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Abstract—For a group of autonomous communicating agents
to carry out coordinated objectives, it is paramount that they
can distinguish meaningful input from disturbance, and come
rapidly and reliably to agreement or disagreement in response
to that input. We study how opinion formation cascades
through a group of networked decision makers in response to
a distributed input signal. Using a nonlinear opinion dynamics
model with dynamic feedback modulation of an attention
parameter, we prove how the triggering of an opinion cascade
and the collective decision itself depend on both the distributed
input and node agreement and disagreement centrality indices,
determined by the spectral properties of the network graph.
Moreover, we show how the attention dynamics introduce an
implicit threshold that distinguishes between distributed inputs
that trigger cascades and ones that are rejected as disturbance.

I. INTRODUCTION

Emerging technologies rely on network communications
and sensor input to make coherent collective decisions. For
example, autonomous multi-robot teams must cooperate to
move as a group, avoid collisions, and perform collective
tasks in potentially dynamic and uncertain environments.
These objectives necessarily involve on-the-fly collective
decision making about context-dependent options, such as
which of multiple available paths to take, in which direction
to turn, or how to distribute available tasks among team mem-
bers. There is urgent need for a unified design framework that
enables autonomous teams to rapidly and reliably coordinate
decisions across different contexts in a distributed manner.

Mathematical models of networked opinion dynamics, e.g.
[1]-[5], can be useful for this purpose, in part due to their
analytical tractability. However, most existing models rely on
a linear weighted-average opinion updating process, which
imposes limits on the range of behaviors exhibited. Notably,
special network structure or asymmetry is needed to produce
solutions other than consensus, whereas applications that
require groups to split among locations or tasks warrant more
generically enabled disagreement solutions.

We present new results for the nonlinear opinion dynamics
model [6]-[9], which provides an analytically tractable gen-
eralization of models that rely on linear weighted-averaging
by applying a saturation function to opinion exchanges. The
saturation makes the opinion update process fundamentally
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nonlinear, which has a number of important consequences.
First, the model yields multi-stability of disagreement solu-
tions as well as agreement solutions, each in easily iden-
tifiable parameter regimes, even for homogeneous agents.
Second, opinions form through a bifurcation in which the
neutral solution becomes unstable and agreement or disagree-
ment solutions become stable, independent of the number of
agents or options [6] and across network topologies [9]. This
means solutions are reached rapidly and reliably — strength
of opinions grow nonlinearly even with little or no input.

Our contributions yield a rigorous and systematic method
for designing distributed inputs to control opinion formation
and opinion cascades. We specialize the model to opinions
on two options here, but results extend naturally to an
arbitrary number of options. First, using Lyapunov-Schmidt
reduction methods [10, Chapter VII], we prove that opinions
generically form through a supercritical pitchfork bifurcation
where the two stable branches are either agreement solutions
or disagreement solutions, which we can fully character-
ize. Second, we prove that the agreement (disagreement)
centrality of a node, which depends only on the spectral
properties of the network adjacency matrix, determines the
influence an input to the node has on the agreement (dis-
agreement) bifurcation behavior. Third, when the opinion
dynamics are coupled with the feedback attention dynamics
introduced in [6], sufficiently large inputs can trigger an
opinion cascade, depending on where in the network they
are introduced. We show how agreement and disagreement
centrality indices predict the sensitivity of opinion cascades
to distributed inputs: The more aligned the input vector is
with the centrality vector, the smaller the inputs need to be
to trigger a cascade.

We present the model in Section II and review Lyapunov-
Schmidt reduction in Section III. We prove the pitchfork
bifurcations and the role of distributed input on opinion
formation behavior for constant attention in Section IV and
for dynamic feedback controlled attention in Section V. We
conclude in Section VI.

ITI. OPINION DYNAMICS MODEL

We study a model of N, agents communicating over a
network and forming opinions on two options through a
nonlinear process specialized from the multi-option general
model in [6],[7]. As in [9], we specialize to agents that are
homogeneous with respect to three fixed parameters in the
dynamics: the rate of forgetting (damping coefficient d > 0),
the edge weight in the communication network (v € R), and
the strength of self-reinforcement of opinion (o > 0). In [9],
we focused on the zero-input setting, i.e., the case in which
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there is no stimulus, evidence or bias that informs the agents
about the relative merits of the options. Instead, here, we
consider an input b; € R, for each agent ¢ =1,..., N,, and
allow the inputs to be heterogeneously distributed over the
network of agents. We further model heterogeneity over the
agents in their attention to network exchange.

Agent interactions are encoded in graph G = (V, E) where
V ={1,...,N,} is the index set of vertices. Vertex i € V
represents agent ¢, and edge set £ C V X V represents agent
interactions. A = (a;), ¢,k € V, is the unweighted graph
adjacency matrix with elements satisfying a;;, = 1 if and
only if e;; € F, and a;; = 0 otherwise. We let a;; = 0
for all 7 € V. G is an undirected graph if a;;, = ay; for all
i,k € V. Let A\g, ¢ = 1,...,N,, be the eigenvalues of A
and W()\,) the generalized eigenspace associated to \,. We
define Az and Apyip to be the Ag with largest and smallest
real parts, respectively, and V00 (Winaz) and Viin (Wonin)
to be the corresponding unit right (left) eigenvectors.

With two options, the opinion of each agent 7 is a real-
valued scalar x; € R. The sign of x; corresponds to agent ¢
favoring option 1 (x; > 0) or favoring option 2 (z; < 0). The
magnitude of the opinion variable x; describes the strength
of agent 7’s commitment. The vector of agents’ opinions x =
(71,...,2N,) € RNa is the network opinion state.

Agent ¢ has a neutral opinion when x; = 0, and we say
it is opinionated otherwise. Furthermore we say that any
pair of agents i,k € V agree (disagree) when they are
opinionated and favor the same option (different options),
i.e. sign(x;) = sign(zy) (sign(x;) # sign(xy) ). The group
is in an agreement state when all agents agree, and in a
disagreement state when at least one pair of agents disagree.

Each agent ¢ updates its own opinion state x; in continuous
time according to the nonlinear update rule:

T, = —dz; + ;S (oza:i + 721,;;21 aikxk> +bi. (D)
k=1
The rule has three parts: a damping term with coefficient
d > 0, a nonlinear interaction term that includes inter-agent
exchanges with weight v € R and a self-reinforcement term
with weight o > 0, and an additive input b; € R.

The nonlinearity applied to the inter-agent exchanges and
self-reinforcement is defined by an odd sigmoidal saturating
function S which satisfies S(0) = 0, S’(0) = 1, and
sign(S”(z)) = —sign(z). This is motivated from the liter-
ature and means that agent ¢ is more influenced by opinion
fluctuations in its neighbors when their average opinion is
close to neutral, and as neighbors’ opinions grow large on
average their influence levels off. In simulations and analysis
throughout this paper we use S = tanh. We purposely leave
the sigmoid more general in (1) because the results in this
paper generalize to arbitrary odd sigmoidal functions with
minor modifications in the algebraic details of the proofs.

We begin by specializing a result from [9].

Proposition I1.1 ([9], Theorem 1). The following hold true
Jor W) with w; :==u>0and b; =0 foralli=1,... Ng:
A. Cooperation leads to agreement: Let G be a connected

undirected graph. If v > 0, the neutral state x = 0 is a
locally exponentially stable equilibrium for 0 <u<ug and
unstable for u > uq, with u, = m At u = ug,
branches of agreement equilibria, v; #* 0, sign(z;) =
sign(xy) for all i,k € V, emerge in a steady-state bifur-
cation off of x = 0 along W (Anaz);

B. Competition leads to disagreement: Let G be a connected
undirected graph. If v < 0 the neutral state x = 0 is a
locally exponentially stable equilibrium for 0 < u < ugq
and unstable for u > uq, with uq = aﬂ%‘ At u = ug,
branches of disagreement equilibria, sign(x;) = — sign(xy)
for at least one pair i,k € V, i # k, emerge in a steady-state
bifurcation off of x = 0 along W (Amin)-

III. LYAPUNOV-SCHMIDT REDUCTION

To systematically characterize the equilibria of the opinion
dynamics model as a function of parameters, we leverage
Lyapunov-Schmidt reduction and its use in computing bi-
furcation diagrams. Consider the n—dimensional dynamical
system y = ®(y, p), where & : R" xR™ — R" is a smooth
parameterized vector field, y € R™ is a state vector, and

p € R™ is a vector of parameters. Letry € R*, s =1...N.
The N'" order derivative of ® at (y*,p*) is
(dN(I))y* p* (I‘l, N ,I'N)
0 + Zt 2)
rs,
T atN y P’
ty=--=tny=0

The equilibria of y = ®(y, p) are the level sets ®(y,p) = 0,
which defines the bifurcation diagram of the system.

The Jacobian of the system is the matrix J with elements
Jij = %’:i"). When J evaluated at an equilibrium point
(y*,p*) is (Jiegenerate (i.e. has rank n —m where 0 < m <
n), the local bifurcation diagram can be described using m
variables and the point is a singular point. The Lyapunov-
Schmidt reduction of ®(y, p) is an m-dimensional system of
equations that captures the structure of the local bifurcation
diagram of the system near (y*,p*). The procedure for
deriving the Lyapunov-Schmidt reduction [10, Chapter VII]
involves projecting the Taylor expansion of ®(y, p) onto the
kernel of its Jacobian at the singularity. The Implicit Function
Theorem is used to solve for n —m variables as function of
the remaining m, thus approximating the local vector field
in the directions orthogonal to the kernel.

The normal form for a bifurcation is the simplest equa-
tion that captures all qualitative features of the bifurcation
diagram. Systems with an odd state symmetry ®(—y,p) =
—®(y,p) often exhibit a pitchfork bifurcation. A normal
form for the pitchfork bifurcation universal unfolding is

§=p1y £ y® +p2+p3y’ 3)

where y € R is the reduced state, p; is a bifurcation
parameter and po, p3 are unfolding parameters. When py =
ps = 0, the symmetric pitchfork normal form is recovered
in (3). When one of the unfolding parameters is nonzero,
it follows from unfolding theory [10, Chapter III] that the
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bifurcation diagram changes locally to one of four possible
topologically distinct configurations (see Fig. 1).

IV. CONSTANT ATTENTION: SENSITIVITY TO INPUT

In this section, we investigate how a vector of constant
inputs b informs the outcome of the opinion formation
process (1) when attention is constant and u; := u € R for
all 2 =1,..., N,. The Jacobian of (1) evaluated at x = 0 is

Jp = (ua — d)T + uyA 4)
with identity matrix Z. The dynamics (1) in vector form are
X =—dx+uS((aZ +~vA)x)+b:=F(x,u,b) (5

where S(y) = (S(y1),..-,59(yn)), ¥y € R", and b =
(b1,...,bn,). The following theorem generalizes [11, The-
orem 1] to describe bifurcations of the opinion dynamics of
homogeneous agents. The theorem shows that any bifurca-
tion of x = 0 of (1) that is generated by a simple eigenvalue
of the adjacency matrix A must be a pitchfork bifurcation.

Theorem 1IV.1 (Pitchfork Bifurcation). Consider (1) and
define u* = ﬁ'l/\,y, where \ is a simple real eigenvalue
of adjacency matrix A for a strongly connected graph G.
Let v. = (v1,...,vn,) and w = (ws,...,wn,) be right
and left unit eigenvectors, respectively, corresponding to .
Assume that (i) for all eigenvalues § # X of A, Re[¢] # \;
(ii) o + Ny # 0; (iii){w,v3) # 0. Let f(z,u,b) be the
Lyapunov-Schmidt reduction of F(x,u,b) at (0,u*,0).

A. Bifurcation problem f(z,u,0) = 0 has a symmetric
pitchfork singularity at (z,u,b) = (0,u*,0). For values of
u > u* and sufficiently small |u — u*|, two branches of
equilibria branch off from x = 0 in a pitchfork bifurcation
along a manifold tangent at x = 0 to span{v}. When
sign{(w,v3)/(w,v)}(a + \y) > 0 (< 0) the bifurcation
happens supercritically (subcritically) with respect to u.

B. Bifurcation problem f(z,u,b) = 0 is an N,-parameter
unfolding of the symmetric pitchfork, and %(zv u,b) = w;.

Proof. The eigenvalues of J, (4) are p = ua — d + uyA,
and so, at u = u*, J, has a single zero eigenvalue. Observe
that the left and right null eigenvectors of .J, are precisely w
and v. Following the procedure outlined in [10, Chapter I,
3.(e)] we derive f(z,u,b). We derive the coefficients of the
polynomial expansion of f(z,u,b) [10, Chapter I, Equations
3.23(a)-(e)] through third order in the state variable. Note that
(d*F),u* 0(v1,va2,v3) = 0 for any v; because S”(0) = 0,
which implies that f,, = 0 by [10, Chapter I, Equation
3.23(b)]. Also, f.(0,u*,0) = 0 by [10, Chapter I, Equation
3.23(a)]. The nonzero coefficients in the expansion are

fmma: = <W> (dBF)O,u*,O(Va v, V)> = 72d(a + )‘7)2<W7 V3>

OF .\ _
fbi —_ <W7abl(07u a0)> = W;

fou = <w7 (45), ) > — (a+X)(w.v)

where & = u—u* and (-, -) denotes the standard vector inner
product. Also, observe that we can align the left and right

eigenvectors to satisfy (w,v) = k; > 0 (the inner product is
nonzero by duality). Then (w,v3) := ko = 3" w;v?. The
Lyapunov-Scmidt reduction of (1) about (0, u*,0) is thus

5 = ki (a4 M)z —2kod(a+ \y)?2% 4+ (w, b) + h.o.t. (6)

Part A of the lemma follows by (6), by the recognition prob-
lem for the pitchfork bifurcation [10, Chapter II, Proposition
9.2], as well as by the definition of a center manifold. Part
B follows by the definition of an unfolding and by (6). [

From Theorem IV.1 we can describe many of the bifurca-
tions of x = 0 of (5) from the spectrum of A. In particular,
if Ahas N < N, simple eigenvalues )\, we expect x = 0 to
exhibit N distinct pitchfork bifurcations at critical values of
the parameter u;, = d/(a+\,7). Locally near the bifurcation
point the left eigenvector w, corresponding to A, informs the
sign structure of the emergent equilibria, as explored in [9].
For undirected graphs we can deduce the direction in which
the bifurcation branches appear.

Corollary IV.1.1. Suppose G is an undirected graph. When
uy = d/(a+ \gy) > 0(< 0) the pitchfork bifurcation at u;,
happens supercritically (subcritically).

Proof. Let vq and w, be the right and left eigenvectors of
A corresponding to \,. For an undirected graph, w, = v,,.
Then (wg,vy) = (vg, V) > 0 and <Wq,V2> = <anV?> =
ZkN:“l(vq)i > 0. The criticality condition from Theorem
IV.1 becomes (o + A;y) > 0(< 0) for supercritical (subcriti-
cal) pitchfork bifurcation. Since d > 0 the result follows. [

Using these general results on the bifurcation behavior of
the opinion dynamics, the next theorem establishes that the
agreement and disagreement bifurcations in Proposition II.1
are supercritical pitchfork bifurcations in which x = 0 loses
stability and new branches of locally stable solutions appear.

Theorem IV.2 (Agreement and Disagreement Pitchforks).
Consider (1) and let u; := uw > 0. The agreement and
disagreement bifurcations in Proposition II.1 are super-
critical pitchfork bifurcations. Additionally, the two steady-
state solutions, which appear for u > uq(ugq), are locally
exponentially stable for |u — ug|(|u— ug|) sufficiently small.

Proof. Supercriticality of the bifurcating branches of equi-
libria follows for the undirected case from Corollary IV.1.1.
For a directed graph and v > 0 it follows from the Perron-
Frobenius theorem that v,,, 4, and w4, have strictly positive
components, i.e., (Woaz, Vimaz) > 0 and (Woaz, Vo,0.) >
0. Supercriticality then follows from Theorem IV.1. The two
nontrivial fixed points are locally exponentially stable by an-
alytic continuity of eigenvalues: N, — 1 negative eigenvalues
are shared with x = 0 and the bifurcating eigenvalue is
negative by [10, Chapter I, Theorem 4.1] because 0f/9z > 0
for the Lyapunov-Schmidt reduction (6). O

The results presented in this section provide rigorous
predictions of the influence of inputs on the opinion for-
mation bifurcation behavior. We define the node agreement
(disagreement) centrality index for node i to be w;, the ith
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Fig. 1: Symmetric pitchfork bifurcation and its unfolding for
opinion dynamics (1) in the agreement regime (y > 0) with three
agents communicating over an undirected line graph. Blue (red)
curves correspond to stable (unstable) equilibria. Vertical axis is
the projection of equilibria onto W (Amaz). d = a = v = 1. Left:
b = (0.05,0,—0.05); right: b = 0.1Vmaz + (0.05,0, —0.05).
Bifurcation diagrams generated with help of MatCont [12].

component of Wy,q. (Wpyin) (see also [8]). It follows by
Theorem IV.1B and Theorem IV.2 that the influence of an
input b; to node ¢ on the network opinion formation behavior
is exactly node ¢’s agreement or disagreement centrality w;.
This allows us to predict in which direction the agreement or
disagreement pitchfork unfolds as a function of the locations
and strengths of distributed inputs. If (b, Wy,0,) = 0 the
pitchfork does not unfold. If (b, Wy4.) < 0 ((b, Wipaz) >
0) the pitchfork unfolds in a such a way that it exhibits a
lower (upper) smooth branch of equilibria. For example, in
Fig. 1 the diagram on the left receives a nonzero input which
is orthogonal to w,,4,, and the symmetry of the pitchfork
bifurcation is unbroken. On the right, (b, W,,4.) = 0.1
and near the singular point of the symmetric diagram, the
unfolded diagram favors the positive solution branch which
corresponds to agents agreeing on the positive option.

V. DYNAMIC ATTENTION: CASCADES AND TUNABLE
SENSITIVITY TO INPUT

In this section we show how distributed state feedback
dynamics in the attention parameters of the opinion dynamics
(1) give rise to agreement and disagreement cascades with
tunable sensitivity to distributed input. We show that the
magnitude of the distributed input vector, and its orientation
relative to the centrality eigenvector W.,q: (W) When
v > 0 (< 0) provide control parameters for triggering
cascades over the network. A single design parameter in
the attention feedback dynamics can be used to tune the
threshold above which inputs trigger a cascade.

As in [6] we define state feedback dynamics for the
attention parameter u; of each agent ¢ to track the saturated
norm of the opinions observed by agent i:

N,
Tulli = —U; + Sy (mf + Z(aikxk)2> . @)
k=1

S, takes the form of the Hill activation function:
_ vy
(yen)™ +y™’
where threshold ., > 0. We constrain @ and w such that
u > ue > u > 0, with u, = ug (ug) when v > 0 (< 0). As

n

Su(y) =u+ (a—u)

®)

A. |
———
201 y
- F o
, , , 2
1 /
= /—
o] [ = -
B. T i : 1
L ; . 02
- 11 =
5 /"__
0] -1

0 20 40
t
Fig. 2: A. Agreement cascade, vy = 1, u = uq—0.01, & = u,+0.6;
B. Disagreement cascade, v = —1, u = uq — 0.01, & = uq + 0.6.
Left) Opinion and attention trajectories. Right) Graph with node ¢
color equal to z;(50). d=1,n =3, y4»p = 0.4, 7, = 10, a = 1,
d = 1. For each i, z;(0) € N'(0,0.1), u;(0) = 0, b; € N'(0,0.2).

in [8], we define an opinion cascade as a network transition
from a weakly to a strongly opinionated state, where in a
weakly (strongly) opinionated state, the agents’ attention is
close to its lower (upper) saturation bound, i.e. u = u (u =
u). See Fig. 2 for an example of an opinion cascade in an
agreement (v > 0) and disagreement (y < 0) regime.

Assumption. G is undirected.

In vector form, coupled dynamics (1),(7) become

()-- (%) (L@ mEg) o

where S,(y) = (Su(y1),..-,S.(yn)), y € R", x? =
(23,...,2%, ), and © is the element-wise product of vectors.

The Jacobian of (9) at equilibrium point (xs, us) is

T = (—dI + (diag{us }(aZ +vA)) ® K Kg)
(ew) = (T + A) diag{x,} ® K3 -7)°
(10)
K =S'((aZ +vA)x,) 17, Ky = diag{S((aZ + vA)x,)},
K3 =28, (Z+ A)x2)17, and 1 = (1,...,1) € RM=. Let
G(y,b) be the right hand side of (9) with y = (x, u).

Lemma V.1 (Stability of x = 0). Consider (9) with b = 0.
The point (x5,us) = (0,ul) is an equilibrium point of the
coupled dynamics. When either v > 0 and u < uq, or 7 <0
and u < uyg, it is locally exponentially stable.

Proof. Plugging the state values into the coupled dynamics
(9) easily verifies that (x,u) = 0 at (xs, us). Evaluated at
this point, (10) simplifies to the block diagonal matrix

<—dI +u(aZ+~A) 0 )
Jou = ‘

0 -7 an

When 0 < u < uq (ug), (11) has 2N, eigenvalues with
negative real part, and the stability conclusion follows. [J

Lemma V.2 (Small Input Approximates Equilibrium Opin-
ion). Let (xs,uy) be an equilibrium of (9) with inputs b.
Let u < u, where ue = uq if v > 0 or uc = uq if v < 0.
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Define W = Wopaz if v > 0 0r W= Wy, if ¥ < 0. Then

Ol |l

S > 0.
9w, b)|

b=x,=0

12)

Proof. Since x = 0 is an equilibrium of the system with
b =0, (x5, us) can be approximated by the linearization

o 3)+ (0) o

J(0,u) is symmetric and invertible so its inverse has the same
eigenvectors. Thus, to the first order, it holds that

13)

N

1
— T ==Y —(w, bjw,

g=1Ha

(14)

where J, is (4) with v = u, wy is an eigenvector of A
corresponding to A,, and p1, = d+u(a+ Ay7y). Eigenvectors
are orthogonal, so ||x|| = SN 2 (Wi, b)%. O
Theorem V.3 (Saddle-Node Bifurcation). Consider (9) with
a nonzero input vector b and define u. = ug if v > 0 and
Ue = Ug if v < 0. Let W = Winaz OF Wpyipn Fespectively.
Suppose ugp, < 1 and u < u. with |u—u.| sufficiently small.
There exists p > 0 such that when |(w., b)| = p there exists
an equilibrium (x,,u,) of (9) such that, if

(We,u, © V2O S"((aZ +vA)x,)) >0 (15)

ky(We,up ©ve © vy ©S"((aZ +vA)x,)) <0 (16)
is verified for all q at (x,,0,) with A\q # X\, an eigenvalue
of A with corresponding left (right) eigenvector wq (Vg),
where ky = (a 4+ YAq)/(d + u(a + vAg)): (i) There exists
a smooth curve of equilibria in R*Ne x R passing through
(Xp, Up, p), tangent to the hyperplane R?Ne x {p}; (ii) There
are no equilibria near (Xp,u,,p) when |(w¢,b)| > p and
two equilibria near (x,,u,,p) for each |(w.,b)| < p; (iii)
The two equilibria near (x,,uyp,p) are hyperbolic and have
stable manifolds of dimensions N, and N, — 1 respectively.

Proof. (10) depends continuously on the model parameters
and on the state. So, by [13, Chapter II, Theorem 5.1] the
eigenvalues and eigenvectors of (10) change continuously for
||xs]|| sufficiently small. Leaving the full development of the
matrix perturbation theory for future work, we conjecture
that if ||x|| is sufficiently small then the eigenvectors of
(11) are a good approximation of the eigenvectors of (10).
Since the origin of (9) with b = 0 is stable by Lemma V.1
and because \,;, and \,,,, are simple eigenvalues, if an
eigenvalue of J(x_ ) crosses zero for some ||b|| it must also
be simple. This eigenvalue corresponds to a perturbation of
—d + u(a + y\;) where A\; = Appan OF A Tespectively.
By Lemma V.2, if b # 0 then at equilibrium ||x| # 0.
Define v. = (v¢,0) and w, = (w,,0). Let g(z,b) be the
Lyapunov-Schmidt reduction of (9) at an equilibrium (x, u)

for sufficiently small inputs. We have

82
Z Z &Bjasck

Jj=1k=1 (yp,bp)
2 "
(a+ Aey)? (':)p> ® (V(')) ® (S ((O‘IJ(;VA)XP)> . a7

The second derivative in the Lyapunov-Schmidt reduction is

d Gy b VC7V(’

(Vc)k

9zz = <WC7 dQGyp,bp (‘7(:7 ‘70)> = (a + )\c’}/)z

N,
D))" (ol 7 S aa)e) >0
i=1 .

by assumption (15). Additionally, the term (w., b) appears
in g(z,p) since gp, = <\7vc, g—g = (W.);.

Finally, we compute the coefficient of the cross-term
g,; in the Lyapunov Schmidt reduction. For convenience,
we express b = Z 1 Bqwq where each B, := (wg,b).
Coefficients of the cross-terms zf, in g(z,b) simplify to

() @@

E is a projection onto the range of Jg .,y and J(Blu)

928, = <Wca —d? Gyp, b, ({/ch(?)u

cVE
RMa is the inverse of to restriction of J(0,u) to the orthogonal
complement to v.. We find that J(B’lu)E (ggg) = i(vq, 0)
and g.5, = —(a+ Acy) K, where each K, is the quantity in
(16). Since g.p, > 0 for all g, we conclude that the eigen-
value of the equilibrium is monotonically increasing with
| < we, b > |. By continuity of eigenvalues of the perturbed
Jacobian, it follows that the leading eigenvalue necessarily
crosses zero as input is increased. By [14, Theorem 3.4.1]
this singularity must be a saddle-node bifurcation point, with
bifurcation parameter b= (W, b) and properties outlined in
the statement of the theorem. O

Corollary V.3.1. The input magnitude ||b| and its relative
orientation bZw. := (w¢,b)/|b|| can be used as controls
to trigger a network opinion cascade.

Proof. This follows by factoring out the magnitude of the
input vector from the bifurcation parameter (v, b). O

Figure 3 illustrates the prediction of Corollary V.3.1, show-
ing bifurcation diagrams with stable and unstable equilibria
of the opinion dynamics in the agreement regime on a
small network. The two diagrams illustrate the saddle-node
bifurcation predicted by Theorem V.3 with ||b|| and bZw as
bifurcation parameters. Opinion cascades are activated when
the bifurcation parameter passes the critical value. Although
the predictions of the results in this section assume inputs
are small, in simulation and through numerical continuation
of the dynamics on different networks we observe that
this result is quite robust. The existence of a saddle-node
bifurcation, and therefore a threshold which differentiates
between inputs which trigger a cascade and ones which do
not, persists across network structures and for large inputs.
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Fig. 3: Blue (red) lines track the first coordinate of the stable
(unstable) equilibrium solutions of the coupled dynamics (9) on
a 3-agent undirected line graph. Parameters: us, = 0.1, v = 1,
n=3,b=|b| |bLWmaz|  Wmaz; left: |bLWp,qz| = 0.1, right:
|lb|| = 0.1 Bifurcation diagrams generated using MatCont [12].

A consequence of Theorem V.3 is that also for opinion
cascades the node centrality indices are the key determinant
of the effect of inputs on the coupled attention-opinion
dynamics (9): The smaller the angle between the input vector
and the agreement or disagreement centrality vector, the
smaller the needed input strength to trigger an agreement or
a disagreement opinion cascade. Figure 4 numerically illus-
trates our theoretical prediction. The transition line from the
red (no cascade) to the white (cascade) regions correspond
to the threshold, i.e., the saddle node bifurcation predicted
by Theorem V.3, at which the opinion cascade is ignited. It
shows, for different network topologies and agreement and
disagreement opinion cascades, that as the angle between the
input vector and the centrality vector decreases, the norm of
the input needed to trigger a cascade gets smaller. In the
cascade region of the simulations in Figure 4, the centrality
eigenvector accurately predicts the sign distribution among
the nodes. Rigorously proving this is subject of future work.

The cascade threshold is implicitly defined by the design
parameter yy;, in the attention saturation function (8). In
future work we will explore how the sensitivity of the group
to distributed input can be tuned with this parameter.

VI. FINAL REMARKS

We have derived and proved a systematic method for
designing distributed inputs to control opinion formation
and opinion cascades for both agreement and disagreement
among distributed agents that communicate over a network.
Future directions include expanding the analysis presented
here to multi-option cascades using the general formulation
of nonlinear multi-option opinion dynamics of [6].
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