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Abstract— We examine the influence of time-varying interac-
tions, which are modeled by a Markov switching graph (MSG),
on noisy multi-agent dynamics. Our focus is on the robustness
of both consensus and leader-follower tracking dynamics in the
presence of stochastic noise, and we derive expressions for the
steady-state covariance of the system’s deviation from consensus
and tracking error, respectively. We use these measures to
quantify individual and group performance as functions of
the interaction graphs and graph switching matrix. We extend
notions of robustness and joint centrality indices for static
graphs to MSGs.

I. INTRODUCTION

Many systems rely on the cooperation of agents, each

performing a task and strategically arranged to collectively

achieve a goal. Such multi-agent systems are ubiquitous

across disciplines from biology to engineering to economics.

Typically, real multi-agent systems operate in noisy environ-

ments, and the interactions among agents vary with time.

For the successful design of such systems, it is imperative

to understand the influences of time-varying interactions and

noise on the individual as well as collective performance.

In this paper, we examine the effects of time-varying

interactions among agents on the robustness of consensus

dynamics and the related leader-follower collective reference

tracking problem in the presence of stochastic noise. We

model the time-varying interactions with a Markov switching

graph (MSG), defined by a set of static graphs and a Markov

chain that describes the transitions among these graphs.

The robustness of consensus problem for static interaction

graphs [1]–[5] has received significant attention. Extending

these results to time-varying graphs (TVG) is challenging

due to the limited analytic tractability of time-varying dy-

namical systems. Consensus dynamics have been studied for

deterministically time-varying graphs [6], [7] and stochasti-

cally time-varying graphs [8]–[10], but these analyses are not

applicable in the presence of noise. For example, a contrac-

tion analysis-based approach cannot be immediately applied

in the presence of stochastic forcing terms. We leverage the

structure of MSGs, a special class of stochastically time-

varying graphs, to understand the robustness properties of

noisy consensus dynamics. The consensus dynamics under
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MSGs have been studied in [8], but to the best of our

knowledge, the influence of noise on the performance of

consensus in MSGs has not been explored.

In the noisy leader-follower collective reference tracking

problem, a set of cooperating agents track a reference signal

despite signal and communication noises. A subset of these

agents, the leaders, have access to the external signal while

the rest, the followers, rely solely on information communi-

cated from their neighbors. This framework has received at-

tention in the context of the optimal leader selection problem,

i.e., the designation of a leader set that optimizes the group

performance [11]–[14]. Leader selection problems have been

studied for TVGs that transition much more slowly than the

consensus dynamics and for stochastic TVGs resulting from

random link failure [14]. We investigate the noisy leader-

follower collective reference tracking problem for MSGs.

Our approach does not require the time-scale separation

between graph and consensus dynamics, and it accounts for

more general stochastic TVGs than in [14].

Our results leverage the theory of continuous-time Markov

jump linear systems (CT MJLS) [15] to characterize the

robustness and leadership properties in time-varying multi-

agent networks. Our main contributions are three-fold. First,

we derive measures of system performance for the noisy con-

sensus and noisy leader-follower reference tracking problems

as functions of the graph structures and graph switching

matrix defining the MSG. Second, we show how these

measures can be used to extend notions of robustness and

centrality measures for static graphs to MSGs. Third, we

illustrate how system performance varies and often improves

for the dynamic graph as compared to the static graph.

In Sections II and III, we introduce the two noisy coordi-

nation problems for MSGs and review key concepts for the

CT MJLS, respectively. In Section IV, we rigorously analyze

performance under the two coordination problems. In Section

V, we present notions of robustness and centrality measures

for MSGs. We numerically illustrate our results in Section

VI and conclude in Section VII.

II. TWO NOISY DISTRIBUTED COORDINATION PROBLEMS

UNDER MARKOV SWITCHING GRAPHS

Consider a system comprising a switching network of m
agents with system state x(t) ∈ R

m, where xi(t) is the

state of agent i at time t ≥ 0. Each agent i sends and

receives information from its set of neighbors Ni(t). The

resulting communication topologies make up the undirected,

unweighted time-varying graph G(t) = (V, E(t), Y (t)) for

the set of nodes V = {1, . . . ,m}, set of edges E(t) ⊆ V×V ,

and adjacency matrix Y (t) ∈ R
m×m. Each graph node
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corresponds to an agent in the network, which contains an

edge (i, j) between nodes i and j at time t if j ∈ Ni(t).
Yij(t) = 1 if edge (i, j) exists at time t and Yij(t) = 0,

otherwise. Since G(t) is undirected, (i, j) implies (j, i), and

Y (t) is symmetric. The degree of node i at time t is di(t) =∑m
j=1 Yij(t), and D(t) = diag(d1(t), d2(t), . . . , dm(t)). The

Laplacian matrix of G(t) at time t is L(t) = D(t)− Y (t).
We first consider the noisy consensus problem wherein

a set of agents, each with its own opinion xi, attempts

to achieve agreement. Specifically, this analysis studies the

network consensus problem [7] under stochastic noise for

TVGs. The continuous-time dynamics are

dx(t) = −L(t)x(t)dt+ FdW(t), (1)

where F is the system noise matrix and dW(t) is the m-

dimensional standard Wiener process increment. Consensus

is achieved when x = α1m, where α ∈ R is the agreement

value and 1m is the m× 1 vector of all 1’s.

Next, we consider the noisy leader-follower reference
tracking problem, in which the agents seek to track an

external reference signal θ ∈ R such that xi represents agent

i’s tracking estimate of θ. A subset of agents, called leaders,

directly measure θ, which is affected by noise, and the

remaining agents, called followers, do not directly measure

θ. All agents exchange information via noisy communication

with their neighbors. The continuous-time dynamics are

dx(t) = −(L(t)x(t) +K(x(t)− θ1m))dt+ FdW(t), (2)

where the leadership matrix K ∈ R
m×m is a diagonal matrix

with entries {κ1, κ2, . . . , κm}. If agent i is a leader, then

κi = κ > 0 such that all leaders share the same gain κ. If

agent i is a follower, then κi = 0. The cardinality of the

leader set K is given by |K|. Without loss of generality, we

let θ = 0, reducing the dynamics (2) to

dx(t) = −M(t)x(t)dt+ FdW(t), (3)

where M(t) = L(t) +K.

We assess network performance using the following defini-

tions of node and system errors, which apply only to systems

for which the steady-state covariance exists. Define the node
error Ei of node i as the steady-state variance of xi:

Ei(Σss(x)) = (Σss(x))ii,

where Σss(x) is the steady-state covariance of x. Define the

system error E as the steady-state variance of x:

E(Σss(x)) = tr(Σss(x)) =

m∑
i=1

Ei(Σss(x)).

We study the two coordination problems (1) and (3) under

the assumption that the system switches between a finite set

of static interaction graphs G = {G1, . . . , Gn} according to

a Markov chain (MC), where Gi = (V, Ei,Yi). The resulting

TVG is known as a Markov switching graph (MSG). Under

a given MSG G, the linear dynamical systems (1) and (3)

are known as Markov jump linear systems (MJLS) [16].

Recall that the total number of possible unweighted graphs

for a given finite node set is also finite. Hence, the set

G is assumed to be finite without loss of generality. Let

S = {1, . . . , n} be the graph index set.

Let the graph switching behavior in (1) and (3) be gov-

erned by a continuous-time MC (CTMC). For the graph

set G, the CTMC is specified by the infinitesimal time-

homogeneous generator matrix Γ ∈ R
n×n with elements:

Γij =

{
qij , i �= j,

−vi, i = j,

for i, j ∈ S. Here, vi =
∑

j∈S\i qij is the holding rate of

graph Gi, and qij ≥ 0 is the transition rate from Gi to

Gj . Intuitively, qij is the rate parameter of an exponential

distribution that determines the probability that the system

in graph Gi transitions to graph Gj with time [15]. All rows

in Γ sum to 0, and −Γ is a Laplacian matrix.

Let Δn be the (n − 1)-dimensional probability simplex

in R
n. Then, for the CTMC with the generator matrix Γ,

π(t) ∈ Δn is the probability distribution over G at time

t. Specifically, πi(t) is the probability that G(t) = Gi, and∑n
i=1 πi(t) = 1. From [15], π(t) = eΓ

�tπ(0).
We study the two coordination problems under the follow-

ing assumptions for the MSG:

Assumption 1: The underlying CTMC is ergodic. �
Assumption 2: Every graph in the set G is unweighted,

undirected, and connected. �
Under Assumption 1, the CTMC has a unique stationary

distribution πss such that limt→∞ π(t) = πss. Ergodicity

implies that Γ� has exactly one eigenvalue at 0 with the

right eigenvector πss (i.e., πss = eΓ
�
πss) and all others

in the left half-plane. Assumption 2 can be relaxed under

certain conditions, but for clarity of exposition, we keep it.

III. PRELIMINARIES ON MARKOV JUMP LINEAR SYSTEMS

Consider the following CT MJLS:

dx(t) = −Z(t)x(t)dt+ FdW(t), (4)

where Z(t) ∈ R
m×m corresponds to the network graph at

time t of the MSG with generator matrix Γ. Let Z(t) = Zi

whenever G(t) = Gi. We now solve for the dynamics of the

mean and second moment of x(t) evolving according to (4).

For the following proposition, let μ(t) = E[x(t)] represent

the mean. The contribution of graph Gi ∈ G to the mean is

μi(t) = E[x(t)I(G(t) = Gi)] such that μ(t) =
∑n

i=1 μ
i(t),

where I(·) is the indicator function. Vertically stacking the

means for all graphs gives the vector:

ν(t) = [μ1(t)�,μ2(t)�, . . . ,μn(t)�]�.

Similarly, let the second moment C(t) = E[x(t)x(t)�].
The contribution of graph Gi ∈ G to the second moment

is Ci(t) = E[x(t)x(t)�I(G(t) = Gi)] such that C(t) =∑n
i=1 C

i(t). Vertically stacking the vectorized second mo-

ments for all graphs gives the vector:

c(t) = [c1(t)�, c2(t)�, . . . , cn(t)�]�,

where ci(t) = vec(Ci(t)) and vec(·) is the vectorization

operator. For the remaining analysis, let Q = FF�, N =
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diagn(Zi)−ΓT ⊗ Im, and M = diagn(Zi⊕Zi)−Γ�⊗ Im2 ,

where ⊗ and ⊕ are the Kronecker product and sum operators,

respectively, and diagn(Ai) is the block-diagonal matrix with

entries {A1, A2, . . . , An}.

Proposition 1: The following statements hold for the CT

MJLS (4) with an MSG satisfying Assumptions 1 and 2:

(i) The dynamics of the mean term ν(t) are

ν̇(t) = −Nν(t); (5)

(ii) The dynamics of the second moment term c(t) are

ċ(t) = −Mc(t) + π(t)⊗ vec(Q). (6)

Proof: This result is standard in MJLS literature. See,

for example, [16], [17, Proposition 3.5].

IV. PERFORMANCE OF DISTRIBUTED COORDINATION

UNDER MARKOV SWITCHING GRAPHS

In this section, we study and interpret the performance of

the two noisy coordination problems described in Section II

under MSGs. Let hS,1 = vec(Im2)� and hS,n = 1�
n ⊗hS,1.

Furthermore, let hi
N,1 = vec(Oi

m2))� and hi
N,n = 1�

n ⊗
hi
N,1, where O

i
m2 is the m2×m2 matrix containing all zeros

except at element (i, i), which takes the value 1. Then, hS,nc
is the trace of second moment E[xx�], and hi

N,nc is its

diagonal element (i, i) corresponding to node i. At steady

state, these expressions are the contributions of the second

moment to the system and node errors, respectively.

A. Noisy consensus under MSGs

Let Nc and Mc be the system matrices in (5) and (6) after

specializing Proposition 1 to the CT MJLS (1).

Lemma 1: For the noisy consensus dynamics (1), under

Assumptions 1 and 2, both Nc and Mc have exactly one

eigenvalue at 0 each; all others lie in the right half-plane.

Proof: When specializing Proposition 1 to (1), Zi = Li,

and (4) reduces to (1). Consequently, Nc = diagn(Li)−Γ�⊗
Im and Mc = diagn(Li⊕Li)−Γ�⊗ Im2 . We seek to show

that N�
c and M�

c are effectively the Laplacian matrices of

two large connected graphs that contain nm and nm2 nodes,

respectively, and each has exactly one eigenvalue at 0.

For N�
c , diagn(Li) is the Laplacian of a disconnected

graph with n clusters, each of which is a connected sub-

graph of m nodes, as required. Therefore, the null space of

diagn(Li) is spanned by vectors of the form a⊗1m for any

a ∈ R
n. Because Γ describes an ergodic CTMC, −Γ ⊗ Im

is the Laplacian of a connected graph, and the null space of

−Γ⊗ Im is spanned by vectors of the form 1n ⊗ b for any

b ∈ R
m. The sum of two Laplacians is also a Laplacian.

Furthermore, by Lemma 3.5 in [8], for two Laplacian matri-

ces A and B, Null(A+B) = Null(A) ∩ Null(B). Therefore,

Null(N�
c ) is the intersection of the space spanned by a⊗1m

and 1n ⊗ b, which is the space spanned by 1mn. Since the

eigenvalues of a Laplacian are either at 0 or lie strictly in

the right half-plane [18] and the nullity of N�
c is 1, the

transpose Nc, which shares its eigenvalues, has exactly one

eigenvalue at 0. It can be verified that the corresponding right

eigenvector is πss ⊗ 1m.

Similarly, it can be shown that Mc has the unique right

eigenvector πss ⊗1m2 corresponding to the eigenvalue 0.

Due to the eigenvalues of Nc and Mc at 0, the second

moment of x in (1) diverges. However, the diverging part

corresponds to the fully correlated component of agents’

states and therefore does not contribute to the deviation from

consensus. Borrowing terminology from [19], we label the

subspace of Rm spanned by 1m the consensus subspace and

its orthogonal complement the disagreement subspace. We

show that as with the static graph [1], the second moment of

x in (1) projected onto the disagreement subspace achieves a

bounded steady-state value and measures the distance from

consensus for the calculation of the system and node errors.

For the following propositions, let x⊥ ∈ R
m−1 represent

the orthogonal projection of x onto the (m−1)-dimensional

disagreement subspace 1⊥
m. We pick V ∈ R

(m−1)×m such

that its rows form the orthonormal basis of 1⊥
m and let V =

V �V = I − 1
m1m1�

m. Then, as in [1], let x⊥ = V x and

x̄ = V �x⊥ such that x = 1
m1m1�

mx+x̄. The vector x̄ ∈ R
m

is the component of x orthogonal to the consensus subspace;

we refer to it as the disagreement vector. Note that 1m is the

right eigenvector of L(t) associated with the eigenvalue 0.

From (1), the disagreement dynamics are

dx̄(t) = −L(t)x̄(t)dt+ VFdW(t). (7)

Mimicking the notation in Section III, let μ̄(t) = E[x̄(t)],
μ̄i(t) = E[x̄(t)I(G(t) = Gi)] for each i ∈ S, and ν̄(t) =
[μ̄1(t)�, . . . , μ̄n(t)�]�. Let C̄(t), C̄i(t) and c̄(t), the second

moment terms of x̄, be defined analogously.

Proposition 2: For the disagreement dynamics (7), under

Assumptions 1 and 2, the following statements hold:

(i) the steady-state mean disagreement vector is zero, i.e.,

ν̄ss = 0nm, (8)

where 0nm is the nm× 1 vector of all zeros;

(ii) the steady-state second moment of the disagreement

vector is

c̄ss = M+
c (πss ⊗ vec(VQV)), (9)

where Mc = diagn(Li ⊕Li)−Γ� ⊗ Im2 , and M+
c is

its pseudoinverse.

Proof: Recall that x̄ = Vx. Therefore, μ̄i = Vμi

and c̄i = (V ⊗ V)ci. Specializing Proposition 1(i) to (7)

gives ˙̄ν(t) = −Ncν̄(t). Then, from the proof for Lemma

1, Nc has exactly one eigenvalue at 0 with the eigenvector

πss ⊗ 1m and all others in the right half-plane. Now, recall

that x̄ = (Im− 1
m1m1�

m)x. Since any component of x along

the direction 1m is removed to get x̄, by its definition, ν̄ has

no component along πss ⊗1m with two consequences. First,

the eigenvalue at 0 is irrelevant, and ν̄ has a steady-state

solution. Second, as all other eigenvalues lie strictly in the

right half-plane, the steady-state solution must be ν̄ss = 0nm.

Similarly, specializing Proposition 1(ii) to (7) gives ˙̄c(t) =
−Mcc̄(t)+π(t)⊗vec(VQV). It can be shown analogously

to Nc that Mc has exactly one eigenvalue at 0 with the

eigenvector πss ⊗ 1m2 that is unrelated to the evolution of
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c̄. It can also be shown that all other eigenvalues of Mc lie

strictly in the right half-plane, meaning that c̄(t) has a steady-

state solution. At steady state, ˙̄css = 0nm2 and π(t) = πss,

from which we solve for c̄ss.

This result implies that the steady-state second moment of

the disagreement vector is in fact the steady-state covariance.

That is, the system and i-th node errors of (1) computed on

the disagreement space are hS,nc̄ss and hi
N,nc̄ss, respectively.

B. Noisy leader-follower reference tracking under MSGs

Let Nk and Mk be the system matrices in (5) and (6)

after specializing Proposition 1 to the CT MJLS (3).

Lemma 2: For the noisy leader-follower reference track-

ing dynamics (3), under Assumptions 1 and 2, all eigenvalues

of matrices Nk and Mk lie strictly in the right half-plane.

Proof: When specializing Proposition 1 to the CT

MJLS (3), Zi = Li + K = Mi, and (4) reduces to (3).

Consequently, Nk = diagn(Mi) − Γ� ⊗ Im and Mk =
diagn(Mi ⊕ Mi) − Γ� ⊗ Im2 . It follows that Nk = Nc +
In ⊗ K. From Lemma 1, N�

c is a Laplacian matrix with

the one-dimensional null space 1nm. Thus, Nk is a diagonal

perturbation of Nc and has all eigenvalues strictly in the right

half-plane as long as |K| > 0. Analogously, all eigenvalues

of Mk also lie strictly in the right half-plane.

Thus, in contrast to the noisy consensus problem, the noisy

leader-follower reference tracking problem does not require

the separation of consensus and disagreement subspaces

since the presence of leaders removes the eigenvalue at 0
from Nk and Mk. For the following proposition, let the

specialization of ν(t) and c(t) in (5) and (6) to the CT MJLS

(3) be ν̂(t) and ĉ(t), respectively.

Proposition 3: For the leader-follower reference tracking

dynamics (3) with |K| > 0 and under Assumptions 1 and 2,

the following statements hold:

(i) the steady-state mean of the state vector is zero, i.e.,

ν̂ss = 0nm; (10)

(ii) the steady-state second moment of the state vector is

ĉss = M−1
k (πss ⊗ vec(Q)), (11)

where Mk = diagn(Mi ⊕Mi)− Γ� ⊗ Im2 .

Proof: For the CT MJLS (3), all eigenvalues of Nk

lie strictly in the right half-plane, meaning that ν̂(t) has

a steady-state solution. Since ˙̂ν(t) = Nkν̂(t) from Propo-

sition 1 and ˙̂ν(t) = 0nm at steady state, it must be true

that ν̂ss = 0nm. Similarly, since the eigenvalues of Mk

also lie strictly in the right half-plane, there exists a steady-

state solution for ĉ(t). At steady state, ˙̂c(t) = 0nm2 and

π(t) = πss, from which we solve for ĉss.

As in Section IV-A, only the steady-state second moment

is needed to determine the system and i-th node errors of

(3), which are given by hS,nĉss and hi
N,nĉss, respectively.

Equations (9) and (11) express the relationship between

performance and graph design. Understanding these results

would reveal how the graph topologies and switching be-

havior, which are encoded in M, affect the MSG’s ability

to propagate information. However, unlike πss and Q, the

influence of M on the error is difficult to interpret due to the

inverse matrices in (9) and (11). Intuitively, these matrices

contain the most information since it is the inverse operation

that performs the mixing of graphs in G according to Γ.

V. ROBUSTNESS AND LEADERSHIP INDICES FOR MSGS

The robustness of a system is measured by its deviation

from the desired result. For consensus, this deviation is

isolated by projecting the system state onto the disagreement

subspace. Proposition 2 shows that for noisy consensus under

MSGs, this disagreement state is a stochastic process that,

in the limit t → +∞, has zero mean and finite covariance.

The component of covariance in consensus subspace is

completely correlated (i.e. spanned by 1m1�
m) and thus

disregarded because it does not contribute to the deviation

from consensus. For the leader-follower reference tracking

problem, robustness indicates the system’s ability to track the

external signal in the presence of noise through the deviation

of the agents’ tracking estimates from the true reference

value. Given a leader set K, this robustness reflects the ability

of K to drive all agents’ tracking estimates to θ.

As discussed in [1], the trace of the steady-state covariance

(i.e. the system error) measures the mean squared distance of

the system state from consensus and, for a static undirected

graph, corresponds to the H2 norm of (7) [20], [21]. The

system error of (7) under a static graph has been related

to graph resistance (see [21], [22] for directed graphs) and

is widely used to quantify the robustness of consensus. In

a similar spirit, we propose a new notion of robustness of
consensus for MSGs defined by 1/(hS,nc̄ss) and call it the

system robustness index. Similarly to [23], this can be used to

rank, design, or dynamically rearrange MSG topologies for

better performance. We also introduce the node robustness
index for MSGs defined by 1/(hi

N,nc̄ss) for node i.
In the case that agents in the network measure an external

stimulus, the variance of an agent’s state x̄i about the

correct decision reflects its decision-making accuracy [24]

and figures critically in its speed-accuracy trade-off [25].

Accordingly, the inverse of the steady-state variance of x̄i is

called the node certainty index in [24], which showed that,

for a static graph, this index is a monotone function of the

node’s information centrality [26].

For noisy leader-follower reference tracking, the system

error is the mean squared tracking error over all agents. The

tracking performance is largely dictated by the leader nodes,

and the leader selection problem has consequently received

significant attention for static noisy consensus networks

[11]–[14], [27]. For the static graph, [13] shows, firstly,

that under the constraint |K| = 1, the most information-

central node minimizes the system error when assigned as

the leader and, secondly, that the system error also leads to

the notion of joint centrality for the optimal selection of K
for |K| > 1 and this depends on network resistances. Other

centrality measures are derived from system error for static

consensus networks in [28]. In a similar spirit, we define joint
robustness centrality index of a set of nodes K in MSGs as
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(a)

(b)

(c)

(d)

Fig. 1: Noisy consensus dynamics (1) under the MSG with state space
comprising a line graph G1 shown in panel (a) and a ring graph G2 shown
in panel (b) and defined by the parametrized generator matrix (12). For a
fixed ε = 0.5, panels (c) and (d) chart the system and node robustness
indices, respectively, across a range of v1 = q12 and v2 = q21 values.

the inverse of the system error for (3) with the leader set

K and κ → +∞, i.e., limk→+∞ 1/(hS,nĉss). The optimal

leader set of (3) maximizes this quantity.

VI. NUMERICAL ILLUSTRATIONS

In this section, we illustrate our results through the sim-

ulations of simple MSGs. Let the agents be independently

affected by noise of the same intensity such that F = I.

First, we examine the noisy consensus dynamics (1) under

MSGs with the state space G = {G1, G2} comprising the

line and ring graphs in Figs. 1(a)-(b) and the generator matrix

Γ = ε

[−q12 q12
q21 −q21

]
, (12)

where qij = vi. Recall that Γ’s off-diagonal elements qij
scale with the MSG’s propensity to switch from Gi to

Gj . Accordingly, ε controls the network’s overall rate of

graph switching. We fix ε = 0.5 and study the system

and node robustness indices as functions of q12 = v1 and

q21 = v2 in Fig. 1(c)-(d). Fig. 1 illustrates that, in general,

the MSG benefits from spending more time in the more

connected topology. In this case, the performance improves

when the MSG lingers in the ring topology (low q21) and/or

(a) (b)

(c)

(d)

(e)

Fig. 2: Noisy consensus dynamics (1) under the MSG with state space
comprising G1, G2 and G3 shown in panels (a), (b), and (c), respectively,
and defined by the parametrized generator matrix (13) with v2 = 0.1. Panels
(d) and (e) chart the system and node robustness indices, respectively, across
a range of v1 and ε values.

transitions to the ring more frequently (high q12). Fig. 1(c)

also suggests that if q12 is sufficiently high compared to q21,

the performance only improves marginally for rising q12,

which reveals that lengthening the time the system spends as

a ring has diminishing returns. Fig. 1(d) demonstrates that

the nodes do not benefit equally from the addition of edge

(1, 5). In addition, the robustness curve of node 3 shows that,

for this MSG, only the shortest paths between nodes affects

success as node 3 does not benefit from additional longer

routes to previously accessible nodes (e.g. the extra path 3-

4-5-1 in the ring does not improve node 3’s robustness since

the shorter path 3-2-1 already exists in the line).

Second, we investigate the noisy consensus dynamics (1)

under G comprising graphs G1, G2, G3, shown in Figs. 2(a),

(b), (c), respectively, and the generator matrix

Γ = ε

⎡
⎣−q12 q12 0

q2j −2q2j q2j
0 q32 −q32

⎤
⎦ , (13)

where we set q12 = q32 and v2 = 2q2j = 0.1. This system

cannot transition directly between G1 and G3. Unlike in the

previous case, this MSG comprises three equally connected

topologies that would individually produce identical system
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(a) (b)

Fig. 3: Two topologies of a five-node MSG.

errors. We illustrate the system and node robustness indices

as functions of v1 = q12 and ε in Figs. 2(d)-(e). The system

robustness curves in Fig. 2(d) are concave and contain finite

non-zero global maxima, which indicates that, unlike in the

simpler line-ring case, the optimal MSG prefers to switch

between graphs in order to balance the information flow

across the nodes. Fig. 2(e) shows three revealing facts. First,

some nodes gain from increasing q12 while others worsen,

which causes the maxima in system robustness. Second, node

3 clearly does best with increasing q12. Interestingly, node

2 also benefits from spending more time in G2 despite its

central placement in G3, suggesting that obtaining a highly

central position is less crucial than avoiding the least central

ones. Finally, as ε increases, the robustness indices rise,

meaning that, for the same stationary distribution, perfor-

mance improves when switching occurs more often.

Lastly, we study the noisy leader-follower reference track-

ing problem (3) in the case of a single leader. Consider the

MSG comprising the two graphs in Fig. 3 and defined by

the generator matrix (12) with q12 = q21 = 1. Then, for

κ = +∞, any ε > 0, and |K| = 1, the nodes listed in

order of decreasing robustness centrality index (i.e. leader

potential) are 1-3-4-5-2. Interestingly, this is the same as the

list of nodes in order of decreasing node robustness index for

the noisy consensus problem (1) under the same MSG when

ε = 10, but it differs for ε = 1, in which case, the ordered

list by decreasing node robustness index is 3-1-4-5-2.

VII. CONCLUSION AND FUTURE WORK

In this paper, we examined the noisy distributed consensus

and noisy leader-follower reference tracking problems under

Markov switching graphs. We derived measures for the

robustness of consensus and the joint robustness centrality of

a leader set for MSGs. Through examples, we gained insights

into the effects of the network’s structure and switching

behavior on system performance. Two compelling branches

of future work are the decoding and characterizing of M
and the development of efficient algorithms for the optimal

leader selection under MSGs. In addition, the restrictions on

our analysis can be relaxed, allowing for directed, weighted,

and/or disconnected graphs.
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