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Application to Dynamic Task Allocation
Anastasia Bizyaeva , Member, IEEE , Giovanna Amorim, María Santos , Member, IEEE ,
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Abstract—We propose a new decentralized design to
control opinion patterns on signed networks of agents
making decisions about two options and to switch the
network from any opinion pattern to a new desired one. Our
method relies on switching transformations, which switch
the sign of an agent’s opinion at a stable equilibrium by
flipping the sign of the interactions with its neighbors.
The global dynamical behavior of the switched network
can be predicted rigorously when the original, and thus
the switched, networks are structurally balanced. Structural
balance ensures that the network dynamics are monotone,
which makes the study of the basin of attraction of the
various opinion patterns amenable to monotone systems
theory. We illustrate the utility of the approach through sce-
narios motivated by multi-robot coordination and dynamic
task allocation.

Index Terms—Network analysis and control, distributed
control, agents-based systems, control of networks, decen-
tralized control.

I. INTRODUCTION

MODERN networked technologies require decentralized
mechanisms for decision-making and allocation of

tasks. For example, systems such as smart power grids, cloud
computing services, or multi-robot teams, call for strate-
gies that dynamically distribute tasks among individual units
to optimize system performance even as task requirements
change or units experience failure.
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We use the model of networked nonlinear opinion dynamics
of [1], [2] to illustrate how network interconnection topology
can be designed so a group of decision-makers converges to
a desired opinion pattern and how the network can be trans-
formed so the group switches to a desired alternative opinion
pattern.

When all agents commit to the same option the network
is in ‘agreement’, while for any other opinion configuration
it is in ‘disagreement’. The emergence of agreement and dis-
agreement in nonlinear opinion networks has been studied in
[1], [3], [4]. However, the analysis in those works has assumed
that all network interactions are either positive or negative.
In this letter we add to this body of analysis by allowing
mixed-sign interactions.

Decision-making with signed interactions has been studied
on linear networks with averaging dynamics [5], [6], as well
as with nonlinear consensus models [7], [8] and biased assimi-
lation models [9]. The novelty of our approach is to use signed
interactions on a network as a design tool. Our design method-
ology drives a distributed system to a desired network state
and allows any individual agent to respond to local contextual
changes and adjust its allocation by dynamically adjusting the
sign of interaction with its neighbors. Since the strategy relies
only on pairwise interactions between neighboring agents, it
is decentralized and agnostic to the global topology of the
network communication graph.

Our contributions are as follows. First, we prove that a
network system can be easily and intuitively controlled to
any agreement or disagreement opinion pattern using stan-
dard tools from signed graph theory grounded in switching
transformations of graphs. Second, we prove a sufficient con-
dition for the networked state to converge to one of two
available equilibrium configurations. Third, we show how a
pattern of equilibrium opinions can be changed dynamically
through local updates of the network weights that follow the
structure of a switching transformation. Fourth, we validate
the theory with simulation examples.

In Section II we introduce notation. Section III describes the
opinion dynamics model and summarizes some of its proper-
ties. In Section IV we present new analysis of the model on
signed graphs and propose a systematic design approach for
agent allocation across two tasks. In Section V we describe the
asymptotic dynamics of trajectories on structurally balanced
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graphs. Section VI relates the features of the approach in
the context of multi-robot task allocation. Final remarks are
included in Section VII.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

For any vectors x = (x1, . . . , xN) ∈ RN , y = (y1, . . . , yN) ∈
RN , the standard Euclidean inner product is 〈x, y〉 =∑N

i=1 xiyi. Let x � y if xi ≥ yi for all i = 1, . . . , N, and x � y
if xi > yi for all i = 1, . . . , N. Define the operation 	 as the
element-wise product of vectors, x 	 y = (x1y1, . . . , xNyN).
0N denotes the vector with all zero entries in RN , and IN the
identity matrix in RN×N .

We study networks of N agents with a signed communica-
tion graph G := (V, E, σ ) where V = {1, . . . , N} is the vertex
set, E is the edge set, and σ : E → {1,−1} is a sign function
or signature of the graph G. We use the sensing convention
such that eik ∈ E denotes a directed edge in G that points from
vertex i to vertex k, indicating that k is a neighbor of i. We
assume that the unsigned directed graph � = (V, E) under-
lying G is simple, i.e., contains no self-loops eii �∈ E for all
i ∈ V , and there is at most one edge eik in E that begins at
vertex i and ends at vertex k for all i, k ∈ V . We say that the
graph G is strongly connected if the edges contained in E form
a path between any two nodes.

Define A = (aik) to be the N × N signed adjacency matrix
of G whose entries aik ∈ {0, 1,−1} satisfy aik = 0 if eik �∈ E
and aik = σ(eik) if eik ∈ E . We use the symbol λ∗ to distin-
guish, when it exists, the real and unique eigenvalue of A that
satisfies Re(λ∗) > Re(λi) for all eigenvalues λi �= λ∗ of A. We
denote the right and left eigenvectors of A corresponding to
λ∗ as v∗ and w∗, respectively. We always assume v∗, w∗ are
normalized to satisfy 〈w∗, v∗〉 = 1. We adapt the statement
of the standard Perron-Frobenius theorem, e.g., as presented
in [10], to specialize to adjacency matrices of graphs with an
all-positive signature.

Proposition 1 (Perron-Frobenius): Suppose σ(eik) = 1 for
all eik ∈ E for some strongly connected graph G. Then the
following hold: 1) λ∗ exists; 2) λ∗ > 0; 3) we can choose
v∗, w∗ to satisfy v∗ � 0N and w∗ � 0N .

III. NONLINEAR OPINION DYNAMICS MODEL

The evolution of the opinion of N agents on a signed
network choosing between two options is modeled in this let-
ter according to the continuous-time multi-agent, multi-option
nonlinear opinion dynamics model in [1].

Let xi ∈ R denote the opinion of agent i, where the mag-
nitude of xi determines the agent’s commitment to one of the
two options such that a stronger (weaker) commitment to an
option corresponds to a larger (smaller) |xi|. If xi = 0, the
agent is said to be unopinionated, and, if xi > 0 (< 0), agent
i prefers option 1 (option 2). We define the opinion state of
the network as x = (x1, . . . , xN) ∈ RN , with x = 0N being the
neutral state of the group. The network is in an agreement state
when sign(xi) = sign(xk) for all i, k ∈ {1, . . . , N} (i.e., if all
the agents commit to the same option), and in a disagreement
state otherwise.

The evolution of agent i’s opinion is determined by a
linear damping term and a saturated network interaction

Fig. 1. Illustration of Corollary 3. The bifurcation diagram of the
switched system is a “rotated” version of the original diagram because
the sign of vj flips.

term

ẋi = −d xi + uiS

⎛

⎜
⎜
⎝αxi + γ

N∑

k=1
k �=i

aikxk

⎞

⎟
⎟
⎠, (1)

where d > 0 is the damping coefficient, ui > 0 regulates the
relative strength of the two terms, and the odd saturating func-
tion S : R → R acts on network interactions. Furthermore,
S satisfies S(0) = 0, S′(0) = 1, sign(S′′(x)) = −sign(x).1

Network interactions comprise self-reinforcement interactions,
weighted by α ≥ 0, and neighbor interactions, weighted by
γ > 0. The sign of network interactions is determined by
the signed adjacency weight aik ∈ {0, 1,−1}. Agent i coop-
erates (competes) with agent k when aik = 1 (= −1) and is
indifferent to agent k’s opinion when aik = 0. In vector form,
dynamics (1) are

ẋ = −d x + US(αx + γ Ax), (2)

where S(y) := (S(y1), . . . , S(yN)) for any y ∈ RN and U =
diag(u1, . . . , uN).

A. Network Opinion Formation Through Bifurcation

The following proposition, adapted from [1, Th. IV.1]
and [4, Th. IV.1] and stated without proof, summarizes several
key features of the opinion dynamics (1).

Proposition 2 (Opinion formation as a pitchfork bifurca-
tion): Consider (1) on a graph G with ui = u ≥ 0, {α ≥ 0,
γ > 0, d > 0 for all i = 1, . . . , N, and assume a simple,
real largest eigenvalue λ∗ exists. Suppose α + γ λ∗ > 0 and
〈w∗, (v∗)3〉 > 0, where (v∗)3 = v∗ 	 v∗ 	 v∗. Then 1) for
0 ≤ u < u∗ := d/(α +γ λ∗), the neutral equilibrium x = 0N is
locally exponentially stable; 2) for u > u∗, x = 0N is unsta-
ble, and two branches of locally exponentially stable equilibria
x = x∗

1, x∗
2 branch off from (x, u) = (0N, u∗) along a mani-

fold tangent at x = 0N to span(v∗). The two nonzero equilibria
differ by a sign, i.e., x∗

2 = −x∗
1.

Proposition 2 shows that a group of decision-makers with
opinion dynamics (1) can break deadlock and commit to an
opinionated configuration when their level of attention ui is
sufficiently large. Fig. 1 provides a graphical illustration of
the equilibria and their stabilty as a function of u in the form
of the pitchfork bifurcation described by the proposition. Next
we state other useful properties of (1).

1The presence of non-smooth (piece-wise linear) saturation functions can be
tackled using methods from non-smooth analysis [11] and recent bifurcation-
theoretical tools for linear complementarity systems [12].
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Corollary 1 (Sufficient condition for agreement): When G
is strongly connected with an all-positive signature, conditions
of Proposition 2 are always satisfied. For u > u∗, one of the
two new stable equilibria satisfies x∗ � 0N .

Proof: The corollary follows from Proposition 2 and
Proposition 1, since λ∗ is the Perron-Frobenius eigenvalue,
and eigenvectors w∗, v∗ have all-positive entries.

We next show that the equilibria predicted by Proposition 2
are the only equilibria admitted by dynamics (1) for a range
of values of u, following similar arguments as those used for
Laplacian-weighted nonlinear consensus networks in [7]. We
first state a necessary lemma.

Lemma 1 (Boundedness): Any compact set �r ⊂ RN of
the form �r = {x ∈ RN s.t. |xi| < r maxj{uj}/d, ∀i, j ∈ V}
with r > 1 is forward-invariant for (1).

Proof: The lemma follows directly from the more general
result [1, Th. A.2].

Corollary 2 (Uniqueness of Equilibria): Suppose condi-
tions of Proposition 2 are satisfied, and let λ2 be an eigenvalue
of A satisfying Re(λ2) ≥ Re(λi) for all eigenvalues λi �= λ∗ of
A. 1) x = 0N is globally asymptotically stable on a forward-
invariant compact set � ⊂ Rn containing the origin x = 0N ,
for all u ∈ [0, u∗); 2) when Re(λ2) ≥ −α/γ , u ∈ (u∗, u2), the
only equilibria the system admits are 0N , x∗

1, and x∗
2, where

u2 = d/(α + γ Re(λ2)); 3) when Re(λ2) < −α/γ , the only
equilibria the system admits in � for all u > u∗ are 0N , x∗

1,
and x∗

2.
Proof: 1) Existence of �, and thereby boundedness

of solutions of (1), is established in Lemma 1. Define
Ã = αIN + γ A with components ãij, and let fi(x) =
∑N

j=1 ãijxj. Consider the continuously differentiable function

V(x) = ∑
i=1

∫ fi(x)

0 S(η)dη. Along trajectories of (1), V̇(x) =
S(Ãx)TÃẋ = S(Ãx)TÃ(−d x + uS(Ãx)) = −d S(Ãx)TÃx +
uS(Ãx)TÃS(Ãx) ≤ −S(Ãx)T(dIN − uÃ)S(Ãx) (using |S(y)| ≤
|y| and sign(S(y)) = sign(y)). Since dIN − uÃ is positive
definite for u ∈ [0, u∗),

V̇(x) ≤ −(d − u(α + γ λ∗))S(Ãx)TS(Ãx) ≤ 0. (3)

The set on which (3) is exactly zero is N (Ã) = {x ∈ RN

s.t. Ãx = 0N}. By LaSalle’s invariance principle [13, Th. 4.4]
we conclude that the trajectories x(t) approach the largest
invariant set in N (Ã) as t → ∞. If N (Ã) = {0N}, the corol-
lary follows trivially. Let x ∈ N (Ã) and suppose x �= 0N .
Then ẋ = −dx, i.e., all trajectories that start in N (Ã) decay
to the origin exponentially in time, and the corollary fol-
lows. Under the assumptions on u stated in 2) and 3), the
Jacobian matrix J(x) = −dIN + u diag(S′(Ãx))Ã is Hurwitz
for all x ∈ RN \ {0N}, the proof of which follows closely the
argument presented in [8, Lemma 6] and we omit its details.
By Proposition 2, for values of u in a small neighborhood
above u∗ exactly three equilibria exist. Since the Jacobian
is nonsingular for all x ∈ � and all u ∈ (u∗, u2), by the
implicit function theorem, the number of equilibria remains
unchanged.

IV. SWITCHING TRANSFORMATION AS A DESIGN TOOL

FOR SYNTHESIS OF OPINION PATTERNS

When the communication graph G contains edges with
a negative signature and its adjacency matrix A has a

simple leading eigenvalue, the opinion-forming bifurcation of
Proposition 2 results in disagreement network equilibria. We
describe a simple synthesis procedure for generating a signed
adjacency matrix that results in a desired pattern of opinions
among the decision-makers following opinion dynamics (1).
We first introduce a few important concepts from the theory
of signed graphs; for more details on the theory we refer the
reader to [14] and [15].

A. Signed Graphs and Switching

Let W ⊂ V be a subset of nodes on a signed graph G.
Switching a set W on the graph G refers to a mapping of
the graph G to GW = (V, E, σW ) where the signature of all
the edges in E between nodes in W and nodes in its comple-
ment V \W reverses sign. We introduce the switching function
θ : V → {1,−1}, where for any i ∈ V , θ(i) = −1 if i ∈ W
and θ(i) = 1 otherwise. Then the signature of the switched
graph GW is generated as

σW (eik) = θ(i)σ (eik)θ(k) (4)

for all eik ∈ E . From (4) we see that the signature update
for an edge between agents i and k depends only on their
membership in the switching set W . Thus, the edges between
i and k flip sign if and only if exactly one of i, k is in the
switching set W , and does not change sign if i, k are both
in W or in V \ W . Importantly, switching a set W all at
once generates the same graph GW as sequentially switching
individual vertices in W . If G can be transformed into GW by
switching, G and GW are switching equivalent graphs.

Let θ be the function for switching from graph G to
GW , with adjacency matrices A and AW , respectively. Define
the switching matrix 
 = diag(θ(1), θ(2), . . . , θ(N)). The
adjacency matrices of G and its switching GW are related as

AW = 
−1A
. (5)

Since 
 is diagonal and θ(i) = ±1, 
−1 = 
. We refer to (5)
as a switching transformation of the adjacency matrix A, and
A and AW as switching equivalent adjacency matrices.

Proposition 3: Suppose G, GW are switching equivalent
with adjacency matrices A and AW and associated switching
matrix 
. Then 1) A and AW are isospectral, i.e., have the
same set of eigenvalues; 2) v (w) is a right (left) eigenvector
of A corresponding to eigenvalue λ if and only if 
v (
w) is
a right (left) eigenvector of AW with the same eigenvalue.

Proof: The proposition follows from the standard properties
of a matrix similarity transformation, since A and AW are
related through a similarity transformation (5).

Proposition 3 implies that the eigenvectors of the switched
adjacency matrix AW are obtained from the eigenvectors of the
original adjacency matrix A by flipping the sign of each entry
that corresponds to a node which is being switched. We will
take advantage of this observation in our design of nonlinear
opinion patterns on a network.

B. Nonlinear Opinion Patterns on Switching Equivalent
Graphs

In this section we show that a switching transformation of
the nonlinear opinion dynamics (1) is effectively a coordinate
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change, and two switching equivalent networks generate topo-
logically equivalent flow and bifurcation diagrams.

Theorem 1 (Diffeomorphism Between Trajectories of
Switching Equivalent Systems): Consider switching equivalent
graphs G, GW with adjacency matrices A and AW and with
switching matrix 
. The trajectory x(t) is a solution to (1)
on G if and only if 
x(t) is a solution of (1) on GW .

Proof: Suppose x(t) is a solution of (1) on G. Multiplying
both sides of (2) by the switching matrix 
 yields

d

dt
(
x(t)) = 
(−d x(t) + US(αx(t) + γ Ax(t)))

= −d 
x(t) + 
US(αx(t) + γ Ax(t))

= −d 
x(t) + US(α
x(t) + γ AW
x(t)),

where the last step follows since 
U = U
 and −S(y) =
S(−y). This shows that 
x(t) is a solution of (1) on GW . The
other direction follows by an identical proof.

Corollary 3 (Switching a Graph “Rotates” a Pitchfork
Bifurcation): Consider (1) with ui = u ≥ 0 for all i = 1, . . . , N
on the graphs described in Theorem 1. Suppose G satisfies the
conditions of Proposition 2. Then GW also satisfies the con-
ditions of Proposition 2. Furthermore, x∗ is an equilibrium on
the bifurcation diagram on G at some u if and only if 
x∗
is an equilibrium on the bifurcation diagram of GW at the
same u.

Proof: For (1) on GW , λ∗ is simple and α+γ λ∗ > 0 because
G, GW are isospectral. Additionally, 〈
w∗, (
v∗)3〉 =∑N

i=1 θ(i)4w∗
i (v

∗
i )

3 = ∑N
i=1 w∗

i (v
∗
i )

3 = 〈w∗, v∗〉 > 0 since
θ(i) = ±1 for all i ∈ V and therefore the condition of
Proposition 2 are satisfied. The rest of the corollary statement
follows as a direct consequence of Theorem 1.

We illustrate the intuition of Corollary 3 in Fig. 1.
Theorem 2 (Switching Complementary Vertex Sets

Generates the Same Flow): Consider two switching equivalent
graphs GW , GV\W , generated by switching a set of vertices
W or its complement V \ W on graph G. Let the switching
matrices in relation to G of these two graphs be 
W and

V\W respectively. The trajectory x(t) is a solution of (1) on
GW if and only if it is also a solution of (1) on GV\W .

Proof: Suppose x(t) is a solution of (1) on GW . Then by
Theorem 1, 
Wx(t) is an equilibrium of (1) on G. Applying
the complementary switching transformation, and observing
that 
V\W
W = −IN , we see that 
V\W
Wx(t) = −x(t)
is a solution of (1) on GV\W . By odd symmetry of the dynamic
equations (1), x(t) is also a solution of (1) on GV\W . The proof
of the converse follows the same steps in opposite order.

C. Synthesis of Nonlinear Opinion Patterns

The theoretical results of Section IV-B, lead to a design
procedure to build a signed adjacency matrix that ensures a
desired allocation of agents across the two options. Step 1.
Start with a strongly connected G with an all-positive signa-
ture, i.e., aik ∈ {0, 1} for all i, k ∈ V . By Corollary 1, (1)
on G has an all-positive stable equilibrium x∗

1 and all-negative
stable equilibrium x∗

2. Step 2. Define the switching set W .
In this step, the designer chooses which nodes are grouped
together. The two partitions correspond to the two tasks. Step
3. Update edge signatures of G locally as aWik = θ(i)aikθ(k).
This edge signature update generates the switching equivalent

Fig. 2. Assigning 10 agents to a 30-70% distribution by switching agents
1, 2 and 3. (a) Time trajectory of the opinion dynamics. (b) Final agent
distribution. (c) Network diagram with the opinion of each agent at t =
30. Parameters: S = tanh, d = 1, α = 1.2, γ = 1.3, u = 0.324. Arrows
on the graph defined by the sensing convention.

graph GW and groups all nodes in W and all nodes in V \W
together by sign, i.e., the dynamics (1) on GW is bistable with
stable equilibria 
x∗

1, 
x∗
2. If |W| = M, the equilibrium 
x∗

1
corresponds to M negative nodes, and 
x∗

2 to N − M negative
nodes. We illustrate this in Fig. 2. Step 3 can also be imple-
mented in a decentralized manner since it only relies on the
pairwise switching states of neighboring agents.

V. DYNAMIC SWITCHING

We next investigate the asymptotic opinion dynamics of (1)
when the underlying communication graph G instantaneously
changes to a switching equivalent graph GW .

A. Monotonicity and Structural Balance

First, we introduce some relevant definitions from the
study of monotone systems. Let K be an orthant of RN ,
K = {x ∈ RN s.t. (−1)mi xi ≥ 0, i = 1, . . . , N} with each
mi ∈ {0, 1}. The orthant K generates a partial ordering “≤K”
on RN where if x, y ∈ RN , y ≤K x if and only if x−y ∈ K. We
say a system ẋ = f (x) on U ⊆ RN is type K monotone if its
flow preserves the partial ordering ≤K, i.e., if x1(0) ≤K x2(0)

implies x1(t) ≤K x2(t) for all t > 0.
Lemma 2: Consider (1) on a signed graph G. It is a type K

monotone system if and only if G is switching equivalent to
G+, for which σ(eik) = 1 for all eik ∈ E , i.e., G is structurally
balanced.

Proof: The off-diagonal terms of the Jacobian matrix J(x)

are uγ diag(S′((αIN +γ A)x))A. Let 
 be the switching matrix
between G and G+. Since S′(y) > 0 for all y ∈ R, the matrix
uγ
 diag(S′((αIN + γ A)x))A
 has nonnegative components,
and the lemma follows by [16, Lemma 2.1].

B. Instantaneous Switching

Suppose x∗ is a hyperbolic equilibrium of (1), i.e., the lin-
earization of the system at x∗ has m unstable eigenvalues
and N − m stable eigenvalues. Then by [17, Th. 1.3.2], there
exist smooth local unstable and stable manifolds Wu

loc(x
∗),

Ws
loc(x

∗) of dimensions m, N − m that are tangent to the
unstable and stable eigenspaces of the linearized systems at
x∗ and invariant under the dynamics. Global stable and unsta-
ble manifolds Ws(x∗),Wu(x∗) invariant under the dynamics
can be obtained by continuing the trajectories in their local
counterparts forwards or backwards in time.
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Fig. 3. Geometric intuition behind Assumption 1. The one-dimensional
unstable manifold W u (0) of the origin (shown in red) forms heteroclinic
orbits with the stable equilibria x∗

1, x∗
2, as is generically the case for

monotone systems - see [16, Th. 2.8].

Assumption 1 (Stable Manifold of Origin is Bounded;
Fig. 3): Consider (1) on some structurally balanced graph G
with ui = u > u∗ and u < u2 when appropriate, as defined in
Corollary 2. Let U ′ ⊂ RN be an open neighborhood contain-
ing the origin, and let x ∈ Ws(0)∩U ′. 1) |〈w∗, x〉| < ε‖x‖2

for some 0 < ε < 1; 2) for equilibria x∗
k �= 0 of Proposition 2

with k ∈ {1, 2}, |〈w∗, x∗
k〉| > ε‖x∗

k‖2.
Estimating the ε bound described above requires a lengthy

computation of the stable manifold approximation (see
[17, p. 132] for an example of an invariant manifold approx-
imation) which we do not carry out for space considerations.
However, this assumption should hold at least locally as a
consequence of the (Un)Stable Manifold Theorem [17, Th.
1.3.2] and monotonicity of the flow. We verified the assump-
tion numerically for several graphs. For example, numerically
we find ε = 0.05 to be a valid bound for the graph and parame-
ter values in Fig. 5 with w∗ normalized to unit norm; in general
ε will vary with u, d, α, γ .

Lemma 3 (Regions of attraction): Consider (1) on some
structurally balanced graph G with ui = u > u∗ for all i =
1, . . . , N, on an open and bounded neighborhood �r as defined
in Lemma 1. Let x∗

1, x∗
2 be the nonzero equilibria described in

Proposition 2 with 〈w∗, x∗
1〉 > 0. Consider an initial condition

x(0) at t = 0. If 〈w∗, x(0)〉 > ε‖x(0)‖2(< −ε‖x(0)‖2) then
as t → ∞, x(t) → x∗

1(x
∗
2) .

Proof: We established in Corollary 2 that the only equi-
libria the system admits are 0, x∗

1, x∗
2, and �r is positively

invariant by Lemma 1. Let B(x∗
i ) be the basin of attraction

of equilibrium xi in �r. By monotonicity (Lemma 2) and
[16, Th. 2.6], the set Int(B(x∗

1))∪Int(B(x∗
2)) is open and dense

in �r, where Int signifies the interior points. Then follow-
ing Assumption 1, the stable manifold partitions �r into the
basins of attraction of the two locally asymptotically stable
equilibria. The sets U+ = {x ∈ �r s.t.〈w∗, x〉 > ε‖x‖2},
U− = {x ∈ �r s.t.〈w∗, x〉 < −ε‖x‖2} do not intersect the
center manifold and are therefore positively invariant. Then
since x1 ∈ U+ and x2 ∈ U−, we get that U+ ⊂ B(x∗

1) and
U− ⊂ B(x∗

2).
Remark 1: In practice, without a precise value for the

bound ε from Assumption 1, for most points x(0) ∈ RN it
is sufficient to check whether the projection of x(0) onto w∗
is positive or negative to determine which region of attrac-
tion the points belongs to, i.e., 〈w∗, x(0)〉 > 0(< 0) where >

implies convergence to x∗
1 and < to x∗

2. This is because the
stable manifold that partitions the space of possible opinion

Fig. 4. Applying a switching transformation to agent 1 at t = 15. (a) Time
trajectory of the opinion dynamics (b)-(c) Network diagram with the opin-
ion of each agent at t = 10, t = 30. Parameters: S = tanh, d = 1,
α = 1.2, γ = 1.3, u = 0.294.

Fig. 5. Locally switching agents 1, 2 and 3 using (6). Agents 1, 2 switch
at t = 10 and agent 3 at t = 15. (b)-(d) Network diagram with the opinion
of each agent at t = 10, t = 15, t = 30. Parameters: S = tanh, d = 1,
α = 1.2, γ = 1.3, u = 0.315, τa = 0.01.

configurations occurs near the plane of points normal to w∗
at the origin; see Fig. 3 for illustration. As long as x(0) is not
too close to this plane, the projection is a reliable heuristic for
the asymptotic dynamics of the network opinions.

Theorem 3: Consider (1) on some G and let x∗
1, x∗

2 be the
nonzero equilibria described in Proposition 2, with 〈w∗, x∗

1〉 >

0. Let GW be switching equivalent to G with the associated
switching matrix 
. Suppose at t = 0, x(0) is close to x∗

i
where i = 1 or 2. If |〈
w∗, x∗

i 〉| > ε‖x∗
i ‖2 and 〈
w∗, xi〉 >

0(< 0) then for (1) on GW as t → ∞, x(t) → 
xi(→ −
xi).
Proof: Without loss of generality, let ‖x(0) − x∗

1‖ < μ so
that 〈
w∗, x(0)〉 > ε‖x(0)‖2 and w∗

i xi(0) > 0 for all i ∈ V
(these are true at x1 by assumption; sufficiently close nearby
points will satisfy the conditions by continuity). By Theorem 1
we know that for (1) on GW , 
x1 is an equilibrium, and the
vector 
w∗ is normal to the stable eigenspace at the origin.
The theorem follows by Lemma 3.

Theorem 3 shows that instantaneously changing a struc-
turally balanced graph G to its switching equivalent GW results
in a predictable transition of the system state. Namely, if the
number of nodes in W is small in comparison with the cardi-
nality of V , we expect that all nodes in W will change sign,
and all of the nodes in V\W will not. A simulation example of
this behavior is shown in Fig. 4. The precise number of nodes
that can be switched simultaneously to generate this behavior
depends on the eigenvector w∗ of the graph adjacency matrix,
the value of the equilibrium x∗

1, and the bound ε. In practice, it
is often sufficient that |W| < 1

2 |V|. For the graph and param-
eter values in Fig. 5, and the numerical estimate ε = 0.05,
any combination of 4 or fewer nodes can indeed be switched
simultaneously.

The analysis in this section reveals that dynamics (1) should
be well-behaved if the transition between G and GW is driven
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by smooth dynamics, e.g., a suitably designed feedback law.
We consider an example of such a smoothly-driven transition
in the following section.

VI. APPLICATIONS TO MULTI-ROBOT TASK ALLOCATION

We illustrate with discussion and simulations how our
method can be used to change the proportion of robots dedi-
cated to a task, how it can be decentralized, how it is robust to
individual robot failures or additions, and how we can ensure
that robots switch when triggered locally.

A. Task Distributions

Many multi-robot applications need subteams to be assigned
to different tasks in a certain proportion (see, e.g., [18] for a
review on multi-robot task allocation). As illustrated in Fig. 2,
switching transformations can be used to distribute a team of
agents among two tasks in predetermined proportion.

In scenarios where robots can be divided in subteams, and
each subteam can indiscriminately contribute to one of the
tasks, our method guarantees a predetermined proportion of
agents among tasks, but does not control which subteam is
assigned to which task. For example, in Fig. 2, the team com-
posed of agents 1, 2, and 3 could execute either task 1 or 2.
This affords flexibility from the application point of view,
where the initial condition on the opinion (e.g., how close
a robot is to an area where the demand for a task is abundant)
can determine the final distribution of agents.

B. Local Flexibility

Our approach provides flexibility by letting single
agents/robots make individual decisions in a decentralized way
without disconnecting from the network. This is important for
multi-robot teams that should change their allocation across
tasks in response to changing environmental conditions that
are observed only by some agents; see [19] for the case of
globally available environmental cues in a multi-robot trash
pick-up problem. This method is also useful for long-duration
autonomy applications where team performance should not
be affected by failures or individuals that stop contributing to
tasks, e.g., to charge batteries [20]. See Fig. 4, where one agent
switches between tasks without affecting the task preference
of its neighbors in the graph.

To illustrate suppose that agent i wants to switch options.
Agent i alerts its neighbors that θi = −1. We define

τaȧik = −aik + aik(0)θiθk, (6)

where τa is a time-scale parameter and aik(0) ∈ {0, 1,−1} is
the initial signature of the edge between agents i and k. As seen
in Fig. 5, the dynamics (6) allow locally originated switches
to take place simultaneously between neighbors. This property
can be useful in applications involving switching cascades,
where a robot switching to a new task can trigger its neighbors
to switch. This feature is relevant in dynamic task allocation
for multi-robot systems where robots can assign themselves to
new tasks as a result of interacting with the environment or
with their neighboring robots [21].

VII. FINAL REMARKS

We analyzed the nonlinear networked opinion dynamics (1)
on signed graphs and proposed a novel approach for dynamic
and decentralized allocation of a group of agents across two
tasks. In future work, we aim to generalize the results in
Section V to graphs that are not structurally balanced, to
derive an estimate for the ε bound from Assumption 1, and to
extend this analysis to the more general multi-option opinion
dynamics of [1].
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