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Tuning Cooperative Behavior in Games With
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Abstract—We examine the tuning of cooperative
behavior in repeated multi-agent games using an ana-
lytically tractable, continuous-time, nonlinear model of
opinion dynamics. Each modeled agent updates its real-
valued opinion about each available strategy in response
to payoffs and other agents’ opinions, as observed over
a network. We show how the model provides a principled
and systematic means to investigate behavior of agents
that select strategies using rationality and reciprocity, key
features of human decision-making in social dilemmas.
For two-strategy games, we use bifurcation analysis to
prove conditions for the bistability of two equilibria and
conditions for the first (second) equilibrium to reflect all
agents favoring the first (second) strategy. We prove how
model parameters, e.g., level of attention to opinions of
others, network structure, and payoffs, influence dynamics
and, notably, the size of the region of attraction to each
stable equilibrium. We provide insights by examining
the tuning of the bistability of mutual cooperation and
mutual defection and their regions of attraction for the
repeated prisoner’s dilemma and the repeated multi-agent
public goods game. Our results generalize to games with
more strategies, heterogeneity, and additional feedback
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dynamics, such as those designed to elicit cooperation or
coordination.

Index Terms—Game theory, opinion dynamics, decision
making, distributed control, multi-agent systems.

I. INTRODUCTION

SOCIOLOGISTS, political scientists, and economists have
long argued that reciprocity is key to promoting

cooperation [1]–[3]. Computer simulations have shown that
reciprocal strategies can elicit mutual cooperation in repeated
games: the winning strategy for the repeated prisoner’s dilemma
in Axelrod’s tournaments was Tit-for-Tat (TFT), where an agent
reciprocates the opponent’s strategy in the previous round; more
generally, successful strategies were nice, forgiving, provoca-
ble, and clear [2]. Subsequent laboratory studies have revealed
that humans in fact employ such reciprocity-based rules in
repeated interactions [4]–[6]. However, the observed reciprocity
cannot be recapitulated by game-theoretic models of rational,
payoff-maximizing agents, which, in contrast to the experi-
ments, predict convergence toward mutual defection, i.e., the
Nash equilibrium in a social dilemma.

Here we investigate the tuning of cooperative behavior,
including mutual cooperation or coordination, in repeated
games among agents that rely on both rationality and reci-
procity. Our first key contribution is a new framework for
studying multi-agent repeated games using the nonlinear opin-
ion dynamics model [7] (see also [8]) in which agents’
strategic decisions depend not only on payoffs, as in ratio-
nality models [9], [10], but also on social interactions that
enable agents to observe strategy preferences (opinions) of
other agents. We show how the social interaction term, formu-
lated as a saturation function of observed opinions, provides a
representation of reciprocity and a means to tune cooperation
(or coordination) in social dilemmas.

Our second key contribution leverages analytical tractabil-
ity of the model: we prove conditions for bistability of two
equilibria for repeated two-strategy games in which multiple
agents observe the opinions of others over a fixed network.
We also show conditions under which each equilibrium cor-
responds to all agents favoring one of the two strategies.
Our proof relies on a bifurcation analysis that builds on the
results of [7]. We prove how the bistability of equilibria and
the regions of attraction depend on the level of attention
to observed opinions, network structure, payoffs, and other
model parameters. We apply our theory to the two-agent pris-
oner’s dilemma and the multi-agent public goods game to
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present further insights into how mutual cooperation emerges
through social interaction (reciprocity) and how the predicted
likelihood of cooperation can be tuned. Our results apply
analogously to tuning coordination in games like the Stag
Hunt. Our analytical results complement the large literature on
reciprocity-based decision-making [2] that evaluates agents’
long-term interaction with computer simulations.

Most models of opinion dynamics in the literature use an
opinion updating process that relies on a linear weighted
average of exchanged opinions, as in the original work of
DeGroot [11]. The nonlinear opinion dynamics model of [7]
instead applies a saturation function to exchanged opinions,
making the updating process fundamentally nonlinear and thus
allowing for multistability of equilibria, a key aspect of our
project. For a comprehensive review of, and comparison with,
other opinion dynamics models see [7]. Our investigation of
the means to tune cooperation in social dilemmas is distin-
guished from works such as [12], [13] that examine opinion
dynamics using game-theoretic approaches.

Our approach is also distinguished from the investigations
in [7] as evolving opinions, which represent strategy prefer-
ences, depend not only on saturated opinion exchange but
also on the payoff mechanism of the game. Our results are
also new–they explain the emergence of mutual cooperation
(or coordination) in social dilemmas as one of two bistable
equilibria that arise through a pitchfork bifurcation.

In Section II, we introduce the nonlinear opinion dynamics
model and show how it recovers rationality and reciprocity. In
Section III, for two-strategy games, we prove the bistability
of equilibria and expressions for the tunability of those equi-
libria and their corresponding regions of attraction in terms
of system parameters. We apply the theory to the prisoner’s
dilemma and public goods game. In Section IV, we use numer-
ical simulations to illustrate the theoretical predictions on the
tuning of cooperation. In Section V, we discuss extensions and
generalizations.

II. OPINION DYNAMICS IN GAMES

Consider an Na-agent decision-making problem where each
agent selects a strategy, continuously in time t, from the set
{1, . . . , Ns} of Ns available strategies. Each agent performs a
probabilistic choice of strategy where xi(t) ∈ Xi is the proba-
bility distribution for the strategy selection at time t of agent i
and Xi is the probability simplex in R

Ns . The j-th element xij of
xi is the probability that agent i selects strategy j. Following
convention in game theory [14], xi is the mixed strategy of
agent i and x = (x1, . . . , xNa) ∈ X is the mixed strategy profile,
where X = X1 × · · · × XNa .

The mixed strategy xi(t) is defined by the logit choice
function [10] and depends on agent i’s opinion state at time
t, z̄i(t) = (z̄i1, . . . , z̄iNs)(t) ∈ R

Ns , as follows:

xij = σj(z̄i) = exp
(
η−1z̄ij

)

∑Ns
l=1 exp

(
η−1z̄il

) , (1)

where the positive constant η is called the noise level [15]
or rationality parameter [16].1 Each entry z̄ij of z̄i represents
agent i’s preference for the j-th available strategy. The rel-
ative opinion state zi, with j-th entry zij = z̄ij − 1

Ns

∑Ns
l=1 z̄il,

defines an agent’s preferred strategies, i.e., the inequality zij > 0
can be interpreted as the agent favoring strategy j relative to
other strategies and the magnitude |zij| denotes the level of its

1For simplicity, we assume that η is identical across the agents.

preference. Under logit choice (1), the higher z̄ij relative to
other entries of z̄i, the more likely agent i selects strategy j.
Equation (1) can be interpreted as the best response with respect
to the opinion state z̄i subject to a random perturbation [15].

Given mixed strategy profile x ∈ X, we let Ui(x) =
(Ui1(x), . . . , UiNs(x)) ∈ R

Ns be the payoff function for agent i.
Entry Uij(x) defines agent i’s payoff associated with strategy j.
The following are examples of multi-agent games.

Example 1 (Prisoner’s Dilemma): Consider two agents,
each with two available strategies: cooperate (strategy 1) and
defect (strategy 2). When both agents cooperate or defect, they
receive payoff pCC or pDD, respectively. If one defects while
the other cooperates, the former receives payoff pDC and the
latter receives pCD. The payoff function Ui is

Ui(x) =
(

Ui1(x)
Ui2(x)

)
=
(

pCC pCD
pDC pDD

)
x−i, i ∈ {1, 2} (2)

where, as shorthand notation, we let x−1 = x2 and x−2 = x1.
The parameters pCC, pCD, pDC, pDD satisfy pDC > pCC >
pDD > pCD, which means that the agents have individual
incentives to defect and receive pDD, even though they would
receive the higher payoff pCC by cooperating.

Example 2 (Public Goods Game): There are Na agents and
Ns strategies. Each agent has a total wealth of a(Ns − 1) and
selects a strategy j in {1, . . . , Ns} that corresponds to con-
tributing a(Ns − j) to a public pool. The total contribution
is multiplied by a factor ρ and distributed equally among all
agents. The payoff function Ui is

Uij(x) = a(j − 1) + ρ

Na

Na∑

k �=i
k=1

Ns∑

l=1

a(Ns − l) xkl + ρ

Na
a(Ns − j),

i ∈ {1, . . . , Na}, j ∈ {1, . . . , Ns}, (3)

where a > 0 and Na > ρ > 1. According to (3), regardless
of the others’ contributions, each agent receives the highest
payoff when it makes no contribution to the pool. Hence, the
rational agent contributes nothing, i.e., chooses j = Ns.

We define rate-of-change ˙̄zi = dz̄i/dt of agent i’s opinion
state z̄i in response to payoffs and social interactions, with the
continuous-time nonlinear opinion dynamics model [7]2:

˙̄zij = −di

(

z̄ij − ui

Na∑

k=1

2R
(

Aj
ikzkj

)
− Uij(x)

)

, (4)

with z̄i(0) ∈ R
Ns . Aj

ik ∈ R is the weight agent i places in its
evaluation of strategy j on its observation of agent k’s opinion
of strategy j. The constant resistance parameter di > 0 reflects
the speed with which agent i’s opinions change; the attention
parameter ui > 0 reflects the weight placed on incentives
derived from social interactions, where R : R → [0, 1]. Thus,
the state z̄i of agent i, and hence its strategy selection, evolves
according to the accumulation over time, with the discount
factor di, of the payoffs Uij(x) and social incentives R(Aj

ikzkj).
We define R as the saturating function

R(Aj
ikzkj) = P

(
Aj

ikzkj ≥ ε
)
, (5)

where ε is a random variable with a symmetric and unimodal
probability density function, e.g., the standard normal distri-
bution. To interpret, suppose Aj

ik ≥ 0. Then Aj
ik quantifies the

2In Section III, we explain how (4) relates to its original form presented
in [7]. For concise presentation, we omit time dependency of the variables
in (4).
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influence of noise ε on inter-agent interactions: the larger Aj
ik,

the smaller the effect of noise ε.3 Thus, we can interpret (5)
as a probabilistic model of agent i’s perception of agent k’s
preference for strategy j over other strategies.

A. Emergence of the Cooperative Equilibrium
In this section, using the prisoner’s dilemma as an illus-

trative example, we provide intuition for how the equilibria
of (4) depend on system parameters, and under what parame-
ter regime a cooperative equilibrium emerges. To simplify the
presentation, let di = d, ui = u, Aj

ii = α, and Aj
ik = γ if i �= k.

Let z̄∗ be an equilibrium of (4) that satisfies

z̄∗
ij = 2u

⎛

⎜
⎜
⎝R(αz∗

ij) +
Na∑

k �=i
k=1

R(γ z∗
kj)

⎞

⎟
⎟
⎠+ Uij(x

∗), (6)

where x∗
ij = σj(z∗

i ).
Note that by (5), in a dense subset of the tangent space TX

of X, as the influence of the noise in the social interaction
becomes arbitrarily small, i.e., α, γ are arbitrarily large,
R(αzij) and R(γ zkj) converge to a binary ({0, 1}-valued) func-
tion. If α, γ are sufficiently large, we can approximate (6) as
z̄∗

ij ≈ 2u n∗
j + Uij(x∗), where n∗

j is the number of agents k
having a positive relative opinion z∗

kj of strategy j at equilib-
rium. As the attention u increases, each agent tends to favor
the most popular strategy, even though selecting other strate-
gies would return higher payoffs. It follows that the social
interaction R incentivizes each agent to reciprocate with other
agents in the strategy selection, and the level of reciprocation
is determined by the attention parameter u and the number n∗

j
of agents preferring the same strategy under consideration.

Example: With two reciprocating agents (Na = 2, α =
0, γ > 0) playing the prisoner’s dilemma (Ns = 2), the equi-
librium z̄∗ satisfies z̄∗

i1 ≈ 2u n∗
1 + Ui1(x∗), where n∗

1 ∈ {0, 1}
indicates whether the opponent cooperates (n∗

1 = 1) or defects
(n∗

1 = 0). If the attention parameter satisfies 2u > max(pDC −
pCC, pDD − pCD), then for sufficiently large γ , cooperation
becomes an equilibrium of (4). Moreover, given any arbi-
trarily large u, there is a minimum value of γ below which
cooperation will not be an equilibrium.

B. Rationality and Reciprocity in the Model
In this section, we show how the model (4) captures a

range of features observed in human decision-making, includ-
ing (bounded) rationality [17] and reciprocity [1], [3]. We
begin by showing that (4) generalizes the exponentially dis-
counted reinforcement learning (EXP-D-RL) model studied
in [9] where every agent makes an individually rational deci-
sion by selecting payoff-maximizing strategies. To see this,
let Aj

ik = 0 for i, k ∈ {1, . . . , Na} and j ∈ {1, . . . , Ns} for
which the social interaction R(Aj

ikzkj) becomes constant, i.e.,
R(Aj

ikzkj) = 0.5, ∀zkj ∈ R. By translating z̄ij by constant uiNa
and since the logit choice function is invariant with respect to
the translation of z̄ij, (4) specializes to

˙̄zij = −di
(
z̄ij − Uij(x)

)
, xij = exp

(
η−1z̄ij

)

∑Ns
l=1 exp

(
η−1z̄il

) ,

which is the EXP-D-RL model presented in [9]. In this sense,
our model (4) realizes rationality.

3See Section II-C for more discussions on the parameter Aj
ik .

To discuss reciprocity of the opinion dynamics, we consider
a two-agent (Na = 2) two-strategy (Ns = 2) case. Suppose
that Aj

ik = η−1 if i �= k and Aj
ik = 0 otherwise, where η is

the noise level constant in the logit choice function (1). Then,
with R(·) = (tanh(·) + 1)/2, we have R(Aj

ikzkj) = xkj if i �= k
and R(Aj

ikzkj) = 0.5 otherwise.
For small h > 0, assuming that Uij is arbitrarily small, we

can approximate the opinion dynamics model (4) as

z̄ij(t + h) − z̄ij(t) ≈ −hdi
(
z̄ij(t) − 2uix−ij(t)

)
.

For sufficiently large di, by evaluating the opinion state at time
instant t + h with h = d−1

i , we observe that

z̄ij(t + h) ≈ 2uix−ij(t). (7)

Recall that x−ij is the j-th entry of the mixed strategy x−i of
the opponent of agent i. According to (7), with large ui, it
holds that xij(t + h) = 1 if and only if x−ij(t) = 1. In the
prisoner’s dilemma, under (7), each agent i decides to coop-
erate (or defect) if its opponent does so at the previous stage.
This behavior resembles TFT, a well-known reciprocity-based
strategy in discrete-time iterated games [2]. In this sense, our
model (4) realizes reciprocity.

C. Further Remarks on the Model
Social interaction encourages reciprocity: When Aj

ik > 0
for i �= k, the social interaction in (4) encourages reciprocity
by incentivizing each agent to select the strategies preferred
by other agents. As shown in Section IV, in the prisoner’s
dilemma and public goods game, such a social interaction
mechanism leads to decision-making representative of human
behavior; notably, the agents conditionally cooperate. This
contrasts with the outcomes of rationality-based models where
agents fail to cooperate (or coordinate).

Our model and analysis can be readily extended to a more
general case, as in [7], where the social interaction term in (4)
is given by ui

∑Na
k=1

∑Ns
l=1 2R(Ajl

ikzkl). In this generalization,
agent i’s opinion of strategy j may also depend on other agents’
opinions of strategies l �= j.

Network structure: The Aj
ik in (4) defines a network struc-

ture among agents for strategy j. One can specify the presence
(Aj

ik > 0 for reciprocal, Aj
ik < 0 for antagonistic) or lack

(Aj
ik = 0) of interaction between agents i and k in their select-

ing strategy j. We prove results on the role of network structure
in our model in Section III. See [7], [18] for more on network
structure and the nonlinear opinion dynamics.

III. BISTABILITY ANALYSIS OF 2-STRATEGY GAMES

We present bistability analysis for (4) in two-strategy games
with homogeneous parameters.4 We assume G = (V,E) and
Ĝ = (V, Ê), withV = {1, . . . , Na}, are simple graphs governing
the social interaction and game interaction, respectively, and A =
(aik)i,k∈V and Â = (âik)i,k∈V are the corresponding adjacency
matrices. We assume the payoff function has the form:

(
Ui1(x)
Ui2(x)

)
=

∑

(i,k)∈Ê

(
p11 p12
p21 p22

)
xk +

(
b1
b2

)
, (8)

and the parameters of (4) are given by di = d, ui = u, Aj
ii =

α > 0, and Aj
ik = γ aik ≥ 0 if i �= k.

4The proofs of all the theorems are provided in the Appendix.
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For analysis, we adopt the original form of (4) from [7]:

żij = Fij(z) − 1

Ns

Ns∑

l=1

Fil(z),
Ns∑

j=1

zij(0) = 0,

Fij(z) = −d

⎛

⎝zij − u

⎛

⎝S
(
αzij

)+
∑

(i,k)∈E
S
(
γ zkj

)
⎞

⎠− Uij(x)

⎞

⎠ (9)

where zij(0) = z̄ij(0) − 1
Ns

∑Ns
l=1 z̄il(0) and the saturation func-

tion S is given by S = 2R−1. The variable z = (z1, . . . , zNa) ∈
TX denotes the relative opinion state. In Theorem 1, we show
that models (4) and (9) are related by the projection zi = P0z̄i,
where P0 = I − 1

Ns
11T , and yield the same transient and

steady-state mixed-strategy behavior.
Theorem 1: The following two statements are true.
i) If z̄(t) is a solution of (4), then z(t), satisfy-

ing zi(t) = P0z̄i(t), is a solution of (9). Conversely,
if z(t) is a solution of (9), then z̄(t) defined as
z̄ij(t) = e−dtz̄ij(0) + d

∫ t
0 e−d(t−τ)(2u(R(αzij(τ )) +∑

(i,k)∈E R(γ zkj(τ ))) + Uij(x(τ ))) dτ with xij = σj(zi)
satisfies zi(t) = P0z̄i(t) and is a solution of (4).

ii) If z̄∗ is a stable (unstable) equilibrium of (4), then z∗,
satisfying z∗

i = P0z̄∗
i , is a stable (unstable) equilibrium of (9).

Conversely, if z∗ is a stable (unstable) equilibrium of (9) then
z̄∗, defined as z̄∗

ij = 2u(R(αz∗
ij) + ∑

(i,k)∈E R(γ z∗
kj)) + Uij(x∗)

with x∗
ij = σj(z∗

i ) satisfies z∗
i = P0z̄∗

i and is a stable (unstable)
equilibrium of (4).

We further assume that S satisfies the following conditions:
S is odd sigmoidal and it holds that S(0) = 0, S′(0) > 0,
sign S′′(a) = −sign(a), ∀a ∈ R, and S′′′(0) = −2.5 Since
zi1 = −zi2, we can simplify the expression (9) as

ż = −d
(

z − u(S(αz) + AS(γ z))

− 1

4
pÂ tanh(η−1z) − 1

4
p⊥Â1 − (b1 − b2)1

)
(10)

with z = (z11, . . . , zNa1), p = p11 − p12 − p21 + p22, p⊥ =
p11 + p12 − p21 − p22, and S(γ z) = (S(γ z11), . . . , S(γ zNa1)).

Theorem 2 (Bistability in games): Consider (10). Let
ζmax(u, γ, p) be the largest-real-part eigenvalue of uγ S′(0)A+
1
4η−1pÂ and vmax (wmax) be its corresponding right (left)
eigenvector.

i) Suppose ζmax is real and simple, and wT
maxγ S′(0)Avmax > 0

holds. When p⊥ = b1 = b2 = 0, there exists a critical value
u∗ for which if u < u∗, the origin z = 0 is locally exponen-
tially stable, and if u > u∗, the origin is unstable and two
bistable equilibrium solution branches emerge in a symmet-
ric pitchfork bifurcation along a manifold tangent to the span
of vmax. When p⊥, b1, and/or b2 are nonzero, the system is
an unfolding of the symmetric pitchfork bifurcation, and the
parameter

b =
〈
wmax,

1

4
dp⊥Â1 + d(b1 − b2)1

〉
(11)

determines the direction of the unfolding. Furthermore, u∗
depends on p according to ∂u∗

∂p = − 1
4αS′(0)

wT
maxÂvmax.

5To simplify the notation, without loss of generality, we make the assump-
tion that S′′′(0) = −2, for instance, by scaling S.

Fig. 1. Bifurcation diagram of (16) in the prisoner’s dilemma with
(a) pCC = 15 and (b) pCC = 30, where α = 0, d = γ = η = 1,
pCD = 0, pDC = 40, pDD = 5, and in the public goods game with
(c) a = 40 and (d) a = 10, where α = 0, d = γ = η = 1, ρ = 2, and
Na = 20. Blue (orange) curves are stable (unstable) equilibrium states.
Solutions with zc < 0 (zc > 0) correspond to mutual defection (cooper-
ation). Mutual defection is always stable; for large enough ũ = u − u∗,
mutual cooperation is stable.

ii) Suppose uγ S′(0)A + 1
4η−1pÂ is an irreducible nonnega-

tive matrix.6 Near u∗, for the bistable equilibria, sign(zi1) =
sign(zk1), ∀i, k, i.e., all agents favor the same strategy.

iii) Suppose vmax (wmax) is also a left (right) eigenvector of
both A and Â. Denote by λ, λ̂ the eigenvalues of A, Â, respec-

tively, corresponding to vmax(wmax). Then u∗ = 1− 1
4 η−1pλ̂

S′(0)(α+γ λ)
,

and the unfolding parameter (11) simplifies to

b = d

(
1

4
p⊥λ̂ + b1 − b2

)
〈wmax, 1〉. (12)

The following theorem shows how the bifurcation depends
on degree (number of neighbors) for G, Ĝ regular graphs.

Theorem 3: Suppose γ > 0, p ≥ 0, and G, Ĝ are undi-
rected, connected, and regular with degrees K, K̂, respectively.
The bifurcation point u∗ and unfolding parameter b satisfy
sign( ∂u∗

∂K ) = sign( 1
4η−1pK̂ − 1), sign( ∂u∗

∂K̂
) = sign(−p), and

sign( ∂b
∂K̂

) = sign(p⊥).
Remark 1: For games with more than 2 strategies and het-

erogeneous payoff functions, the analysis can be generalized
using Uij(x) = ∑

(i,k)∈Ê
(

pik
j1 . . . pik

jNs

)
xk + bi

j.

In what follows, we discuss implications of Theorems 2, 3
in social dilemmas using the prisoner’s dilemma and public
goods game. From now on, we take S(·) = tanh(·).

Prisoner’s dilemma: Let p11 = pCC, p12 = pCD, p21 = pDC,
p22 = pDD and b1 = b2 = 0 so (8) specializes to (2).

Corollary 1: For γ > 0, the following hold: vmax = wmax =
(1, 1), λ = λ̂ = 1, and p⊥ < 0. Hence, we have u∗ = 1− 1

4 η−1p
α+γ

and b = 1
2 dp⊥ < 0.

Figs. 1(a), 1(b) show the bifurcation diagram (plot of equi-
libria as a function of bifurcation parameter ũ = u − u∗) of
the Lyapunov-Schmidt reduction (16) of (9), for two values of
pCC. p and p⊥ have a two-fold effect: i) p changes the loca-
tion of the pitchfork bifurcation point in the ũ-axis. ii) Since
p⊥ < 0, the pitchfork bifurcation unfolds favoring the branch
of solutions corresponding to mutual defection. For sufficiently
large ũ (equivalently, u), a branch of solutions corresponding

6This holds, e.g., when γ > 0, p ≥ 0, and at least one of A, Â corresponds
to a connected graph.
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Fig. 2. Heatmaps depict the probability of mutual cooperation in the
prisoner’s dilemma for three different values of r in (13).

to mutual cooperation emerges, and the larger the u the larger
its region of attraction. A smaller u is required for larger pCC,
since larger pCC decreases incentive to defect.

If p11 > p21 = 40, the game is the Stag Hunt where the
strategy to hunt a stag replaces cooperation and the strategy to
hunt a hare replaces defection. Coordinated stag hunting and
coordinated hare hunting are both Nash equilibria, the former
payoff-dominating and the latter risk-dominating. The model
predicts the larger the u, the larger the region of attraction to
coordinated stag hunting.

Public goods game: Let Ns = 2, i.e., each agent decides to
cooperate and contributes its entire wealth (j = 1), or defect
and contributes nothing (j = 2). Note that (8) specializes to (3)
by selecting p11 = p21 = b1 = aρ/Na, p12 = p22 = 0, and
b2 = a with all-to-all game interaction graph Ĝ.

Corollary 2: With Ns = 2, p = p⊥ = 0. For γ > 0
and connected social interaction graph G, the following hold:
i) vmax, wmax have all nonzero same-sign entries, u∗ = 1

α+γ λ
and b = −da(1 − ρ/Na)〈wmax, 1〉 < 0. ii) When A is regular
with degree K, it holds that ∂u∗

∂K < 0, i.e., with larger K (more
social interactions), bistability requires less attention u.

Figs. 1(c), 1(d) show the bifurcation diagram for two val-
ues of total wealth a. Since p = 0, p has no effect. However,
b1 − b2 = −a(1 − ρ/Na) < 0; hence, for reciprocating agents
(γ > 0), the pitchfork bifurcation unfolds towards the branch
of solutions corresponding to no agent contributing to the pub-
lic pool. Since the strength of the unfolding is proportional to
a, emergence of the mutually cooperative solution, when all
agents contribute, requires a smaller u for smaller a and for a
fixed u its region of attraction grows as a decreases.

IV. NUMERICAL STUDIES

A. Prisoner’s Dilemma
We set di = η = 1, ui = 10, Aj

ii = 0, Aj
ik = 1 for i �= k, and

S(·) = tanh(·). Consider the payoff matrix (2) given by
(

pCC pCD
pDC pDD

)
=
(

35 0 − r
40 + r 5

)
(13)

with r > 0 an extra reward (penalty) an agent receives if it
defects (cooperates) while its opponent cooperates (defects).

Using simulations, we illustrate limit points of the opin-
ion state trajectories predicted by the theory. In Fig. 2 each
heatmap illustrates the probability of both agents cooper-
ating and the two axes represent the initial opinion states
z11(0), z21(0) of the agents associated with the cooperation
strategy. Since the two agents are reciprocating, for all cases,
we observe that the heatmaps for both agents are identical,
and hence we only present that of agent 1.

In Figs. 2(b) and 2(c), we can observe that when both agents
are nice, i.e., the agents’ initial opinion states z11(0) > 0,
z21(0) > 0 for the cooperation are large enough, they can
maintain mutual cooperation. Also, a sufficiently nice agent

Fig. 3. Heatmaps depict the average number of agents cooperating in
the public goods game for three different values of a in (14).

(zi1(0) > 0) forgives the exploiting behavior (defection) of
its opponent that initially is not nice (z−i1(0) < 0). However,
when its opponent has a strong intention to defect (z−i1(0) < 0
substantially large in magnitude), the agent also defects to
avoid being exploited and is thus provocable.

An increase in r motivates the agents to defect (Fig. 2).
When r = 20, since pDC−pCC = pDD−pCD = 25 > 2ui = 20,
the cooperation strategy is dominated by the defection strat-
egy, and both agents eventually defect (Fig. 2(a)). Thus, as
predicted by the theory and illustrated in Figs. 1(a), 1(b), when
there is a strong enough incentive to defect, the level of atten-
tion u to opinion exchanges, which translates into the level
of reciprocity, may be insufficient to prevent the agents from
pursuing individually rational decision-making.

B. Public Goods Game
For the 2-strategy public goods game, we adopt the same

parameters of (9) as in Section IV-A except that ui = 5, the
inter-agent interactions are governed by the Erdös-Rényi graph
with parameter pG (for i �= k, Aj

ik = 1 with probability pG

and Aj
ik = 0 with probability 1 − pG), and the initial opinion

state of each agent is uniformly randomly selected as zi1(0) ∼
Uniform(−0.5 + pB, 0.5 + pB), where pB is a bias in favor of
cooperation. Let ρ = 2, Na = 20 so (3) is

Uij(x) =

⎧
⎪⎨

⎪⎩

a
10 + a

10

∑20
k �=i
k=1

xk1 if j = 1

a + a
10

∑20
k �=i
k=1

xk1 if j = 2.
(14)

We evaluate opinion state trajectories over a range of values
of pG, pB, and a to explore how the network structure of the
social interaction, initial opinion states, and total wealth tune
the emergence of cooperation as predicted by the theory.

Each heatmap in Fig. 3 depicts, for a given a, the average
number of agents that cooperate at steady-state for a range of
pG, pB. Both network structure, determined by pG, and agents’
initial preference to contribute to the public pool, determined
by pB, play important roles: The cooperation among the 20
agents is more likely to be sustained if each agent has a greater
chance to interact with others (pG large) and favors cooper-
ation at the beginning of the game (pB large). Interestingly,
even if they prefer to cooperate at the beginning (pB large),
when the agents are interacting less and cannot perceive the
opinion state of others (pG small), they decide to defect over
time. The advantage of large pG is as for large K for regular
graphs, as predicted by Corollary 2.

The payoff difference Ui2(x) − Ui1(x) = 0.9a between the
two strategies depends on the total wealth a and quantifies
the incentive for the agents to defect. Consequently, the more
wealth agents have, the higher incentive they receive to not
contribute. This is illustrated in Fig. 3, where mutual defection
(cooperation) is more (less) likely as a increases.
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V. FINAL REMARKS

We have shown that the nonlinear opinion dynamics model
of [7], [8], [18] provides an analytically tractable frame-
work for studying cooperative behavior in repeated multi-agent
games, where agents rely on rationality and reciprocity, both
of which are central to human decision-making. The opin-
ion update depends on a saturated function of inter-agent
opinion exchanges, which allows mutual cooperation (or coor-
dination) to emerge as one of two bistable equilibria in
two-strategy games. For the prisoner’s dilemma and multi-
agent public goods game, mutual cooperation emerges when
the attention u to social interaction, and thus reciprocity, is
sufficiently strong. The bistability provides a possible mathe-
matical account for how reciprocity enables stable cooperative
behavior, as observed in experimental studies, and a principled
approach for tuning cooperative behavior.

Building on coupled opinion-attention dynamic analysis
of [7], [18], we will design feedback dynamics for u to reflect,
for instance, agents’ growing appreciation of social interac-
tions. This will allow opportunities to influence behavior, e.g.,
to elicit cooperation or coordination among agents. We will
also leverage the versatility of the model to investigate games
with more than two strategies and heterogeneity.

APPENDIX

Proof of Theorem 1:
i) The first statement is verified by comparing (4) and (9).

For the second statement, by the definition of S and zij(0) =
z̄ij(0) − 1

Ns

∑Ns
l=1 z̄il(0) we get d

dt (z̄ij(t) − 1
Ns

∑Ns
l=1 z̄il(t)) =

Fij(z) − 1
Ns

∑Ns
l=1 Fil(z). Therefore, z̄ij(t) − 1

Ns

∑Ns
l=1 z̄il(t) is a

solution of (9) and hence zij(t) = z̄ij(t)− 1
Ns

∑Ns
l=1 z̄il(t). Thus,

σj(zi(t)) = σj(z̄i(t)) for all t ≥ 0 and z̄(t) is a solution to (4).
ii) If z̄∗ is an equilibrium of (4) then z∗

i = P0z̄∗
i satisfies

P0Fi(z∗) = 0 and hence is an equilibrium of (9). To prove the
second statement, suppose z∗ is an equilibrium of (9). As in
the proof for i), we can establish that z∗

ij = z̄∗
ij − 1

Ns

∑Ns
l=1 z̄∗

il for
z̄∗

ij defined as in the statement. Thus, σj(z∗
i ) = σj(z̄∗

i ) and z̄∗ is
an equilibrium of (4). The stability of the equilibria follows
from i).

Proof of Theorem 2:
i) When p⊥ = b1 = b2 = 0, the neutral state z = 0 is always

an equilibrium of (10). The Jacobian of the linearization
of (10) at z = 0 is

J(0) = −d

(
(1 − uS′(0)α)I − uγ S′(0)A − 1

4
η−1pÂ

)
(15)

and its eigenvalues take the form μi = −d(1 − uS′(0)α −
ζi(u, γ, p)) where ζi is an eigenvalue of the matrix
uγ S′(0)A + 1

4η−1pÂ. By [19], we can derive that ∂ζmax
∂u =

wT
maxγ S′(0)Avmax, and ∂μmax

∂u = dS′(0)α+wT
maxγ S′(0)Avmax > 0

for any u, p, γ . Hence, there exists a critical value u∗ for
which if u < u∗, all eigenvalues of (15) have negative real
part, and if u > u∗, μmax is positive, real, and simple.
By Lyapunov-Schmidt reduction [20], the one-dimensional
dynamics projected onto span of vmax are

żc = −2d〈wmax, ṽ〉z3
c + dS′(0)〈wmax, (αI + γ A)vmax〉

× ũzc + 〈wmax,
1

4
dp⊥Â1 + d(b1 − b2)1〉 + h.o.t. (16)

where ṽ = vmax � (αI + γ A + 1
4 pÂ)vmax � (αI + γ A +

1
4 pÂ)vmax and ũ = u − u∗(α, γ, p, η). By the recogni-
tion problem [20, Ch. 2, Proposition 9.2], (16) describes an
unfolding of the pitchfork bifurcation. The last statement fol-
lows by implicit differentiation of −1 + αS′(0)u∗ + ζmax = 0.

ii) By the Perron-Frobenius theorem, vmax and wmax have
all same-sign entries. The rest follows from part i) and the
center manifold theorem.

iii) By the assumptions on vmax (wmax), ζmax = uγ S′(0)λ +
1
4η−1pλ̂, μmax = −d(1−uS′(0)α−uγ S′(0)λ− 1

4η−1pλ̂). Thus,

u∗ = 1− 1
4 η−1pλ̂

S′(0)(α+γ λ)
. The rest follows from (11) since wmax is the

left eigenvector of Â.
Proof of Theorem 3: By the assumptions on p, G, and Ĝ,

we can verify that vmax, wmax, λ, and λ̂, given in Theorem 2
iii), satisfy vmax = wmax = 1, λ = K, and λ̂ = K̂; then
∂u∗
∂K = −γ (1− 1

4 η−1pK̂)

S′(0)(α+γ K)2 and ∂u∗
∂K̂

= − 1
4 η−1p

S′(0)(α+γ K)
. From (12), ∂b

∂K̂
=

1
4 Nadp⊥, and the theorem follows.
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