as the total number of consensus rounds and the consensus
matrix, respectively. The outcome x̂+

i (k) is then fed into (2)
and (3) to update each agent’s state estimate, x̂i(k) = x̂+

i (k),
as illustrated in Fig. 1.

The work of [4]–[6] presents technical conditions on the
system (1) and the graph G under which there are parameters
{Wij}i,j∈V, {Li}i∈V that ensure convergence of x̂i(k) to
x(k) for every i in V, when there is no state feedback, i.e.,
Ki = 0, ∀i ∈ V. More recent work in [8] describes how to
jointly compute {Ki}i∈V, {Wij}i,j∈V, {Li}i∈V to stabilize
(1) using (2) and (3).

In our work, similar to [8], we investigate the problem
of designing the state feedback and distributed estimation
for the system stabilization. However, our work is distinct
from [8] in that we investigate the case where the gain
matrices {Ki}i∈V can be designed independently of the
parameters {Wij}i,j∈V, {Li}i∈V. In particular, our main
result establishes technical conditions that ensure the stability
of (1) when {Ki}i∈V and {Wij}i,j∈V, {Li}i∈V are computed
using two decoupled numerical methods. As discussed in
§III-C, our result can be applied to the scenario where each
agent needs to update its control gain without re-computing
the parameters of the distributed estimation over the entire
network for which the analysis of [8] cannot be directly

1According to (2), the control input applied to (1) is given by∑
j∈V BjKj x̂j(k) which depends on every agent’s state estimate.
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Also our work allows communication among agents to
take place at discrete-time instances, different from the
continuous-time problem setting investigated in [11], [13].
This makes our proposed framework and main theorems not
only technically distinct but also applicable to a wide range
of engineering problems in which agents can only exchange
information for a limited number of times over any given
finite time interval.

Below, we formalize our main problem and provide a
motivating example.

Problem 1: For fixed m ≥ 0, compute the parameters
{Wij}i,j∈V, {Li}i∈V and identify the set of state feedback
gains {Ki}i∈V for which the control inputs determined by
(2) and (3) stabilize the system (1).

Example 1: Consider a system of N vehicles moving on
the plane where each vehicle can apply a force to control
its motion and can observe its position. The system is thus
jointly controllable and jointly observable. The state and
parameters of the system’s model (1) are given as

x = (pT1 , v
T
1 , · · · , pTN , vTN )T (5a)

A = IN ⊗
(
I2 0.5I2
0 I2

)
(5b)

Bi=ei ⊗
(
0
I2

)
, Ci=eTi ⊗

(
I2 0

)
, i∈{1,· · ·, N} (5c)

where pi, vi ∈ R2 are, respectively, the position and velocity
of the i-th vehicle and ei is a canonical basis in RN whose
elements are all zero except the i-th element, which is 1.

The authors of [14] study the design of feedback con-
trollers to improve robustness of a vehicle platoon by allow-
ing the controller of each vehicle to assess state information
of the vehicles other than the ones nearby, e.g., front and rear.
Motivated by such approach, in this example we consider
the scenario where each vehicle is controlled using state
estimates of all the vehicles. In particular, we will consider
that the control input ui(k) = (ux

i (k), u
y
i (k)) of vehicle i is

defined by

ux
i (k) = −∑j∈V(kp(p̂

x
i (k)− p̂xj (k)− dij)

+ kv(v̂
x
i (k)− v̂xj (k))) (6a)

uy
i (k) = −∑j∈V(kp(p̂

y
i (k)− p̂yj (k))

+ kv(v̂
y
i (k)− v̂yj (k))) (6b)

where kp, kv are control gains and dij denotes a desired
distance the vehicles i and j needs to maintain along the
platoon’s moving direction (x-axis in this case). The position
and velocity estimates (p̂xi , p̂

y
i ), (v̂

x
i , v̂

y
i ) are computed by the

distributed estimation (3).
When the leading vehicle detects an obstacle on the road,

the feedback control (6) needs to be changed to avoid

2As we describe in §IV-A, finding the parameters for (3) involves
finding a solution to a large-scale bilinear matrix inequality, which can be
computationally expensive. For this reason, whenever possible, it is preferred
not to re-compute the parameters of (3) when the state feedback is revised.

collision while platooning. A solution to Problem 1 can be
used to find such feedback control without recomputing the
parameters {Wij}i,j∈V, {Li}i∈V of (3).

III. PARAMETER DESIGN FOR STATE FEEDBACK AND
DISTRIBUTED ESTIMATION

We present matrix inequality formulations to compute the
parameters of (3) that result in the stability of (1), and discuss
the existence of solutions to the formulations. We start with
m = 0, i.e., no linear consensus and address the general
case, where m ≥ 0, in §III-B.

We begin by defining the estimation error as
x̃i(k) = x(k)− x̂i(k). Using (1), (2)-(4), the state equation
for x̃i(k) can be derived as follows:

x̃i(k+1)=(A−LiCi) x̃i(k)+
∑

j∈V BjKj (x̃i(k)−x̃j(k))

+
∑

j∈Ni
Wij (x̃j(k)− x̃i(k)) . (7)

In what follows, we cast (7) as a feedback interconnection
of two components – the control component (8) and esti-
mation component (9) defined below – and find sufficient
conditions for the interconnection to attain the convergence
limk→∞ ∥x̃i(k)∥2 = 0, ∀i ∈ V. We will use this result to
address Problem 1.

To cast (7) into two components, let Wij = WC
ij + W E

ij

and define3

ṽi(k) =
∑

j∈V BjKj(x̃i(k)− x̃j(k))

−∑j∈Ni
WC

ij(x̃i(k)− x̃j(k)) (8)

x̃i(k + 1) = (A− LiCi) x̃i(k)

−∑j∈Ni
W E

ij(x̃i(k)− x̃j(k)) + ṽi(k). (9)

Note that the feedback interconnection of (8) and
(9) is equivalent to (7). In (8), the first term∑

j∈V BjKj(x̃i(k)−x̃j(k)) denotes the difference between
the control input applied to the system and its estimate by
agent i, and the second term

∑
j∈Ni

WC
ij(x̃i(k) − x̃j(k))

is adopted to counteract the error in the control input
estimation. In §IV, we present LMI-based optimization to
find the best selection of WC

ij . Note that (9) is equivalent to
(7) except we represent the control input estimation error
term by ṽi(k) and adopt {W E

ij}i,j∈V in place of {Wij}i,j∈V.
We use the small-gain theorem [15, Chapter 5.4] to

specify conditions on the parameter selection that ensure the
convergence in (7). To this end, we represent (9) as an LTI
system with state x̃(k) = (x̃1(k), · · · , x̃N (k)) ∈ RnN and
input ṽ(k) = (ṽ1(k), · · · , ṽN (k)) ∈ RnN as follows:

x̃(k + 1) = Ãx̃(k) + ṽ(k), (10)

where Ã ∈ RnN×nN is defined as

Ã = diag(A− L1C1, · · · , A− LNCN ) +W E (11)

3We represent Wij as a sum of the two terms WC
ij , W E

ij to use them as
design parameters in (8) and (9), respectively.



and W E is a block matrix whose i, j-th block element is

[W E]ij =


W E

ij if j ∈ Ni\{i}
−∑l∈Ni\{i} W

E
il if j = i

0n otherwise.
(12)

Also, we rewrite (8) as

ṽ(k) = D̃x̃(k), (13)

where D̃ is a block matrix whose i, j-th block element is

[D̃]ij=


−BjKj +WC

ij if j∈Ni\{i}∑
l∈V\{i} BlKl−

∑
l∈Ni\{i} W

C
il if j= i

−BjKj otherwise.

A. Matrix Inequality Formulation for Stability

Let G̃ be the (input-to-state) transfer function matrix
of (10). As an application of the small-gain theorem [15,
Chapter 5.4], the feedback interconnection of the estimation
component (10) and the control component (13) is L2-stable
if it holds that ∥G̃∥H∞∥D̃∥2 < 1.

Adopting the bounded real lemma for discrete-time LTI
systems [16], [17], we establish the following equivalence:

∥G̃∥H∞ <γ⇔


−X XÃ InN 0nN
ÃTX −X 0nN X
InN 0nN −γInN 0nN
0nN X 0nN −γInN

≺0 (14)

where γ is a positive real number and X ∈ RnN×nN is
a symmetric and positive-definite matrix. In the following
proposition, we provide a sufficient condition under which a
solution X, γ exists for (14).

Proposition 1: Suppose that there are
{
W E

ij

}
i,j∈V,

{Li}i∈V for which Ã given in (11) is Schur stable. Then, a
solution X = XT ≻ 0, γ > 0 exists for (14).

Proof: Based on [18, Lemma 5.1 (iii)] and by applying
the Schur complement, (14) can be equivalently expressed as

X ≺ γ2InN (15a)

ÃTXÃ−X + InN−ÃTX
(
X−γ2InN

)−1
XÃ ≺ 0 (15b)

Note that the last term in (15b) goes to zero as γ tends
to infinity. Since Ã is assumed to be Schur stable, there is
X=XT ≻0 satisfying ÃTXÃ−X ≺−InN . Consequently,
the same X satisfies (15) for sufficiently large γ. This
completes the proof.

Remark 1: The results of [4]–[7] from the distributed
estimation literature address the existence of the parameters{
W E

ij

}
i,j∈V, {Li}i∈V for which Ã is Schur stable when

the system (1) is jointly observable and the graph G is
strongly connected. The results of [5], [6] are based on a
state augmentation idea and those of [4], [7] leverage the
structure in the system model (1) and the graph connectiv-
ity. Therefore, in conjunction with the results from those
references, Proposition 1 implies that the joint observability
of (1) and the strong connectivity of G are sufficient for (14)
to have a solution.

Based on Proposition 1, in the following proposition, we
address Problem 1. Given γ2 > 0, define

Kγ2
= {{Ki}i∈V |A+

∑
i∈V BiKi is Schur stable,

min
{W C

ij}i,j∈V
∥D̃∥2 < γ2}.

Proposition 2: Suppose given parameters {W E
ij}i,j∈V,

{Li}i∈V of the estimation component G̃ satisfy ∥G̃∥H∞ < γ,
e.g., (14) has a solution with the same γ. Assuming that
Kγ−1 is nonempty, for each state feedback gains {Ki}i∈V
belonging to Kγ−1 there is {WC

ij}i,j∈V such that the control
inputs determined by (2) and (3) stabilize the system (1).

Proof: Since, under the assumptions on ∥G̃∥H∞

and ∥D̃∥2, the small-gain theorem holds, we have that
limk→∞ ∥x̃(k)∥2 = 0. By applying (2) to (1a), we obtain

x(k + 1) = (A+
∑

i∈V BiKi)x(k)−
∑

i∈V BiKix̃i(k).

Since A +
∑

i∈V BiKi is Schur stable and the last term
converges to zero as k tends to infinity, the state x(k)
converges to zero. This completes the proof.

Note that when γ in the statement of Proposition 2 is
too large, Kγ−1 would be an empty set. In other words,
when the H∞-norm of the estimation component is too large,
there is no control gain that stabilizes (1) while satisfying
the inequality min{W C

ij}i,j∈V
∥D̃∥2 < γ−1 for the small-gain

theorem to hold. In §III-B, we study the effect of m-round
linear consensus on the state feedback design. We show
that with more frequent information exchange (m large), the
agents have more options for selecting state feedback gains
that stabilize (1) and satisfy the inequality condition for the
small-gain theorem to hold, i.e., the set Kγ−1 becomes large
as m grows.

B. Effect of Linear Consensus on Stability

Suppose that the agents are allowed to fuse their state es-
timates using m-round linear consensus (4) with a consensus
matrix P . For concise presentation, we assume that m is an
even number and G is undirected (and we select P to be
symmetric). With Q = P ⊗ In, define x̃′(k) = Qm/2x̃(k)
and ṽ′(k) = Qm/2ṽ(k).4 By using (1), (2)-(4) and following
similar steps to obtain (10) and (13), we can derive the
state equations for the control and estimation components
as follows:

ṽ′(k) = Qm/2D̃Qm/2x̃′(k) (16)

x̃′(k + 1) = Qm/2ÃQm/2x̃′(k) + ṽ′(k) (17)

We refine the definition of Kγ2
as follows: Given γ2 > 0,

Kγ2,m = {{Ki}i∈V |A+
∑

i∈V BiKi is Schur stable,

min
{W C

ij}i,j∈V
∥Qm/2D̃Qm/2∥2 < γ2}.

We extend Proposition 2 to the case where the agents are
allowed to use m rounds of linear consensus.

4For odd m, we let x̃′(k)=Q⌊m/2⌋x̃(k) and ṽ′(k)=Q⌊m/2⌋ṽ(k).



M1=


−X∗ X∗ (A−

∑
i∈V L

∗
iCi

)
In 0n(

A−
∑

i∈V L
∗
iCi

)T
X∗ −X∗ 0n X∗

In 0n −γ∗In 0n
0n X∗ 0n −γ∗In

 , M2=

−X∗ 0n In 0n
0n −X∗ 0n X∗

In 0n −γ∗In 0n
0n X∗ 0n −γ∗In

 (18)

Theorem 1: For any given γ2 > 0, there is m∗ ≥ 0 for
which Kγ2,m is non-empty for m ≥ m∗, and for m1 ≥ m2,
it holds that Kγ2,m2

⊆ Kγ2,m1
. For sufficiently large m,

there are parameters {Wij}i,j∈V, {Li}i∈V for which the LTI
system (1) is stable with any {Ki}i∈V belonging to Kγ−1,m,
where γ is the H∞-norm associated with (17).

Proof: Notice that since D̃(1N ⊗ In) = 0 holds,
∥Qm/2D̃Qm/2∥2 converges to zero as m tends to in-
finity. Also we note that since Q is a stochastic ma-
trix, ∥Qm1/2D̃Qm1/2∥2 ≤ ∥Qm2/2D̃Qm2/2∥2 if m1 ≥ m2.
Hence, given fixed γ2 > 0, we can find m∗ for which Kγ2,m

is non-empty for all m ≥ m∗. It remains to show that for
sufficiently large m, we can find {W E

ij}i,j∈V, {Li}i∈V for
which ∥G̃′∥H∞∥Qm/2D̃Qm/2∥2 < 1 holds, where G̃′ is the
(input-to-state) transfer function of (17).

Since the system (1) is jointly observable, we can find
{L∗

i }i∈V such that A−∑i∈V L∗
iCi is Schur stable. Consider

the matrix M1 defined in (18). Suppose that we select the
matrices {L∗

i }i∈V and a symmetric positive-definite matrix
X∗ ∈ Rn×n that satisfy M1 ≺ 0 with smallest γ∗ > 0.5

Also we can verify that

1

N
11T ⊗M1 +

(
InN − 1

N
11T

)
⊗M2 ≺ 0 (19)

where M1 and M2 are defined in (18).
Define W E

ij = PijA and Li = NL∗
i and express (17) as

x̃′(k+1)=(Pm+1⊗A−Qm/2L̄C̄Qm/2)x̃′(k)+ṽ′(k) (20)

with L̄ = diag(NL∗
1, · · · , NL∗

N ), C̄ = diag(C1, · · · , CN ).
By adopting (14) with Ã = Pm+1⊗A−Qm/2L̄C̄Qm/2 and
X = IN ⊗X∗, we have that

−X XÃ InN 0nN
ÃTX −X 0nN X
InN 0nN −γ∗InN 0nN
0nN X 0nN −γ∗InN

≺0⇒∥G̃′∥H∞<γ∗.

(21)

Since limm→∞ Pm/2 = limm→∞ Pm+1 = 1
N 1N1T

N , when
m tends to infinity, the matrices in (19) and (21) are identical
up to permutation. With the same choice of X∗, γ∗ as in (19),
the inequality (21) holds for sufficiently large m. Therefore,
the H∞-norm associated with (20) approaches γ∗, which is
the H∞-norm of the centralized estimator, as a number of
rounds of linear consensus is allowed. In conjunction with the
fact that limm→∞ ∥Qm/2D̃Qm/2∥2 = 0, we conclude that
when m is sufficiently large, we can compute {Wij}i,j∈V,
{Li}i∈V for which ∥G̃′∥H∞∥Qm/2D̃Qm/2∥2 < 1 holds for
any {Ki}i∈V belonging to K(γ∗)−1,m.

Theorem 1 implies that when sufficiently frequent infor-
mation exchange is allowed, Kγ−1,m will be nonempty and

5By similar arguments in Proposition 1 such matrices exist for some γ∗.

we can always find gains {Ki}i∈V to stabilize the system.
Furthermore, by increasing m, we can design the parameters
{Wij}i,j∈V, {Li}i∈V to allow the agents to adopt gains
{Ki}i∈V from a larger set of gain matrices, and hence
potentially achieve better control performance.

C. Extension

Suppose that (2) consists of two linear parts:

ui(k) = K
(1)
i x̂i(k) +K

(2)
i x̂i(k). (22)

In Example 1, for instance, the first part K(1)
i x̂i(k) can be

designed to maintain a desired formation of the multiple
vehicles and the second part K

(2)
i x̂i(k) would be used,

whenever necessary, for the vehicles to keep a safe distance
from obstacles nearby. In this case, we can represent (7) as
a feedback interconnection of the following two components
and perform the stability analysis using Proposition 2 and
Theorem 1:

ṽi(k) =
∑

j∈V BjK
(2)
j (x̂i(k)− x̂j(k)))

−∑j∈Ni
WC

ij(x̂i(k)− x̂j(k)) (23)

and

x̃i(k+1)=(A−LiCi) x̃i(k)+
∑

j∈V BjK
(1)
j (x̃i(k)−x̃j(k))

−∑j∈Ni
W E

ij(x̃i(k)− x̃j(k)) + ṽi(k). (24)

The small-gain theorem can be used to establish the stability
results if it holds that

{K(2)
i }i∈V ∈ Kγ−1

where γ is the H∞-norm associated with (24). In this
case, the design of the parameters {W E

ij}i,j∈V, {Li}i∈V for
the estimation component will depend on the control gains
{K(1)

i }i∈V of (22), but not on {K(2)
i }i∈V.

IV. SIMULATIONS

Using simulations, we discuss the effect of the number
of consensus rounds m on establishing the stability. We
begin with explaining methods to compute the parameters
of (16) and (17). For illustration purposes, from Example 1,
we adopt (5) as the system model and (6) as state feedback
applied to the system.

A. Parameter Design

Recall that the control gains {Ki}i∈V are assumed to
be given, and the design parameters in our framework are
P ,
{
WE

ij

}
i,j∈V,

{
WC

ij

}
i,j∈V, and {Li}i∈V. We select P to

be a stochastic matrix with smallest second eigenvalue and
conforming with G to allow the agents to fuse the estimates
as fast as possible. For simplicity, we choose WE

ij = PijA
as motivated by the approach of [5].



0 2 4 6
m

6

8

10

12

14
γ

Line Graph

Ring Graph

(a)

0 2 4 6
m

0.0

0.2

0.4

0.6

γ
′

Line Graph

Ring Graph

(b)

0 2 4 6
m

0

2

4

6

8

γ
·γ
′

Line Graph

Ring Graph

(c)

Fig. 2. Plots of the optimal value of (a) γ for the estimation component
design (25), (b) γ′ for the control component design (26), and (c) the product
γ · γ′, where the critical value of 1 is drawn as a dotted line.

We solve the following two optimization formulations to
compute {Li}i∈V and {WC

ij }i,j∈V that minimize the H∞-
norm of (17) and the 2-norm of (16), respectively.

minimizeγ,X,{Li}i∈V
γ (25)

subject to (21)

minimizeγ′,{WC
ij}i,j∈V

γ′ (26)

subject to

(
γ′InN Qm/2D̃Qm/2(

Qm/2D̃Qm/2
)T

γ′InN

)
≻ 0

where γ > 0, X = XT ≻ 0, and Q = P ⊗ In. Note that
(25) is non-convex optimization having the bilinear matrix
inequality (21) as a constraint, whereas (26) can be cast as
LMI-based convex optimization.

B. Simulation Results

Consider Example 1 with N = 4 and two types of com-
munication graphs: undirected line and ring graphs. For each
graph, we compute the parameters {Li}i∈V and

{
WC

ij

}
i,j∈V

by solving (25) and (26) for m = 0, 2, 4, 6, where the
parameters of the state feedback (6) are given by kp =
0.1438, kv = 0.2128, and dij = j − i.

Fig. 2 depicts the minimal costs obtained in the optimiza-
tion (25) and (26) with the increasing number of consensus
rounds m over line and ring graphs. We can observe that
as m increases, both norms of the estimation and control
components decrease. In conjunction with Theorem 1, this
suggests that when the agents are allowed to communicate
more frequently (when m increases), they would have more
flexibility in revising the state feedback gains without re-
computing the parameters of the estimator. We can also
observe that since the ring graph has one additional edge
between agents 1 and 4, which allows the network to have
more paths for the agents to share state estimates, the con-
sensus on the state estimates takes place faster over the ring
graph. Consequently, the ring graph attains smaller norms for
both components than does the line graph. Fig. 2(c) shows
that m ≥ 2 consensus rounds are needed to satisfy the small-
gain theorem for the control gain we select.

V. CONCLUSIONS

We investigated the design of a network of agents for the
estimation and control of LTI systems. Since the separation
principle does not hold, the estimator and controller need

to be jointly designed, which involves finding a solution
to a large-scale optimization. This could be a disadvantage
if the agents need to change their controllers without re-
solving the optimization. We presented matrix inequality
formulations to characterize the conditions under which the
design of estimation and control can be decoupled. We also
showed how the frequency of information exchange between
agents affects the establishment of the conditions, which we
illustrated through simulations using a multi-vehicle system
example.
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