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Abstract—We propose a continuous-time multioption
nonlinear generalization of classical linear weighted-
average opinion dynamics. Nonlinearity is introduced
by saturating opinion exchanges, and this is enough to
enable a significantly greater range of opinion-forming
behaviors with our model as compared to existing
linear and nonlinear models. For a group of agents that
communicate opinions over a network, these behaviors
include multistable agreement and disagreement, tunable
sensitivity to input, robustness to disturbance, flexible
transition between patterns of opinions, and opinion
cascades. We derive network-dependent tuning rules
to robustly control the system behavior and we design
state-feedback dynamics for the model parameters to make
the behavior adaptive to changing external conditions.
The model provides new means for systematic study
of dynamics on natural and engineered networks, from
information spread and political polarization to collective
decision-making and dynamic task allocation.

Index Terms—Agreement, bifurcation, bio-inspired en-
gineering, deadlock breaking, decision making, disagree-
ment, multi-agent systems, network centrality, networked
control systems, nonlinear dynamical systems, opinion dy-
namics.

I. INTRODUCTION

O PINION dynamics of networked agents are the subject
of long-standing interdisciplinary interest, and there is a

large and growing literature on agent-based models created to
study mechanisms that drive the formation of consensus and
opinion clustering in groups. These models appear, for example,
in studies of collective animal behavior and voting patterns in
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human social networks. In engineering, they are fundamental
to designing distributed coordination of autonomous agents and
dynamic allocation of tasks across a network.

Agent-based models are typically used to investigate parame-
ter regimes and network structures for which opinions in a group
converge over time to a desired configuration. However, natural
groups exhibit much more flexibility than captured with exist-
ing models. Remarkably, groups in nature can rapidly switch
between different opinion configurations in response to changes
in their environment, and they can break deadlock, i.e., choose
among options with little, if any, evidence that one option is
better than another. Understanding the mechanisms that explain
the temporal dynamics of opinion formation in groups and the
ultrasensitivity and robustness needed for groups to pick out
meaningful information and to break deadlock in uncertain and
changing environments is important in its own right. It is also
pivotal to developing the means to design provably adaptable
yet robust control laws for robotic teams and other networked
multiagent systems.

Motivated by these observations, we explore the following
questions in this article. How can a network of decision-makers
come rapidly and reliably to coherent configurations of opinions,
including both agreement and disagreement, on multiple options
in response to, or in the absence of, internal biases or external
inputs? How can a network reliably transition from one config-
uration of opinions to another in response to change? How can
the sensitivity of the opinion formation process be tuned so that
meaningful signals are distinguished from spurious signals? To
investigate these questions, we present an agent-based dynamic
model of the opinion formation process that generalizes linear
and existing nonlinear models. The model is rich in the behaviors
it exhibits yet tractable to analysis by virtue of the small number
of parameters needed to generate the full range of behaviors.

We emphasize that our modeling approach is distinct from
existing models in the literature in the following way. Models
of opinion formation are typically built on the fundamental
assumption that individuals update their opinions through a
linear averaging process [1]–[5]. Additional feedback dynam-
ics are then often imposed on the coupling weights between
agents, for example, in bounded confidence models [6]–[9],
biased assimilation models [10], [11], and models of evolution
of social power [12], [13]. Nonlinearity thereby arises through
the superposition of linear opinion dynamics and nonlinear
coupling-weight dynamics. When persistent disagreement is
observed, it is necessarily the consequence of the dynamic
updating of the coupling weights. However, state-dependent
interactions are not the only way for a network to achieve
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structurally stable disagreement. We are instead proposing that
the opinion update process itself is fundamentally nonlinear due
to saturation of information. We introduce a new multioption
nonlinear model of opinion formation with saturated interactions
in Section III, and in Section IV, we prove that this modeling
assumption supports persistent disagreement with a completely
static interaction network.

As is done for linear models, dynamic feedback can also
be introduced to the nonlinear model parameters. We explore
the effects of several dynamic parameter update laws in de-
tail in Section V. The feedback laws we consider are sim-
ple, yet they make our model adaptive to changing exter-
nal conditions with tunable sensitivity and they allow robust
and tunable transitions between distinctly different patterns of
opinions.

Our model generalizes recent literature on opinion formation
with input saturation [14]–[20]. Closely related to these are non-
linear models that leverage coupled oscillator dynamics [21]–
[23], biologically inspired mean-field models [24], and the Ising
model [25], [26].

Our primary contributions are as follows. 1) We introduce a
new nonlinear model for the study of multiagent, multioption
opinion dynamics. The model has a social term weighted by
an attention parameter, which can also represent social effort or
susceptibility to social influence, and an input term, which can
represent, e.g., external stimuli, bias, or persistent opinions.

2) We show that the model exhibits a rich variety of opinion-
formation behaviors governed by bifurcations. This includes
rapid and reliable opinion formation and multistable agreement
and disagreement, with flexible transitions between them. It
also includes ultrasensitivity to inputs near the opinion forming
bifurcation, and robustness to disturbances and uncertainties,
away from the bifurcation. Moreover, the behaviors are governed
by a small number of key parameters, rendering the model
analytically tractable. We prove the central role of the spectral
properties of the network graph adjacency matrix in informing
the model behavior.

3) We show how the model recovers a range of models in
the literature for suitable parameter combinations and/or when
linearized, and how the reliance on structurally unstable network
conditions in linear models breaks down in the nonlinear setting.
The central role of the network graph adjacency matrix in our
nonlinear model generalizes the central role of the network graph
Laplacian in opinion dynamics in the literature. We show that
the right and left adjacency matrix eigenstructures determine
patterns of opinion and sensitivity to inputs, respectively.

4) We introduce distributed adaptive feedback dynamics to
the agent parameters. We show how design parameters in the
attention feedback allow tunable sensitivity of opinion formation
to inputs and robustness to changes in inputs, as well as tunable
opinion cascades even in response to a single agent receiving an
input.

5) We examine tunable transitions between agreement and
disagreement using feedback dynamics also on network weights.

We define notation in Section II. We present the new nonlinear
opinion dynamics model in Section III. In Section IV, we prove
results on agreement and disagreement opinion formation for
the new model. We introduce attention feedback dynamics and
prove results on tunable sensitivity in Section V in the special

case of two options. In Section V-D, we illustrate feedback-
controlled transitions between agreement and disagreement.
Section VI concludes this article.

II. NOTATION

Given y ∈ RN , the norm ‖y‖ is the standard Euclidean
2-norm and diag{y} ∈ RN×N is a diagonal matrix with yi
in row i, column i. Let IN ∈ RN×N be the identity matrix,
1N ∈ RN the vector of ones, and P0 = (INo

− 1
No

1No
1T
No

)

the projection onto 1⊥
No

. Let R{v1, . . . ,vk} be the span of vec-
tors v1, . . . ,vk ∈ RN . We define vi ∈ RN component-wise as
(vi1, . . . , viN ). LetU ,V , andW be vector spaces.U is the direct
sum of V and W , i.e., U = V ⊕W , if and only if U = V +W
and V ∩W = {0}. Given matrices B = (bij) ∈ Rm×n and
C = (cij) ∈ Rp×q , the Kronecker product B ⊗ C ∈ Rmp×nq

has entries (B ⊗ C)pr+v,qs+w = brscvw.
Let the set of vertices V = {1, . . . , Na} index a group of Na

agents, and let edgesE ⊆ V × V represent interactions between
agents. If edge eik ∈ E, then agent k is a neighbor of agent i.
The communication topology between agents is captured by the
directed graph G = (V,E) and its associated adjacency matrix
A ∈ RNa×Na . A is made up of elements aik, and aik 	= 0 if and
only if agent k is a neighbor of agent i. When A is symmetric
(i.e., communication between agents is bidirectional), the graph
is undirected.

III. NONLINEAR MULTIOPTION OPINION DYNAMICS

In this section, we present our nonlinear model of opinion
dynamics for a network of interacting agents that form opinions
about an arbitrary number of options. In Section III-A, we recall
the classical consensus model of DeGroot [1] and several of the
extensions that have been proposed and studied in the literature.
All of the cited models (with one exception noted) use an
opinion update rule that depends on a linear weighted-average of
exchanged opinions. In our model, as discussed in Section III-B
and formalized in Section III-C, we apply a saturation function to
opinion exchanges, which makes the update rule fundamentally
nonlinear, even before introducing extensions. The fundamen-
tally nonlinear update rule makes all the difference with respect
to generality and flexibility of the model as we show here and
in the rest of the article.

A. Linear Averaging Models: Drawbacks and Extensions

Opinion formation is classically modeled as a weighted-
averaging process, as originally introduced by DeGroot [1]. In
this framework an agent’s opinion xi ∈ R reflects how strongly
the agent supports an issue or topic of interest. The real-valued
opinion is updated in discrete time as a weighted average of the
agent’s own and other agents’ opinions, i.e.,

xi(T + 1) = ai1x1(T ) + · · ·+ aiNa
xNa

(T ) (1)

where ai1 + · · ·+ aiNa
= 1 and aik ≥ 0. The weights aik de-

scribe the influence of the opinion of agent k on the opinion of
agent i and the matrix A ∈ RNa×Na with entries aik represents
the structure of the influence network.

A key drawback of linear weighted-average models is that
consensus among the agents is the only possible outcome. As
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observed in [27], this necessarily happens because the attraction
strength of agent i’s opinion toward agent k’s opinion increases
linearly with the difference of opinions between the two agents.
In other words, the more divergent the two agents’ opinions
are, the more strongly they are attracted to each other, which is
paradoxical from an opinion formation perspective.

To overcome these limitations, a number of prominent varia-
tions on averaging models have been proposed. For example, in
“bounded confidence” models, agents average network opinions
but delete communication links to any neighbors whose opinions
are sufficiently divergent from their own [6]–[9]. In a similar
spirit, “biased assimilation” models instead incorporate a self-
feedback into the interaction weights of an averaging model [10],
[11]. This self-feedback accounts for an individual’s bias toward
evidence that conforms with its existing beliefs. The linear model
and its variations have also been extended to the case of signed
networks, where the linear weights aik can be negative [5], [28],
[29]. In [27], the authors do away with averaging altogether and
instead propose that opinions form through a weighted-median
mechanism.

In the present article, we propose an alternative perspec-
tive to this literature: driven by the above motivation and the
model-independent theory developed in [30], we introduce a
parsimonious nonlinear extension of linear weighted-average
opinion dynamics that leverages the saturation function.

The linear weighted-average discrete-time opinion dynamics
(1) can equivalently be written as

xi(T + 1)

= xi(T ) + (−xi(T ) + ai1x1(T ) + · · ·+ aiNa
xNa

(T )) .

This discrete-time update rule is the unit time-step Euler dis-
cretization of the continuous time linear dynamics

ẋi = −xi + ai1x1 + · · ·+ aiNa
xNa

. (2)

Observe that (1) and (2) have exactly the same steady states with
the same (neutral) stability.

The linear consensus dynamics (2) are determined by two
terms: a weighted-average opinion-exchange term, modeling the
pull felt by agent i toward the weighted group opinion, and a
linear damping term, which can be interpreted as the agent’s
resistance to changing its opinion.

B. Nonlinear Multioption Extension of Weighted-Average
Models: Defining Properties

Our goal is to derive a novel nonlinear extension of (2)
satisfying the following defining properties.

1. Opinion Exchanges are Saturated: Saturated nonlinearities
appear in virtually every natural and artificial signaling network
due to bounds on action and sensing. For example, dynam-
ics that evolve according to saturating interactions appear in
spatially localized and extended neuronal population models
of thalamo-cortical dynamics [31], [32], in Hopfield neural
network models [33]–[35], in models of perceptual decision
making [36], [37], and in control systems with sensor and
actuator saturations [38], [39]. Saturated interactions between
decision-makers also effectively bound the attraction between

opinions, thus overcoming the linear weighted-average model
paradox mentioned above.

2. Multioption Opinion Formation: Allowing for an arbitrary
number of options makes the model relevant to a wide range
of applications, for example, in task allocation problems where
options represent tasks or in strategic settings where options
represent strategies. We extend the model to multiple options by
suitably generalizing the agent’s opinion state-space, analogous
to existing multioption extensions of averaging models such
as [40]–[46].

To construct this extension formally, observe that in the
scalar opinion setting, xi > 0 (xi < 0) is usually interpreted as
favoring (disfavoring) an option A and disfavoring (favoring) an
option B. The strength of favoring or disfavoring is represented
by the magnitude |xi| and xi = 0 is interpreted as being neutral.
This formalism is equivalent to one in which each agent is char-
acterized by two scalar variables ziA (modeling the preference of
agent i for option A) and ziB (modeling the preference of agent
i for option B) that are “mutually exclusive,” i.e., that satisfy
ziA + ziB = 0. The scalar opinion is then obtained simply by
defining xi = ziA. This observation leads to the following mul-
tioption generalization of the state-space of model (2). Given
No options, we model each agent’s opinion state-space as the
subspace 1⊥

No
⊂ RNo . Thus, in our model, the opinion state

of agent i, i = 1, . . . , Na, is described by the state variable
Zi ∈ 1⊥

No
, with components zij , j = 1, . . . , No. When Zi = 0,

we say that agent i is neutral or unopinionated. When Zi 	= 0,
we say that the agent is opinionated. The full model state-space
is V = 1⊥

No
× · · · × 1⊥

No︸ ︷︷ ︸
Na times

, and Z = (Z1, . . . ,ZNa
) ∈ V is the

system state. The origin Z = 0 is the neutral point. Another
way of interpreting our choice of 1⊥

No
as an agent’s state-

space comes from observing that 1⊥
No

is the tangent space to
the (No − 1)-dimensional simplex in RNo . Because 1⊥

No
and

the simplex are isomorphic, our modeling approach naturally
applies to multioption decision-making problems in which an
agent’s state-space is the (No − 1)-dimensional simplex. This is
useful when the agents’ opinions are interpreted as probabilities
of choosing options, for example, in the case of mixed strategies
in games where an option refers to a strategy [47]. For more
details on the connection to simplex dynamics, see Corollary
A.2.1 in the Appendix.

3. Agents Have Allocable Attention: Because an agent’s at-
tention to exchanged opinions may be variable, we introduce,
for each agent i, two parameters, di > 0 and ui ≥ 0, that weight
the relative influence of the linear resistance term and the non-
linear opinion-exchange term, respectively. When the resistance
parameter di dominates the attention parameter ui, the agent is
weakly attentive to other agents’ opinions. When ui dominates
di, the agent is strongly attentive to other agents’ opinions.
A shift from a weakly attentive to a strongly attentive state
can be induced, for instance, by a time-urgency (election day
approaching) or a spatial-urgency (target getting closer) to form
an informed collective opinion. The attention parameter ui can
also be used to model social effort, excitability, or susceptibility
of agent i to social influence.

4. Agents Have Exogenous Inputs: For each agent, we intro-
duce an input parameter bij , which represents an input signal
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Fig. 1. Illustration of the four classes of interactions. An arrow from zij
to zkl means the opinion of agent i about option j is influenced by the
opinion of agent k about option l, modulo the labeled gain.

from the environment or a bias or predisposition that directly
affects agent i’s opinion of option j. For example, the input bij
can be used to model the exogenous influence of agent i’s initial
opinions, as in [2], where agents hold on to their initial opinions
(sometimes called “stubborn” agents as in [48]).

If the attention and/or bias parameters are hard or impossible
to measure or control, which may be the case in sociopolitical
applications, we can use standard homogeneity assumptions,
e.g., di = 1, ui = u, bij = 0 for all agents, and include random
perturbations to capture modeling uncertainties. In technological
applications (e.g., robotic swarms), however, tunable parameters
of the model provide novel, analytically tractable means to
design complex collective behaviors—see for example [49].

C. A General Nonlinear Opinion Dynamics Model

In the multioption setting, there are four possible types of
coupling in the resulting opinion network (see Fig. 1).

1) Intra-agent, same-option coupling, with gain αi;
2) intra-agent, interoption coupling, with gain βi;
3) inter-agent, same-option coupling, with gains γik, i 	= k;
4) inter-agent, interoption coupling, with gains δik, i 	= k.
Parameters αi, βi, γik, δik determine the qualitative prop-

erties of opinion interactions. Parameter αi determines sign
and magnitude of opinion self-interaction for agent i. To avoid
redundancy with resistance di, we assume αi ≥ 0, i.e., either
no self-coupling (αi = 0) or self-reinforcing coupling (αi > 0).
Parameter βi determines how different intra-agent opinions
interact. Parameters γik and δik determine if i’s response to
k is to cooperate (γik − δik > 0) or compete (γik − δik < 0).
When different option dimensions have no interdependence, we
can set βi = δik = 0 for all i, k = 1, . . . , Na.

The proposed general nonlinear opinion dynamics are

Żi = P0F i(Z) (3a)

Fij(Z) = − dizij + bij + ui

(
S1

(
αizij +

∑Na

k 	=i
k=1

γikzkj

)

+
∑No

l 	=j
l=1

S2

(
βizil +

∑Na

k 	=i
k=1

δikzkl

))
(3b)

where zij(t) is agent i’s opinion of option j at time t, Zi(t) =
(zi1, . . . , ziNo

)(t) ∈ 1⊥
No

is agent i’s opinion state at time t as in-

troduced in Section III-B, and Żi =
dZi

dt . Sq : R → [−kq1, kq2]

with kq1, kq2 ∈ R>0 for q ∈ {1, 2} is a generic sigmoidal sat-
urating function satisfying constraints Sq(0) = 0, S ′

q(0) = 1,

S ′′
q (0) 	= 0, S ′′′

q (0) 	= 01. S1 saturates same-option interactions,
and S2 saturates interoption interactions. S1 and S2 could be the
same but are distinguished in (3) for a more general statement of
the model. We provide an even more general formulation of the
model in Appendix A that makes use of an adjacency tensor and
allows for the possibility of heterogeneous interactions between
options. Let

Γ = [γik] ∈ RNa×Na , Δ = [δik] ∈ RNa×Na . (4)

In (3), the sum over the agents could be brought outside
of the two sigmoids without altering the qualitative behavior
of the model. Our choice in (3) corresponds to an opinion
network with saturated inputs. Bringing the sum over the agents
outside the sigmoids corresponds to an opinion network with
saturated outputs. Either choice could be useful depending on
the application. On the other hand, the sum over the options
cannot be brought inside S2 as the mutual exclusivity condition
Zi ∈ 1⊥

No
would lead to spurious term cancellations for some

parameter choices. Intuitively, this means that opinions about
different options are processed through different input channels.
Dynamics (3) are well defined on the system state-space V , as
we rigorously prove in Appendix B.

Let b̂i = 1
No

∑No

l=1 bil be the average input to agent i and let

b⊥ij = bij − b̂i be the relative input to agent i for option j.
Lemma III.1: The dynamics (3) are independent of the aver-

age input b̂i in the sense that ∂żij

∂b̂i
= 0.

Proof: Recall that P0 is the projection onto 1⊥
No

as defined
in Section II. Then, P0bi = b⊥

i , and the conclusion follows
trivially from the form of (3). �

Lemma III.1 implies that only relative inputs affect the loca-
tion of the equilibria of the opinion dynamics (3).

Assumption 1: In light of Lemma III.1, for the remainder of
the article, we assume without loss of generality that the average
input b̂i = 0 for all i = 1, . . . , Na. Thus, bij = b⊥ij .

When relative inputs are absent, system (3) always has the
neutral point as an equilibrium.

Lemma III.2: Z = 0 is an equilibrium for (3) if and only if
there are no relative inputs, i.e., b⊥ij = 0 for all i and all j.

When relative inputs are small, i.e., they do not dominate the
dynamics, the formation of opinions in the general model (3)
is governed by the balance between the resistance term, which
inhibits opinion formation, and the social term, which promotes
opinion formation. For illustrative purposes, consider the case
in which ui = u ≥ 0 for all i. Then, for u small, resistance
dominates and the system behaves linearly. The opinions zij
remain small and their relative magnitudes are determined by
the small inputs bij . For u large, the social term dominates and
the system behaves nonlinearly.

Importantly, in this nonlinear regime, where u is large enough
that opinion exchanges dominate resistance, opinions zij form
that are much larger than, and potentially unrelated to, inputs
bij , even for very small initial conditions. Opinion exchanges
govern opinion formation through bifurcations at which the

1S′′
q(0) 	= 0 is a nondegeneracy condition, in the sense of [50], only forNo >

2. ForNo = 2, the simplex projection (3a) imposes odd symmetry of the opinion
dynamics and makes this assumption unnecessary. See (5) and below.
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neutral equilibrium loses stability, as discussed in Section IV
and formalized and investigated in the remainder of the article.

D. Generality and Connection to Existing Models

Model (3) is general in the sense that it recovers a number of
published opinion-formation, decision-making, and consensus
models for specific sets of parameters and/or when linearized.
In order to illustrate this, we consider the model specialized
to No = 2, as most of the models in the literature consider two-
option scenarios. The opinion state of agent i is one-dimensional:
Following the notation introduced in Section III-B, we define
xi = zi1 = −zi2 as agent i’s opinion. Then, opinion dynamics
(3) reduce to

ẋi = − dixi + ui

(
Ŝ1

(
αixi +

∑Na

k 	=i
k=1

γikxk

)

−Ŝ2

(
βixi +

∑Na

k 	=i
k=1

δikxk

))
+ bi (5)

where Ŝl(y) =
1
2 (Sl(y)− Sl(−y)) are odd saturating functions

for l = 1, 2, bi := bi1 = −bi2, and di =
1
2 (di1 + di2). Let the

network opinion state be x = (x1, . . . , xNa
) ∈ RNa and vector

of inputs be b = (b1, . . . , bNa
) ∈ RNa . When interactions be-

tween option dimensions are disregarded, i.e., withβi = δik = 0
for all i, k = 1, . . . , Na, the two-option model (5) further re-
duces to

ẋi = −dixi + uiŜ1

(
αixi +

∑Na

k 	=i
k=1

γikxk

)
+ bi (6)

which, with appropriate restrictions on the model coefficients,
recovers a number of nonlinear consensus models studied in
recent literature. We illustrate this in the following example.

Example III.1 (Specialization to Nonlinear Consensus Proto-
cols in the Literature): A. When αi = 0, γik ∈ {0, 1} (or more
generally, γik ≥ 0), ui := u ≥ 0, and the resistance parame-
ter di is defined as di :=

∑Na

k=1 γik with k 	= i (the network
in-degree for node i), (6) reduces to the nonlinear consensus
dynamics of [14]–[17].

B. When αi = 0, γik ∈ {0, 1,−1} (or more generally, γik ∈
R), ui := u ≥ 0, and the resistance parameter di is defined as
di :=

∑Na

k=1 |γik| with k 	= i, (6) reduces to the nonlinear con-
sensus dynamics with antagonistic interactions studied in [18],
[51].

In the nonlinear consensus models of Example III.1, the
formation of consensus opinions on the network is a bifurca-
tion phenomenon. Namely when bi = 0 for all i = 1, . . . , Na

and 0 ≤ u < u∗, the neutral point x = 0 is an asymptotically
stable equilibrium. At a critical value u = u∗ > 0, a pitchfork
bifurcation is observed in both models, at which point x = 0
loses stability and two nonzero asymptotically stable equilibria
appear [16, Th. 1], [51, Th. 1]. For nonzero inputs, the pitchfork
unfolds.

Importantly, the linearization of these models about the origin
x = 0 at u = 1 yields ẋ = −(D − Γ)x, where D = diag(di) ∈
RNa×Na is the degree matrix for the network. For the positive
weights of Example III.1.A, this corresponds to the standard
Laplacian consensus protocol [4], a continuous-time analog of
the weighted-average models discussed in Section III-A. For the

Fig. 2. For small initial conditions x(0) = (0.1,−0.09,−0.1), trajecto-
ries of the linear model from [5] (left) approximate trajectories of the
nonlinear model of Example III.1.B (right) with Na = 3, u = 1.01, bi = 0,
and Ŝ1 = tanh. Top: bipartite consensus on a strongly connected and
structurally balanced graph, as in [5, Example 1]. Bottom: polarized
opinions on a quasi-strongly connected graph containing an in-isolated
structurally balanced subgraph, as in [53, Example 1]. Arrows point to
neighbors per the convention of Fig. 1.

signed weights of Example III.1.B, this linearization is exactly
the model of linear consensus with antagonistic, i.e., signed,
interconnections [5], [28], [29].

In linear models, nonzero agreement (consensus) and dis-
agreement (e.g., bipartite consensus and its generalizations)
equilibria are never exponentially asymptotically stable because
the model Jacobian has a zero eigenvalue. The eigenspace of the
zero eigenvalue is R{1} in the case of agreement, whereas it
is spanned by a mixed-sign vector determined by the coupling
topology in the case of disagreement [5], [45], [52], [53]. In
other words, linear agreement and disagreement models are not
structurally stable and arbitrary small unmodeled (nonlinear)
dynamics will in general destroy the predicted behavior. Adding
saturated opinion exchanges has a two-fold advantage: 1) It
makes the model generically structurally stable and, therefore,
the agreement and disagreement equilibria hyperbolic (i.e., with
no eigenvalues on the imaginary axis); and 2) it weakens the
necessary conditions for the existence of stable disagreement
states.

In linear models, the existence of neutrally stable agreement
or disagreement states is always linked to restrictive and non-
generic assumptions on the coupling topology, for example,
balanced coupling for consensus [4] and either strongly con-
nected structurally balanced coupling [5], [45], quasi-strongly
connected coupling with an in-isolated structurally balanced
subgraph [53], or the existence of a spanning tree on the coupling
graph [52] for disagreement.

As we prove in Section IV for our model, agreement is
always possible for generic strongly connected (balanced or
unbalanced) graphs, and disagreement only requires a weak and
provable condition on the spectral properties of the adjacency
matrix (satisfied even for networks with homogeneous weights).
It follows that our model recovers the behavior of linear models
when one of the above conditions is satisfied (Fig. 2) but avoids
the conservativeness of linear model predictions under more
general coupling topologies (Fig. 3). In Fig. 3, for a network with
all negative edges weights, the linear model predicts neutrality,
whereas our model predicts disagreement (see also Fig. 4).
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Fig. 3. Model from [5] (left) and nonlinear model (6) (right) with Na =

5, ui = 0.5, di = 1, bi = 0 for all i = 1, . . . ,Na, Ŝ1 = tanh, initial condi-
tions x(0) = (0.9,−0.4, 0.4, 0.1,−0.8), and the same adjacency matrix
given by γik = −1 for i, k ∈ Ip, i 	= k, and γik = −2 for i ∈ Ip, k ∈ Is,
p 	= s for clusters with indices I1 = {1, 2} and I2 = {3, 4, 5}—see net-
work diagram for illustration of the interconnection topology. The linear
model converges to the neutral solution. The nonlinear model, however,
converges to a stable clustered dissensus state, as follows from Remark
IV.3.

Fig. 4. Adapted from [64]. Agreement (left) and disagreement (right)
opinion configurations at steady state from simulation of two-option
opinion dynamics (14) and four different undirected graph types, with
attention u slightly above the critical value u∗ in each case. Color of each
node i corresponds to opinion xi at t = 500. For all graphs γ = 1.3 (left)
and γ = −1.3 (right), d = 1, α = 1.2, and bi = 0 for all i = 1, . . . ,Na.
For the path and cycle graphs, u = 0.31, and for the star and wheel
graphs, u = 0.26. Randomized initial opinions are drawn from the distri-
bution U(−1, 1).

In the linear model, the repulsion felt among agents balances
the resistance, whereas in the nonlinear model, the repulsion
dominates the resistance, destabilizing the neutral solution and
driving different agents to form a strong opinion for different
available options.

E. Clustering and Model Reduction

The opinion states Zi of the model (3) can either repre-
sent individual agents or alternatively the average opinion of
a subgroup. The latter perspective can be advantageous, for
example, in designing methodology for robotic swarm activities
where subgroups of robots need to make consensus decisions, in
studying cognitive control where the behavior of competing sub-
populations of neurons determines task switching [54], and in
modeling and investigating mechanisms that explain sociopolit-
ical processes such as political polarization [55]. In this section,
we prove a sufficient condition for cluster synchronization of
the opinions on the network with the opinion dynamics (3), in
which the network trajectories converge to a lower dimensional
manifold on which agents within each cluster have identical
opinions, whereas agents in different clusters can have different
opinions.

The cluster synchronization problem has been extensively
studied in dynamical systems with diffusive coupling, as in [56],
[57]. More broadly, cluster synchronization has been linked to
graph symmetries and graph structure called external equitable
partitions [58]–[62]. In the following theorem, we show that

such a network structure constitutes a sufficient condition for a
network of agents to form opinion clusters—see Appendix C for
the proof.

Theorem III.3 (Model Reduction With Opinion Clusters):
Consider Nc clusters with Np agents in cluster p such that∑Nc

p=1 Np = Na. Let Ip be the set of indices for agents in
cluster p. Assume for every p = 1, . . . , Nc: 1) ui = ûp, di = dp,
bij = bpj for i ∈ Ip; 2) within a cluster αi = ᾱp, γik = α̃p,
βi = β̄p, δik = β̃p for i, k ∈ Ip, and i 	= k; 3) between clusters
γik = γ̃ps, δik = δ̃ps for i ∈ Ip, k ∈ Is s = 1, . . . , Nc, and
s 	= p. Define bounded set Kq ⊂ R>0, q = 1, 2, as the image of
the derivative of the saturating functionS ′

q of (3). If the following
condition holds:

sup
κ1∈K1,κ2∈K2

{
−dp + upκ1(ᾱp − α̃p) + upκ2(β̄p − β̃p)

}
< 0

(7)
for all p = 1, . . . , Nc, then every trajectory of (3) converges
exponentially to the Nc(No − 1)-dimensional manifold

E = {Z ∈ V | zij = zkj ∀i, k ∈ Ip, p = 1, . . . , Nc}. (8)

The dynamics on E reduce to (3) with Nc agents with opinion
states ẑpj , p = 1, . . . , Nc, and with coupling weights

α̂p = ᾱp + (Np − 1)α̃p, γ̂ps = Nsγ̃ps (9a)

β̂p = β̄p + (Np − 1)β̃p, δ̂ps = Nsδ̃ps. (9b)

Whenever conditions of Theorem III.3 are met, the group
of Na agents will converge to a clustered group opinion state.
This can happen for a broad class of interaction networks,
including an all-to-all network with interaction weights that all
have the same sign. The sufficient condition can, for example,
inform network design for technological systems where each of
several groups must make a different collaborative decision. See
Fig. 3 for an illustration of opinion trajectories with two clusters,
membership in which is defined by the network.

F. A Minimal Opinion Network Model

Several of the results characterizing opinion formation in (3)
will be proved in the homogeneous regime defined by

bij = 0, di = d > 0, ui = u ≥ 0, αi = α ≥ 0

βi = β ∈ R, γik = γaik, δik = δaik, A = [aik] (10)

where α, β, γ, δ ∈ R and aik ∈ {0, 1}, aii = 0 for all i, k =
1, . . . , Na, k 	= i, so that A is an unweighted adjacency matrix
without self-loops.

With this choice of parameters, the nonlinear model is mini-
mal in the following sense. The matrix A with elements aik de-
fines the influence network topology. The set of four interactions
gains α, β, γ, δ is minimal because, in general, there are four
distinct types of arrows in a multioption opinion network. The
(global) attention parameter u and resistance parameter d tune
an agent’s attention to other agents’ opinions and they jointly
determine the occurrence of opinion-formation bifurcations, as
we prove in Section IV.

We show that our model, even in the fully homogeneous
regime, exhibits extremely rich and analytically provable
opinion-formation behaviors. We further build upon the results
proved for the homogeneous model to study, either analytically
or numerically, the effects of heterogeneity and perturbations.
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IV. AGREEMENT AND DISAGREEMENT OPINION FORMATION

We show key results on opinion formation for dynamics (3).
1) Opinion formation can be modeled as a bifurcation, an

intrinsically nonlinear dynamical phenomenon. Opin-
ions form rapidly through bifurcation-induced instabili-
ties rather than slow linear integration of evidence. Opin-
ions can form even in the absence of input, as long as
attention (urgency or susceptibility, etc.) is sufficiently
high.

2) The way opinions form at a bifurcation depends on the
eigenstructure of the matrix Γ−Δ defined by (4).

3) In the homogenous regime defined by (10), coopera-
tive agents (γ > δ) always form agreement opinions,
whereas under suitable assumptions on the eigenstruc-
ture of the adjacency matrix A, competitive agents
(γ < δ) always form disagreement opinions.

4) At the bifurcation, there are multiple stable solutions,
and opinion formation breaks deadlock, that is, the situ-
ation in which every agent remains neutral, and therefore
undecided, about all the options.

5) Near the bifurcation, opinion formation is ultrasensitive
to input.

6) Away from the bifurcation, opinion formation is robust
to small heterogeneity in parameter values and small
inputs.

7) In the absence of inputs, multistable agreement solutions
and multistable disagreement solutions emerge generi-
cally at opinion-forming bifurcations.

8) In the presence of inputs, the opinion-forming bifurca-
tion unfolds (i.e., multistability is partially or completely
broken) in a such a way that the opinion states favored by
inputs attract most of the initial conditions close to the
bifurcation. The network structure governs the relative
influence of inputs, which leads to a formal notion of
centrality indices for agreement and disagreement.

9) Agreement and disagreement can co-exist, revealing the
possibility of easy transition between them.

10) With sufficient symmetry, agreement specializes to con-
sensus and disagreement to dissensus.

A. Agreement and Disagreement States

We say the agents agree, i.e., are in an agreement state, when
sign(zij) = sign(zkj) for all i, k = 1, . . . , Na, j = 1, . . . , No.
This means that all agents unanimously favor or disfavor each
of the options, although they may differ on the magnitude of
their opinions. Agreement specializes to consensus when Zi =
Zk for all i, k = 1, . . . , Na. We say the agents disagree, i.e.,
are in a disagreement state, when sign(zij) 	= sign(zkj) for at
least one pair of agents i, k = 1, . . . , Na, i 	= k, and at least
one option j. Disagreement specializes to dissensus when the
average opinion of the group is neutral, i.e.,

∑Na

i=1 Zi = 0. For
a network with clustered coupling (Theorem III.3), clustered
consensus, dissensus, agreement, and disagreement are defined
by applying the definitions to the average states of each cluster
ẑpj in the reduced model.

Remark IV.1: In the presence of nonzero inputs bij , agents
will generically have nonzero opinions about options as follows
from Lemma III.2. For realistic applications, small opinions
formed in a linear response to inputs should be distinguished
from large opinions which arise from a nonlinear response. To
make this distinction, we say agents are opinionated when their
opinions are large, and unopinionated when their opinions are
close to zero. In this article, we keep this distinction qualita-
tive. A precise bound between opinionated and unopinionated
magnitudes depends on the application and can be defined when
necessary.

B. Opinions Form Through a Bifurcation

Steady-state bifurcations of the opinion dynamics (3) result in
large opinions even for zero input. Theorem IV.1, proved in Ap-
pendix D, provides sufficient conditions under which opinions
form through a bifurcation from the neutral equilibrium Z = 0
and formulas to compute the kernel along which the bifurcation
appears. Let interaction matrices Γ, Δ be as in (4).

Theorem IV.1 (Opinion Formation as a Bifurcation): Con-
sider model (3) with bij = 0, di = d, ui = u, αi = α, and
βi = β, for all i = 1, . . . , Na. Let J be the Jacobian of the
system evaluated at neutral equilibrium Z = 0. Define λ to be
the eigenvalue of Γ−Δ with largest real part. Assume that λ

is real, α− β + λ > 0, and that Re[μ] 	= λ for any eigenvalue
μ 	= λ ofΓ−Δ. Then,Z = 0 is locally exponentially stable for
0 < u < u∗, and unstable for u > u∗, with

u∗ =
d

α− β + λ
. (11)

If λ is simple,2 at u = u∗ an opinion-forming steady-state bi-
furcation happens along ker J = R{v∗} ⊗ 1⊥

No
where v∗ is the

right unit eigenvector associated to λ. More precisely, generi-
cally for each bifurcation branch, there exists vax ∈ 1⊥

No
such

that the branch is tangent at Z = 0 to the one-dimensional
subspace R{v∗ ⊗ vax}.

Remark IV.2: The vector vax can be computed as the gener-
ator of the fixed-point subspace of an axial subgroup [63, Sec.
1.4] of the (irreducible) action of SNo

on ker J .
Theorem IV.1 reveals how agents can become opinionated

even without input: opinions form when attention u is greater
than threshold u∗. This means that deadlock can be avoided even
when there is little or no evidence to distinguish among options.
The value of the threshold is determined from the structure of the
communication network. Additionally, from this result we can
deduce how agreement and disagreement solutions are informed
by the network structure. In particular, the equilibrium opinions
of each agent near the bifurcation are directly proportional to the
vector vax, scaled by the entries of v∗. When all of the entries of
v∗ have the same sign, the agents will be in an agreement state.
If v∗ contains mixed-sign entries, the agents will necessarily be
in a disagreement state. This provides a straightforward connec-
tion between the spectral properties of the effective inter-agent
communication graph Γ−Δ and the opinion configurations
that arise from the opinion dynamics (3). The entries of the
vector vax determine the relative preference associated to the

2This result can be generalized to networks for which λ is not simple.
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various options. In the following corollary, we show how in the
homogeneous regime (10), Theorem IV.1 specializes to simple
conditions for agreement and disagreement.

Corollary IV.1.1 (Agreement and Disagreement): Consider
model (3) with homogeneous parameters as in (10) on a strongly
connected graph. Let λmax > 0 be the largest real-part eigen-
value of A. Let λmin < 0 be the smallest real-part eigenvalue of
A. Assume λmin is real, simple, and for all eigenvalues ξ 	= λmin

of A, Re[ξ] 	= λmin.
A. Cooperative agents: Suppose that γ − δ > 0 and α− β +

λmax(γ − δ) > 0. Then, the steady-state bifurcation predicted
by Theorem IV.1 happens when attention u = u∗, where

u∗ := ua =
d

α− β + λmax(γ − δ)
(12)

and close to bifurcation all the bifurcation branches are made of
agreement solutions.

B. Competitive agents: Suppose γ − δ < 0 and that α− β +
λmin(γ − δ) > 0. Then, the steady-state bifurcation predicted
by Theorem IV.1 happens when attention u = u∗, where

u∗ := ud =
d

α− β + λmin(γ − δ)
. (13)

Moreover, whenever vmin, the right unitary eigenvector associ-
ated to λmin, has mixed-sign entries, close to bifurcation, all the
bifurcation branches are made of disagreement solutions.

We emphasize that the assumption about eigenvalues λ of
Theorem IV.1 and λmin of Corollary IV.1.1 being simple of-
ten holds, and can be easily verified numerically for various
graph structures. Furthermore, the eigenvector vmin of Corollary
IV.1.1 typically has mixed-sign entries, and competition between
agents therefore tends to result in network disagreement. For
example, on undirected networks, vmin always has mixed-sign
entries since vmax, the unitary right eigenvector associated
to λmax, i.e., the Perron–Frobenius eigenvector, is positive
and 〈vmax,vmin〉 = 0. For example, see Fig. 4 for patterns of
agreement and disagreement solutions for No = 2 and several
representative undirected graphs.

An important feature of the opinion dynamics (3) is the multi-
stability of opinion configurations at the bifurcations described
by Theorem IV.1 and Corollary IV.1.1. When agents cooperate
and ker J is made of agreement vectors, if agreement in favor
of one option is stable, then agreement in favor of each other
option is stable, and likewise for disagreement solutions. There
is a deadlock when u < ua (u < ud) and breaking of deadlock
when u > ua (u > ud).

At the bifurcation, the linearization is singular, and the model
is ultrasensitive at transition from neutral to opinionated. Even
infinitesimal perturbations (e.g., tiny difference in option values)
are sufficient to destroy multistability at bifurcation by selecting
a subset of stable equilibria (e.g., those corresponding to higher
valued options), a phenomenon known as forced-symmetry
breaking and widely exploited in nonlinear decision-making
models [16], [24], [65].

Generically, stable equilibria that appear at the bifurcation are
hyperbolic, and thus they and their basin of attraction are robust
to perturbations, a key property that ensures stability of opinion
formation despite (sufficiently small) changes in inputs, hetero-
geneity in parameters, and perturbations in the communication

Fig. 5. Bifurcation diagrams showing the symmetric pitchfork bifurca-
tion (left) and its unfolding (right) for two-option opinion dynamics (14)
with d = α = 1 in the disagreement regime (γ = −1) for three agents
communicating over an undirected line graph. Blue (red) curves repre-
sent stable (unstable) equilibria. The vertical axis is the projection of the
system equilibria x onto wmin (wmin = vmin since the graph is undi-
rected). Left: b = (0.2, 0,−0.2); right: b = −0.1wmin + (0.2, 0,−0.2).
Bifurcation diagrams generated with help of MatCont [68]. In the agree-
ment regime, the diagrams look qualitatively the same with wmin/vmin

replaced with wmax/vmax and b modified appropriately (see Fig. 1
in [67]).

network. Robustness bounds can be derived using methods like
those used for Hopfield networks in [66]. Robust multistability
of equilibria gives the opinion-forming process hysteresis, and
thus memory, between different opinion states: once an opinion
is formed in favor of an option, a large change in the inputs is
necessary for a switch.

Remark IV.3: Under the clustering conditions of Theorem
III.3, we can apply Theorem IV.1 and Corollary IV.1.1 with Nc

agents and coupling parameters defined by (9).
Remark IV.4 (Mode Interaction and Coexistence of Agree-

ment and Disagreement): When γ = δ, there is mode interac-
tion [50], and agreement and disagreement bifurcations appear
at the same critical value of u. This regime is especially inter-
esting because it allows for coexistence of stable agreement and
disagreement solutions, which can result in agents easily tran-
sitioning between the two in response to changing conditions.
However, additional primary solution branches not captured by
the analysis presented here can appear in this regime; we leave
exploring this regime to future work.

C. Patterns of Opinion Formation for Two Options

We examine the ultrasensitivity of the network opinion dy-
namics to inputs or biases of individual agents when operating
near its bifurcation point. We consider the two-option opinion
dynamics (6) with homogeneous parameters (10), relaxing the
assumption of zero inputs:

ẋi = −dxi + uŜ1

(
αxi + γ

∑Na

k 	=i
k=1

aikxk

)
+ bi. (14)

The next corollary follows from Corollary IV.1.1 and [67, Ths.
IV.1 and IV.2]. It recognizes the opinion-forming bifurcations
of (14) as agreement and disagreement pitchfork bifurcations
and predicts their unfolding in response to distributed inputs
as a function of network structure. In other words, it predicts
the location of the two symmetric agreement (or disagreement)
solutions and how the input-driven unfolding selects one of the
two solutions (see Fig. 5).

Corollary IV.1.2: Consider (14) and suppose that adjacency
matrix A is irreducible, i.e., the associated graph is strongly
connected. Let λmax > 0 be the largest real-part eigenvalue
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of A, i.e., the Perron–Frobenius eigenvalue, with associated
unitary positive right eigenvector vmax and unitary positive left
eigenvector wmax. Let λmin < 0 be the smallest real-part eigen-
value of A. Assume λmin is real, simple, and for all eigenvalues
ξ 	= λmin of A, Re[ξ] 	= λmin. Let vmin and wmin be the right and
left unitary eigenvectors, respectively, associated to λmin with
〈vmin,wmin〉 > 0.

A. Cooperative Agents: If γ > 0, inputs satisfy 〈b,wmax〉 =
0, and α+ λmaxγ > 0, model (14) undergoes a supercritical
pitchfork bifurcation for u = u∗ = d

α+λmaxγ
at which opinion-

forming bifurcation branches emerge from x = 0. The associ-
ated bifurcation branches are tangent at x = 0 to R{vmax}. The
pitchfork unfolds in the direction given by 〈b,wmax〉, i.e., if
〈b,wmax〉 > 0 (< 0), then the only stable equilibrium x∗ for u
close to u∗ satisfies 〈x∗,vmax〉 > 0 (< 0).

B. Competitive Agents: If γ < 0, inputs satisfy 〈b,wmin〉 =
0, and α+ λminγ > 0, model (14) undergoes a supercritical
pitchfork bifurcation for u = u∗ = d

α+λminγ
at which opinion-

forming bifurcation branches emerge from x = 0. The associ-
ated bifurcation branches are tangent at x = 0 to R{vmin}. The
pitchfork unfolds in the direction given by 〈b,wmin〉, i.e., if
〈b,wmin〉 > 0 (< 0), then the only stable equilibrium x∗ for u
close to u∗ satisfies 〈x∗,vmin〉 > 0 (< 0).

Remark IV.5: For (5) with homogeneous parameters (10) an
analogous result to Corollary (IV.1.2) holds, except with u∗ =

d
α−β+λmax/min(γ−δ) .

The symmetric opinion-forming pitchfork bifurcation pre-
dicted by Corollary IV.1.2 in the case of trivial or balanced
inputs 〈b,wmax/min〉 = 0 constitutes the simplest instance of
multistability (bistability in this case) between different possible
equilibrium opinion states (see Fig. 5 left for the disagreement
case and [67, Fig. 1] for the identical figure in the agreement
case). For u greater than critical value u∗ (the bifurcation point),
the group of agents can converge to either of the two stable opin-
ion states depending on initial conditions as well as unmodeled
uncertainties and disturbances.

In the agreement regime, solutions on the upper branch corre-
spond to agents agreeing on option 1 and on the lower branch to
agents agreeing on option 2. In the disagreement regime, solu-
tions on the upper branch correspond to one subgroup favoring
option 1 and the second subgroup favoring option 2 and the
lower branch to the first subgroup favoring option 2 and the
second subgroup favoring option 1. Both the sign and relative
magnitudes of the agent opinions are predicted by vmax in the
agreement regime and vmin in the disagreement regime—see
Fig. 4 for an illustration for four types of graphs. Observe that
for the highly symmetric cycle graph, the group splits evenly in
the disagreement case, whereas in the star and wheel graphs, the
center node disagrees with all of the peripheral nodes. These
results are easily predicted using well-known results on the
eigenstructure of the adjacency matrix for these graphs. See [64]
for details.

The symmetric pitchfork unfolds (Fig. 5, right) such that
only one solution (predicted by the sign 〈b,wmax/min〉) is
stable close to the symmetric bifurcation point; this follows
from unfolding theory for a pitchfork bifurcation [50, Ch. I]. For
larger values of the attention parameter, the other solution also
regains stability in a saddle-node bifurcation but the input-driven
asymmetry is still reflected in the relative sizes of the basin of

attraction of the two solutions. The left eigenvectors of the ad-
jacency matrix wmax/min define agreement/disagreement cen-
trality indices because the unfolding formula 〈b,wmax/min〉 ≶
0 implies that the larger [wmax/min]i, the larger the effect of
a nonzero input bi on the agreement/disagreement pitchfork
unfolding. Agreement and disagreement centrality indices can
thus naturally be used to control opinion forming behavior
via distributed inputs. By augmenting our opinion dynamics
with an attention feedback mechanism, these centrality indices
determine distributed thresholds for the triggering of opinion
cascade, as illustrated in the next section (see also [49] for
numerical illustrations on large random graphs withNo > 2 and
application to task allocation in robot swarms). All the results in
this section generalize to the case No > 2. This generalization
requires the computation of the vector vax appearing in Theorem
IV.1 using equivariant bifurcation theory methods (see Remark
IV.2), a direction that we leave for future extensions of this work.

D. Consensus and Dissensus Generic for Transitive
Symmetry

In Section IV-B, we have shown how graph structure can
inform what types of opinion configurations arise in the group.
Here we consider, for the homogeneous regime (10), how the
presence of symmetry in the communication graph can further
constrain opinion configurations. We show how consensus and
dissensus emerge for dynamics (3) with two examples of tran-
sitive symmetry. We first introduce a few technical definitions
from group theory and equivariant bifurcation theory.

Let G be a compact Lie group acting on Rn. Consider a
dynamical system ẋ = h(x), wherex ∈ Rn andh : Rn → Rn.
Then, ρ ∈ G is a symmetry of the system; equivalently, h is
ρ-equivariant, if ρh(x) = h(ρx). If h is ρ-equivariant for all
ρ ∈ G, then h is G-equivariant [63]. G-equivariance means
elements of symmetry group G send solutions to solutions.

The compact Lie group associated with permutation symme-
tries ofn objects is the symmetric group onn symbolsSn, which
is the set of all bijections of Ωn := {1, . . . , n} to itself (i.e., all
permutations of ordered sets ofn elements). The opinion dynam-
ics (3) with homogeneous parameters (10) and all-to-all coupling
are maximally symmetric, i.e., (SNo

×SNa
)-equivariant, where

elements of SNa
permute the Na-element set of agents and

elements of SNo
permute the No-element set of options [30].

Maximally symmetric opinion dynamics are unchanged under
any permutation of agents or options.

A subgroup Gn ⊂ Sn is transitive if the orbit Gn(i) =
{ρ(i), ρ ∈ Gn} = Ω, for some (and thus all) i ∈ Ω. (GNo

×
GNa

)-equivariant opinion dynamics, with transitive GNa
, are

still highly symmetric since any pair of agents, while not neces-
sarily interchangeable by arbitrary permutations, can be mapped
into each other by the symmetry group action. The following are
examples of transitive subgroups of SNa

.
� DNa

, dihedral group of order Na; symmetries correspond
to Na rotations and Na reflections. DNa

-equivariant opin-
ion dynamics are unchanged if agents are permuted by a
rotation or a reflection, e.g., if agents communicate over a
network defined by an undirected cycle.

� ZNa
, cyclic group of order Na; symmetries correspond to

Na rotations (and no reflections).ZNa
-equivariant opinion
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dynamics are unchanged if agents are permuted by a rota-
tion, e.g., if agents communicate over a network defined
by a directed cycle.

The system opinion state-space decomposes as V = Wc ⊕
Wd, where Wc is the multioption consensus space defined as

Wc = {(Z1, . . . ,ZNa
) |Zi = Z̃ ∈ 1⊥

No
, ∀i} (15)

and Wd is the multioption dissensus space defined as

Wd = {(Z1, . . . ,ZNa
) |Z1 + · · ·+ZNa

= 0}. (16)

On the consensus space Wc, agents have identical opinions. On
the dissensus space Wd, agent opinions are balanced over the
options such that the average opinion of the group is neutral.

Model-independent results [30, Th. 4.6 and Remark 4.7]
ensure that, in the presence of transitive symmetry, ker J = Wc

or ker J = Wd, i.e., if (3) is symmetric with respect to a group
Γa that acts by swapping the agent indices transitively, then
generically ker J = Wc or ker J = Wd. In the homogeneous
regime (10), agent symmetry of (3) is fully determined by A as
proved in the following proposition for the maximally symmetric
case Ga = SNa

and the highly symmetric case Ga = DNa
(see

Appendix E for proof). The same result holds, with similar proof,
for other transitive agent symmetries, e.g., Ga = ZNa

.
Proposition IV.2: Consider model (3) in the homogeneous

regime defined by (10). Then, the following hold true.
1) Model (3) is (SNo

×SNa
)-equivariant if and only if A

is the adjacency matrix of an all-to-all graph.
2) If A is the adjacency matrix of an undirected cycle graph,

then model (3) is (SNo
×DNa

)-equivariant.
Remark IV.6: More generally, the symmetry group of the

opinion dynamics is determined by the automorphism group of
the graph associated to A. The proof follows as for Proposition
IV.2.

The next corollary follows from Theorem IV.1 and [30, Th. 4.6
and Remark 4.7]. The two types of opinion-formation behaviors
proved in this corollary, i.e., consensus for cooperative agents
and dissensus for competitive agents, respectively, constitute
an opinion-formation analog of consensus and balanced (split)
states in coupled phase oscillators (see, e.g., [4], [69], [70]).

Corollary IV.2.1 ( Consensus from Cooperation and Dissensus
from Competition): Consider model (3) in the homogeneous
regime (10). Suppose that the graph associated to adjacency
matrix A is either all-to-all or an undirected cycle. Let ua and
ud be defined by (12) and (13).

A. Cooperative Agents and Consensus: If agents are coopera-
tive (γ − δ > 0), then opinion formation appears as a bifurcation
along the consensus space at u = ua with λmax = Na − 1 for
the all-to-all case and λmax = 2 for the cycle case.

B. Competitive Agents and Dissensus: If agents are competi-
tive (γ − δ < 0), then opinion formation appears as a bifurcation
along the dissensus space at u = ud with λmin = −1 for the
all-to-all case, λmin = −2 for the cycle case, when Na is even,
and λmin = 2 cos(π(Na − 1)/Na), when Na is odd.

As an illustration of Corollary IV.2.1, representative consen-
sus and dissensus trajectories of the opinion dynamics for two
and three options on all-to-all graphs are shown in Fig. 6.

Remark IV.7 (Stability of Consensus and Dissensus): Consen-
sus and dissensus solution branches predicted for the symmetric

Fig. 6. Simulations for No = 2 options and Na = 8 agents (top) and
No = 3 options and Na = 12 agents (bottom) with A = 11T − I. Opin-
ions form (a) consensus when agents are cooperative: γ = 0.2, δ =
−0.1. (b) Dissensus when agents are competitive: γ = −0.1, δ = 0.2.
In each plot, α = 0.2, β = 0.1, d = 1, u = 3, b̂ = 0, and random initial
conditions are the same. Communication weights α, β, γ, δ were per-
turbed with small random additive perturbations drawn from a normal
distribution with variance (a) 0.01 and (b) 0.001. Ternary plots for three
options generated with the help of [71].

networks in Corollary IV.2.1 are a consequence of the equivari-
ant branching lemma [63, Sec. 1.4], and are made of hyperbolic
equilibria. Their stability can be proved using the tools in [72,
Sec. XIII.4] and [63, Sec. 2.3].

V. ATTENTION DYNAMICS AND TUNABLE SENSITIVITY

We have established that existence of agreement and dis-
agreement equilibria and multistability of opinion formation
outcomes arise from bifurcations of the general opinion dynamic
model (3). In this section, we explore how ultrasensitivity to
inputs bij , robustness to changes in inputs, and opinion cascade
dynamics also arise from bifurcations. With the addition of
dynamic state feedback for model parameters in (3), the opinion
formation process can reliably amplify arbitrarily small inputs
bij , reject small changes in input as unwanted disturbance,
facilitate an opinion cascade even if only one agent gets an
input, and enable groups to move easily between agreement
and disagreement. The choice of feedback design parameters
determine implicit thresholds that make all of these behaviors
tunable.

The addition of dynamic state feedback for parameters in our
model is similar in spirit to the extension of the linear weighted-
average model with nonlinear state-feedback update rules for
the coupling gains, as in bounded confidence models [6]–[8] and
biased assimilation models [10], [11]. However, our motivation,
rather than to capture a specific sociological phenomenon, is
to make our model adaptable to inputs and flexibly responsive
to changing environments. This is achieved by ensuring tunable
sensitivity of opinion formation to inputs. We illustrate our ideas
and prove our results for the case No = 2. The multioption
extension is left for future work.

A. Dynamic State Feedback Law for Attention

It is natural to consider each agent’s attention ui in (3) as a
quantity that evolves in time in response to signals from others
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Fig. 7. Sensitivity of opinion formation to input magnitude. (ui, xi)-
phase plane and trajectories of (5), (20); n = 2, yth = 0.4, αi = 2,
βi = −1, γik = δik = 0, di = 1, τu = 1, u = 0, ū = 2 for bi = 0.5 (left)
and bi = 1 (right). Initial state (ui(0), xi(0)) = (0, 0) is a blue circle, and
final state a yellow diamond. Nullclines of (5) are black solid and (20)
are red dashed. Gray arrows show flow streamlines. Color scale is time.

or from the environment [16], [73]. This might happen when
the agents delay making a collective decision until some task-
relevant signal is detected on the network. To study this, we
augment the opinion dynamics with an attention update

τuu̇i = −ui + fu,i (Z) (17)

where τu > 0 is a time scale, which can be freely chosen, and
fu,i : R

NaNo → R is a state feedback law, which can take differ-
ent functional forms depending on the application. To study how
attention feedback dynamics can enable a small local signal to
excite a cascade of opinions across the entire network, we define
fu,i to drive agent i to increase its attention when its neighbors
form a strong opinion about any option, i.e., agent i engages
when it observes its neighbors engaging

τuu̇i = −ui + Su

(
1

No

∑Na

k=1

∑No

l=1 (āikzkl)
2

)
. (18)

Su is a smooth saturating function, satisfying Su(0) = 0,
Su(y) → ū > 0 as y → ∞, S ′

u(y) > 0 for all y ∈ R, and
S ′′′
u (y) > 0 for all y > 0. We define Su as a Hill function

Su(y) = u+ (ū− u)
yn

(yth)n + yn
(19)

where thresholdyth > 0 andn > 0. In (19), we constrain ū andu
such that ū > uc ≥ u > 0, withuc = ua (ud) when γ > 0 (< 0)
and ua, ud are defined by (12), (13). For the remainder of this
section, we consider the homogeneous regime (10), except for
the ui, which are heterogeneous, and for nonzero inputs. The at-
tention coupling matrix Āwith elements āik can be distinct from
the opinion coupling matrix A, but here we let Ā = A+ INa

.
For No = 2, the attention feedback dynamics (18) simplify to

τuu̇i = −ui + Su

(∑Na

k=1(āikxk)
2
)
. (20)

B. Tunable Sensitivity and Robustness for a Single
Agent

In this section, we first consider a single agent with dynamic
opinions (5) and dynamic attention (20) with no neighbors, i.e.,
aik = 0 for all k = 1, . . . , Na. As shown in Figs. 7 and 8, the
equilibria of the coupled opinion and attention dynamics can
be graphically represented as the intersection of the xi-nullcline
{ẋi = 0} (black solid) and ui-nullcline {u̇i = 0} (red dashed)

Fig. 8. Robustness of opinion formation to changes in input. (ui, xi)-
phase plane and trajectories of (5), (20); n = 2, yth = 0.4, αi = 2,
βi = −1, γik = δik = 0, di = 1, τu = 1, u = 0. (Left) Input is bi = 1, ini-
tial state (ui(0), xi(0)) = (0, 0) is a blue circle, and final state is a cyan
diamond. (Right) Input changes to bi = −1, initial state is final state on
left, and final state is yellow square. Top: ū = 1, and agent changes
opinion in direction of new input. Bottom: ū = 2.5, and agent retains
opinion in original direction. Nullclines, streamlines, and time are drawn
as in Fig. 7.

in the (ui, xi) plane. Corollary IV.1.2 defines the shape of thexi-
nullcline as a pitchfork bifurcation which unfolds with nonzero
input bi, analogous to Fig. 5.

For model (5), (20), define agent i to be strongly opinionated
when its attention is close to its upper saturation value, i.e.,
ui � ū, and weakly opinionated when its attention is close to
its lower saturation value, i.e., ui � u. What we refer to as
tunable sensitivity of opinion formation to input bi can then be
understood by comparing the plots of Fig. 7, where the opinion
trajectory for agent i is plotted on the left for bi = 0.5 and on
the right for bi = 1. For the given parameters and bi = 0.5, the
nullclines intersect at three points in the positive half-plane. For
unopinionated initial conditions, the opinion state is attracted to
the point corresponding to a weakly opinionated equilibrium:
agent i rejects the input bi = 0.5 and does not form a strong
opinion. For the same parameters and bi = 1, the nullclines
intersect at only one point, corresponding to a strongly opinion-
ated equilibrium. Thus, for the same initial conditions, agent i
accepts the input bi = 1 and forms a strong opinion. The implicit
sensitivity threshold3 that distinguishes rejected from accepted
inputs can be tuned by using parametersn, yth in (19). Changing
their value changes the shape of the ui-nullcline and thereby
varies how strong of an input bi is required to reduce the number
of nullcline intersections from three to one, as in Fig. 7.

Tunable robustness of opinion formation to changes in input
bi can be understood by comparing the sequence of plots in
the top and bottom halves of Fig. 8. The plots on the left show

3Quantifying the exact relationship between the design parameters in the
saturation function (19) and the implicit thresholds described in this section
is a straightforward but lengthy calculation, which involves taking implicit
derivatives of the equilibria of the coupled system with respect to the design
parameters. Due to space constraints, we leave out this analysis here.
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agent i forming a strong opinion in the direction of the input
bi = 1. The plots on the right show what happens to agent i’s
opinion when the input switches to bi = −1, i.e., an input that
is in opposition to the original input. In the top sequence, when
ū = 1, agent i accepts the change of input and forms a strong
opinion in the direction of the new input. In the bottom sequence,
when ū = 2.5, agent i rejects the change of input and retains a
strong opinion in the direction of the original input. The implicit
robustness threshold that distinguishes rejected from accepted
changes in input can be tuned by design parameter ū.

C. Opinion Cascades With Tunable Distributed
Sensitivity

The following corollary shows that our feedback attention
dynamics create a distributed threshold for the opinion dy-
namics, below which the agents remain weakly opinionated
and above which agents converge to a strongly opinionated
equilibrium. The transition from a weakly opinionated to a
strongly opinionated equilibrium in response to inputs is called
an opinion cascade. The threshold is defined in terms of the inner
product of the vector of inputs b and suitable eigenvectors of the
opinion network adjacency matrix. In other words, the threshold
is distributed across the agents and the spectral properties of
the adjacency matrix determine highly sensitive and weakly
sensitive directions in the input vector space. As in Section V-B,
for single agents, the threshold can be tuned with parameters of
the attention dynamics.

In the following theorem, we let λmax, wmax and λmin, wmin

satisfy the assumptions of Corollary IV.1.2.4

Theorem V.1: Consider the coupled system (6), (18) withdi =
d αi = α, and γik = γaik, where A = [aik] is a symmetric and
irreducible adjacency matrix. Let uc =

d
α+λmaxγ

, wc = wmax

if γ > 0 and uc =
d

α+λminγ
, wc = wmin if γ < 0. There exists

ε > 0 such that for uc > u, yth < ε, and n sufficiently large,
the following generically hold. There exists p = p(yth) > 0

satisfying ∂p
∂yth

> 0 such that, for |〈wc,b〉| < p, model (6),
(18) possesses a weakly opinionated locally exponentially stable
equilibrium. This equilibrium loses stability in a saddle-node
bifurcation for |〈wc,b〉| = p. No weakly opinionated equilibria
exist for |〈wc,b〉| > p and all trajectories converge to a strongly
opinionated agreement (disagreement) equilibrium for γ > 0
(γ < 0). For γ = 0, with α > 0, the strongly opinionated equi-
librium (x∗,u∗) satisfies sign(x∗

i ) = sign(bi).
Fig. 9 illustrates the predictions of Theorem V.1. It shows

that the arrival of a suprathreshold input at t = 20 triggers
an opinion cascade. Independently of the entries of the input
vector b, the cascade goes to a strongly opinionated agreement
equilibrium for γ > 0 [Fig. 9(a)] and to a strongly opinionated
disagreement equilibrium for γ < 0 [Fig. 9(b)]. Conversely,
for γ = 0, the pattern of opinions at the strongly opinionated
equilibrium is determined by the sign of the entries of the input
vector. Fig. 10 makes these observations more quantitative by
showing the cascade threshold predicted by Theorem V.1 as a
joint function of the norm of the input vector and of the cosine of

4The proof of Theorem V.1 follows from [67, Th. V.3] and from geometric
arguments based on implicit differentiation, similarly to the single-agent case
of Section V-B. It is omitted for space constraints.

Fig. 9. Opinion cascades with opinion and attention dynamics defined
in Theorem V.1. For t < 20, b = (−0.05, 0.05, 0.05, 0.05, 0.05) for all
three simulations. At t = 20, the input to agent 5 (indicated by the
arrow) increases to b5 = 0.25, which triggers an opinion cascade on
the network. Plots show opinion and attention trajectories of the agents
with agent 5 in orange. Network diagrams on the right show the opin-
ion strength of each agent at t = 60 of the simulation. (a) Agreement
cascade with γ = 1; the network chooses the positive option following
the informed agent. (b) Disagreement cascade with γ = −1; agents’
opinions on the network disperse following the sign structure of vmin.
(c) Agents are coupled through the attention dynamics only (i.e., γ = 0);
opinion cascade causes each agent to amplify its small input and commit
to a strong opinion. Other parameters: α = 2, n = 3, yth = 0.1, τu = 5,
d = 1, ū = u∗ + 0.3, u = u∗ − 0.3, ui(0) = u for all i = 1, . . . ,Na. x(0)
generated randomly from a uniform distribution between −0.2 and 0.2;
the same initial condition was used for all three simulations.

Fig. 10. Adapted from [67]. Frequency of agreement (left) and dis-
agreement (right) cascades for opinion and attention dynamics defined
in Theorem V.1. Color represents proportion of simulations in the given
parameter range that did not result in a network cascade by t = 500.
Dark red corresponds to no cascades, white to always a cascade, and
gray to bins with no datapoints. Each plot shows the results of 1.5× 105

distinct simulations with τu = 10, yth = 0.2, u = ua − 0.01 for γ = 1
(left) and u = ud − 0.01 for γ = −1 (right). For every simulation, initial
conditions were xi = 0, ui = 0 for all i = 1, . . . ,Na and bi were drawn
from N (0, 1) with b normalized to a desired constant magnitude. 10 000
simulations were performed for each constant input magnitude, with 15
magnitudes sampled uniformly spaced between 0 and 0.1.

the angle between the input vector and the relevant eigenvector
of the adjacency matrix. As predicted by the theorem, when
the input vector is misaligned with respect to the adjacency
matrix eigenvector, large-magnitude inputs are necessary to ro-
bustly trigger an opinion cascade. Conversely, as the two vectors
align, an opinion cascade can be triggered with much smaller
inputs.
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Fig. 11. (a) Transient opinion trajectories settling to the clustered
attractive manifold from random initial conditions in a simulation.
(b) Full simulation. Top: opinion trajectories. Bottom: parameter trajecto-
ries. Seven agents form two clusters of sizes N1 = 3 (dashed-line opin-
ion trajectories), N2 = 4 (solid-line opinion trajectories). d = 1, α = 1,
β = −1, b1 = 0.5, b2 = −0.5 τu = 10, τγ = τδ = 100, γf = 2, δf = 1,
u = 2, gγ = gδ = 10, ym = 1.5. xi(0) are drawn from N (0, 2), ui(0)
from N (0, 0.3), γi(0) from N (−3, 0.3), and δi(0) from N (1, 0.3). di, αi,
βi, bi have additive perturbations drawn from N (0, 0.1) independently
for each agent i. For t < 300, σ = 1 and for t ≥ 300, σ = −1.

D. Dynamics on Weights: Agreement–Disagreement
Transitions

We illustrate how feedback dynamics of social influence
weights in the two-option opinion dynamics (5) can be used
to facilitate transitions between agreement and disagreement on
the network. Suppose agents comprise two clusters of size N1

and N2 with index sets I1 and I2. Let bi = bp for i ∈ Ip and
x̂p = 1

Np

∑
i∈Ip xi, where p ∈ {1, 2}. We define intracluster

coupling as αi = γik = α/Np > 0 and βi = δik = β/Np < 0,
l 	= j, p = 1, 2, di = d for all i, k ∈ Ip, and agent attention
dynamics by (20) with āik = 1 for all i, k.

The influence network between the clusters is dynamic. Let
γik(t) = γi(t)/Ns, δik(t) = δi(t)/Ns if i ∈ Ip, k ∈ Is, s 	= p.
Define feedback dynamics for intercluster coupling as

τγ γ̇i = −γi + σSγ(x̂1x̂2) (21a)

τδ δ̇i = −δi − σSδ(x̂1x̂2) (21b)

where σ ∈ {1,−1}, τγ , τδ > 0 are time scales, Sγ(y) =
γf tanh(gγy), Sδ(y) = δf tanh(gδy), and γf , δf , gγ , gδ > 0.

The sign of design parameterσ in (21) determines whether the
system tends toward agreement or disagreement, and switching
the sign can reliably trigger a transition between agreement and
disagreement. Fig. 11 illustrates the opinion formation of seven
agents that form two clusters, one with three agents and the
other with four agents. One cluster has input favoring option
1 and the second favoring option 2. Initially, γ − δ < 0 on
average and the clusters evolve to a dissensus state,5 which is
informed by the agents’ inputs. However, because σ = 1, the
two clusters eventually evolve toward a consensus state once
γ − δ > 0 despite the inputs favoring disagreement. At time
t = 300, σ switches sign to σ = −1 and the two clusters evolve
back toward a clustered dissensus state once γ − δ < 0.

5Equilibria differ slightly from clustered consensus/dissensus due to param-
eter perturbations, simulated to illustrate robustness to uncertainty.

VI. CONCLUSION

Our opinion dynamics provide a new modeling framework
for studying a variety of phenomena in which opinion formation
is the governing behavior. In contrast to previous models, our
approach focuses on the intrinsic nonlinear nature of opinion
exchanges and thus on bifurcations as the key mechanism
for analyzing and controlling opinion formation. Our model
exhibits the flexibility, adaptability, and robustness of natural
opinion-forming systems, including deadlock-breaking and tun-
able sensitivity to changing inputs. A special instance of our
model was motivated by modeling decision-making in honeybee
communities [16]. The analytical tractability of our model makes
it possible to tackle its rich dynamical behavior constructively.
This has allowed us to make novel predictions about the role
of the opinion network structure in determining the emerging
patterns of opinion formations and the sensitivity of the network
to exogenous inputs, as well as to design adaptive feedback
control laws for the model parameters.

The applicability of our model to real-world problems has
recently been confirmed by our recent contributions in sociopo-
litical problems [55], the design of task-allocation algorithms in
robot swarms [49], cognitive control [54], and game theory [47].
Other possible applications include decision-making in biolog-
ical and artificial neural networks, epidemiology and disease
spread, and decision-making in groups, from humans and robots
to bacteria and animals on the move.
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APPENDIX

A. Extension to Heterogeneous Interoption Coupling

In future applications of the opinion dynamics model (3),
it may be useful to consider scenarios in which there is a
heterogeneous level of influence between different options, i.e.,
in addition to the interagent interaction network, there is an in-
teroption interaction network. Thus, we introduce the adjacency
tensor with entriesAjl

ik that capture the weight of influence agent
k’s opinion on option l has on agent i’s opinion on option j. This
leads to the generalized opinion dynamics

Żi = P0F i(Z)

Fij(Z) = −dizij + ui

∑No

l=1 Sl

(∑Na

k=1 A
jl
ikzkl

)
+ bij .

The model studied in this article is recovered when Sl is S1

for same-option interactions and S2 for interoption interactions,
andAjj

ii = αi,A
jj
ik = γik,Ajl

ii = βi, andAjl
ik = δik for all i, k =

1, . . . , Na, j, l = 1, . . . , No, i 	= k, j 	= l.

B. Well-Definedness of Model

The general model (3) is well defined since V is forward-
invariant for (3) (Lemma A.1) and solutions are bounded (The-
orem A.2). Let D = diag{d1, . . . , dNa

} ⊗ INo
.

Lemma A.1: V is forward invariant for (3).
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Proof: For all i = 1, . . . , Na,
∑No

j=1 żij = 0, so if zi1(0) +
· · ·+ ziNo

(0) = 0, zi1(t) + · · ·+ ziNo
(t) = 0 for all t > 0. �

Theorem A.2 (Boundedness): Let Ū be a compact subset ofR.
There exists R > 0 such that, ∀ ui, di, αi, βi, γik, δik, bij ∈ Ū ,
i, k = 1, . . . , Na, j, l = 1, . . . , No, the set V ∩ {|zij | ≤ R, i =
1, . . . , Na, j = 1, . . . , No} is forward-invariant for (3). This
implies that the solutions Z(t) of the dynamics (3) are bounded
for all time t ≥ 0.

Proof: By boundedness of Sp(·), there exists R̃ >
0 such that, for all ui, di, αi, βi, γik, δik, bij ∈ Ū ,
Fij(Z) = −dizij + Cij(Z), with |Cij(Z)| ≤ R̃. For all
Z ∈ V , it holds that d

dt
1
2‖Z‖2 =

∑Na

i=1

∑No

j=1 zij żij =∑Na

i=1

∑No

j=1 zij(−dizij+Cij(Z)+ 1
No

∑No

l=1(dilzil−Cil(Z)))

= ZTDZ +
∑Na

i=1

∑No

j=1 zij(Cij(Z)− 1
No

∑No

l=1
Cil(Z)) ≤

ZTDZ +NaNoR̃‖Z‖, where we have used
∑No

j=1 zij = 0

for all i. We compute ZTDZ =
∑Na

i=1

∑No

j=1(−diz
2
ij)+

1
No

∑Na

i=1

∑No

l=1 dizil(
∑No

j=1 zij) =
∑Na

i=1

∑No

j=1 − diz
2
ij ≤

−mini{di}‖Z‖2. Then, for all ‖Z‖ ≥ NaNoR̃
mini{di} , it follows that

d
dt

1
2‖Z‖2 ≤ −‖Z‖(mini{di}‖Z‖ −NaNoR̃) ≤ 0. The result

follows by [74, Th. 4.18]. �
These results connect the opinion vector Zi ∈ 1⊥

No
to a

simplex vector yi = (yi1, . . . , yiNo
), where yij ≥ 0 for all i, j

and yi1 + · · ·+ yiNo
= r, r > 0, i.e., yi ∈ Δ, where Δ is a

(No − 1)-dimensional simplex. Let V = Δ× · · · ×Δ.
Corollary A.2.1: Mapping to the Simplex Product V . Given

a bounded set Ū ⊂ R, assume ui, di, αi, γik, βi, δik, bij ∈ Ū ,
i, k = 1, . . . , Na, j, l = 1, . . . , No. Then, the vector field of (3)
can be mapped from the forward-invariant region V ∩ {|zij | ≤
R, i = 1, . . . , Na, j = 1, . . . , No} to the product of simplex V
by the affine change of coordinates L : V ∩ {|zij | ≤ R, i =
1, . . . , Na, j = 1, . . . , No} → V , Z �→ r

NoR
Z + r

No
, r > 0.

The simplex product space V is often associated with models
of opinion dynamics, e.g., in [12], [75], [76]. Under the mapping
proposed in Corollary A.2.1 or any other bijective mapping
to the simplex product space (e.g., using the standard softmax
function), the system state y = (y1, . . . ,yNa

) ∈ V can be inter-
preted as the absolute opinions of agents that have equal voting
capacity in the collective decision [30], or as probabilities of
choosing a particular option [47].

C. Proof of Theorem III.3

Opinion dynamics (3) of agent i ∈ Ip are defined by

Fij(Z) = −dpzij + bpj+

up(S1(ᾱpzij + α̃p

∑
k∈Ip\{i} zkj +

∑Nc

s 	=p
s=1

∑
k∈Is γ̃pszkj)+

∑No

l 	=j
l=1

S2(β̄pzil + β̃p

∑
k∈Ip\{i} zkl +

∑Nc

s 	=p
s=1

∑
k∈Is δ̃pszkl)).

(23)

Let VT (Z) =
∑Nc

p=1 Vp(Z), Vp(Z) = 1
2

∑
i,k∈Ip

∑No

j=1(zij −
zkj)

2. Let Fij(Z) = −dizij + Cij(Z). Then, V̇p(Z) =
−∑

i∈Ip
∑

k∈Ip dp(Zi −Zk)
T (Zi −Zk) +

∑
i∈Ip

∑
k∈Ip∑No

j=1(zij−zkj)(Cij(Z)−Ckj(Z))− 1
No

∑
i∈Ip

∑
k∈Ip

∑No

j=1

∑No

l=1(zij − zkj)(Cil(Z)− Ckl(Z)). The last term is
zero because

∑No

j=1 zij = 0 on V . By the mean value
theorem, we can write Cij(Z)− Ckj(Z) in the second
term as up(κ1(ᾱp − α̃p)− κ2(β̄p − β̃p))(zij − zkj)

2, where
κ1 ∈ K1 and κ2 ∈ K2. Then, we find that V̇p(Z) ≤
supκ1∈K1,κ2∈K2

{−dp + upκ1(ᾱp − α̃p) + upκ2(β̄p − β̃p)}
2Vp(Z). When (7) is satisfied, by LaSalle’s invariance principle
[74, Th. 4.4], every trajectory of (3) converges asymptotically in
time to E , the largest invariant set of VT (Z) = 0. Let ẑpj = zij
for any i ∈ Ip. The dynamics (23) on E reduce to (3) with
Na = Nc and weights (9).

Remark A.1: This proof could be carried out using a group-
theoretic approach outlined in [61], which would guaran-
tee local stability of the clustered manifold. The Lyapunov
function approach presented here provides a global stability
guarantee.

D. Proof of Theorem IV.1

J = ((−d+ u(α− β))INa
+ u(Γ−Δ))⊗ P0, with eigen-

values ξiλo, for ξi an eigenvalue of (−d+ u(α− β))INa
+

u(Γ−Δ)) and λo an eigenvalue of P0 restricted to V . So
λo = 1 and ξi = −d+ u(α− β) + uλi, λi, i = 1, . . . , Na, an
eigenvalue ofΓ−Δ. Thus, wheneverα− β + λ > 0, all eigen-
values of J are negative for u < u∗, zero is an eigenvalue
of J for u = u∗ [with multiplicity (No − 1)Nλ, where Nλ is
the multiplicity of λ], and there exist positive eigenvalues for
u > u∗. The form of the eigenvectors of J corresponding to its
zero eigenvalue for u = u∗ follows since the eigenvectors of
the Kronecker product of matrices are the Kronecker product of
the eigenvectors. For simple λ, the statement follows from the
equivariant branching lemma [63, Sec. 1.4].

E. Proof of Proposition IV.2

The proof of (1) follows analogously to that of [30, Th.
2.5] with the additional coefficient di on the linear terms.
To prove (2), it is sufficient to show equivariance of the
dynamics under the action of generators of SNo

×DNa
.

Element σ ∈ SNo
acts on V by permuting the elements

of each agent’s opinion Zi. Generators of SNo
are

No transpositions σj , where each σj swaps adjacent
elements j and j + 1 (or No and 1 when j = No). Let
Fi(Z) = (Fi1(Z), . . . , FiNo

(Z)) and observe that σjFi(Z) =
(Fi1(Z), . . . , Fi(j+1)(Z), Fij(Z), . . . , FiNo

(Z)). Computing
Fi(σjZ), onlyFij andFi(j+1) are changed, withFij(σjZ)= −
dzi(j+1) + u(S1(αzi(j+1) + γz(i−1)(j+1) + γz(i+1)(j+1)) +∑No

l 	=(j+1)
l=1

S2(βzil + δz(i−1)(j+1) + δz(i+1)(j+1))) + b̂. Thus,

σjFi(Z) = Fi(σjZ) ∀ j = 1, . . . , No, i = 1, . . . , Na, and the
dynamics are equivariant under the action of SNo

. ρ ∈ DNa

acts on V by permuting the order of the agent vectors Zi in
the total system vector Z = (Z1, . . . ,ZNa

). The generators
of DNa

are the reflection element ρ1, which reverses the order
of elements in Z, and a rotation ρ2, which cycles forward the
vector by one element, mapping each element i to i+ 1 (and
Na to 1). Let F(Z) = (F1(Z), . . . ,FNa

(Z)) and observe that
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ρ1F(Z) = (FNa
(Z),FNa−1(Z), . . . ,F2(Z),F1(Z)) and

ρ2F(Z) = (FNa
(Z),F1(Z),F2(Z), . . . ,FNa−1(Z)). For

compactness, we leave out the full expression for Fij(ρpZ).

REFERENCES

[1] M. H. DeGroot, “Reaching a consensus,” J. Amer. Stat. Assoc., vol. 69,
no. 345, pp. 121–132, 1974.

[2] N. E. Friedkin and E. C. Johnsen, “Social influence networks and opinion
change,” in Advances in Group Processes, vol. 16. Bingley, U.K.: Emerald
Group Publishing Limited, 1999, pp. 1–29.

[3] P. Cisneros-Velarde, K. S. Chan, and F. Bullo, “Polarization and fluctu-
ations in signed social networks,” IEEE Trans. Autom. Control, vol. 66,
no. 8, pp. 3789–3793, Aug. 2021.

[4] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[5] C. Altafini, “Consensus problems on networks with antagonistic interac-
tions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935–946, Apr. 2013.

[6] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs
among interacting agents,” Adv. Complex Syst., vol. 3, no. 1–4, pp. 87–98,
2000.

[7] R. Hegselmann and U. Krause, “Opinion dynamics and bounded confi-
dence models, analysis, and simulations,” J. Artif. Societies Social Simul.,
vol. 5, no. 3, pp. 121–132, 2002.

[8] R. Hegselmann and U. Krause, “Opinion dynamics driven by various ways
of averaging,” Comput. Econ., vol. 25, no. 4, pp. 381–405, 2005.

[9] V. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis, “On Krause’s multi-agent
consensus model with state-dependent connectivity,” IEEE Trans. Autom.
Control, vol. 54, no. 11, pp. 2586–2597, Nov. 2009.

[10] P. Dandekar, A. Goel, and D. T. Lee, “Biased assimilation, homophily, and
the dynamics of polarization,” Proc. Nat. Acad. Sci. USA, vol. 110, no. 15,
pp. 5791–5796, 2013.

[11] W. Xia, M. Ye, J. Liu, M. Cao, and X.-M. Sun, “Analysis of a nonlinear
opinion dynamics model with biased assimilation,” Automatica, vol. 120,
2020, Art. no. 109113.

[12] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo, “Opinion dynamics
and the evolution of social power in influence networks,” SIAM Rev.,
vol. 57, no. 3, pp. 367–397, 2015.

[13] M. Ye, J. Liu, B. D. O. Anderson, C. Yu, and T. Başar, “Evolution of
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[28] J. Liu, X. Chen, T. Başar, and M. A. Belabbas, “Exponential convergence
of the discrete- and continuous-time Altafini models,” IEEE Trans. Autom.
Control, vol. 62, no. 12, pp. 6168–6182, Dec. 2017.

[29] G. Shi, C. Altafini, and J. S. Baras, “Dynamics over signed networks,”
SIAM Rev., vol. 61, no. 2, pp. 229–257, 2019.

[30] A. Franci, M. Golubitsky, A. Bizyaeva, and N. E. Leonard, “A model-
independent theory of consensus and dissensus decision making,”
Sep. 2020, arXiv:1909.05765.

[31] H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in
localized populations of model neurons,” Biophysical J., vol. 12, no. 1,
pp. 1–24, 1972.

[32] H. R. Wilson and J. D. Cowan, “A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue,” Kybernetik, vol. 13,
no. 2, pp. 55–80, 1973.

[33] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[34] J. J. Hopfield, “Neurons with graded response have collective computa-
tional properties like those of two-state neurons,” Proc. Nat. Acad. Sci.
USA, vol. 81, no. 10, pp. 3088–3092, 1984.

[35] Y. Nakamura, K. Torii, and T. Munakata, “Neural-network model com-
posed of multidimensional spin neurons,” Phys. Rev. E, vol. 51, no. 2,
pp. 1538–1546, 1995.

[36] M. Usher and J. L. McClelland, “The time course of perceptual choice:
The leaky, competing accumulator model,” Psychol. Rev., vol. 108, no. 3,
pp. 550–592, 2001.

[37] R. Bogacz and K. Gurney, “The basal ganglia and cortex implement op-
timal decision making between alternative actions,” Neural Computation,
vol. 19, no. 2, pp. 442–477, 2007.

[38] D. Liu and A. N. Michel, Dynamical Systems With Saturation Nonlinear-
ities: Analysis and Design. Berlin, Germany: Springer-Verlag, 1994.

[39] T. Hu and Z. Lin, Control Systems With Actuator Saturation: Analysis and
Design. Berlin, Germany: Springer, 2001.

[40] S. Fortunato, V. Latora, A. Pluchino, and A. Rapisarda, “Vector opinion
dynamics in a bounded confidence consensus model,” Int. J. Modern Phys.
C, vol. 16, p. 1535–1551, 2005.
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