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Abstract

The rapid integration of AI agents into society underscores the need for a deeper

understanding of how these agents can benefit from social interactions and develop

collective intelligence. Cultural evolution studies have emphasized the importance of

cultural transmission of knowledge and intelligence across generations, highlighting

that social interactions play a crucial role in a group’s ability to solve complex prob-

lems or make optimal decisions. Humans are remarkable at learning through social

interactions and we posses an innate ability to seamlessly perceive social interactions,

acquire and transmit knowledge through social interactions, and transfer cognitive

capabilities and knowledge through generations. A natural question is how can we

embed these capabilities in AI agents? As a step towards answering this question this

dissertation investigates two main research questions: (1) how AI agents can learn to

effectively communicate with other agents, and (2) how AI agents can enhance their

ability to generalize or adapt to novel partners/opponents through social interactions.

The first section of this dissertation focuses on developing methodologies that

facilitate effective communication among AI agents under various communication

constraints. We specifically examine communication in sequential decision-making

tasks within uncertain environments, where the primary challenge lies in balancing

exploration and exploitation to achieve optimal performance. To tackle this chal-

lenge, we propose innovative methodologies that enable efficient communication and

decision-making among agents, taking into account the intricacies of the problem

domain, such as communication costs, different communication networks and agent

specific probabilistic communication constraints. Further, we investigate the role

agent heterogeneity in individual and group performance and develop methods that

can leverage heterogeneity to improve performance.

The second section delves into the topic of generalization in multi-agent AI. Our re-

search investigates how agents can adapt their policies to collaborate with novel agents
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they have not previously encountered in tasks that necessitate coordination and co-

operation among agents to achieve optimal outcomes. We introduce new techniques,

that empower agents to learn and adapt their strategies to novel partners/opponents,

fostering improved cooperation and coordination among AI agents. We investigate

how heterogeneous social preferences of agents lead to behavioural diversity. Further

we investigate how learning a best response to diverse policies can lead to better

generalization.

In exploring these research areas, this dissertation aims to enrich our understand-

ing of how AI agents can effectively collaborate in complex social scenarios, thereby

contributing to the advancement of the AI field.
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Chapter 1

Introduction

1.1 Overview and motivation

The exceptional ability of humans to acquire and transfer knowledge and cognitive

capabilities through social interactions is a defining characteristic that distinguishes

them from other species. The study of cultural evolution highlights the importance of

cultural transmission of knowledge and intelligence across generations [88, 32]. This

is exemplified by the transfer of knowledge of innovative tools developed by groups of

individuals to improve their hunting skills, which is then passed on to succeeding gen-

erations, allowing humans to build upon the knowledge of their ancestors and develop

complex societies and cultures. In complement, as evidenced by Heider and Simmel’s

classic experiment [31] in 1944, humans demonstrate remarkable abilities to perceive

interactions between agents. This ability allows humans to understand individual dif-

ferences and reason about how others make decisions and the impact those decisions

may have, thus enhancing their capacity to acquire and transfer knowledge leveraging

social interactions and developing a better understanding of their environment.

Social interactions play a critical role in the development of collective intelligence,

which refers to a group’s ability to solve complex problems or make optimal decisions.
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This phenomenon is not exclusive to human groups and is observed in other biological

groups as well. For instance, red ants transport large pieces of food over vertical

surfaces by working together to enhance their physical capabilities, which is impossible

for an individual ant [76]. A type of wild birds in the UK have learned to open milk

bottles using social learning [24]. The paper [6] provides evidence that the knowledge

is transmitted across generations, demonstrating cultural transmission of knowledge

among these birds.

Heterogeneity among individuals in a group is a critical factor that can substan-

tially impact social learning and collective intelligence. The presence of diverse skills,

knowledge, and perspectives within the group allows for a broader range of ideas and

opinions to be considered. This, in turn, can lead to a more comprehensive under-

standing of the problem at hand and the development of more innovative and effective

solutions. In the realm of group dynamics, agent heterogeneity can be strategically

leveraged to improve both individual and group performance. By bringing together

individuals with different backgrounds, experiences, and cognitive styles, a group can

harness the power of collective wisdom, which can result in higher quality decision-

making, more creative problem-solving, and increased adaptability in the face of

challenges.

As the integration of AI agents into society becomes more widespread, it is increas-

ingly important to investigate how these agents can benefit from social interactions

and develop collective intelligence. While AI agents have impressive capabilities at an

individual level, they currently lack the ability to work together effectively in groups.

The rise of human-AI coordination in various domains, from autonomous cars to

human-robot applications and non-embodied AI agents such as chatbots and recom-

mender systems, highlights the necessity of developing effective methods for AI agents

to interact with humans. The key aspects of successful human-AI coordination are

communication, coordination, and cooperation, along with the ability to generalize
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or adapt to novel situations in the presence of humans and tasks involving humans.

These elements are critical even in AI-AI interactions. In the context of human-AI

coordination, it is also essential to develop AI agents that can comprehend human

behavior, values, and preferences. As such, research into enhancing the social skills

and abilities of AI agents has become increasingly important.

This dissertation focuses on two main research questions: 1.) how AI agents

can learn to effectively communicate with other agents and 2.) how AI agents can

improve their ability to generalize or adapt to novel partners/opponents through

social interactions. The first section of this dissertation is dedicated to developing

methodologies that enable effective communication among AI agents under different

communication constraints. Here we specifically focus on communication in sequen-

tial decision making tasks in uncertain environments, where the primary challenge is

to balance exploration and exploitation to achieve optimal performance. We inves-

tigate the role of agent heterogeneity in individual and group performance and how

agents can leverage individual differences to improve group performance. The second

section of this dissertation explores the topic of generalization in multi-agent AI. Our

research work centers on how agents can adapt their policies to collaborate with novel

agents they haven’t encountered before in tasks that require coordination and coop-

eration among agents to achieve optimal outcomes. We explore how inherent agent

heterogeneity leads to agents with diverse strategies and subsequently how this leads

to better generalization. By investigating these research areas, we aim to enhance

our understanding of how AI agents can effectively work together in complex social

scenarios, contributing to the advancement of the field of AI.

1.1.1 Communication

How agents can learn to effectively communicate in sequential decision-making tasks

is an area that has attracted significant attention from both industry and academia
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due to its wide range of applications. We study a simple framework where all agents

interact with the same environment, and the payoff an agent receives for an action

is independent of the actions or past actions of other agents. However, despite the

lack of direct dependence, agents can significantly influence the performance of other

agents through communication.

Effective communication is crucial for agents to reduce uncertainty and make

better-informed choices in sequential decision-making tasks. However, in real-world

settings agents can face different communication constraints including costs, potential

failures and bandwidth limitations. Our research explores strategies for effective

communication among agents under various communication constraints. We study

heterogeneity with respect to the agent specific rate of information sharing and how

it affects individual and group performance. We also study the role of heterogeneity

with respect to where they are in the communication network and how individual

differences influence the performance at individual and group level.

1.1.2 Generalization

Despite their impressive performance, machine learning solutions remain predomi-

nantly single-skilled and fragile. Developing learning based solutions, each capable of

solving only a specified task, to numerous problems can be prohibitively expensive ne-

cessitating the methodological development of generalizable solutions. Reinforcement

learning seeks to develop policies that generalize to novel tasks and environments.

The inherently multi-agent nature of the real world brings developing generalizable

solutions to multi-agent problems to the fore. This requires generalization of solution

concepts along agent dimension as well as task dimension and environment dimension,

exponentially increasing the complexity of the problem, typically rendering the pro-

cess infeasible. Taking a more pragmatic approach, state-of-the-art research mainly
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focuses on generalizing solutions along each dimension decoupled from other dimen-

sions.

A key area of focus in zero-shot generalization in multi-agent reinforcement learn-

ing is developing policies that generalize to new agents. To a large extent the existing

work in zero-shot generalization focuses on common payoff games or zero-sum games.

However, in the real world we often encounter mixed motive games wherein individual

goals and socially optimal outcome are misaligned. In this work we investigate how

to leverage heterogeneity in social preferences of agents to improve generalization in

mixed-motive games.

1.2 Outline of Contributions

We make following contributions in Part I of this dissertation

1. In Chapter 2 we introduce the notations used throughout this dissertation.

We also introduce the main computation frameworks multi-agent multi-armed

bandit problem and multi-agent reinforcement learning problem. We provide

background theoretical results, discuss widely used algorithms and provide brief

descriptions of the relevant concepts used in later chapters. We conclude this

chapter describing related work in the literature.

2. In Chapter 3 we make contributions to the development of efficient commu-

nication protocols in multi-agent multi-armed bandits, where communication

among agents is costly. By highlighting the practical relevance of communi-

cation cost in real-world applications and measuring it based on the number

of messages transmitted, the chapter emphasizes the importance of sharing in-

formation about suboptimal options to minimize costs while maximizing the

group’s cumulative reward. We introduce ComEx communication protocol,
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which promotes selective sharing and fosters collaboration among agents, of-

fers a promising solution that balances communication costs, information value,

and performance, ultimately resulting in improved decision-making and higher

cumulative rewards for the group. We provide theoretical guarantees for the

group performance and illustrate the results using numerical simulations.

3. In Chapter 4 we delve into the analysis of probabilistic communication in

multi-agent multi-armed bandit problems, specifically examining how individual

agents and groups perform under these constraints. The research investigates

the role of degree heterogeneity in the communication network, revealing how an

agent’s connectivity within the network impacts their exploration-exploitation

balance and overall performance. The chapter also explores agent-specific com-

munication probabilities and their influence on agent performance. By un-

derstanding these dynamics and leveraging individual heterogeneity, adaptive

strategies can be developed to improve the performance of multi-agent systems

in various applications.

4. In Chapter 5 we explore the impact of behavioral heterogeneity among agents

on zero-shot generalization in multi-agent reinforcement learning. By incorpo-

rating insights from Social Value Orientation (SVO) research, we investigate the

role of diverse social preferences in generating diverse agent behaviors, which

can lead to improved generalization when interacting with novel agents in test

scenarios. We assess the effects of heterogeneous SVO in a range of incentive

structures, such as Prisoner’s Dilemma, Chicken, and Stag Hunt, in sequen-

tial social dilemmas. We demonstrate that leveraging the resulting diversity

through best-response strategies can enhance zero-shot generalization in equi-

librium selection sequential social dilemmas. However, we also identify scenarios

where training best response may lead to poor generalization, emphasizing the

7



importance of further research into understanding and exploiting the interplay

between diverse social preferences and agent policies.

5. In Chapter 6 we provide conclusions and future research directions for the re-

search presented in this dissertation.
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Chapter 2

Background

2.1 Notations

For any positive integer N we denote the set {1, 2, . . . , N} as [N ]. We define 1{x} as

an indicator variable that takes value 1 if x is true and 0 otherwise. Further, we use

X\x to denote the set X excluding the element x. We use |X| to denote the number

of elements in set X. For any general graph G we define χ̄(G), γ̄(G) as clique covering

number and dominating number respectively. We use Gγ to denote the γth power

graph of G. We use P(A) to denote the probability of an event A and E[Z] to denote

the expectation of a random variable Z. We use R to denote the real numbers.

2.2 Multi-armed bandits

The multi-armed bandit problem [87, 44] is a mathematical framework for capturing

the salient features of sequential decision-making under uncertainty, where an agent

is faced with a set of alternatives, each with an unknown reward distribution. In this

problem, an agent must decide which alternative to choose to maximize the cumulative

reward over time, while balancing the trade-off between exploration and exploitation.

Exploration involves trying new alternatives to learn about their reward distributions,
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while exploitation involves choosing alternatives that have already shown promising

rewards. This problem is named after the one-armed bandit slot machines, which

have a lever (or arm) that a gambler pulls to randomly select one of several possible

outcomes.

The multi-armed bandit problem has a wide range of practical applications, such

as in clinical trials [22], recommendation systems and user-targeted online advertising

[89]. For instance, in clinical trials, a researcher or a medical professional may want to

test several treatments, each with an unknown effect on the disease, and must decide

how to allocate patients to these treatments to maximize the chances of identifying the

most effective one. In recommendation systems, a website may want to recommend

which item to show to a user, based on the user’s past behavior and preferences,

to maximize the user’s satisfaction. In online advertising, a company may want to

choose which ad to show to a user, based on the user’s behavior and preferences, to

maximize the click-through rate.

The multi-armed bandit problem has been studied extensively in the literature,

and many algorithms have been proposed to solve it efficiently. These algorithms

can be broadly classified into two categories: heuristic algorithms and optimal algo-

rithms. Heuristic algorithms are simple and easy to implement, but they may not

provide the optimal solution. Optimal algorithms, on the other hand, guarantee the

optimal solution, but they may be computationally expensive or require unrealistic

assumptions about the reward distributions. The choice of algorithm depends on the

specific problem and the available resources.

2.2.1 Single-agent Multi-armed bandit problem

We consider the multi-armed bandit problem in which an agent chooses among K

arms. Each arm k has a fixed reward distribution Pk that is sub-Gaussian with mean

µk and variance proxy σ2
k. The reward distributions are not known to the agent.
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Definition 1. A random variable X ∈ R is sub-Gaussian with variance proxy σ2 if

E [X] = 0 and its moment generating function satisfies

E [exp(sX)] ≤ exp

(
σ2s2

2

)
, ∀s ∈ R

Let T be the decision making time horizon. At each time step t ∈ [T ] the agent

chooses an arm at and receives a numerical reward rt, which is drawn from the

probability distribution of the chosen arm. Without loss of generality we assume that

the mean rewards of the arms are ordered in descending order, i.e., µ1 ≥ µ2 . . . ≥ µK .

The expected reward gap between the optimal arm (i.e., the arm with the highest

mean reward) and arm k is defined as ∆k = µ1 − µk for all k > 1. We denote the

minimum expected reward gap as ∆̄ = mink 6=1,k∈[K] ∆k.

The goal of the agent is maximizing the reward accumulated over the decision

making time horizon. The cumulative reward of the agent can be given as RT =∑T
t=1 rt. The performance of the agent is measured using the expected cumulative

regret, which is defined as the sum of the expected reward gaps of suboptimal arms

times number of times suboptimal arms are chosen,

Reg =
K∑
k=2

∆kE [nk(t)] . (2.1)

where nk(t) is a random variable that denotes the number of times arm k has been

selected up to time t. This captures the expected regret suffered by the agent when

drawing suboptimal arms.

2.2.2 Lower bound

In their seminal paper Lai and Robbins [44] established a lower bound on the expected

cumulative regret for the single-agent multi-armed bandit problem. This bound sets
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a limit on the maximum expected achievable performance. The lower bound on the

number of times a suboptimal arm is chosen up to and including time step T , given

a general probability distribution Pk defining reward for each arm k, is given by:

E[nk(T )] ≥
(

1

D(Pk||P1)
+ o(1)

)
log T

where D(Pk||P1) represents the Kullback-Leibler divergence between distributions pk

and p1. For Gaussian rewards with known variance, the above simplifies to:

E[nk(T )] ≥
(

2σ2

∆2
k

+ o(1)

)
log T

Then a lower bound for the expected cumulative regret can be given as

Reg ≥
K∑
k=1

(
2σ2

∆k

+ o(1)

)
log T.

This lower bound is crucial in setting a benchmark for evaluating the performance of

algorithms in the multi-armed bandit problem.

2.2.3 Upper Confidence Bound (UCB) algorithm

In this section we discuss one of the widely used algorithms in multi-armed bandit

research. The UCB algorithm [7] is a simple and effective approach that aims to

balance exploration and exploitation by using a confidence interval to estimate the

upper bound of the true mean reward of each arm. At each time step, the agent

selects the arm with the highest upper confidence bound, which balances between

choosing the arm with the highest expected reward and exploring other arms. Let

µ̂k(t) denote the estimated mean reward of arm k at time step t. Define the upper
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confidence bound at time step t as

UCBk(t) = µ̂k(t) + Ck(t) (2.2)

where Ck(t) = σ
√

2(ξ + 1) log t
nk(t)

. The term Ck(t) captures the uncertainity associated

with the estimated mean of the arm k at time step t. Ck(t) increases with the natural

logarithm of t and decreases with the number of times the arm k has been sampled

until time step t. Then the samplig rule of the agent can be given as

at+1 = arg max
k

UCBk(t). (2.3)

Now we provide a proof of an upper bound for the expected cumulative regret under

UCB algorithm.

Lemma 1. (Restatement of results from [7]) Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T. For any

suboptimal arm k and ∀t we have

P (at+1 = k, nk(t) > ηk) ≤ P (µ̂1(t) ≤ µ1 − C1(t)) + P (µ̂k(t) ≥ µk + Ck(t))

Proof. Note that for any k > 1 we have

{at+1 = k} ⊂ {UCBk(t) ≥ UCB1(t)}

⊂ {{µ1 < µk + 2Ck(t)} ∪ {µ̂1(t) ≤ µ1 − C1(t)} ∪ {µ̂k(t) ≥ µk + Ck(t)}} .

Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T . Since nk(t) > ηk the event {µ1 < µk + 2Ck(t)} does not

occur. Thus we have

P (at+1 = k, nk(t) > ηk) ≤ P (µ̂1(t) ≤ µ1 − C1(t)) + P (µ̂k(t) ≥ µk + Ck(t))

This concludes the proof of Lemma 1.
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Theorem 1. (Expected cumulative number of suboptimal option samples) Let ηk =(
8(ξ+1)σ2

∆2
k

)
log T . Then we have

E [nk(T )] ≤ ηk +
T∑
t=1

P (µ̂1(t) ≤ µ1 − C1(t)) +
T∑
t=1

P (µ̂k(t) ≥ µk + Ck(t))

Proof. Note that for each suboptimal arm k > 1 we have

E [nk(T )] =
T∑
t=1

P (at = k)

Let τk be the maximum time step such that the agent has sampled the arm k at most

ηk number of times. τk =
{
t ∈ [T ] :

∑t
τ=1 1{aτ = k} ≤ ηk

}
Then we have

E [nk(T )] =

τk∑
t=1

P (at = k) +
T∑

t>τk

P (at = k)

≤ ηk +
T∑
t=1

P (at = k, nk(t) > ηk)

From Lemma 1 we have

E [nk(T )] ≤ ηk +
T∑
t=1

P (µ̂1(t) ≤ µ1 − C1(t)) +
T∑
t=1

P (µ̂k(t) ≥ µk + Ck(t))

2.2.4 Multi-agent multi-armed bandits

Multi-agent multi-armed bandit problem considers N agents who are interacting with

the same bandits environment. At each time step t ∈ [T ] each agent i chooses an

option a
(i)
t and receives a numerical reward r

(i)
t drawn from the unknown probability

distribution associated with the chosen option. The goal of each agent is maximiz-

ing the individual cumulative reward. While the rewards received by an agent do
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not depend on the actions of other agents, they can share information to enhance

their performance. As all agents are choosing from the same set of options, sharing

information about the options can reduce uncertainty and improve their performance.

In this thesis we consider that agents are sharing information according to a

general communication network. Let G(V,E) be a general graph that encodes the

hard communication constraints among agents. The vertex set V is the set of agents

[N ] and each edge (i, j) ∈ E indicates that agents i and j are neighbors. We consider

that agents directly communicate with their neighbors only. Let 1{(i, i) ∈ E} = 1,∀i.

At each time step t we define the communication between agents by Gt(V,Et) where

Et ⊆ E. Let d(i) be the degree of agent i. Let Gγ denote the γth power graph of G.

Denote d
(i)
γ to be the degree of agent i in graph Gγ, i.e., number of agents within a

distance of γ from agent i in graph G. For any γ let d
(i)+

γ = d
(i)
γ + 1.

We denote m
(i)
t as the message shared by agent i at time t with its neighbors.

This can be either a single message containing information about a particular arm

pull, typically the last arm pull of agent i, or a concatenation of information about

several arm pulls by more than one agent over several previous time steps. We define

n
(i)
k (t) :=

∑t
τ=1 1

{
a

(i)
τ = k

}
and N

(i)
k (t) :=

∑t
τ=1

∑N
j=1 1

{
a

(j)
τ = k

}
1{(i, j) ∈ Eτ} to

be the number of times until time step t that agent i pulled arm k and observed

reward values from arm k, respectively. Note that the number of observations N
(i)
k (t)

is the sum of the number of pulls drawn by agent i of arm k and the number of times

agent i received reward values of arm k from its neighbors. Let µ̂
(i)
k (t) denote agent

i’s estimated average reward of arm k at time t.

Similar to the single agent case we measure the performance of the group by total

loss suffered by agents due to choosing suboptimal options. The expected cumulative

group regret can be given as

RegG =
N∑
i=1

K∑
k=2

∆kE[n
(i)
k (t)] (2.4)
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We define the communication cost as the number of messages shared by agents.

We consider the cost of sharing a concatenated message to be the number of single

messages included in it. Let L(t) be the cumulative group communication cost at

time t. Then, the expected group communication cost can be given as E[L(t)] :=∑N
i=1

∑t
τ=1 E

[∣∣∣m(i)
τ

∣∣∣] .
2.2.5 Related work

Decentralized reward sharing. In decentralized reward sharing agents share in-

stantaneous rewards with their neighbors [14, 42, 94]. The paper [42] considered that

neighbors are defined according to a fixed communication graph and provide graph

structure dependent regret bounds. The paper [14, 61] studied the cooperative ban-

dit problem with time varying communication structures. The papers [13, 10, 19]

considered message passing communication rules where each agent initiates a mes-

sage and send the message to its neighbors. A message received from a neighbor is

subsequently forwarded to other neighbors.

Decentralized estimate sharing. In estimate sharing each agent share the esti-

mated average reward and number of arm pulls from each arm with its neighbors

defined according to a fixed communication graph. The paper [84] considered a P2P

communication where an agent is only allowed to communicate with two other agents

at each time step. The papers [47, 46, 66, 49] used a running consensus algorithm to

update estimates and provide graph-structure-dependent performance.

Centralized leader-follower setting. A communication strategy where agents

observe the rewards and choices of their neighbors according to a leader-follower

setting is considered in [48, 42, 94]. In [48, 42], followers pull the last arm pulled by

their neighbors. In [94] one leader explores and estimates the mean reward of arms,

while all other agents pull the arm with highest estimated mean per the leader.

16



Communication cost. The paper [86] considered a pure exploration bandit problem

and measures the communication by the number of times agents communicate. [94]

proposed a leader-follower algorithm with a constant communication cost. The pa-

per [95] proposed an algorithm that achieves near-optimal performance where agents

achieve sublinear expected regret. In their work, communication cost is independent

of time and measured by the amount of data transmitted.

Distributed Thompson sampling. Recently [92, 45] proposed distributed Thomp-

son sampling rules. The paper [92] studied the problem with sparse communication

structures. The paper [45] provided regret guarantees that matches the corresponding

centralized regret guarantees.

2.3 Reinforcement learning

Reinforcement learning (RL) is a type of machine learning where an agent learns to

make decisions through interactions with its environment. In RL, the agent receives

feedback in the form of rewards or penalties based on its actions, and its goal is to

maximize the cumulative reward over time. The agent learns to make better decisions

by using trial and error, exploring different actions and observing the outcomes.

2.3.1 Multi-agent reinforcement learning

We consider a multi-agent partially observable Markov decision process defined by

the tuple
〈
N,S,A,R, P, γ

〉
, where N is the number of agents, S is the joint state

space, A = ×Ni=1Ai is the joint action space, P is the state transition probability

distribution, R is the reward function and γ is the discount factor. At each time

step t, each agent i ∈ 1, . . . , N observes a private (local) observation oit and takes

an action ait from a set of actions Ai. The joint action of all agents at time step

t is denoted as at = (a1
t , . . . , a

N
t ). The state st is unobservable, and the partial
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observation oit depends on the current state of the environment st and the agent’s

observation function. The observation function for agent i is denoted as Oi(oit|st).

Each agent i receives a reward rit which is a function of the joint action at and the

state st of the environment. The state of the environment transitions according to a

probability distribution P (st+1|st, at).

The objective of each agent i is to maximize their cumulative expected discounted

reward, over a given finite time horizon, defined as J i = E
[∑T

t=0 γ
trit

]
, where γ ∈

[0, 1] balances the importance of immediate and future rewards. The agents’ policies

are defined as the mapping from the agent’s observation history to an action, i.e.,

πi(ait|oi1, · · · , oit). The policies are updated using a multi-agent reinforcement learning

algorithm that maximizes the agents’ objective functions.

Multi-agent reinforcement learning (MARL) extends RL to the setting where there

are multiple agents interacting with each other and the environment. In MARL, each

agent has its own observation, action, and reward signals, and its own policy. The

agents may have different goals, and their policies may be interdependent, meaning

that the actions of one agent affect the rewards and observations of the other agents.

Generalization is an important problem in MARL, as the agents need to be able

to adapt to new environments and situations that they have not encountered during

training. Generalization in MARL can be achieved through transfer learning, where

knowledge learned in one task is transferred to a new task, or through meta-learning,

where the agents learn to learn from experience. Another approach to generalization

in MARL is to use function approximation, where the agents learn to approximate

the value function or the policy using a function approximator, such as a neural

network. However, using function approximation can introduce new challenges, such

as overfitting and non-stationarity, and require careful regularization and adaptation

techniques.
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In summary, reinforcement learning is a powerful paradigm for learning to make

decisions through trial and error. Multi-agent reinforcement learning extends this

paradigm to the setting where there are multiple agents interacting with each other

and the environment. Generalization is an important problem in MARL, and can

be achieved through transfer learning, meta-learning, or function approximation, al-

though each approach has its own challenges and limitations.

2.3.2 Sequential social dilemmas

Social dilemmas are situations in which individual self-interest conflicts with the col-

lective interest of a group. These dilemmas arise when individuals make choices that

are rational for themselves, but collectively lead to a less desirable outcome for every-

one. In other words, social dilemmas are situations in which the pursuit of self-interest

can lead to a worse outcome for the group as a whole, compared to a scenario in which

individuals put aside their own self-interest and cooperate with each other.

Examples of social dilemmas can be found in a wide range of contexts, from

environmental issues such as pollution and deforestation to economic issues such as

the tragedy of the commons and the prisoner’s dilemma in game theory. In each

of these cases, individuals must choose between behaving in a way that benefits

themselves in the short term but harms the group in the long term, or cooperating

with others for the greater good.

Understanding social dilemmas is important because they are pervasive in human

societies and can have significant impacts on our collective well-being. By studying

social dilemmas, we can develop strategies for promoting cooperation and mitigating

the negative consequences of individual self-interest.

Sequential social dilemmas [51] are a class of social dilemma in which the decision-

making process of the interacting agents is temporally and spatially extended. Per-

forming well in a sequential social dilemmas tends to require the consideration of
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long-term consequences, interdependence, and cooperation among group members.

Research on sequential social dilemmas has been widely studied in the context of

emergence and maintenance of cooperation [52, 75], inequity aversion [37], partner

choices [21, 67] wherein agents have a choice with whom to interact, and generalization

[69, 1] wherein agents interact with novel scenarios during test time.

2.3.3 Social Value Orientation

In psychology research, Social Value Orientation (SVO) is a cognitive construct re-

flecting a person’s preference for resource allocation between themselves and others

[28, 54, 71]. While some individuals may solipsistically focus on maximizing their

personal success, others demonstrate different motivations, including maximizing the

difference between their own and others’ outcomes (a competitive orientation), maxi-

mizing collective welfare (a prosocial orientation), or maximizing other peoples’ ben-

efit (an altruistic orientation).

In artificial intelligence research, various algorithms draw inspiration from these

insights in their design or implementation [68, 80]. In reinforcement learning, SVO

is an intrinsic motivation that transforms an agent’s reward based on its particular

target distribution between its reward and the reward of others. Recently, there’s been

research investigating the role of SVO in situations where a group of agents or players

interact in ways that involve trade-offs between their self-interest and the collective

interest of the group. This research has generated valuable insights into the impact of

SVO on the emergence of diverse behaviors and cooperation [68], generalization [69]

wherein agents interact with novel scenarios during test time, and partner choices [67]

in sequential social dilemmas. SVO research has focused primarily on social dilemmas

with underlying incentive structures resembling the prisoner’s dilemma [77], wherein

each player has an incentive to defect, even though both would be better off if they

both cooperated.
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Omitting the dependence on time t, let ri be the reward of agent i. Let r̄−i be the

average reward of all the agent except agent i. Then we have

r̄−i =
1

N − 1

N∑
j=1,j 6=i

rj.

Let svoi denote the SVO target angle of agent i. Following the definition given in

[67], we define the effective reward r̂i of agent i as

r̂i = ri cos(svoi) + r̄−i sin(svoi).

Then agent i optimizes the objective function

Ĵ i = E

[
T∑
t=0

γtr̂it

]
.
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Chapter 3

Efficient communication under

communication cost

In this chapter we present our work on developing efficient communication protocols

when communication among agents is costly. The chapter summarizes and extends

the work presented in papers [63, 60], also included in Chapters 8 and 9.

3.1 Motivation

Studying communication cost in multi-agent multi-armed bandits is important due to

its practical relevance in a variety of real-world applications. In multi-agent systems,

agents interact with a common environment and make decisions based on the feedback

received. Communication among agents can significantly improve their performance;

however, it can also be costly, and maintaining a continuous high-bandwidth commu-

nication network may not be possible in many real-world scenarios. Thus, developing

communication-efficient algorithms that minimize the communication overhead while

maintaining performance is essential.

One real-world example where communication-efficient algorithms are crucial is

in the field of recommender systems. In such systems, multiple servers are networked
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to handle high demands, and the high communication between servers can lead to

service latency. Similarly, in a group of robots, communication can increase battery

power consumption. Therefore, communication-efficient algorithms can help minimize

the communication overhead, enabling the agents to make optimal decisions while

conserving resources.

Another example where communication cost is critical is in the field of clinical

trials. In clinical trials, groups of patients are often assigned to different treatments,

and their responses are recorded over time. By sharing information about the treat-

ments and their outcomes, physicians can make more informed decisions about which

treatments to prescribe, leading to better patient outcomes. However, communica-

tion among physicians can be time-consuming and costly, making it important to

develop communication-efficient algorithms that can reduce the communication over-

head while maintaining the same level of performance.

In summary, the importance of studying communication cost in multi-agent multi-

armed bandits lies in its practical relevance to real-world applications such as recom-

mender systems and clinical trials. Developing communication-efficient algorithms

can significantly improve the performance of agents while minimizing the commu-

nication overhead, making it possible to make optimal decisions while conserving

resources.

3.2 Communication cost

There are several ways to measure the communication cost, which depends on the

specific context and the problem formulation.

One common method of measuring communication cost is to count the total num-

ber of messages transmitted between agents. While this method is simple and easy
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to implement, it may not account for the size of the messages transmitted, which can

vary depending on the amount of information being shared.

Another approach to measuring communication cost is to consider the number

of bits transmitted between agents. This method takes into account the size of the

messages and is more precise than the previous method. However, it assumes that all

messages have the same size, which may not be true in practice.

A more advanced way of measuring communication cost is to consider the energy

consumption associated with communication. This method is particularly relevant in

wireless communication systems, where energy consumption can be a limiting factor.

Finally, the time required to transmit messages between agents is another way

of measuring communication cost. This method is particularly relevant in real-time

systems, where delays can have a significant impact on the system’s performance.

In the work on multi-agent multi-armed bandits presented in this chapter, we

measure communication cost based on the number of messages transmitted between

agents. While this method may not be the most sophisticated, it is a reasonable mea-

sure of communication cost in many practical scenarios. Moreover, since the message

size and energy consumption are not significant factors in our context, counting the

number of messages transmitted provides an appropriate measure of communication

cost.

3.3 Efficient communication

In scenarios where communication costs are associated with multi-agent multi-armed

bandits, it is essential for agents to determine the most effective way to share valu-

able information. By communicating the most useful information, agents can mini-

mize costs while maximizing the group’s cumulative reward. This section highlights
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the significance of sharing information about suboptimal options, as it provides the

greatest benefit to agents in their decision-making process.

Sharing information about suboptimal options is particularly valuable, as it en-

ables agents to reduce the uncertainty associated with suboptimal arms more rapidly

without having to choose them multiple times. By utilizing communicated messages,

agents gain a better understanding of suboptimal options, increasing the likelihood

of choosing the optimal option.

Furthermore, in multi-agent multi-armed bandits, communication costs can be-

come a significant barrier, especially when the number of agents or options is large.

Consequently, striking a balance between minimizing communication and maintaining

strong performance is crucial. Efficient stochastic bandit algorithms typically select

suboptimal options logarithmically over time. As such, communicating only rewards

from suboptimal options can significantly reduce communication costs. Since agents

choose suboptimal options a logarithmic number of times under an optimal algorithm,

this approach results in a logarithmic communication cost, effectively balancing both

communication and performance aspects.

By focusing on sharing information about suboptimal options, agents can success-

fully minimize communication costs and make better-informed decisions, ultimately

increasing the group’s cumulative reward. This approach demonstrates the impor-

tance of strategically communicating the most useful information to maximize the

benefits of communication in multi-agent multi-armed bandits.

3.4 Explore based communication

In multi-agent multi-armed bandits, while sharing information about suboptimal op-

tions is highly beneficial, a critical challenge arises due to the fact that agents initially

do not know which options are suboptimal. This is because the probability distribu-
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tions associated with the options are unknown at the outset, and agents must rely on

exploration to gain insights into the reward distributions associated with the options.

Therefore, the development of an effective communication protocol that balances the

need for exploration and the sharing of valuable information becomes crucial.

A promising heuristic for addressing this challenge is a communication protocol

that shares information among agents when they choose an option that is not the

one with the highest empirical average reward. This approach provides several ad-

vantages, which contribute to the overall effectiveness of the group’s decision-making

process.

One significant benefit of this approach is the reduction of exploration redundancy.

By sharing information about options that are not the current highest empirical av-

erage reward, agents can avoid duplicating exploration efforts on suboptimal options.

Instead, they can focus on exploring other potentially more rewarding options, thereby

accelerating the discovery of the optimal choice.

Additionally, this heuristic communication protocol speeds up the convergence to

the optimal option. As agents communicate their experiences with non-optimal op-

tions, they can update their estimates and more quickly eliminate suboptimal choices.

This accelerated elimination process increases the likelihood of selecting the optimal

option sooner, resulting in improved performance and higher cumulative rewards for

the group.

The balance between communication cost and information value is another cru-

cial aspect of this communication protocol. By only sharing information when agents

choose options other than the one with the highest empirical average reward, agents

communicate less frequently, effectively reducing communication costs. This selec-

tive sharing ensures that the shared information has a high value, as it pertains to

suboptimal options, which is essential for refining the agents’ decision-making process.
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Moreover, a communication protocol that shares suboptimal option information

fosters collaboration among agents, as it allows them to learn from each other’s ex-

periences. This cooperative learning enables agents to adapt their strategies more

efficiently, making the entire group more effective at identifying and selecting the

optimal option.

Now we define our communication protocol name comEx as follows. Let g(M,x) =

M +
∑N

i=1 (12 log(3(x+ 1)) + 3 log (x+ 1)) .

Definition 2. (ComEx communication protocol) Each agent i initiates sharing the

message m
(i)
t :=

〈
i, t, a

(i)
t , X

(i)
t

〉
if a

(i)
t 6= arg maxk∈[K] µ̂

(i)
k (t− 1)

Algorithm 1: ComEx

Input: Bandit environment, algorithm parameters
for each iteration t ∈ [T ] do

for each agent i ∈ [N ] do
// Sampling phase

Sampling rules: multi-agent UCB

// Message generating phase

// Replace full communication with ComEx

/* ComEx communication protocol */

if A
(i)
t 6= arg maxk µ̂

(i)
k (t− 1) then

Create
(
m

(i)
t :=

〈
i, t, A

(i)
t , X

(i)
t

〉)
end

end
for each agent i ∈ [N ] do

// Communication phase

Communication rule: Decentralized (or centralized) instantaneous
reward sharing, Decentralized (or centralized) message passing

// Estimate updating phase

end
for each arm k ∈ [K] do

Calculate
(
µ̂

(i)
k (t), N

(i)
k (t)

)
end

end
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3.4.1 Decentralized instantaneous reward sharing UCB

We present our first algorithm ComEx-UCB by combining the above communication

protocol with instantaneous reward sharing. Each agent follows a sampling rule that

balances exploiting with exploring. We use a natural extension of Upper Confidence

Bound (UCB) algorithm as a sampling rule. In UCB at each time step t for each arm

k each agent i constructs an upper confidence bound, i.e., the sum of its estimated

expected reward (empirical average of the observed rewards) and the uncertainty

associated with the estimate C
(i)
k (t) := σ

√
2(ξ+1) log t

N
(i)
k (t)

where ξ > 1.1, and pull the arm

with highest bound. If the pulled arm is instantaneously suboptimal, the agent sends

a message m
(i)
t :=

〈
A

(i)
t , X

(i)
t

〉
to its neighbors (see Definition 6). Note that under

this communication rule agents do not share concatenated messages. Thus passing

information about time step and agent id is redundant. Pseudo code for ComEx-UCB

is given in Appendix 9.10.12.

Theorem 2. (Group regret of ComEx-UCB) Consider a group of N agents follow-

ing ComEx-UCB while sharing instantaneous rewards over a general communication

graph G. Then for any ξ ≥ 1.1 expected cumulative group regret satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

χ̄(G) log T +
K∑
k=2

∆kg(4N, d(i))

Proof sketch. We follow an approach similar to the standard UCB analysis [7,

19] with a few key modifications. We partition the communication graph into a

set of non overlapping cliques and analyze the regret of each clique and take the

summation over cliques to obtain the regret of the group. When agents are using

full communication group regret can be given as the summation of a log T term that

scales with the clique covering number χ̄(G) and a term, which is independent of

T. The second term depends on the summation of tail probabilities of arms, i.e.,

P
(∣∣∣µ̂(i)

k (t)− µk
∣∣∣ ≥ C

(i)
k (t)

)
. For full communication a similar result can be found in
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[19]. Note that full communication is a deterministic communication protocol and

ComEx-UCB is a stochastic communication protocol that depends on the decision

making process. Two major technical challenges in proving the regret bound for

ComEx-UCB are 1.) deriving a tail probability bound for the case in which the

communication between agents are stochastic and 2.) bounding the additional regret

incurred by not sharing information when pulling the arm with highest estimated

average reward, i.e., a
(i)
t = arg maxk∈[K] µ̂

(i)
k (t − 1). We overcome the first challenge

by noticing that communication random variables 1{(i, j) ∈ Et},∀i, j, t are previsible,

i.e., measurable with respect to the sigma algebra generated by information obtained

up to time t − 1. We address the second challenge by proving that the number of

times agents do not share information about any suboptimal arm k can be bounded

by tail probabilities of arm k and the optimal arm. A complete proof of Theorem 2

is given in Appendix ??. �

Remark 1. By replacing ComEx with full communication in ComEx-UCB

algorithm agents obtain an expected cumulative group regret of E [R(T )] =

O (Kχ̄(G) log T +KN) (Appendix H ). Thus from Theorem 2 we see that ComEx

obtains the same order of performance as full communication.

Recall that expected communication cost under full communication is Θ(T ). Now

we prove that expected communication cost under ComEx is logarithmic in time. In

ComEx-UCB algorithm agents are only sending single messages (not concatenated).

Thus expected group communication cost at time step t can be given as E [L(t)] =∑N
i=1

∑T
τ=1 P

(
A

(i)
τ 6= arg maxk∈[K] µ̂

(i)
k (τ − 1)

)
.

3.4.2 Decentralized message passing UCB

We propose ComEx-MPUCB an improved version of ComEx-UCB by incorporating

a message passing method [10, 19] that allows agents to share the messages they
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initiated with agents who are within a distance of γ. We call γ communication density

parameter. We consider that at time t each agent i initiates a message m
(i)
t :=〈

i, t, A
(i)
t , X

(i)
t

〉
according to ComEx given in Definition 6 and sends the messages to

its neighbors. Subsequently the agents who receive the message forward it to their

neighbors. Messages received at time t are forwarded to neighbors at time t + 1

resulting that each hop adds a delay of 1 time step. Under this message passing

method γ-hop neighbors receive the message after a delay of γ time steps. Agents do

not forward the messages that are older than γ − 1 and discard the messages that

are older than γ. Note that for a connected graph maximum number of time step

required to pass a message between any two agents equals to the diameter of the

graph. Thus we choose γ to be an integer constant which is at most diameter of the

communication graph G.

Theorem 3. (Group regret of ComEx-MPUCB) Consider a group of N agents follow-

ing ComEx-MPUCB. Then for any ξ ≥ 1.1 expected cumulative group regret satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

χ̄(Gγ) log T +
K∑
k=2

∆k

[
(N − χ̄(Gγ))(γ − 1) + g

(
4N, d(i)

γ

)]
Proof sketch. We see that regret under ComEx-MPUCB can be given as the

summation of regret of ComEx-UCB when communication graph is Gγ and the regret

incurred by the delay in passing messages to agents who are not 1-hop neighbors. We

prove that the expected regret due to delay is at most (N − χ̄(Gγ))(γ−1). A detailed

proof is provided in Chapter 9. �

3.4.3 Centralized message passing UCB

We propose ComEx-LFUCB by combining ComeEx communication protocol with a

leader-follower method [42, 48, 19, 94]. ComEx-LFUCB provides better performance

compared to its decentralized counter part ComEx-MPUCB. Let V ′γ be the set of
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vertices in minimal dominating set of graph Gγ. We consider each agent i ∈ V ′γ

to be a leader and all the other agents to be followers. Note that every follower

has at least one leader as a neighbor. We consider that each leader uses ComEx-

MPUCB and each follower copies the last action observed from its leader. For each

follower j a leader i is assigned such that d(i, j) = mini′ d(i′, j) where d(i, j) is the

distance between agent i and agent j in graph G. Let N i
γ be the set of follower of

leader i. We consider that each leader sends a message containing the id of the arm

it pulls and whether it is instantaneously suboptimal, i.e. for i ∈ V ′γ at time step

t, m
(i)
t :=

〈
i, t, A

(i)
t ,1

{
A

(t)
i 6= arg maxk∈[K] µ̂

(i)
k (t− 1)

}〉
to its neighbors and they

subsequently forward it to their neighbors. Note that at time step t follower j ∈ N (i)
γ

pulls the arm A
(i)
t−d(i,j). Each follower pass a message containing information about the

reward and arm id if it pulls an arm that is specified as instantaneously suboptimal

by its leader. Thus the followers communicate according to ComEx by initiating a

message as follows. Follower j ∈ N (i)
γ initiates a message m

(j)
t :=

〈
j, t, A

(j)
t , X

(j)
t

〉
if A

(i)
t−d(i,j) 6= arg maxk∈[K] µ̂

(i)
k (t − d(i, j) − 1). Accordingly under full communication

followers share their rewards and arm pulls at every time step. Pseudo code for

ComEx-LFUCB is provided in Appendix 9.12.

Theorem 4. (Group regret of ComEx-LFUCB) Consider a group of N agents follow-

ing ComEx-LFUCB with communication density parameter γ. Then for any ξ ≥ 1.1

expected cumulative group regret satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

γ̄(Gγ) log T +
K∑
k=2

∆k

[
(N − γ̄(Gγ))(3γ − 1) + γ̄(Gγ) · g(4N, d(i)

γ )
]

Proof sketch. We follow a similar approach to the proof of Theorem 3 with a few

key modifications followed by the argument below. Note that number of suboptimal

arm pulls by each j ∈ N (i)
γ can be upper bounded using suboptimal arm pulls by i
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and message passing delay. Note that message passing delay can be upper bounded

by d(i, j). A detailed proof of Theorem 4 is given in Appendix 9.10.5. �

Remark 2. Similar to ComEx-MPUCB by replacing ComEx with full communica-

tion in ComEx-LFUCB algorithm, i.e. allowing followers to share information about

arm pulls at every time step, agents obtain an expected cumulative group regret of

E [R(T )] = O (Kγ̄(Gγ) log T +KN) (Appendix H ). Thus from Theorem 4 we see

that ComEx obtains the same order of performance as full communication.

Now we provide theoretical guarantees that expected group communication cost

under ComEx-LFUCB is logarithmically bounded in time.

Theorem 5. (Communication cost of ComEx-LFUCB) Consider a group of N agents

following ComEx-LFUCB with communication density parameter γ. Then for any

ξ ≥ 1.1 expected group communication cost satisfies:

E [L(T )] ≤
[

8(ξ + 1)σ

[
N

∆̄2
+

K∑
k=2

γ̄(Gγ)

∆2
k

]
log T +K [(N − 3γ̄(Gγ)(γ − 1)]

]
N∑
i=1

d
(i)+

γ−1

+K
N∑
i=1

d
(i)+

γ−1 · γ̄(Gγ · g
(
7N, d(i)

γ

)
Proof sketch. Note that the expected number of times a leader initiates a message

can be upper bounded by twice the expected number of its suboptimal arm pulls.

Further the number of times each follower j ∈ N (i)
γ initiates a message can be bounded

by the number of instantaneously suboptimal arms pulled by the leader i. Similar

to ComEx-MPUCB in ComEx-LFUCB agents send concatenated messages to their

neighbors. Thus each message initiated by any agent i is subsequently forwarded by

all agents who are within distance of γ−1 in graph G. A detailed proof can be found

in Chapter 9. �

Remark 3. Algorithm and results provided in this Section can be specialized to cen-

tralized cooperative bandits with instantaneous reward sharing by substituting γ = 1.
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3.4.4 Estimate sharing

We propose ComEx-EstUCB by combining ComEx with estimate sharing [46, 66, 49],

which obtains better performance than instantaneous reward sharing. In estimate

sharing, for each arm k, agents maintain estimated sum of rewards and estimated

number of pulls from the arm. At each time step, agents average their estimates

with their neighbors according to a consensus protocol and update the estimates by

incorporating the information of arm pull at that time step. We refer readers to [49]

for more details. In ComEx-EstUCB agents only average estimates of instantaneously

sub optimal arms. Pseudo code for ComEx-EstUCB is given in Appendix 9.13.

3.4.5 Simulation results

In this section we provide numerical simulations illustrating our results and validating

our theoretical claims. All the experiments were run on the first author’s personal

laptop. We show that ComEx obtains same order of performance, i.e., same order

of group regret, as full communication for a significantly smaller communication cost

than full communication. We also demonstrate that our algorithms outperform state-

of-the-art algorithms in several bandit frameworks.

Experimental setup. We provide simulation results for following cooperative ban-

dit frameworks 1) decentralized instantaneous reward sharing, 2) decentralized mes-

sage passing, 3) decentralized estimate sharing, 4) centralized leader-follower, and 5)

Thompson sampling. We compare performance of our algorithms (ComEx-UCB,

ComEx-MPUCB, ComEx-EstUCB, ComEx-LFUCB and ComEx-Thompson) with

their corresponding full communication algorithms (Full-UCB, Full-MPUCB, Full-

EstUCB and Full-LFUCB) and state-of-the art algorithms in each framework. For

all simulations presented in this section we consider 10 arms (K = 10), 100 agents

(N = 100) and 500 time steps (T = 500). Communication graph between agents
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Figure 3.1: A comparison of expected cumulative group regret and communication cost
of our algorithms and existing state-of-the-art algorithms in several benchmark cooperative
bandit frameworks.

is considered to be a Erdos Renyi random graph with edge probability 0.7. Results

are averaged over 100 Monte Carlo simulations. Additional experimental results for

different graph structures and parameters (ξ, γ) are provided in Appendix 9.10.11.

Hyper parameters We use tuning parameter ξ = 1.01 for UCB based algorithms.

For results provided in Figure 3.1(b)-3.1(d) we use communication density parameter

γ = 5. None of the competing algorithms, except UCB-Coop2, MP-UCB(D) and

MP-UCB(C) have hyperparameters. We tuned parameters of UCB-Coop2 to get best

results of that algorithm and used κ = 0.02, γ′ = 1.001, η = 0.001 (Equations 9 and 15

in [49]. Here we γ′ to avoid confusing with communication parameter γ used in this

paper) for final results. Decreasing γ′ below 1.001 and η below 0.001 did not offer any

significant improvement. MP-UCB(D) and MP-UCB(C) are originally proposed in

[19] for heavy-tailed distributions, and we adapt them to sub-Gaussian distributions

as directed by the authors. For MP-UCB(D) and MP-UCB(C) we considered the

same C
(i)
k (t) as in our algorithms. Thus we used the same ξ = 1.01 value for a fair

comparison.
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For results provided in Figures 3.1(a) and 3.1(d), we consider reward distributions

to be bounded [0, 1]. We consider triangle distributions with mod 1 for the optimal

arm and mod 0 for all sub-optimal arms. In simulations provided in Figures 3.1(b) and

3.1(c) we consider Gaussian reward distributions. Expected reward for the optimal

arm is µ1 = 11 and for all sub-optimal arms k > 1 is µk = 10. We let variance

associated with all arms be σ2
k = 1,∀k. We use the notation Obs-UCB to denote the

algorithm presented in [63].

ComEx obtains same order of performance as full communication. Our

results in Figure 3.1 illustrate that ComEx obtains the same order of performance,

i.e., same order of group regret, as full communication. From Comparing Figures

3.1(a) and 3.1(b) we see that performance difference between full communication

and ComEx decrease when communication density γ increase. All results illustrate

that our algorithms consistently out preforms state-of-the-art algorithms in all five

benchmark cooperative bandit frameworks.

ComEx only incurs a logarithmic communication cost. Our simulation

results also illustrate that ComEx only incurs a logarithmic communication cost. In

Figure 3.1(a) we observe that Obs-UCB also incurs a logarithmic cost. However

ComEx-UCB incurs a smaller cost than Obs-UCB while suffering a smaller group re-

gret. Further, results illustrate that ComEx enabled algorithms incurs a significantly

smaller communication cost compared to existing state-of-the-art algorithms.

Additional discussion. State-of-the-art algorithm for leader-follower setting is

DPE2 in [94]. DPE2 uses a phased communication protocol, where during the leader

selection phase, which lasts at least 2D rounds, where D is the diameter of the graph,

agents do not pull arms. Thus, this phase accumulates an expected group regret of at

least 2DNµ1. In our experimental setup, this alone exceeds the regret accumulated by

our algorithms during the entire time horizon. So a meaningful comparison cannot be
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provided without modifying DPE2 to allow pulling arms during the leader selection

phase.
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Chapter 4

Probabilistic communication

In last chapter we discussed the multi-agent multi-armed bandit problem with com-

munication costs. In this chapter we discuss probabilistic communication constraints.

The chapter summarizes and extends the work presented in papers [58, 65], also in-

cluded in Chapters 10 and 11.

4.1 Motivation

The multi-agent multi-armed bandit problem has garnered significant interest due

to its applicability in various domains, such as recommendation systems, resource

allocation, and online advertising. However, real-world scenarios often involve com-

munication constraints, including the possibility of communication link failures. The

motivation for studying multi-agent multi-armed bandit problems with probabilistic

communication stems from the need to develop robust and efficient solutions that can

address these communication challenges.

In practical applications, communication links can fail randomly due to various

factors, such as network congestion, signal interference, or hardware issues. These

failures can severely impact the performance of multi-agent systems, leading to sub-

optimal decision-making and reduced cumulative rewards. By investigating the effects
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of probabilistic communication and developing strategies that can cope with commu-

nication link failures, we can enhance the performance of multi-agent multi-armed

bandits in such settings.

An alternative interpretation of communication probability is to consider it as an

agent-dependent information-sharing frequency. In this interpretation, agents share

information with a certain probability that is specific to each agent. This probability

can be affected by factors like agent priorities, resource limitations, or strategic con-

siderations. Studying agent-dependent information-sharing frequencies can provide

valuable insights into the dynamics of multi-agent systems and guide the design of

more effective communication protocols.

Furthermore, understanding the impact of probabilistic communication on multi-

agent multi-armed bandit problems can enable the development of adaptive communi-

cation strategies. These strategies can dynamically adjust the frequency and content

of information sharing based on the current state of the environment and agent perfor-

mance. By incorporating adaptive communication strategies, agents can optimize the

use of available communication resources, effectively balancing the trade-offs between

exploration, exploitation, and communication overhead.

4.2 Role of degree heterogeneity in the communi-

cation network

In the multi-agent multi-armed bandit problem with a general communication graph,

the performance of individual agents is significantly influenced by their position within

the network. The connectivity of an agent, as determined by its degree (the number

of neighbors), plays a crucial role in the information flow and the subsequent decision-

making process. In this section, we will discuss the implications of an agent’s degree
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and connectivity to its neighbors on its exploration-exploitation balance and overall

performance.

• Impact of low-degree agents: Agents with a low degree, or a small number

of neighbors, generally receive less information from their neighbors. Con-

sequently, these agents have less knowledge about the environment and the

performance of other agents. This limited information encourages low-degree

agents to engage in more exploration as opposed to exploitation, as they cannot

rely as heavily on information from others to make informed decisions.

• Impact of high-degree agents: In contrast, agents with a high degree, or a

large number of neighbors, typically receive more information from their neigh-

bors. This abundance of information allows high-degree agents to make better-

informed decisions, and as a result, they tend to engage in more exploitation

than exploration. However, the performance of high-degree agents is also influ-

enced by the connectivity of their neighbors.

• High-degree agents connected to low-degree neighbors: When high-degree

agents are connected to neighbors with low degrees, they often perform better

than those connected to high-degree neighbors. This is because low-degree

neighbors are more likely to engage in exploration, providing the high-degree

agents with valuable information about unexplored options. As a result,

high-degree agents can exploit this information to make better decisions and

achieve higher rewards.

• High-degree agents connected to high-degree neighbors: On the other hand,

high-degree agents connected to high-degree neighbors tend to receive redun-

dant information, as their neighbors are also likely to engage in exploitation.

This redundancy limits the exploration of new options, and in turn, the perfor-
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mance of these high-degree agents may suffer due to the lack of diversity in the

information they receive.

The performance of individual agents in multi-agent multi-armed bandit problems

with general communication graphs is highly dependent on their connectivity within

the network. Low-degree agents tend to engage in more exploration, while high-

degree agents often focus on exploitation. The performance of high-degree agents

is further significantly influenced by the connectivity of their neighbors, with those

connected to low-degree neighbors generally outperforming those connected to high-

degree neighbors. Understanding these dynamics is essential for designing efficient

communication protocols and strategies that can enhance the overall performance of

multi-agent systems in various applications.

4.3 Role of agent specific communication proba-

bilities

In the multi-agent multi-armed bandit problem, the performance of individual agents

can be significantly influenced by the probability with which they receive information

from their neighbors. When each agent i receives information from all its neigh-

bors with a probability pi, the dynamics of the decision-making process are further

complicated. In this section, we discuss the implications of agent-specific information

reception probability on the exploration-exploitation balance and overall performance

of individual agents.

• Impact of low information reception probability: Agents with a low information

reception probability (low pi) are less likely to receive valuable information from

their neighbors. This limited information flow might compel these agents to

rely more on their own exploration, as the uncertainty about the environment
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and the performance of other agents remains high. Consequently, agents with

low information reception probability might engage more in exploration than

exploitation, which could potentially slow down their learning process and affect

their overall performance.

• Impact of high information reception probability: Agents with a high informa-

tion reception probability (high pi) have a greater chance of receiving informa-

tion from their neighbors. This increased information flow enables these agents

to make better-informed decisions based on the experiences of their neighbors.

As a result, agents with high information reception probability are more likely

to engage in exploitation, as they can benefit from the shared knowledge about

the environment.

• Balancing exploration and exploitation: The performance of individual agents

in the multi-agent multi-armed bandit problem is contingent upon striking the

right balance between exploration and exploitation. Agents with low infor-

mation reception probability may need to adjust their exploration-exploitation

strategies to compensate for the lack of information received from their neigh-

bors. Conversely, agents with high information reception probability should

be cautious not to over-exploit the available information, as this might lead to

suboptimal decisions and reduced cumulative rewards.

• Adapting to the dynamics of information flow: Understanding and adapting to

the dynamics of information flow in a multi-agent system with agent-specific

information reception probabilities is crucial for optimizing the overall perfor-

mance. Agents may need to employ adaptive strategies that dynamically adjust

their exploration-exploitation balance based on the current state of the environ-

ment and the information received from their neighbors. Such adaptive strate-
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gies can help agents cope with the uncertainties introduced by the agent-specific

probabilities and enhance their decision-making capabilities.

The agent-specific information reception probability significantly influences the

performance of individual agents in the multi-agent multi-armed bandit problem. The

exploration-exploitation balance and overall performance of agents depend on their

ability to adapt to the dynamics of information flow resulting from these probabili-

ties. Developing adaptive strategies that consider agent-specific information reception

probabilities can lead to more efficient multi-agent systems that can better cope with

the uncertainties and complexities of real-world decision-making problems.

4.4 Group performance under probabilistic com-

munication

The fundamental advantage of cooperative estimation is the ability to leverage ob-

servations about suboptimal arms from neighboring agents to reduce exploration.

However, when agents are communicating over an arbitrary graph, the amount of

information an agent receives varies according to its connectivity in G. For example,

agents with a large number of neighbors receive more information, leading them to

begin exploitation earlier than agents with fewer neighbors. This means that well-

connected agents exhibit better performance early on, but because they quickly do

only exploiting, agents that are poorly connected typically only observe exploitative

arm pulls, which requires them to explore for longer in order to obtain similarly

good estimates for suboptimal arms, increasing their regret. The disparity between

performance in well-connected versus poorly connected agents is exacerbated in the

presence of random link failures, where any message sent by an agent can fail to reach

its recipient with a failure probability 1− p (drawn i.i.d. for each message).
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Indeed, it is natural to expect the group regret to decrease with decreasing link

failure probability, i.e., increasing communication probability p. However, what we

observe experimentally (Section 10.7) is that this holds only for graphs G that are

regular (i.e., each agent has the same degree), or close to regular. When G is irregular,

as we increase p from 0 to 1, the group performance oscillates. While, in some cases,

the improved performance in the well-connected agents can outweigh the degradation

observed in the weakly-connected agents (leading to lower group regret), it is prudent

to consider an approach that mitigates this disparity by regulating information flow

in the network.

Information Regulation in Cooperative Bandits. Our approach to regulate

information is straightforward: we direct each agent i to discard any incoming message

with an agent-specific probability 1− pi, while always utilizing its own observations.

For specific values of pi, we can obtain various weighted combinations of internal

versus group observations. Our first algorithm RCL-LF (Link Failures) is built on this

regulation strategy, coupled with UCB1 exploration using all selected observations for

each arm. Essentially, each agent runs UCB1 using the cumulative set of observations

it has received from its network. After pulling an arm, it broadcasts its pulled arm

and reward through the network, but incorporates each incoming message only with

a probability pi. Pseudo code for the algorithm is given in the appendix. We first

present a regret bound for RCL-LF when run with the instantaneous reward-sharing

protocol.

Theorem 6 (RCL-LF Regret with instantaneous reward-sharing). RCL-LF running

with the instantaneous reward-sharing protocol (Figure 10.1, γ = 1) obtains cumula-

tive group regret of

RegG(T ) ≤ g(ξ, σ)

(
N∑
i=1

(1− pi · p) +
∑
C∈C

(max
i≤C

pi) · p
)(∑

k>1

log T

∆k

)
+ f(5N,G)
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where C is a non-overlapping clique covering of G.

Proof sketch. We follow an approach similar to the analysis of UCB1 by [7] with

several key modifications. First, we partition the communication graph G into

a set of non-overlapping cliques and then analyze the regret of each clique. The

group regret can be obtained by taking the summation of the regret over each

clique. Two major technical challenges in proving the regret bound for RCL-LF

are (a) deriving a tail probability bound for probabilistic communication, and (b)

bounding the regret accumulated by agents by losing information due to com-

munication failures and message discarding. We overcome the first challenge by

noticing that communication is independent of the decision making process thus

E
(

exp
(
λ
∑t

τ=1X
i
τ1{Aiτ = k} − µkN i

k(t)−
λ2σ2

k

2
N i
k(t)
))
≤ 1 holds under probabilis-

tic communication. We obtain the tail bound by combining this result with the

Markov inequality and optimizing over λ using a peeling type argument. We address

the second challenge by proving that the number of times agents do not share

information about any suboptimal arm k can be bounded by a term that increases

logarithmically with time and scales with number of agents, G, and communication

probabilities, as
∑N

i=1(1− pi · p) +
∑
C∈C(maxi≤C pi) · p. �

Remark 4 (Regret bound optimality). Under perfect communication (p = 1) and

no message discarding, i.e., pi = p = 1, ∀i ∈ [N ] the dominant term in our re-

gret bound scales with χ̄(G), obtaining identical performance to deterministic com-

munication over G [19]. Alternatively, when pi = p = 0, there is no communica-

tion, and hence, the regret bound is O(N log T ). Theorem 17 quantifies the benefit

of communication in reducing the group regret under probabilistic link failure and

when agents incorporate observations with an agent-specific probability. Note that∑N
i=1(1− pi · p) +

∑
C∈C(maxi≤C pi) · p = N − p ·

(∑N
i=1 pi −

∑
C∈C(maxi≤C pi)

)
. Since

the clique covering is non-overlapping, the results show that agents obtain improved

group performance for any communication probability p > 0 for any nontrivial graph
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as compared to the case with no communication in which each agent learns on its

own.

Remark 5 (Controlling information disparity). In order to regulate the information

disparity across the network we set pi = dmin(G)
di(G)

. Thus, the agent(s) with minimum

degree dmin incorporate each message they receive with probability 1 and we have that

the expected number of messages for each agent is the same, i.e., T ·dmin(G). There-

fore, every agent receives the same amount of information (in expectation), providing

a large performance improvement for irregular graphs (see Section 10.7).

Message-Passing. Under this communication protocol each agent i communi-

cates with neighbors at distance at most γ, where each hop adds a 1-step delay. Our

algorithm RCL-CF obtains a similar regret bound in this setting as well, when all

agents use the same UCB1 exploration strategy.

Theorem 7 (RCL-LF Regret with message-passing). Let C be a minimal clique cover-

ing of Gγ. For any C ∈ C and i, j ∈ C let γi = maxj∈C d(i, j) be the maximum distance

(in graph G) between agents i and j. RCL-LF running with the message-passing pro-

tocol with delay parameter γ obtains cumulative group regret of

Reg(T ) ≤ g(ξ, σ)

(
N∑
i=1

(1− pi · pγi) + χ̄(Gγ) · (max
i≤N

pi · pγi)
)(∑

k>1

log T
∆k

)
+ f((γ + 4)N,Gγ).

Proof sketch. We partition the graph Gγ into non-overlapping cliques, analyze the

regret of each clique and take the summation of regrets over cliques to obtain group

regret. In addition to the challenges encountered in Theorem 17 here we are required

to account for having different probabilities of failures for messages due to having

multiple paths of different length between agents and to account for the delay incurred

by each hop when passing messages. We overcome the first challenge by noting that

agent i receives each message with at least probability pγi . We overcome the second
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challenge by identifying that regret incurred by delays can be upper bounded using(∑N
i=1 γi −N

)∑
k>1 ∆k. �

Remark 6. Finding an optimal observation probability {pi}N1=1 for RCL-LF with

message-passing is difficult due to the delays added by each hop when forwarding

messages. If messages are forwarded without a delay, optimal performance can

be obtained by using pi = dmin(Gγ)

di(Gγ)
. For dense Gγ, the above choice of observation

probability provides near-optimal performance. When γ = d?(G) we have that Gγ

is a complete graph, pi = dmin(Gγ)

di(Gγ)
= 1, and agents do not discard any message.

However, when γ < d?(G), the graph Gγ is not complete. Therefore agents receive

different amounts of information which are approximately proportional to the degree

distribution of Gγ. As explained earlier this information disparity leads to a perfor-

mance disparity among agents. As a result group performance decreases. In this case

we design the algorithm such that each agent i discards messages with 1 − pi where

pi = dmin(Gγ)

di(Gγ)
. This regulates the information flow mitigating the bias introduced by

information disparity. As a result the group obtains near-optimal performance.

4.5 Role of sampling rule heterogeneity

In multi-star networks, which are characterized by their irregular and centralized

structures, center agents hold a prominent position due to their higher number of

connections with peripheral agents. As a result, these center agents receive more in-

formation than their peripheral counterparts, creating an imbalance in the exploita-

tion potential across the group. This disparity causes group performance to decline

as the number of peripheral agents increases. Our research aims to enhance group

performance by capitalizing on the heterogeneity in exploitation potential among the

agents. To achieve this, we propose heterogeneous explore-exploit strategies that
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require center agents to explore more, subsequently amplifying the exploitation po-

tential of peripheral agents.

The multi-star network is a suitable model for recommender systems, where nu-

merous small servers are assigned to different regions. These servers make sequential

recommendations based on user feedback and communicate exclusively with a large

central server. By encouraging the central server to provide more exploratory rec-

ommendations, the system can gather a broader range of information about user

preferences, ultimately improving its performance. Additionally, incorporating prob-

abilistic communication helps to account for potential random communication failures

between servers, further enhancing the system’s overall reliability and effectiveness.

We focus on multi-star graphs defined as follows. Let there be m center agents

and N −m peripheral agents. Without loss of generality let each agent i, i ≤ m, be

a center agent.

Definition 3. (Heterogeneous Exploration) Exploration term of agent i at time

t ∈ [T ] is

C
(i)
k (t) = σi

√
2(1 + αi)(ξ + 1) log t

N
(i)
k (t)

(4.1)

where ξ > 1.1 and

αi =


p1−p(di−davgi )

di
, k ≤ m

0 , k > m.
(4.2)

4.5.1 Performance of agent in multi-star networks

In this section we provide numerical simulations to illustrate results and validate the-

oretical bounds. For all simulations, we consider 10 options (N = 10) with Gaussian

reward distributions. Expected reward for the optimal option is µ1 = 11 and for all

sub-optimal options k ≥ 2 is µk = 10. We let variance associated with all options
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k be σ2 = 1. Because the expected reward gaps ∆k = 1, k 6= 1, are equal to the

variances σ2 = 1, it is a challenging problem to distinguish the optimal option from

the sub-optimal options. For all simulations, we consider 1000 time steps (T = 1000)

and use 1000 Monte Carlo simulations with ξ = 1.01.

We show simulation results for performance of a group of K = 36 agents that

communicate over two different symmetric multi-star graphs and use the heteroge-

neous sampling rules of Definition 10. We compare to the case when agents use

the corresponding homogeneous sampling rules of Definition 11. The first multi-star

graph has m = 2 center agents and K − m = 34 peripheral agents, with each cen-

ter agent communicating with 17 peripheral agents and the other center agent. The

second multi-star graph has m = 3 center agents and K −m = 33 peripheral agents,

with each center agent communicating with 11 peripheral agents and the other center

agents. In each case, center agents are interchangeable and peripheral agents are in-

terchangeable, so the average performance of a center (peripheral) agent is the same

as the individual performance of a center (peripheral) agent.

Figure 4.1 shows how average expected cumulative group regret varies with broad-

casting probability p for agents using the heterogeneous rules (dotted) and homoge-

neous rules (solid). Regret is inversely related to performance: lower group regret

implies higher group performance. Results are plotted on the left for the graph with

2 center agents and on the right for the graph with 3 center agents. When p = 0

there is no communication at all. So when p becomes even just a little positive and

agents learn about options from their neighbors, regret falls, i.e., group performance

rises.

In the case of the homogeneous rules, as p increases through intermediate values,

center agents do less and less exploring and the usefulness of the information received

by peripheral agents decreases. This leads to increased regret for peripheral agents,

and the group overall, and thus degraded group performance. When p approaches 1,
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Figure 4.1: Average expected cumulative group regret for K = 36 agents at time t = 1000
as a function of broadcasting probability p with communication over a symmetric multi-
star graph. Left: 2 center and 34 peripheral agents. Right: 3 center and 33 peripheral
agents. Dotted lines and solid line shows average regret when agents use heterogeneous and
homogeneous sampling rules, respectively.

center agents receive sufficient information from their peripheral neighbors such that

their improved performance outweighs the degraded performance of peripheral agents.

This leads to a final decrease in group regret and increase in group performance.

The improvement in performance provided by the heterogeneous rules relative to

the homogeneous rules, as predicted by Theorem 26 and Remark 21, can be clearly

seen in Figure 4.1 by observing how much lower the dotted regret curve is than the

solid regret curve. The growth in regret in the homogeneous case, as p increases

through intermediate values, is reduced in the heterogeneous case. This is because,

by design, center agents are biased toward more exploring, which improves the infor-

mation that peripheral agents receive. The group performance increase that comes,

as p increases further, occurs in the heterogeneous case well before p approaches 1.

The influence of irregularity of the graph can be observed in Figure 4.1 by com-

paring the left plot (2 center agents and more irregular) to the right plot (3 center

agents and less irregular). The results suggest that performance is higher with more

center agents, i.e., with greater regularity in the graph.

Figure 4.2 shows expected cumulative regret as a function of time t for center

(blue), peripheral (pink), and average (black) agents, when p = 0.8 and agents use
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the heterogeneous rules (dotted) and homogeneous rules (solid). Results are plotted

on the left for the graph with 2 center agents and on the right for the graph with 3

center agents. It can be observed that, as predicted for the heterogeneous rules, the

peripheral agent performance increases and the center agent performance decreases,

such that group performance (as represented by the average agent) improves. Further,

a comparison of left and right plots suggests that group performance improves with

more center agents (more regularity).
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Figure 4.2: Expected cumulative regret of center agent, peripheral agent, and average
agent for K = 36 agents as a function of time t for p = 0.8 and the same two symmetric
multi-star graphs as in Figure 4.1: 2 center agents (left) and 3 center agents (right) where
agents use heterogeneous (dotted) and homogeneous (solid) sampling rules.

In our study, we developed and examined novel heterogeneous rules for a group

of agents sharing information across a network to optimize their collective reward

while sampling an uncertain environment. We focused on communication networks

characterized by symmetric multi-star graphs, as these are representative of realis-

tic scenarios. By employing the multi-armed bandit problem as the explore-exploit

framework, we demonstrated that sampling rules for center agents, which prioritize

exploration over exploitation, can enhance the usefulness of information broadcasted

to their neighbors, ultimately boosting the group’s total reward.
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This analysis and design contribute to a deeper understanding of the significance

of heterogeneity in collective decision-making processes. The evidence that hetero-

geneity can be harnessed to improve the performance of a cooperative multi-agent

system indicates that further exploration in this area is both valuable and necessary.
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Chapter 5

Zero-shot generalization in

multi-agent reinforcement learning

In this chapter we present our work on improving generalization in multi-agent rein-

forcement learning. The chapter summarizes the work presented in the paper [] (the

paper will appear on arXiv soon), also included in Chapters 12.

5.1 Role of behavioural heterogeneity among

agents

In psychology research, Social Value Orientation (SVO) is a cognitive construct re-

flecting a person’s preference for resource allocation between themselves and others

[28, 54, 71]. While some individuals may solipsistically focus on maximizing their

personal success, others demonstrate different motivations, including maximizing the

difference between their own and others’ outcomes (a competitive orientation), maxi-

mizing collective welfare (a prosocial orientation), or maximizing other peoples’ ben-

efit (an altruistic orientation). In artificial intelligence research, various algorithms

draw inspiration from these insights in their design or implementation [68, 80]. In
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reinforcement learning, SVO is an intrinsic motivation that transforms an agent’s

reward based on its particular target distribution between its reward and the reward

of others. Recently, there’s been research investigating the role of SVO in situations

where a group of agents or players interact in ways that involve trade-offs between

their self-interest and the collective interest of the group. This research has generated

valuable insights into the impact of SVO on the emergence of diverse behaviors and

cooperation [68, 69], and partner choice [67]. SVO research has focused primarily

on social dilemmas with underlying incentive structures resembling the Prisoner’s

dilemma [77], wherein each player has an incentive to defect, even though both would

be better off if they both cooperated.

Sequential social dilemmas are a class of social dilemmas in which the decision-

making process of the interacting agents is temporally and spatially extended [51].

Performing well in a sequential social dilemma tends to require the consideration of

long-term consequences, interdependence, and cooperation among group members.

Research on sequential social dilemmas has been widely studied in the context of

emergence and maintenance of cooperation [52, 75], inequity aversion [37], partner

choice [21, 67], and generalization [69, 1] wherein agents interact with novel co-players

in test scenarios.

While environments provide an extrinsic reward that can be used to learn a policy,

it is often useful to provide agents with an intrinsic reward to shape their behavior

towards a policy with desirable properties. Intrinsic reward has be used to capture

the social preferences of players, and are typically functions of the vector of all play-

ers’ reward. In most research in sequential social dilemmas, all players either have

no intrinsic reward, or they all have the same function (i.e. they have homogeneous

social preferences) [52, 93]. However, it has been observed that having a population

of agents who differ in their intrinsic reward function (i.e. they have heterogeneous

social preferences) can lead to higher levels of cooperation [37]. In [68, 69, 67], the
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authors showed that heterogeneity can produce behavioral diversity in fully coopera-

tive games, and in games with incentive structure similar to the Prisoner’s dilemma.

Other incentive structures have not yet been explored. In addition, the precise in-

terplay between diversity in social preferences and in agent policies, particularly on

the mechanisms the enable generalization to novel social partners, remains under-

explored.

Diversity in policies has been demonstrated to improve various aspects of agent

performance, such as exploration [100], adaptation to environmental changes [18],

positive group outcomes [68, 85], generalization to novel co-players [56], and col-

laboration with humans [82]. One way to quantify diversity is through state-action

variation, which measures the distribution of state-action pairs that an agent explores

during training. State-action diversity can be assessed by measuring differences in

the state visitation frequency [100], action selection frequency in a given state [69],

or differences between state-action trajectories starting from a specific state [56]. To

complement these methods, diversity can also be quantified by examining the reward

an agent obtains when interacting with different co-players (often called strategic di-

versity) [9, 26], which can provide a complementary measure of diversity in behavior.

However, defining a universal diversity metric from trajectories can be challenging,

and so it is possible instead to use environment-specific measures of diversity.

In this chapter, we assess heterogeneous SVO in a range of incentive structures in

sequential social dilemmas. We include temporally and spatially extended environ-

ments with an underlying structure that is like: Prisoner’s dilemma; Chicken, where

both players have an incentive to choose a risky behavior, but where the worst out-

come is if both choose the high risk; and Stag hunt wherein players have a safe choice,

and an incentive to coordinate on a high-reward strategy that carries a risk of costly

miscoordination. Chicken and Stag hunt are equilibrium selection social dilemmas.
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5.2 Zero-shot generalization

Zero-shot generalization [36, 35, 82, 50, 69] seeks to develop general agents that are

capable of successfully interacting with novel agents during test time (i.e., agents not

seen during training). In such situations, the policies of the novel agents encountered

at test time can be out-of-distribution for the agents, leading to poor coordination

in purely cooperative settings [36, 56], and getting exploited in competitive settings

[74]. In mixed-motive games, failure to generalize to novel agents can lead to dead-

weight loss by missing an opportunity to cooperate [50]. Learning a best response

to partners/opponents with meaningfully diverse policies has emerged as a promising

approach to zero-shot generalization [82]. The intuition behind this approach is that

training with a set of diverse policies decreases the likelihood of encountering out-of-

distribution policies at test time. Despite this promise these best response techniques

have not yet been applied in a wide range of incentive structures.

We extend the observation that heterogeneous SVO leads to diverse policies to

the incentive structures of Chicken and Stag hunt, and to many players (more than

2). We also show that this diversity, when leveraged via best response, results in

better zero-shot generalization in equilibrium selection sequential social dilemmas.

We found that best-response agents adapted to partners/opponents with diverse be-

haviors by learning a conditional policy during training. However, when the test

scenario contained conditional policies and the sequential social dilemma was not an

equilibrium-selection problem, training best response collapsed to one unconditional

policy, leading to poor zero-shot generalization.

5.2.1 Environments

We provide a brief description of the environments considered in this chapter. For

all experiments in this paper, we use environments from Melting Pot 2.0 without
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modifications [1].

Intertemporal “in the matrix” repeated games: The “in the matrix” repeated

games are a family of sequential social dilemmas in Melting Pot 2.0 where two-players

interact. In the beginning of each episode the environment is initialized according to

a given resource layout, and a set of fixed points where players can spawn. The

map consists of two types of resources which can be distinguished by their colour;

red corresponds to defection and blue corresponds to cooperation (see Figure 12.3).

Players can pick up resources by walking over them, and these resources go into a

player inventory. Players spawn with one of each resource type in their inventory.

After spawning, each player can move around the map, collect resources, and interact

with the co-player by firing an interaction beam. When players interact (by one player

hitting the other using their interaction beam), each player gets a reward equal to

the expected payoff calculated from the inventory counts and environment-specific

payoff matrix. The agent who zaps the other agent is considered as the row player.

The inventory count of each player defines a mixed strategy where the probability

of playing each pure strategy is equivalent to the percentage of the corresponding

resource. Let N i
r and N i

g denote the inventory count, number of red resources and

green resources respectively, for agent i ∈ 1, 2. For each agent i their mixed strategy

is given as

p =
[ N i

r

N i
r +N i

g

,
N i
g

N i
r +N i

g

]
Let A be the payoff matrix for both row player and column player. Let rrow and rcol

be the reward of row player and column player respectively. Let prow and pcol be the

mixed strategy probability vector of row player and column player respectively. Then

the rewards can be defined as

rrow = pTrowApcol, rcol = pTcolA
Tprow
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These reward calculations correspond to those used in game theory for matrix games

and iterated social dilemmas [97].

4 0

2 2

3 2

5 0

3 0

5 1

Stag hunt Chicken Prisoner’s dilemma

Figure 5.1: Payoff matrices for Stag hunt, Chicken and Prisoner’s dilemma. The
values shown correspond to the payoff of the row player. The payoff of the column
player is the transpose of the shown matrix (i.e. the games are symmetric games).
Cooperation corresponds to the first row and column. Defection corresponds to the
send row and column.

The payoff matrices A used are given in Figure 12.2. After interacting, players

receive their reward from interaction, have their inventory counts reset (to one of

each), and get re-spawned after a delay. Players can have multiple interactions within

an episode. Once a resource is picked up, it begins to regenerate after a delay of 10

steps, with a 20% chance of regenerating on each subsequent step. As is standard in

Melting Pot 2.0, in each game, there is a 10% chance that the episode will end after

every 100 steps, with a minimum of 1000 steps per episode.

Externality mushrooms: Externality mushrooms is sequential social dilemma

where players immediately get affected from pro(anti)social behaviors of their co-

players. This is a 5-player game where players eat mushrooms in order to receive

rewards. Four types of mushrooms grow (in different amounts) on the map: red,

green, blue, and orange. Eating a red (fize: full internality zero externality) mush-

room gives a reward of 1 to the player who consumed the mushroom. Eating a green

(hihe: half internality half externality) mushroom gives a total reward of 2/5 to all

players. Eating a blue (zife: zero internality full externality) mushroom gives a total
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Figure 5.2: ”in the matrix” repeated games. This is a 2-player game where agents can
gather 2 types of resources (green corresponding to cooperation, red corresponding
to defection). When agents interact (using an interaction beam) they get rewards
according to their inventory counts and a game specific payoff matrix. The payoff
matrix can be Stag hunt, Chicken or Prisoner’s dilemma type payoff matrix

reward of 3/4 divided equally among all players excluding the player who consumed it.

Eating an orange (nize: negative internality zero externality) mushroom causes red

mushrooms to be destroyed, each with probability 0.25, and gives a reward of −0.1

to the player who consumed it. After eating a mushroom, the player who consumed

it freezes for the mushroom’s digestion time: 0 (red), 10 (green), 15 (blue), and 15

steps (orange). After spawning, a mushroom is removed from the map after its per-

ishing time: 200 (red), 100 (green), and 75 steps (blue). Orange mushrooms never

perish. Mushrooms respawn from spores depending on consumption of other mush-
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rooms. Eating a red, green, or blue mushroom releases 3 spores for red mushrooms,

each spore will spawn a mushroom with probability 0.25. Eating a green or blue

mushrooms also releases 3 spores for green mushrooms which spawn with probability

0.4. Eating a blue mushroom also releases a blue spore which spawn with probability

0.6. Eating an orange mushroom releases a spore for a new orange mushroom which

spawns with probability 1. Similar to “in the matrix“ repeated games, in Externality

mushrooms each episode runs for at least 1000 steps. Following that the episode

terminates with probability 0.2 at every 100 steps.

Externality mushrooms has an incentive structure similar to Chicken, where re-

ward is maximized selfishly by consuming red mushrooms while the others are con-

suming blue or green mushrooms. But if everyone else is eating red mushrooms,

the selfish strategy is to eat green mushrooms, as otherwise all mushrooms would be

eventually depleted.

Figure 5.3: Externality Mushrooms. This is a 5-player sequential social dilemma
game with immediate feedback. Agents instantaneously share rewards with others
depending on the mushroom they are picking.
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5.3 Generating diverse policies in sequential social

dilemmas

In the beginning of the training process we define distinct SVO angles for each agent.

Each environment has a fixed number of players. We train the agents in a distributed

asynchronous manner by initializing ’arenas’ to train a population of agents. Arenas

run in parallel and each arena is a copy of the environment with the number of

players specified for that environment. This is a multi-agent version of A3C [70]

that is commonly used for multi-agent reinforcement learning [1]. The Melting Pot

evaluation protocol requires sampling of policies with replacement. Training in pure

self-play introduces skewed reward incentives by playing with copies of oneself. To

alleviate this issue, we set players in each arena to play the game for one episode either

in self-play or in population-play (with equal probability). During population-play

we sample agents without replacement. We train each agent for 109 learner frames.

5.4 Training a best-response agent and zero-shot

generalization performance evaluation

We train a selfish naive learner without intrinsic reward, to best respond against the

policies generated using heterogeneous SVO. In order to avoid confusion we use the

term best-response agent for the training agent, and SVO bots for the pre-trained

diverse agents trained with heterogeneous SVO values. In each episode the best-

response agent plays with a set of SVO bots sampled without replacement. We train

the best-response agent for 109 learner frames.

Melting Pot 2.0 [1] provides a protocol for evaluating generalization to novel social

partners, which are packaged with the suite as a held-out set of co-players in a suite
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of test scenarios. We measure the performance of the best-response agent using the

Melting Pot test protocol.

We use the Melting Pot test scenarios for evaluation in Stag hunt, Chicken,

Prisoners’ dilemma “in the matrix “ repeated games and Externality mushrooms.

Test scenario details are provided below.

Test scenarios for “in the matrix” repeated.

Focal player (our best response agent) encounters:

S0: (cooperator + defector) either a cooperator or a defector with 0.5 probability

S1: (cooperator ) a cooperator

S2: (defector) a defector

S3: (grim strike 1) a player who starts by cooperating and defect for the rest

the episode when best-response agent defects once

S4: (grim strike 2) a player who starts by cooperating and defect for the rest

the episode when best-response agent defects twice

S5: (tit-for-tat) a player who plays tit-for-tat

S6: (tit-for-tat tremble) a player who a player who plays tit-for-tat and occa-

sionally unconditionally defect. (noisy tit-for-tat)

S7: (flipping) a player who cooperate during the first 3 interactions and defect

for the rest of the episode

S8: (corrigable tit-for-tat) a player who starts with defection and switch to

tit-for-tat strategy when best-response agent defects

S9: (corrigable tit-for-tat tremble) a player who starts with defection and switch

to noisy tit-for-tat strategy when best-response agent defects
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Test scenarios for Externality mushrooms:

Focal player (our best response agent) encounters:

S0: (visiting cooperators) 4 cooperators

S1: (visiting defectors) 4 defectors

2 focal players (in our case 2 copies of best response agent) encounter:

S2: (resident cooperators) 3 cooperators

S3: (resident cooperators) 3 defectors

We provide an overview of the end to end methodological pipeline in Figure 5.4.

Train diverse 
bots 

Train a best 
response agent

Evaluate ZSG 
performance of BR agent

Train a population of bots 
with heterogeneous SVO 

Train a best response agent 
with diverse bots 

Test with a held out test 
population 

Trained

Training

Diverse bots BR agent Test population

Figure 5.4: Overview of the methodology. Blue shapes show agents that are actively
being trained, whereas gray ones denote frozen agents (bots). Circles represent the
agents trained with diverse SVO, triangles denote a best response agent, and squares
denote a held-out set of co-players. Evaluation is zero-shot, meaning the best response
agent is frozen (gray triangle) and is evaluated against the held-out bots.

5.5 Agent architecture

The neural network of the agent consists of two convolutional layers, a two-layer

perceptron, and an LSTM—all separated by ReLU activation functions. The convo-

lutional layers have 16 and 32 output channels, kernel shapes of 8 and 4, and strides
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of 8 and 1. The perceptron layers are 64 neurons each, and the LSTM layer has 128

units. The policy and baseline for the critic are created by multilayer perceptrons

(256 hidden units with ReLU activations) connected to the output of the LSTM.

Representation shaping is achieved through the use of an auxiliary loss and con-

trastive predictive coding [73], which is used to differentiate between nearby time

points via LSTM state representations. PopArt [33] is used to adjust for the different

reward scales of the different environments. The optimization method used is RM-

SProp with a learning rate of 4 × 10−4, epsilon of 10−5, zero momentum, decay of

0.99, and batch size of 256. The baseline cost for the critic is 0.5, and the entropy

regularization cost for the policy is 0.003.

5.6 Results

5.6.1 Experiment 1: Generating diverse policies in “in the

matrix” repeated games

Experimental setup: We consider Stag hunt, Chicken and Prisoners’ dilemma “in

the matrix” repeated games. For each game we average the results over 3 random

seeds. We train four agents with SVO values of −15°, 0°, 60°, and 75°, respectively.

These values were chosen to cluster around the incentives of competition (−15), self-

ishness (0) and pro-sociality (60, 75), symmetrically. The “in the matrix” repeated

games are 2-player games. In addition to SVO bots we also train and freeze a set of

selfish-baseline bots (i.e., no intrinsic reward) using the same procedure for compari-

son.

Finding 1: Heterogeneous SVO bots learn meaningfully diverse policies

We use the inventory count of the bots at the time of interaction as an

environment-specific diversity measure. Since the inventory counts define the mixed
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Figure 5.5: “in the matrix” repeated. Diversity of policies of selfish-baseline bots
and SVO bots. Each subfigure shows average inventory counts during evaluation
for 4 agents, trained with 50% self-play and 50% population play. The bottom row
corresponds to SVO bots with svoi ∈ {−15°, 0°, 60°, 75°} and the top row corresponds
to selfish-baseline bots. Green and red represents cooperative and defective resource
counts respectively. Error bars show the standard deviation of results over 3 random
seeds.

strategy probability vectors, sufficiently distinct ratios of inventory counts indicate

distinct mixed strategies. During evaluation agents play in population-play.

Figure 12.6 shows the inventory counts for the 4 bots averaged over the last 500

interactions during evaluation after the completion of training. Top and bottom rows

correspond to resource counts of selfish-baseline bots and SVO bots respectively.

Figures 12.6(a), 12.6(b) and 12.6(c) correspond to Stag hunt, Chicken and Prisoners’

dilemma respectively. The error bars presented in the figure correspond to the average

results of 3 independent runs. The results demonstrate that in each game, all 4

selfish-baseline bots have comparable inventory count ratios, suggesting that their
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policies lack diversity. Conversely, the 4 SVO bots exhibit varied inventory count

ratios, indicating diverse behaviors. For each “in the matrix“ repeated game, resource

counts correspond to SVO bots with svo = [−15°, 0°, 60°, 75°], where svoi = svo[i], i ∈

{1, 2, 3, 4}. We denote the cooperative resource counts and defective resource counts

using green and red respectively. As the SVO angles increase from −15° to 75°,

the ratio between the red and green resource counts increases, indicating a more

cooperative, prosocial or altruistic behavior.

5.6.2 Experiment 2: Generating diverse policies in External-

ity Mushrooms

Experimental setup: Similar to the training process in “in the matrix“ repeated

game we average the results from 3 random seeds. For each seed we train 5 agents

with SVO values of −15°, 0°, 60°, 75°, and 90°, respectively in 50% self-play and 50%

population-play. In addition to SVO bots we also train a set of selfish-baseline bots,

using the same procedure for comparison.

Finding 2: The results extends to multi-player games with more than 2

players

We show that our method scales to games with more than 2 players. Figure

12.7 shows that in Externality Mushrooms, agents trained using heterogeneous SVO

learn diverse policies. We use the count of mushrooms consumed of each type as

the environment-specific diversity metric. The selfish-baseline bots tend to consume

mushrooms at similar ratios across different types, whereas the SVO bots consume

varying ratios of different mushroom types exhibiting meaningfully diverse behaviors.

Agents with low (or negative) SVO consume the selfish mushroom (red), and even the

spiteful mushroom (orange), whereas those with high SVO, tend to consume more of

the prosocial mushrooms (green and blue).
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Figure 5.6: Externality mushrooms. Diversity of policies of selfish-baseline bots and
SVO bots. Each plot shows average fraction of mushrooms consumed by 5 agents
during evaluation, trained with 50% self-play and 50% population play in Externality
mushrooms dense game. The bottom row corresponds to SVO agents with svoi ∈
{−15°, 0°, 60°, 75°, 90°} and the top row corresponds to selfish-baseline agents. Error
bars show the standard deviation of results over 3 random seeds.

5.6.3 Experiment 3: Zero-shot generalization evaluation

We evaluate the zero-shot generalization performance of a learned best response to

the SVO bots trained using heterogeneous SVO.

66



Baselines: We compare the performance of a learned best response policy for SVO

bots with a best response to selfish-baseline bots, Fictitious co-play (FCP, a type of

best response that includes also earlier checkpoints of the agents to best respond to)

[82] and exploiters (i.e., a best response agent trained on the test scenario directly)

[1] We train one exploiter for each test scenario. To train FCP agents we train a

naive learning agent with 3 checkpoints for each bot from a bot population. Here we

use the first checkpoint, mid checkpoint and last checkpoint. The mid checkpoint is

the time during training where the agent first obtains half of its final reward, of the

policies of the bots. We report results for FCP applied to the heterogeneous SVO bots

FCP(SVO), as well as to selfish baselines FCP(selfish-baseline). We also compare

performance of best response agents with zero-shot generalization performance of

selfish-baseline agents and random agents.

Experimental setup: We train best-response agents for the selfish-baseline bots

and SVO bots. Recall that we trained each type of bots, i.e., selfish-baseline or SVO,

for 3 random seeds in this setup. We train a best-response agent for bots from each

seed. For each type of test bots we show the average performance evaluation runs

correspond to these 3 training runs.

Finding 3: Best-response agents learn a conditional behaviour In order to

get a better understanding about the learned policies of the best-response agents we

analyze the behaviour of the best-response agents during test time. For each test

bot, Figures 12.8 and 12.9 show the fraction of interactions where the best-response

agent cooperated with a bot with respect to the fraction of interactions where the

bot cooperated with the best-response agent. Figure 12.8 corresponds to Stag hunt

“in the matrix“ repeated and 12.9 corresponds to Chicken ”in the matrix” repeated.

In this analysis we define the best-response agent’s interaction as a cooperation

when they have higher number of cooperative resources than defective resources in
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Figure 5.7: Comparing how well best-response agents learn conditional policies in Stag
hunt.

their inventory at the time of interaction. In Stag hunt both agents cooperating, i.e.,

both agents playing Stag, yields a higher reward, but it is a riskier strategy. Defecting,

yields a secure payoff. Both agents cooperating or both defecting are Nash equilibria,

that is, there is no incentive to unilaterally deviate from that strategy. An agent who

cooperates with a defector gets 0 reward. When trained in Stag hunt selfish-baseline

bots learn to defect. The best response to unconditional defectors is defecting. Hence

the best-response agents trained with selfish-baseline bots learn to unconditionally de-

fect. In contrast the heterogeneous SVO bot population consists of both defectors and

cooperators with different levels of cooperation and defection. Best-response agents

training with SVO bots encounter both cooperators and defectors and subsequently
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Figure 5.8: Comparing how well best-response agents learn conditional policies in
Chicken.

learn a conditional policy that tends to cooperate with cooperators and defect with

defectors.

In Chicken the two Nash equilibria are for one agent to cooperate (swerve) and

the other agent to defect (straight). In this case selfish-baseline agents learn to

do both defection and cooperation. Hence the best-response agents trained with

selfish-baseline bots also learn to defect and cooperate. However in Figure 12.9 we

see that this behaviour is not conditional. In contrast best-response agents training

with SVO bots encounter mostly cooperative and mostly defective bots, leading to

best-response agents learning a conditional behavior where they tend to cooperate

with defectors and defect against cooperators.
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Finding 4: Failure case with Prisoners’ dilemma In Prisoner’s dilemma the

the Nash equilibrium is both agents defecting, as a results selfish-baseline agents

learn to defect. Thus, the best response agents that are trained with selfish agents

also learn to defect. Moreover, when facing a defector, the best response is to

defect, while defecting against a cooperator yields the highest reward. Therefore,

agents are incentivized to defect even when faced with an unconditional cooperator.

Consequently, the best response to SVO bots (i.e., unconditional cooperators and

defectors) is also to unconditionally defect. Figure 12.10 illustrates this showing

that all the best-response agents are learning to defect regardless of the level of

cooperation of their partners.
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Figure 5.9: Comparing how well best-response agents learn conditional policies in
Prisoners’ dilemma.
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BR(SVO) FCP(SVO) BR(selfish-baseline) FCP(selfish-baseline) selfish-baseline random exploiter

Stag hunt ITMR 0.876 0.830 0.856 0.847 0.850 0.000 0.988
Chicken ITMR 0.696 0.668 0.745 0.723 0.723 0.000 0.958
Prisoner’s dilemma ITMR 0.738 0.702 0.777 0.783 0.754 0.000 1.000
Externality mushrooms 0.619 0.764 0.612 0.846 0.660 0.000 0.900

Table 5.1: Zero-shot generalization performance of best response agents, selfish-
baseline agent, random agent and exploiter. The score is calculated by first re scal-
ing the rewards received by each agent such that in each scenario the agent with
highest(lowest) reward gets score 1(0) and then averaging over all scenarios for each
environment.

Finding 5: Best response agents perform better in zero-shot generaliza-

tion Zero-shot generalization performance of the best response agents, selfish-baseline

agent, random agent, and exploiters are given in Table 5.1. The score is calculated by

normalizing the rewards agents receive in an episode across agents for each scenario

and then averaging over all scenarios. The exploiters and random agent are intended

to provide approximate upper and lower bounds for performance across all environ-

ments. As expected the table shows that the exploiters achieve the best performance,

while the random agent performs the worst. Across all environments at least one

best response agent performs better than the selfish-baseline agent indicating that

learning a best response improves zero-shot generalization.

On average in the Stag hunt scenarios, BR(SVO) outperforms other agents. From

figure 12.8 we see that BR(SVO) and FCP(SVO) cooperate with unconditional de-

fectors with a small probability. However, in Stag hunt an agent cooperating with a

defector or defecting with a defector receives the same reward. Thus when encoun-

tering defectors and test bots that are more likely to defect BR(SVO), FCP(SVO)

receives comparable rewards to BR(selfish-baseline), FCP(fish-baseline). When en-

countering more cooperative test bots, best response agents that are able adapt to

partner behaviours and cooperate with cooperators receive a higher reward. This

leads to the higher score of BR(SVO) agent in Stag hunt.

The table 5.1 shows that in Chicken scenarios, BR(selfish-baseline) outper-

forms other agents. Note that in Chicken an agent cooperating with a defector
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receives a higher reward than an agent defecting against a defector. From results

in figure 12.9 we see that when test bots defect with a probability close to 1 all

the best response agents cooperate with similar probabilities. Thus in scenarios

where test bots are unconditionally defecting all the best response agents obtain

comparable performance. Further, note that when test bots are cooperating with

nearly 0.4 probability BR(selfish-baseline) and FCP(selfish-baseline) cooperate with

a higher matching probability compared to BR(SVO) and FCP(SVO) thus leading

to BR(selfish-baseline) and FCP(selfish-baseline) obtaining better performance. In

scenarios where best response agents encounter unconditional cooperators BR(SVO)

and FCP(SVO) defect with a probability close to 1 obtaining better performance

compared to BR(selfish-baseline) and FCP(selfish-baseline). Since most of the test

scenarios consists of defectors or test bots that are more likely to defect this leads to

BR(selfish-baseline) outperforming BR(SVO) and BR(FCP) agents.

Recall that from Figure 12.10 illustrates that all the best-response agents are

defecting against all test bots. Thus we expect the performance score of best response

agents for Prisoner’s dilemma given in Table 5.1 to be similar. However, surprisingly

BR(selfish-baseline) and FCP(selfish-baseline) perform better than BR(SVO) and

FCP(SVO). We leave investigating this as future work.

In Externality mushrooms FCP type best response agents perform better than

best response agents trained with only final policies of the opponents/ partners. This

indicates that best response agents that encounters less proficient agents as well as

more proficient agents perform better than the best response agents that only en-

counters proficient agents during training time.
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Chapter 6

Final remarks

6.1 Effective communication in multi-agent multi-

armed bandits

6.1.1 Conclusion

In this thesis, we have explored the challenges and intricacies of multi-agent multi-

armed bandits in the presence of probabilistic communication failures and communi-

cation costs. By investigating the impact of communication constraints on the perfor-

mance of cooperative bandits, we have gained valuable insights into the development

of robust and efficient solutions for a wide range of decision-making problems.

The probabilistic communication failure chapter focused on addressing the issue

of unreliable communication links, where each agent’s messages can drop with an

agent-specific probability. We have proposed effective communication protocols and

strategies that are resilient to such failures, ensuring that essential information is

shared among agents despite message drops. These adaptive strategies have demon-

strated their potential to maintain decision-making efficiency while coping with com-

munication link failures.
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In the communication cost chapter, we have examined the trade-offs between

information sharing and communication overhead in multi-agent multi-armed bandits.

By developing heuristic communication protocols that selectively share information

about suboptimal options, we have shown that it is possible to balance communication

costs while maintaining good performance. These protocols allow agents to make

more informed decisions, reduce exploration redundancy, and ultimately increase the

group’s cumulative reward.

Overall, our research contributes to the understanding of cooperative bandits un-

der communication constraints, highlighting the importance of robust and efficient

communication protocols in the presence of probabilistic communication failures and

communication costs. The findings of this thesis can be applied to various domains,

including sensor networks, distributed control systems, and multi-robot coordination,

among others.

6.1.2 Future work

Building upon the heuristic communication protocol discussed in Chapter 3, several

research directions can be explored to further enhance the performance and applica-

bility of multi-agent multi-armed bandits in various domains. The following areas of

future work have the potential to deepen our understanding and expand the capabil-

ities of multi-agent multi-armed bandits:

• Adaptive communication protocols: Investigate the development of adaptive

communication protocols that dynamically adjust the frequency and content

of information sharing based on the evolving state of the environment and the

performance of the agents. Such protocols could optimize communication cost

while maintaining or improving the group’s decision-making efficiency.
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• Heterogeneous agents and learning rates: Explore scenarios where agents have

different learning rates, capabilities, or access to information. Understanding

how to effectively share information in such heterogeneous settings can pro-

vide insights into the design of cooperative bandits that cater to diverse agent

populations.

• Scalability and distributed learning: Investigate the scalability of the proposed

communication protocol for large-scale settings with numerous agents and op-

tions. Techniques for distributed learning and communication could be devel-

oped to ensure that the performance gains are maintained even in large-scale

and complex environments.

• Applications in various domains: Apply the developed heuristic communication

protocol to real-world problems in diverse domains, such as recommendation

systems, resource allocation, and online advertising. Evaluating the perfor-

mance of the approach in practical settings can provide valuable feedback for

further refinements and improvements.

• Exploration-exploitation trade-offs: Delve deeper into the exploration-

exploitation trade-offs in the context of multi-agent multi-armed bandits with

communication costs. Develop new techniques that can adaptively balance

exploration and exploitation while optimizing communication overhead.

The study of multi-agent multi-armed bandits with communication link failures,

where each agent’s messages can drop with an agent-specific probability, presents

several intriguing research avenues. Addressing the challenges posed by unreliable

communication links can further enhance the robustness and applicability of multi-

agent multi-armed bandits in real-world scenarios. The following future directions

hold promise for expanding our understanding of multi-agent multi-armed bandits

under communication constraints:
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• Communication link failure models: Investigate different models of communi-

cation link failures, such as time-varying, correlated, or burst failures, to un-

derstand their impact on the performance of multi-agent multi-armed bandits.

Developing strategies that can adapt to various failure models will contribute

to the robustness of the proposed solutions.

• Error-resilient communication protocols: Develop communication protocols

that are resilient to communication link failures, ensuring that essential in-

formation is reliably shared among agents despite message drops. Techniques

such as error detection and correction codes or message redundancy could be

explored to enhance the robustness of the communication process.

• Adaptive information sharing: Investigate adaptive information-sharing strate-

gies that dynamically adjust the content and frequency of communication based

on the current state of communication link failures. Such strategies could opti-

mize the use of available communication resources while maintaining decision-

making efficiency.

• Decentralized and cooperative learning: Explore decentralized learning and

decision-making algorithms that allow agents to learn and make decisions locally

while incorporating shared information from other agents. Developing methods

that can effectively incorporate partial or noisy information received from other

agents will be crucial for robust performance in the presence of communication

link failures.

• Evaluation in real-world scenarios: Apply the developed techniques for multi-

agent multi-armed bandits with communication link failures to real-world prob-

lems in various domains, such as sensor networks, distributed control systems,

and robotic coordination. Evaluating the performance of the approach in prac-
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tical settings can provide valuable insights for further refinements and improve-

ments.

By pursuing these research directions, the field of multi-agent multi-armed bandits

can continue to grow and advance, contributing to the development of more efficient,

robust, and scalable solutions for a wide range of cooperative decision-making prob-

lems.

6.2 Generalization in multi-agent reinforcement

learning

6.2.1 Conclusion

We investigated the impact of heterogeneous social value orientation on different

incentive structures in sequential social dilemmas. We tested whether the presence

of heterogeneous SVO leads to diverse policies and if learning a best response to

these policies improves zero-shot generalization. The study found that the presence

of heterogeneous SVO does indeed lead to measurable diversity in policies, and this

diversity often results in better zero-shot generalization for agents that best respond

to them.

The best-response agents achieve better performance by learning a conditional

policy that adapts to novel agents during test time. The study also revealed that when

the sequential social dilemma is not an equilibrium-selection problem, this method

still generates meaningful diversity in policies, but it fails to achieve better zero-shot

generalization performance. This occurs because the best response to a diverse set of

policies collapses to one unconditional policy that performs poorly when encountering

conditional policies during test time.
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Additionally, the study demonstrated that the results extend to multi-player

games with more than two players. Our findings have implications for understanding

how heterogeneous SVO impacts incentive structures and policy diversity, and how

agents can learn to adapt to diverse policies during test time to achieve better zero-

shot generalization performance. Our findings provide new insights into the behavior

of agents in sequential social dilemmas and highlights the importance of considering

the role of heterogeneity in SVO in the design of incentive structures.

6.2.2 Future work

The exploration of generating heterogeneous policies using heterogeneous prosocial-

ity in mixed motive games, and leveraging these policies to improve zero-shot gener-

alization in Multi-Agent Reinforcement Learning (MARL), offers several promising

research directions. By developing a better understanding of the interplay between

heterogeneous prosociality and policy generation, it may be possible to enhance the

adaptability, robustness, and performance of MARL algorithms in various domains.

The following areas of future work can contribute to the advancement of this research

topic:

• Prosociality models: Investigate different models of prosociality, including vary-

ing levels of cooperation and competition, and assess their impact on the gener-

ation of heterogeneous policies. Understanding how diverse prosocial behaviors

influence policy formation can lead to more nuanced strategies in mixed motive

games.

• Adaptive prosociality: Explore adaptive prosociality, where agents can dynam-

ically adjust their prosocial tendencies based on the current state of the envi-

ronment, the performance of other agents, or their own learning progress. Such

adaptability can contribute to more robust and flexible MARL algorithms.
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• Heterogeneous agent architectures: Examine the role of heterogeneous agent

architectures, such as those with varying learning rates, observation spaces, or

action spaces, in the generation of heterogeneous policies. Identifying the in-

terdependencies between agent architecture and prosocial behavior can provide

valuable insights for designing more effective MARL solutions.

• Transfer learning and generalization: Investigate the impact of heterogeneous

prosociality on transfer learning and generalization across different tasks, envi-

ronments, and agent populations. Developing methods that can leverage the

generated policies for improved zero-shot generalization can significantly en-

hance the applicability of MARL algorithms.

• Exploration-exploitation trade-offs: Delve deeper into the exploration-

exploitation trade-offs in the context of heterogeneous prosociality and mixed

motive games. Develop new techniques that can balance exploration and ex-

ploitation effectively while taking into account the diverse prosocial tendencies

of agents.

• Applications in various domains: Apply the developed techniques for generating

heterogeneous policies using heterogeneous prosociality to real-world problems

in diverse domains, such as autonomous vehicles, multi-robot coordination, and

social dilemmas. Evaluating the performance of the approach in practical set-

tings can provide valuable feedback for further refinements and improvements.

By pursuing these research directions, the field of Multi-Agent Reinforcement

Learning can continue to grow and advance, contributing to the development of more

efficient, robust, and scalable solutions for a wide range of cooperative and competi-

tive decision-making problems involving heterogeneous prosociality in mixed motive

games.
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Part II

Published Work
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Chapter 7

Overview

Part II of this dissertation consists of five peer-reviewed papers. The notations of

the papers are changed to be consistent with the rest of the dissertation. Minor

formatting adjustments were made to fit the dissertation format. Only the papers

for which the I was the primary contributor are included in this thesis. Other papers

where I was a co-author have been mentioned with proper citations.

7.1 Outline

In Chapter 8, we delve into the multi-armed bandit problem in the presence of com-

munication costs. Specifically, we quantify the communication cost by the number

of communication rounds required by the agents. To tackle this issue, we propose

a novel communication protocol that leverages exploration to minimize communica-

tion cost. Under this protocol, agents only communicate during exploration, leading

to logarithmic communication cost. Our study sheds light on the potential of using

exploration as a means to reduce communication costs in multi-agent systems.

In Chapter 9, we extend the framework introduced in Chapter 8 and propose a

new communication protocol. Our novel protocol achieves logarithmic communica-

tion cost while maintaining a group cumulative regret that is of the same order as the
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regret under full communication. Our study provides insights into the effectiveness

of communication protocols in multi-agent systems and contributes to the develop-

ment of low-cost communication protocols that do not compromise performance. We

consider the effect of agent heterogeneity with respect to their position in the com-

munication network.

Chapter 10 proposes decentralized learning algorithms for multi-agent ban-

dit problems under three typical real-world communication scenarios, namely (a)

message-passing over stochastic time-varying networks, (b) instantaneous reward-

sharing over a network with random delays, and (c) message-passing with adver-

sarially corrupted rewards, including byzantine communication. We demonstrate

that our proposed algorithms achieve competitive performance and near-optimal

guarantees on the group regret incurred under each of these environments. Addition-

ally, we present an improved delayed-update algorithm for the setting with perfect

communication, which outperforms the existing state-of-the-art on various network

topologies. We also derive tight network-dependent minimax lower bounds on the

group regret.

Chapter 11 aims to explore the potential of leveraging individual differences to en-

hance group performance. Specifically, we focus on investigating star communication

graphs, aiming to identify effective approaches for promoting the center agent to con-

duct more exploratory actions, which, in turn, can provide more useful information

for peripheral agents, ultimately resulting in improved group performance.

Chapter 12 investigates the impact of heterogeneous Social Value Orientation

(SVO) on policy diversity and zero-shot generalization in sequential social dilem-

mas with different incentive structures. It reveals that heterogeneous SVO results

in diverse policies, and learning a best response to these policies enhances zero-shot

generalization. The observed improvement stems from agents learning to adapt their
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behavior based on their partners’ or opponents’ diverse strategies, enabling more

effective responses during training.

7.2 Author contributions

I am the lead authors and lead contribution of materials, including mathematical

analysis, illustrations, simulations, presented in the five included papers. My advisor,

Professor Naomi Ehrich Leonard, advised me on almost all aspects of my research and

my collaborators further helped me improve it. I have described specific contributions

in each paper below.

• Chapters 8, 9, 11 is based on the work on Multi-agent multi-armed bandits.

Naomi Leonard provided valuable suggestion through out the conception of re-

search problem, executing the research, analysing results and writing the paper.

I wrote the initial drafts and Naomi Leonard revised and edited the drafts.

• Chapter 10 started from my initial discussions with Abhimanyu Dubey. Abhi-

manyu Dubey contributed the sections on reward corruptions and lower bounds.

I contributed the sections on probabilistic communication and stochastic de-

lays. Abhimanyu Dubey and I wrote the other sections together. The sections

from this chapter that are included in the Chapter 4 are my contributions.

Naomi Leonard and Alex Pentland provided valuable suggestion through out

the conception of research problem, executing the research, analysing results

and writing the paper. Naomi Leonard edited the final draft.

• Chapter 12 was the result of my internship project at DeepMind. My brain-

storming sessions with Edgar Duéñez-Guzmán and Joel Leibo helped in con-

ceiving the idea and their help was instrumental in refining my approach. Kevin

McKee supplemented the idea on learning adaptive policy, which proved crucial
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in the second half of the project. John Agapiou helped me significantly to run

large scale experiments on the DeepMind computational resources. I wrote the

initial draft. Kevin McKee, Edgar Duéñez-Guzmán, John Agapiou and Joel

Leibo revised and edited the draft.

84



Chapter 8

A Dynamic Observation Strategy

for Multi-agent Multi-armed

Bandit Problem

Udari Madhushani and Naomi Ehrich Leonard

We define and analyze a multi-agent multi-armed bandit problem in which

decision-making agents can observe the choices and rewards of their neighbors under

a linear observation cost. Neighbors are defined by a network graph that encodes

the inherent observation constraints of the system. We define a cost associated

with observations such that at every instance an agent makes an observation it

receives a constant observation regret. We design a sampling algorithm and an

observation protocol for each agent to maximize its own expected cumulative reward

through minimizing expected cumulative sampling regret and expected cumulative

observation regret. For our proposed protocol, we prove that total cumulative regret

is logarithmically bounded. We verify the accuracy of analytical bounds using

numerical simulations.
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8.1 Introduction

The effect of communication structure in cooperative and competitive multi-agent

systems has been extensively studied in decision theory. Performance of a group of

social learners can be improved by the shared information among individuals. In most

real-world decision-making processes, however, information sharing between agents

can be costly. As a result, directed communication, where each agent only needs

to observe its neighbors, has advantages over undirected communication, where each

agent sends and receives information. Even when observation costs are high, agents

can keep costs to a minimum by choosing when and whom to observe as a function

of their own performance. Further, in this setting costs associated with cooperation

can be avoided.

Consider the problem of a group of fishermen foraging in an uncertain environment

that consists of a distribution of spatial resource (fish). Because of the natural dy-

namics of fish, environmental conditions, and other external factors, the resource will

be distributed stochastically. As a result, a fisherman will receive different reward

values (number of fish harvested) at different times, even when sampling from the

same patch. Thus, in order to maximize cumulative reward fishermen need to be able

to exploit, i.e., forage in well sampled patches known to provide better harvest, and to

explore, i.e, forage in poorly sampled patches, which is riskier but may provide even

better harvest than well sampled patches. Benefiting from exploitation requires suf-

ficient exploration and identification of the patches that yield highest rewards. More

generally, optimal foraging performance comes from balancing the trade-off between

exploring and exploiting. This is known as the explore-exploit dilemma.

Multi-armed bandit (MAB) problems are a set of mathematical models that have

been proposed to capture the salient features of explore-exploit trade-offs [83, 79].

For the standard MAB problem the reward distributions associated with options are

static. An agent estimates the expected reward of each option using the rewards it
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receives through sampling. The agent chooses among options by considering a trade-

off between estimated expected reward (exploiting) and the uncertainty associated

with the estimate (exploring). Therefore, in the frequentist setting, the natural way

of estimating the expectation of the reward is to consider the sample average [44,

2, 7]. The papers [41, 78] present how to incorporate prior knowledge about reward

expectation in the estimation step by leveraging the theory of conditional expectation

in the Bayesian setting.

Multi-agent multi-armed bandit (MAMAB) problems consider a group of individ-

uals facing the same MAB problem simultaneously. For an individual to maximize

its own reward, it will naturally seek to observe its neighbors and use those observa-

tions to improve its performance. Individual and group performance of agents will

vary according to the observation structure, i.e., who is observing whom, and the

type of information they observe. For example, if the agents are cooperative and can

broadcast signals, they could share their estimates of rewards. When there are con-

straints, such as communication costs and privacy concerns, they might instead share

only their instantaneous rewards and choices. Even without the ability to broadcast,

agents may still be able to use sensors to observe the instantaneous rewards and

choices of neighbors. A centralized multi-agent setting is considered in [4] and a de-

centralized setting is considered in [39]. The papers [47, 46] use a running consensus

algorithm in which agents observe the reward estimates of their neighbors. In [42, 48]

an MAMAB problem is studied in which agents observe instantaneous rewards and

choices in a leader-follower setting.

In all of these previous works, communication between agents is assumed to be

cost free. However, in real world settings observing neighbors or exchanging infor-

mation with neighbors is costly. In the present paper, we propose a setting in which

agents can decide when and whom to observe in order to receive maximum benefits

from observations that incur a cost. An underlying undirected network graph defines
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neighbors and models the inherent observation constraints present in the network.

Agents receive a fixed observation cost at every instance they observe a neighbor.

To account for the observation cost, we define cumulative regret to be the total

cumulative regret agents receive from sampling suboptimal options (sampling regret)

and from observing neighbors (observation regret). Deterministic [48] and probabilis-

tic [61] communication strategies proposed in the MAB literature lead to a linear

cumulative observation regret. Our main contribution is the design of a new strategy

for which we prove a logarithmic total cumulative regret, i.e., order-optimal perfor-

mance. Our design leverages the intuition that it is most useful to observe neighbors

when uncertainty associated with estimations of rewards is high.

In Section ?? we introduce the MAMAB problem and we propose an efficient

sampling rule and a communication protocol for an agent to maximize its own total

expected cumulative reward. We analyze the performance of the proposed sampling

rule in Section ??. In Section 8.3.1 we analytically upper bound the expected cumula-

tive regret and in Section 8.3.2 we analytically upper bound the expected observation

regret. We present the upper bound for the total expected cumulative regret in sec-

tion 8.3.3. In Section ?? we provide numerical simulation results and computation-

ally validate the analytical results. We conclude in Section ?? and provide additional

mathematical details in the Appendix.

8.2 Multi-agent Multi-armed Bandit Problem

In this section we present the mathematical formulation of the MAMAB problem

studied here. Let N be the number of options (arms) and K the number of agents.

Define Xi as the random variable that denotes reward associated with option i ∈

I = {1, 2, . . . , N}. In this paper we assume that all the reward distributions are sub-

Gaussian. Let σi be the variance proxy of Xi, and µi the expected reward of option i.
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Let i∗ be the optimal option with highest expected reward µi∗ = max{µ1, µ2, . . . , µN}.

Each agent k ∈ {1, . . . , K} chooses one option at each time step t ∈ {1, 2, . . . , T} with

the goal of minimizing its cumulative regret. In MAB problems, cumulative regret

is typically defined as cumulative sampling regret, which is equivalent to expected

number of times suboptimal options are selected. We let cumulative regret be the sum

of cumulative sampling regret and a cumulative observation regret that accumulates

a fixed cost for every observation of a neighbor.

We assume that the expected reward values µi are unknown and the variance

proxy values σi are known to the agents. To improve its own performance, each agent

observes its neighbors according to an observation protocol that we define. We use a

network graph to encode hard observation constraints and this defines neighbors of

agents. Let G(V , E) be an undirected graph. V is a set of K nodes, such that node k in

V corresponds to agent k for k ∈ {1, . . . , K}. E is a set of edges between nodes in V . If

there is an edge e(k, j) ∈ E between node k and node j, then we say that agent k and

agent j are neighbors. Since the graph is undirected, e(k, j) ∈ E ⇐⇒ e(j, k) ∈ E .

Let dk be the number of neighbors of agent k.

Let ϕtk ∈ I and X t
k be random variables that denote the option chosen by agent

k and the reward received by agent k at time t, respectively. Let I{ϕtk=i} be a random

variable that takes value 1 if option i is chosen by agent k at time t and is 0 otherwise.

Let It{k,j} be a random variable that takes value 1 if agent k can observe agent j at

time t and is 0 otherwise.

In order to maximize the cumulative reward in the long run, agents need to both

identify the best options through exploring and sample the best options through

exploiting. Observing neighbors allows an agent to receive more information about

options and hence obtain better estimates about expected reward values of options.

This leads to less exploring and more exploiting, which reduces the regret an agent

receives due to sampling suboptimal options. However, since taking observations is
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costly, an agent is required to find a trade-off between the information gain and the

cost associated with observations. Let ck,j be the cost incurred by agent k when it

observes the instantaneous reward and choice of agent j at time step t. In this paper

we consider the case in which ck,j = c,∀j, k.

Let the number of times that agent k samples option i until time t be given by

the random variable nki (t) =
∑t

τ=1 I{ϕτk=i}. And let the total number of times that

agent k observes rewards from option i until time t be given by the random variable

Nk
i (t), where

Nk
i (t) =

t∑
τ=1

K∑
j=1

I{ϕτj=i}Iτ{k,j}.

We define a sampling rule based on the well known UCB (Upper Confidence

Bound) rule for a single agent [7]. The UCB rule chooses the option at time t that

maximizes an objective function that is the sum of an exploit term, equal to the

estimate of the reward mean at time t, and an explore term, equal to a measure of

uncertainty in that estimate at time t. Our sampling rule for agent k in the MAMAB

problem accounts for the observations of neighbors by using them to improve its

estimate and reduce its uncertainty. Let the estimate by agent k of the expected

reward from option i at time t be given by the random variable µ̂ki (t), where

µ̂ki (t) =
Ski (t)

Nk
i (t)

,

and Ski (t) =
∑t

τ=1

∑K
j=1XiI{ϕτj=i}Iτ{k,j} is the total reward observed by agent k from

option i until time t.
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Definition 4. The sampling rule {ϕtk}T1 for agent k at time t ∈ {1, . . . , T} is defined

as

I{ϕt+1
k =i} =

 1 , Qk
i (t) = max{Qk

1(t), · · · , Qk
N(t)}

0 , o.w.
(8.1)

with

Qk
i (t) = µ̂ki (t) + Ck

i (t) (8.2)

Ck
i (t) = σi

√
2(ξ + 1)

log t

Nk
i (t)

, (8.3)

where ξ > 1 is a tuning parameter that captures the trade-off between exploring and

exploiting.

To find a balance between information gain and observation cost we define an

observation rule for agents so that they choose to incur the cost of making observations

of neighbors only when observations are most needed, i.e., when their own uncertainty

is high. In the following observation rule, an agent observes the instantaneous rewards

and choices of all of its neighbors only when it is exploring, since it explores when

uncertainty is high. If agent k chooses the option at time t that corresponds to the

maximum of its estimates of reward means, µ̂k1(t), . . . , µ̂kN(t), then it is exploiting and

it does not observe its neighbors.

Definition 5. The observing rule It{k,j} for agent k at time t ∈ {1, . . . , T} and ∀j is

defined as

It+1
{k,j} =

 0 , ϕtk = i, s.t. µ̂ki (t)=max{µ̂k1(t), · · · , µ̂kN(t)}

1 , o.w.
(8.4)
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8.3 Performance Analysis

In this section we analyze the cumulative regret of agent k due to sampling suboptimal

options and observing neighbors when employing the sampling rule of Definition 4

and observation rule of Definition 5.

8.3.1 Sampling Regret Analysis

Let i be a suboptimal option. The total number of times agent k samples from option

i can be upper bounded as

nki (T ) =
T∑
t=1

I{ϕtk=i} ≤
T∑
t=1

I{Qki (t)≥Qk
i∗ (t)}.

Here I{Qki (t)>Qk
i∗ (t)} is an indicator function such that

I{Qki (t)>Qk
i∗ (t)} =

 1 , Qk
i (t) ≥ Qk

i∗(t)

0 , o.w.

Thus we have

E
(
nki (T )

)
≤

T∑
t=1

P
(
Qk
i (t) ≥ Qk

i∗(t)
)
.

Let Rk
s(T ) be the cumulative sampling regret of agent k from option i until time

T . Recall that the cumulative regret is defined as the loss incurred by sampling

suboptimal options. Define ∆i = µi∗ − µi. Then we have, from [44],

E
(
Rk
s(T )

)
=

N∑
i=1

∆iE
(
nki (T )

)
. (8.5)
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To analyze the expected number of samples from suboptimal options until time T ,

we first note that ∀i, k, t we have

{
I{ϕt+1

k =i}

}
⊆
{
Qk
i (t) ≥ Qk

i∗(t)
}
⊆
{
µi∗ < µi + 2Ck

i (t)
}

∪
{
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
}
∪
{
µ̂ki (t) ≥ µi + Ck

i (t)
}

and so

E
(
nki (T )

)
≤

T∑
t=1

P
(
µi∗ < µi + 2Ck

i (t)
)

+

T∑
t=1

P
(
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
)
+

T∑
t=1

P
(
µ̂ki (t) ≥ µi + Ck

i (t)
)
. (8.6)

Next we analyze concentration probability bounds on the estimates of options.

Theorem 8. For any ζ > 1 and for σi > 0 there exists a ϑ > 0 such that

P

(
µ̂ki (T )− µi >

√
ϑ

Nk
i (T )

)
≤ ν log(dk + 1)T

exp(2κϑ)

where

ν =
1

log ζ
, κ =

1

σ2
i

(
ζ

1
4 + ζ−

1
4

)2 .

The proof of Theorem 8 can be found in the paper [61]. Using symmetry we

conclude that

P

(∣∣∣µ̂ki (T )− µi
∣∣∣ >√ ϑ

Nk
i (T )

)
≤ ν log(dk + 1)T

exp(2κϑ)
.
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Lemma 2. For ϑ = 2σ2
i (ξ + 1) log T and ξ > 1 there exists a ζ > 1 such that

P

(∣∣∣µ̂ki (T )− µi
∣∣∣ > σi

√
2(ξ + 1) log T

Nk
i (T )

)
≤ ν log(dk + 1)T

T ξ+1
.

The proof of Lemma 2 can be found in the paper [61].

We proceed to upper bound the summation of the probabilities of the events{
µi∗ < µi + 2Ck

i (t)
}

for t ∈ {1, 2, . . . , T} as follows. Using equation (11.4) we have

that the inequality µi∗ < µi + 2Ck
i (t) implies

∆2
i

4σ2
i

(
Nk
i (t)

)2 − 2(ξ + 1) log t
(
Nk
i (t)

)
< 0.

This inequality does not hold for Nk
i (t) > ηi(t), where

ηi(t) =
8σ2

i (ξ + 1)

∆2
i

log t.

Thus we have

T∑
t=1

P
(
Qk
i (t) ≥ Qk

i∗(t), N
k
i (t) > ηi(t)

)
≤ ηi(T ). (8.7)

From the probability bounds given in Lemma 2 and (11.8), the total expected

number of times agent k samples suboptimal option i until time T is upper bounded

as

E
(
nki (T )

)
≤ 1

log ζ
(1 + log(dk + 1)) +

8σ2
i (ξ + 1)

∆2
i

log T

+
1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
(8.8)

where ζ, ξ > 1.
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From equation (8.5) the expected cumulative sampling regret of agent k until time

T is upper bounded as

E
(
Rk
s(T )

)
≤

N∑
i=1

∆i

log ζ
(1 + log(dk + 1))

+
8σ2

i (ξ + 1)

∆i

log T

+
N∑
i=1

∆i

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)

+
N∑
i=1

∆i

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
. (8.9)

8.3.2 Observation Regret Analysis

Recall that c is the constant unit cost associated with observations. Let Rk
o(T ) be

the cumulative observation regret of agent k at time step T. Then we have

Rk
o(T ) = c

T∑
t=1

K∑
j=1

It{k,j}.

This is equivalent to the number of observations taken by agent k until time T.

Expected cumulative observation regret can be expressed as

E
(
Rk
o(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
. (8.10)

So expected cumulative observation regret can be upper bounded by upper bounding

the expected number of observations until time T :

T∑
t=1

K∑
j=1

E
(
I{k,j}

)
= dk

T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}

)
. (8.11)
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To analyze the expected number of observation, we use

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}

)
=

P
(
ϕtk = i∗, µ̂ki∗(t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}

)
+ P

(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}, i 6= i∗

)
.

We first upper bound the expected number of times agent k observes its neighbors

until time T when it decides to explore after sampling a suboptimal option.

Lemma 3. For all suboptimal i 6= i∗ we have

T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}, i 6= i∗

)
≤ N − 1

log ζ
(1 + log(dk + 1)) +

N∑
i=1
i 6=i∗

8σ2
i (ξ + 1)

∆2
i

log T

+
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

The proof of Lemma 3 is given in the Appendix.

Next we analyze the expected number of times agent k observes its neighbors until

time T when it decides to explore after sampling the optimal option.

Note that ∀i, k, t we have

{ϕtk = i∗, µ̂i∗ 6= max{µ̂ki (t), · · · , µ̂kN(t)}} ⊆

{µ̂ki∗(t) ≤ µi∗ − Ck
i∗(t)}

∪ {µ̂ki∗(t) ≥ µi∗ − Ck
i∗(t),∃i, s.t.(µ̂ki (t) ≥ µi∗ − Ck

i∗(t)}.
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Thus we have

T∑
i=1

P
(
ϕtk = i∗, µ̂i∗ 6= max{µ̂ki (t), · · · , µ̂kN(t)}

)
≤

T∑
i=1

P
(
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
)

+

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), ∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)
)
.

From Lemma 2 we have

T∑
i=1

P
(
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
)
≤ 1

log ζ
(1 + log(dk + 1))

+
1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
. (8.12)

Theorem 9. For all suboptimal options i 6= i∗ we have

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t),∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)
)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T +
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
N − 1

log ζ
(1 + log(dk + 1))

+
N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

The proof of Theorem 9 is given in the Appendix.

Now we proceed to state the main result of this paper, which is that the total

expected cumulative observation regret until time T for agent k employing the sam-

pling rule given by Definition 4 and the observation rule given by Definition 5 is upper

bounded logarithmically in T .
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Theorem 10. Expected cumulative observation regret until time T for agent k can

be upper bounded as

E
(
Rk
o(T )

)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T

+
cdk(2N − 1)

log ζ
(1 + log(dk + 1))

+
cdk(2N − 1)

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
cdk(2N − 1)

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

Theorem 10 follows from equations (8.10)-(8.12), Lemma 3 and Theorem 9.

Remark 7. Note that for deterministic communication strategies [47, 48] the expected

cumulative observation regret until time T for agent k is linear in T :

E
(
Rk
o(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
= cdkT.

For the probabilistic observation strategy of [61] the expected cumulative observation

regret until time T for agent k is linear in T :

E
(
Rk
o(T )

)
= c

T∑
t=1

K∑
j=1

E
(
It{k,j}

)
= cdkpkT,

where pk is the observation probability of agent k. Thus, our proposed sampling rule

and observation rule outperform these strategies when there are cumulative observa-

tion costs.
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8.3.3 Total expected cumulative regret

Total expected cumulative regret E
(
Rk(T )

)
is defined as the summation of expected

cumulative sampling regret and expected cumulative observation regret until time T :

E
(
Rk(T )

)
=

N∑
i=1

E
(
Rk
i (T )

)
+ E

(
Rk
o(T )

)
.

Let
∑N

i=1 ∆i = ∆̃. Total expected cumulative regret until time T of agent k is upper

bounded as

E
(
Rk
s(T )

)
≤

N∑
i=1
i 6=i∗

8σ2
i (ξ + 1)

∆2
i

log T

∆̃ + cdk(2N − 1)

log ζ
(1 + log(dk + 1))

+
∆̃ + cdk(2N − 1)

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

∆̃ + cdk(2N − 1)

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
. (8.13)

8.4 Simulation Results

In this section we present numerical simulation results for a network of 6 agents with

underlying observation structure defined by the star graph: the center agent observes

all other agents and all other agents only observe the center agent. Agents other than

the center agent are interchangeable and their average regret and individual regret

are the same. We present numerical simulations to evaluate the performance of the

sampling rule and observation rule given by Definitions 4 and 5.

The 6 agents play the same MAB problem with 10 options. In all simulations

the reward distributions are Gaussian with variance σi = 5, i = 1, . . . , 10, and mean

values:
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i 1 2 3 4 5 6 7 8 9 10

µi 40 50 50 60 70 70 80 90 92 95
.

The communication cost c = 1. We set the sampling rule parameter ξ = 1.01. We

provide results for 1000 time steps with 1000 Monte Carlo simulations.

Figure 8.1 shows simulation results for the expected cumulative sampling regret

of a group of 6 agents using the proposed sampling and observation rules. The blue

dashed line shows regret of the center agent. The green dash-dot line shows the av-

erage regret of the agents not in the center. The red dotted line shows the average

expected cumulative sampling regret over all agents. It can be observed that the

expected cumulative sampling regret is logarithmic in time. For comparison, we plot

the average expected cumulative regret of the agents when they make no observa-

tions of neighbors (solid gold line). When agents are not making observations they

are interchangeable, and so the average performance and the individual performance

are the same. The simulation results illustrate that the performance of every agent

improves significantly when it observes neighbors according to the proposed proto-

col. The simulation results further show that the center agent outperforms the other

agents. This is to be expected since the center agent has more neighbors than the

other agents.

Figure 8.2 shows simulation results for expected observation regret. It can be seen

that the expected observation regret is logarithmic in time, as proved in Theorem 10.

Since the center agent has more neighbors than the others agents, its observation

regret is the highest. However, the results illustrate that when observation cost is

small, a significant performance improvement can be obtained for a small observation

regret.

100



0 500 1000

Time (T)

0

500

1000

1500

S
am

p
li
n

g
R

eg
re

t

No Observation

Center Agent

Non center Agent

Average

Figure 8.1: Dashed and dotted lines show expected cumulative sampling regret of
the agents using the sampling rule and observation rule of Definitions 4 and 5 with
underlying star observation structure. The solid line shows the average performance
of agents when they are not observing their neighbors.
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Figure 8.2: Dashed and dotted lines show expected cumulative observation regret of
the agents using the sampling rule and observation rule of Definitions 4 and 5 with
underlying star observation structure. The solid line shows that agents do not suffer
from any observation regret when they do not observe their neighbors.

8.5 Conclusions

We studied an MAMAB problem where agents can observe the instantaneous choices

and rewards of their neighbors but incur a cumulative cost each time they make an

observation of a neighbor. We proposed a sampling rule and an observation rule in

which an agent observes its neighbors only when it has decided to explore. We defined

total expected cumulative regret to be the regret agents receive due to sampling sub-

optimal options and to observing neighbors. Deterministic and stochastic observation

strategies for MAB protocols in the literature yield an expected cumulative observa-

tion regret that is linear in time T . We analytically proved that under the proposed

sampling and observation rules, expected cumulative regret of each agent is bounded
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logarithmically in T . Accuracy of the upper bound has been verified computationally

through numerical simulations.

8.6 Appendix

Proof. Note that ∀i, k, t we have

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}, i 6= i∗

)
≤

E
(
I{ϕtk=i}

)
.

Then we have

T∑
t=1

P
(
ϕtk = i, µ̂ki (t) 6= max{µ̂k1(t), · · · , µ̂kN(t)}, i 6= i∗

)
≤

T∑
t=1

N∑
i=1

E
(
I{ϕtk=i}

)
.

Lemma 3 follows from equation (8.8).

Proof. Let i be a suboptimal option with highest estimated expected reward for agents

k at time t. Then we have i = arg max{µ̂k1(t), · · · , µ̂kN(t)} and i 6= i∗. If the agent k

chooses option i∗ at time step t+1 we haveQk
i∗(t) > Qk

i (t). Thus we have µ̂ki (t) > µ̂ki∗(t)

and Ck
i (t) < Ck

i∗(t).

Note that for some βki (t) > 0 we have

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), µ̂
k
i (t) ≥ µ̂ki∗(t)

)
= βki (t)

+ P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), µ̂
k
i (t) ≥ µ̂ki∗(t), N

k
i∗(t) ≥ βki (t)

)
.
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Let βki (t) = 8σi(ξ+1)

∆2
i

log t. Then we have

T∑
t=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), µ̂
k
i (t) ≥ µ̂ki∗(t)

)
= βki (T )

+
T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), µ̂
k
i (t) ≥ µ̂ki∗(t), N

k
i∗(t) ≥ βki (t)

)
.

Since Ck
i (t) < Ck

i∗(t) we have

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), µ̂
k
i (t) ≥ µ̂ki∗(t), N

k
i∗(t) ≥ βki (t)

)
≤

T∑
t=1

P
(
µ̂ki (t) ≥ µi + Ck

i (t)
)

≤ βki (T ) +
1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+

1

log ζ
(1 + log(dk + 1))

+
1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.

Then we have

T∑
i=1

P
(
µ̂ki∗(t) ≥ µi∗ − Ck

i∗(t), ∃i, s.t.(µ̂ki (t) ≥ µ̂ki∗(t)
)
≤

N∑
i=1

8σi(ξ + 1)

∆2
i

log T +
N − 1

2ξ log ζ

(
log(dk + 1)

ξ
+

2

ξ − 1

)
+
N − 1

log ζ
(1 + log(dk + 1))

+
N − 1

T ξ−1 log ζ

(
log(dk + 1)

Tξ
+

1

ξ − 1

)
.
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Chapter 9

When to Call Your Neighbor?

Strategic Communication in

Cooperative Stochastic Bandits

Udari Madhushani and Naomi Ehrich Leonard

In cooperative bandits, a framework that captures essential features of collective

sequential decision making, agents can minimize group regret, and thereby improve

performance, by leveraging shared information. However, sharing information can

be costly, which motivates developing policies that minimize group regret while also

reducing the number of messages communicated by agents. Existing cooperative ban-

dit algorithms obtain optimal performance when agents share information with their

neighbors at every time step, i.e., full communication. This requires Θ(T ) number of

messages, where T is the time horizon of the decision making process. We propose

ComEx, a novel cost-effective communication protocol in which the group achieves the

same order of performance as full communication while communicating only O(log T )

number of messages. Our key step is developing a method to identify and only com-

municate the information crucial to achieving optimal performance. Further we pro-
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pose novel algorithms for several benchmark cooperative bandit frameworks and show

that our algorithms obtain state-of-the-art performance while consistently incurring

a significantly smaller communication cost than existing algorithms.

9.1 Introduction

Sequential decision making in uncertain environments has been extensively studied

over the past several decades due to its wide range of real world applications including

recommender systems, user-targeted online advertising [89], clinical trials [22] and

target searching (e.g. finding nuclear or a temperature source) in robotics. Making

optimal decisions under uncertainty requires striking a balance between exploring the

environment to identify better decisions and exploiting the decisions that are already

known to produce higher outcomes. In collective decision making, i.e., a group of

agents making sequential decisions, performance can be greatly improved through

cooperative communication by sharing information about the environment. However,

often times communication is time consuming and expensive. For example, consider a

recommender systems, in which multiple servers networked to handle high demands.

In this case high communication between servers can lead to service latency. Similarly,

for a group of robots, communication can increase battery power consumption. Thus

the cost associated with communication makes it desirable to reduce the amount of

shared information. Motivated by this we ask:

Can we minimize communication without sacrificing performance in sequential

decision making?

A crucial step in answering this question is, identifying which information is most

valuable. We study this problem in bandit framework, which models sequential de-

cision making in uncertain environments [44]. In stochastic bandits, an agent re-

peatedly pulls an arm from a given set of arms and receives a reward drawn from the
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probability distribution associated with the arm. The goal is maximizing cumulative

reward. In an uncertain environment, the agent is required to execute a combination

of exploiting actions, i.e., pulling the arms that are known to provide high rewards,

and exploring actions, i.e., pulling lesser known arms in order to identify arms that

might potentially provide higher rewards [7]. In cooperative bandits a group of agents

are faced with the same bandit problem and the goal is maximizing cumulative group

reward [47]. Agents can obtain optimal performance by sharing all information they

obtained about the arms, i.e., full communication. Thus more specifically we ask how

we can minimize communication while obtaining same level of performance as full

communication?

In cooperative bandits it is most useful for agents to obtain information about

suboptimal arms. Each agent can reduce the number of pulls drawn from suboptimal

arms by leveraging communication to reduce the uncertainty associated with the esti-

mates of suboptimal arms. Any efficient stochastic bandit algorithm pulls suboptimal

arms logarithmically in time. Thus, when communication is costly, it is desirable to

communicate reward values received from suboptimal arms only. Thus our problem

effectively reduces to identifying when is it more likely to pull a suboptimal arm?

We solve this problem by proposing ComEx, a new communication protocol, in

which agents only communicate the rewards they receive from exploring actions. This

is because exploring actions, typically lead to pulling suboptimal arms. Combining

ComEx with a cooperative Upper Confidence Bound (UCB) sampling rule [42], we

prove that ComEx obtains the same order of performance as full communication, while

incurring a significantly smaller communication cost than full communication. We

analyze performance of the algorithm using expected group cumulative regret, which

is defined as the total expected loss suffered by agents due to pulling suboptimal

arms. Measuring the communication cost by the number of messages shared by
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agents, we prove that with ComEx agents only suffer a O(log T ) cost while with full

communication they suffer a Θ(T ) cost.

We show that ComEx can be incorporated in a wide range of cooperative bandit

algorithms to obtain same order of performance as full communication for a signifi-

cantly smaller communication cost than full communication. Incorporating ComEx,

we propose novel algorithms for bench mark cooperative bandit frameworks: decen-

tralized bandits with 1.) instantaneous rewards sharing, 2.) message passing, 3.)

estimate sharing and centralized bandits with 4.) instantaneous rewards sharing 5.)

message passing. We propose another algorithm by combining ComEx with mes-

sage passing and Thompson sampling. Further we provide results illustrating that

our algorithms obtain state-of-the-art performance while consistently incurring a sig-

nificantly smaller communication cost than existing algorithms in these benchmark

frameworks.

Key contributions. We make following key contributions in this work:

• We propose ComEx, a novel and cost-effective communication protocol for co-

operative bandits.

• We provide theoretical guarantees that ComEx obtains the same order group

regret as full communication while incurring a O(log T ) communication cost.

In contrast, full communication incurs a Θ(T ) communication cost.

• Incorporating ComEx, we propose novel algorithms in several benchmark co-

operative bandit frameworks. We provide both theoretical guarantees and ex-

perimental results validating state-of-the-art performance of our proposed algo-

rithms.
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9.2 Related work

Decentralized reward sharing. In decentralized reward sharing agents share in-

stantaneous rewards with their neighbors [14, 42, 62, 59, 62, 94]. The paper [42]

considered that neighbors are defined according to a fixed communication graph and

provide graph structure dependent regret bounds. The paper [14, 61, 63, 65] studied

the cooperative bandit problem with time varying communication structures. The

papers [13, 10, 19] considered message passing communication rules where each agent

initiates a message and send the message to its neighbors. A message received from

a neighbor is subsequently forwarded to other neighbors.

Decentralized estimate sharing. In estimate sharing each agent share the es-

timated average reward and number of arm pulls from each arm with its neighbors

defined according to a fixed communication graph. The paper [84] considered a P2P

communication where an agent is only allowed to communicate with two other agents

at each time step. The papers [47, 46, 66, 49] used a running consensus algorithm to

update estimates and provide graph-structure-dependent performance.

Centralized leader-follower setting. A communication strategy where agents

observe the rewards and choices of their neighbors according to a leader-follower

setting is considered in [48, 42, 94]. In [48, 42], followers pull the last arm pulled by

their neighbors. In [94] one leader explores and estimates the mean reward of arms,

while all other agents pull the arm with highest estimated mean per the leader.

Communication cost. The paper [86] considered a pure exploration bandit prob-

lem and measures the communication by the number of times agents communicate.

The paper [63] proposed a communication protocol where agents observe their neigh-

bors when they have high uncertainty about arms. [94] proposed a leader-follower

algorithm with a constant communication cost. The paper [95] proposed an algorithm
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that achieves near-optimal performance where agents achieve sublinear expected re-

gret. In their work, communication cost is independent of time and measured by the

amount of data transmitted.

Distributed Thompson sampling. Recently [92, 45] proposed distributed

Thompson sampling rules. The paper [92] studied the problem with sparse com-

munication structures. The paper [45] provided regret guarantees that matches the

corresponding centralized regret guarantees.

9.3 ComEx: Communicate When Exploring

In this section we provide mathematical formulation and and intuition of our com-

munication protocol.

Notations. For any positive integer M we denote the set {1, 2, . . . ,M} as [M ]. We

define 1{x} as an indicator variable that takes value 1 if x is true and 0 otherwise.

Further, we use X\x to denote the set X excluding the element x. We use |X| to

denote the number of elements in set X. For any general graph G we define χ̄(G), γ̄(G)

as clique covering number and dominating number respectively. We use Gγ to denote

the γth power graph of G. Let g(M,x) = M +
∑N

i=1 (12 log(3(x+ 1)) + 3 log (x+ 1)) .

Cooperative stochastic bandits. We consider the cooperative bandit problem

with K arms and N agents. Reward distributions of each arm k ∈ [K] is assumed to

be sub-Gaussian with mean µk and variance proxy σ2
k. At each time step t ∈ [T ] each

agent i ∈ [N ] pulls an arm A
(i)
t and receives a numerical reward X

(i)
t drawn from the

probability distribution associated with the pulled arm. Without loss of generality

we assume that µ1 ≥ µ2 . . . ≥ µK and define ∆k := µ1−µk, ∀k > 1 to be the expected

reward gap between optimal arm, i.e., the arm with highest mean reward, and arm k.
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Let ∆̄ := mink 6=1,k∈[K] ∆k be the minimum expected reward gap. We make following

assumptions.

Assumptions:

(A1) When more than one agent pulls the same arm at the same time they receive

rewards independently drawn from the probability distribution associated with the

pulled arm.

(A2) All the agents know σ2 ≥ σ2
k,∀k, an upper bound of the variance proxy

associated with arms.

Communication over a general graph. Let G(V,E) be a general graph that

encodes the hard communication constraints among agents. The vertex set V is

the set of agents [N ] and each edge (i, j) ∈ E indicates that agents i and j are

neighbors. We consider that agents directly communicate with their neighbors only.

Let 1{(i, i) ∈ E} = 1, ∀i. At each time step t we define the communication between

agents by Gt(V,Et) where Et ⊆ E. Let d(i) be the degree of agent i. Let Gγ denote the

γth power graph of G. Denote d
(i)
γ to be the degree of agent i in graph Gγ, i.e., number

of agents within a distance of γ from agent i in graph G. For any γ let d
(i)+

γ = d
(i)
γ +1.

We denote m
(i)
t as the message shared by agent i at time t with its neighbors.

This can be either a single message containing information about a particular arm

pull, typically the last arm pull of agent i, or a concatenation of information about

several arm pulls by more than one agent over several previous time steps. We define

n
(i)
k (t) :=

∑t
τ=1 1

{
A

(i)
τ = k

}
and N

(i)
k (t) :=

∑t
τ=1

∑N
j=1 1

{
A

(j)
τ = k

}
1{(i, j) ∈ Eτ} to

be the number of times until time step t that agent i pulled arm k and observed

reward values from arm k, respectively. Note that the number of observations N
(i)
k (t)

is the sum of the number of pulls drawn by agent i of arm k and the number of times

agent i received reward values of arm k from its neighbors. Let µ̂
(i)
k (t) denote agent

i’s estimated average reward of arm k at time t.
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Regret and communication cost. Following the convention we define regret as

the loss suffered by agents due to pulling suboptimal arms. Let R(t) be the cumulative

group regret at time t. Then the expected cumulative group regret can be given as

E [R(t)] :=
∑N

i=1

∑K
k=2 ∆kE[n

(i)
k (t)]. We define the communication cost as the number

of messages shared by agents. We consider the cost of sharing a concatenated message

to be the number of single messages included in it. Let L(t) be the cumulative group

communication cost at time t. Then, the expected group communication cost can be

given as E[L(t)] :=
∑N

i=1

∑t
τ=1 E

[∣∣∣m(i)
τ

∣∣∣] .
Proposed communication protocol: ComEx. We propose ComEx, a cost-

effective partial communication protocol that obtains same order of performance as

full communication.
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Algorithm 2: ComEx

Input: Bandit environment, algorithm

parameters

for each iteration t ∈ [T ] do

for each agent i ∈ [N ] do

// Sampling phase

Sampling rules: Cooperative UCB,

Cooperative Thompson

// Message generating phase

// Replace full communication with ComEx

if A
(i)
t 6= arg maxk µ̂

(i)
k (t− 1) then

Create
(
m

(i)
t :=

〈
i, t, A

(i)
t , X

(i)
t

〉)
end

end

for each agent i ∈ [N ] do

// Communication phase

Communication rule: Decentralized (or

centralized) instantaneous reward

sharing, Decentralized (or centralized)

message passing

// Estimate updating phase

end

for each arm k ∈ [K] do

Calculate
(
µ̂

(i)
k (t), N

(i)
k (t)

)
end

end

Cooperative Bandits

Thompson

Message passing
ComEx-ThompsonUCB

Decentralized

Centralized

Message passing
ComEx-UCB

ComEx-MPUCB
UCB-Network
MP-UCB(D)

Estimate sharing
ComEx-EstUCB

Coop-UCB2

Message passing
ComEx-LFUCB

FYL
UCB-Partition
MP-UCB(C)

Figure 9.1: A summary
of our proposed algorithms
and existing state-of-the-
art algorithms for different
cooperative bandit frame-
works.

As motivated above, information about suboptimal arms is most valuable to agents

seeking to maximize expected cumulative reward. This is because, with information
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from neighbors on a suboptimal arm, an agent can obtain a sufficiently accurate

estimate of the expected reward of the suboptimal arm without having to pull the

arm by itself. Agents typically pull suboptimal arms when they are exploring. Thus,

to provide the means to maintain high performance with low communication costs,

we propose a new communication protocol as follows in which agents only share

information they obtained through exploring.

Definition 6. (ComEx communication protocol) Each agent i initiates sharing the

message m
(i)
t :=

〈
i, t, A

(i)
t , X

(i)
t

〉
if A

(i)
t 6= arg maxk∈[K] µ̂

(i)
k (t− 1)

Note that according to the above communication protocol agents initiate sharing

messages only about the rewards received from the arms that are instantaneously

suboptimal i.e., arm that does not have the maximum estimated expected reward.

This maximizes the chance of sharing information about suboptimal arms.

Generalizability of ComEx. As we will demonstrate in next few sections, our

communication protocol is an easily implementable general communication protocol

that can be incorporated in a wide range of cooperative bandit algorithms. We

illustrate the generality by proposing novel algorithms incorporating ComEx in several

cooperative bandit frameworks. Figure 9.3 provides a summary of our algorithms and

state-of-the-art algorithms in several benchmark cooperative bandit frameworks.

9.4 Decentralized Cooperative Bandits

In this section we propose novel algorithms for decentralized cooperative bandits.

9.4.1 Decentralized instantaneous reward sharing UCB

We present our first algorithm ComEx-UCB by combining the above communication

protocol with instantaneous reward sharing. Each agent follows a sampling rule that
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balances exploiting with exploring. We use a natural extension of Upper Confidence

Bound (UCB) algorithm as a sampling rule. In UCB at each time step t for each arm

k each agent i constructs an upper confidence bound, i.e., the sum of its estimated

expected reward (empirical average of the observed rewards) and the uncertainty

associated with the estimate C
(i)
k (t) := σ

√
2(ξ+1) log t

N
(i)
k (t)

where ξ > 1, and pull the arm

with highest bound. If the pulled arm is instantaneously suboptimal, the agent sends

a message m
(i)
t :=

〈
A

(i)
t , X

(i)
t

〉
to its neighbors (see Definition 6). Note that under

this communication rule agents do not share concatenated messages. Thus passing

information about time step and agent id is redundant. Pseudo code for ComEx-UCB

is given in Appendix 9.10.12.

Theorem 11. (Group regret of ComEx-UCB) Consider a group of N agents follow-

ing ComEx-UCB while sharing instantaneous rewards over a general communication

graph G. Then for any ξ ≥ 1.1 expected cumulative group regret satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

χ̄(G) log T +
K∑
k=2

∆kg(4N, d(i))

Proof sketch. We follow an approach similar to the standard UCB analysis [7,

19] with a few key modifications. We partition the communication graph into a

set of non overlapping cliques and analyze the regret of each clique and take the

summation over cliques to obtain the regret of the group. When agents are using

full communication group regret can be given as the summation of a log T term that

scales with the clique covering number χ̄(G) and a term, which is independent of

T. The second term depends on the summation of tail probabilities of arms, i.e.,

P
(∣∣∣µ̂(i)

k (t)− µk
∣∣∣ ≥ C

(i)
k (t)

)
. For full communication a similar result can be found in

[19]. Note that full communication is a deterministic communication protocol and

ComEx-UCB is a stochastic communication protocol that depends on the decision

making process. Two major technical challenges in proving the regret bound for
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ComEx-UCB are 1.) deriving a tail probability bound for the case in which the

communication between agents are stochastic and 2.) bounding the additional regret

incurred by not sharing information when pulling the arm with highest estimated

average reward, i.e., A
(i)
t = arg maxk∈[K] µ̂

(i)
k (t − 1). We overcome the first challenge

by noticing that communication random variables 1{(i, j) ∈ Et},∀i, j, t are previsible,

i.e., measurable with respect to the sigma algebra generated by information obtained

up to time t − 1. We address the second challenge by proving that the number of

times agents do not share information about any suboptimal arm k can be bounded

by tail probabilities of arm k and the optimal arm. A complete proof of Theorem 17

is given in Appendix ??. �

Remark 8. By replacing ComEx with full communication in ComEx-UCB

algorithm agents obtain an expected cumulative group regret of E [R(T )] =

O (Kχ̄(G) log T +KN) (Appendix H ). Thus from Theorem 17 we see that ComEx

obtains the same order of performance as full communication.

Recall that expected communication cost under full communication is Θ(T ). Now

we prove that expected communication cost under ComEx is logarithmic in time. In

ComEx-UCB algorithm agents are only sending single messages (not concatenated).

Thus expected group communication cost at time step t can be given as E [L(t)] =∑N
i=1

∑T
τ=1 P

(
A

(i)
τ 6= arg maxk∈[K] µ̂

(i)
k (τ − 1)

)
.

Theorem 12. (Communication cost of ComEx-UCB) Consider a group of N agents

following ComEx-UCB while sharing instantaneous rewards over a general communi-

cation graph G. Then for any ξ ≥ 1.1 expected group communication cost satisfies:

E [L(T )] ≤8σ(ξ + 1)

[
N

∆̄2
+

K∑
k=2

χ̄(G)

∆2
k

]
log T +Kg

(
7N, d(i)

)
Proof sketch. Note that expected group communication cost is the sum of 1.)

expected number of times agents pull any suboptimal arm when it is instantaneously

115



suboptimal and 2.) expected number of times agents pull the optimal arm when it

is instantaneously suboptimal. We note that the first term can be directly bounded

by the expected number of times agents pull suboptimal arms. We prove that the

second term can be bounded logarithmically in time. A detailed proof of Theorem

12 is given in Appendix ??. �

9.4.2 Decentralized message passing UCB

We propose ComEx-MPUCB an improved version of ComEx-UCB by incorporating

a message passing method [?, 10, 19] that allows agents to share the messages they

initiated with agents who are within a distance of γ. We call γ communication density

parameter. We consider that at time t each agent i initiates a message m
(i)
t :=〈

i, t, A
(i)
t , X

(i)
t

〉
according to ComEx given in Definition 6 and sends the messages to

its neighbors. Subsequently the agents who receive the message forward it to their

neighbors. Messages received at time t are forwarded to neighbors at time t + 1

resulting that each hop adds a delay of 1 time step. Under this message passing

method γ-hop neighbors receive the message after a delay of γ time steps. Agents do

not forward the messages that are older than γ − 1 and discard the messages that

are older than γ. Note that for a connected graph maximum number of time step

required to pass a message between any two agents equals to the diameter of the

graph. Thus we choose γ to be an integer constant which is at most diameter of the

communication graph G. The pseudo code for ComEx-MPUCB is given in Appendix

9.11.

Theorem 13. (Group regret of ComEx-MPUCB) Consider a group of N agents

following ComEx-MPUCB. Then for any ξ ≥ 1.1 expected cumulative group regret
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satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

χ̄(Gγ) log T +
K∑
k=2

∆k

[
(N −X (Gγ))(γ − 1) + g

(
4N, d(i)

γ

)]
Proof sketch. We see that regret under ComEx-MPUCB can be given as the

summation of regret of ComEx-UCB when communication graph is Gγ and the regret

incurred by the delay in passing messages to agents who are not 1-hop neighbors. We

prove that the expected regret due to delay is at most (N − χ̄(Gγ))(γ−1). A detailed

proof is provided in Appendix 9.10.3. �

Remark 9. Similar to ComEx-UCB by replacing ComEx with full communication

in ComEx-MPUCB algorithm agents obtain an expected cumulative group regret of

E [R(T )] = O (Kχ̄(Gγ) log T +KN) (Appendix H ). Thus from Theorem 18 we see

that ComEx obtains the same order of performance as full communication.

Now we proceed to prove that expected group communication cost under ComEx-

MPUCB is logarithmic in time.

Theorem 14. (Communication cost of ComEx-MPUCB) Consider a group of N

agents following ComEx-MPUCB with communication density parameter γ. Then for

any ξ ≥ 1.1 expected group communication cost satisfies:

E [L(T )] ≤
[

8(ξ + 1)σ

[
N

∆̄2
+

K∑
k=2

χ̄(Gγ)

∆2
k

]
log T +K [(N − χ̄(Gγ)(γ − 1)]

]
N∑
i=1

d
(i)+

γ−1

+K
N∑
i=1

d
(i)+

γ−1 · g
(
7N, d(i)

γ

)
Proof sketch. Note that under ComEx-MPUCB agents send concatenated mes-

sages to their neighbors. Recall that agents do not forward the messages that are

older than γ − 1. Thus each message initiated by agent i is subsequently for-

warded by all agents who are within distance of γ − 1 in graph G. Thus we have
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E [L(t)] ≤ ∑N
i=1d

(i)+

γ−1

∑t
τ=1 P

(
A

(i)
τ 6= arg maxk∈[K] µ̂

(i)
k (τ − 1)

)
. A detailed proof can

be found in Appendix 9.10.4. �

9.5 Centralized Cooperative Bandits

We propose ComEx-LFUCB by combining ComeEx communication protocol with a

leader-follower method [42, 48, 19, 94]. ComEx-LFUCB provides better performance

compared to its decentralized counter part ComEx-MPUCB. Let V ′γ be the set of

vertices in minimal dominating set of graph Gγ. We consider each agent i ∈ V ′γ

to be a leader and all the other agents to be followers. Note that every follower

has at least one leader as a neighbor. We consider that each leader uses ComEx-

MPUCB and each follower copies the last action observed from its leader. For each

follower j a leader i is assigned such that d(i, j) = mini′ d(i′, j) where d(i, j) is the

distance between agent i and agent j in graph G. Let N i
γ be the set of follower of

leader i. We consider that each leader sends a message containing the id of the arm

it pulls and whether it is instantaneously suboptimal, i.e. for i ∈ V ′γ at time step

t, m
(i)
t :=

〈
i, t, A

(i)
t ,1

{
A

(t)
i 6= arg maxk∈[K] µ̂

(i)
k (t− 1)

}〉
to its neighbors and they

subsequently forward it to their neighbors. Note that at time step t follower j ∈ N (i)
γ

pulls the arm A
(i)
t−d(i,j). Each follower pass a message containing information about the

reward and arm id if it pulls an arm that is specified as instantaneously suboptimal

by its leader. Thus the followers communicate according to ComEx by initiating a

message as follows. Follower j ∈ N (i)
γ initiates a message m

(j)
t :=

〈
j, t, A

(j)
t , X

(j)
t

〉
if A

(i)
t−d(i,j) 6= arg maxk∈[K] µ̂

(i)
k (t − d(i, j) − 1). Accordingly under full communication

followers share their rewards and arm pulls at every time step. Pseudo code for

ComEx-LFUCB is provided in Appendix 9.12.

Theorem 15. (Group regret of ComEx-LFUCB) Consider a group of N agents

following ComEx-LFUCB with communication density parameter γ. Then for any
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ξ ≥ 1.1 expected cumulative group regret satisfies:

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

γ̄(Gγ) log T +
K∑
k=2

∆k

[
(N − γ̄(Gγ))(3γ − 1) + γ̄(Gγ) · g(4N, d(i)

γ )
]

Proof sketch. We follow a similar approach to the proof of Theorem 18 with a few

key modifications followed by the argument below. Note that number of suboptimal

arm pulls by each j ∈ N (i)
γ can be upper bounded using suboptimal arm pulls by i

and message passing delay. Note that message passing delay can be upper bounded

by d(i, j). A detailed proof of Theorem 15 is given in Appendix 9.10.5. �

Remark 10. Similar to ComEx-MPUCB by replacing ComEx with full communica-

tion in ComEx-LFUCB algorithm, i.e. allowing followers to share information about

arm pulls at every time step, agents obtain an expected cumulative group regret of

E [R(T )] = O (Kγ̄(Gγ) log T +KN) (Appendix H ). Thus from Theorem 15 we see

that ComEx obtains the same order of performance as full communication.

Now we provide theoretical guarantees that expected group communication cost

under ComEx-LFUCB is logarithmically bounded in time.

Theorem 16. (Communication cost of ComEx-LFUCB) Consider a group of N

agents following ComEx-LFUCB with communication density parameter γ. Then for

any ξ ≥ 1.1 expected group communication cost satisfies:

E [L(T )] ≤
[

8(ξ + 1)σ

[
N

∆̄2
+

K∑
k=2

γ̄(Gγ)

∆2
k

]
log T +K [(N − 3γ̄(Gγ)(γ − 1)]

]
N∑
i=1

d
(i)+

γ−1

+K
N∑
i=1

d
(i)+

γ−1 · γ̄(Gγ · g
(
7N, d(i)

γ

)
Proof sketch. Note that the expected number of times a leader initiates a message

can be upper bounded by twice the expected number of its suboptimal arm pulls.

Further the number of times each follower j ∈ N (i)
γ initiates a message can be bounded

by the number of instantaneously suboptimal arms pulled by the leader i. Similar
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to ComEx-MPUCB in ComEx-LFUCB agents send concatenated messages to their

neighbors. Thus each message initiated by any agent i is subsequently forwarded by

all agents who are within distance of γ−1 in graph G. A detailed proof can be found

in Appendix 9.10.6. �

Remark 11. Algorithm and results provided in this Section can be specialized to

centralized cooperative bandits with instantaneous reward sharing by substituting γ =

1.

Remark 12. (Upper bound on communication cost) Although smaller ∆k values lead

to larger upper bounds for each algorithm (with communication density γ) presented

in Section 9.4 and 9.5 communication cost is upper bounded by T
∑N

i=1 d
(i)+

γ−1.

9.6 Additional Algorithms

We propose two more algorithms, thus extending ComEx to additional cooperative

bandit frameworks. We leave providing theoretical guarantees for these as future

work.

Estimate sharing. We propose ComEx-EstUCB by combining ComEx with es-

timate sharing [46, 66, 49], which obtains better performance than instantaneous

reward sharing. In estimate sharing, for each arm k, agents maintain estimated sum

of rewards and estimated number of pulls from the arm. At each time step, agents

average their estimates with their neighbors according to a consensus protocol and

update the estimates by incorporating the information of arm pull at that time step.

We refer readers to [49] for more details. In ComEx-EstUCB agents only average

estimates of instantaneously sub optimal arms. Pseudo code for ComEx-EstUCB is

given in Appendix 9.13.
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Thompson sampling. We extend our communication protocol to cooperative

Thmpson bandits as follows. We propose ComEx-MPThompson, a new algorithm

by replacing UCB sampling rule with Thompson sampling rule in ComEx-MPUCB

as follows. We combine ComEx with message passing and a natural extension of

Thompson sampling to cooperative bandits. Here we provide a brief description

of cooperative Thompson sampling rule and refer readers to [45] for more details.

Algorithm is initialized by each agent assigning a suitable prior distribution to each

arm. Typically Gaussian priors are used for Gaussian reward distributions and Beta

priors are used for Bernoulli distributions. At each time step each agent constructs

a posterior distribution for each arm using prior distribution and available reward

information at that time step. Each agent draws a sample from posterior distribu-

tions associated with each arm and pull the arm with highest sampled value. Agents

initialize messages according to ComEx and pass the messages to neighbors using a

similar protocol given in ComEx-MPUCB. Pseudo code for ComEx-MPThompson is

given in Appendix 9.14.

9.7 Experimental Results

In this section we provide numerical simulations illustrating our results and validating

our theoretical claims. All the experiments were run on the first author’s personal

laptop. We show that ComEx obtains same order of performance, i.e., same order

of group regret, as full communication for a significantly smaller communication cost

than full communication. We also demonstrate that our algorithms outperform state-

of-the-art algorithms in several bandit frameworks.

Experimental setup. We provide simulation results for following cooperative ban-

dit frameworks 1) decentralized instantaneous reward sharing, 2) decentralized mes-

sage passing, 3) decentralized estimate sharing, 4) centralized leader-follower, and 5)
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Figure 9.2: A comparison of expected cumulative group regret and communication cost
of our algorithms and existing state-of-the-art algorithms in several benchmark cooperative
bandit frameworks.

Thompson sampling. We compare performance of our algorithms (ComEx-UCB,

ComEx-MPUCB, ComEx-EstUCB, ComEx-LFUCB and ComEx-Thompson) with

their corresponding full communication algorithms (Full-UCB, Full-MPUCB, Full-

EstUCB, Full-LFUCB and Full-Thompson) and state-of-the art algorithms in each

framework. For all simulations presented in this section we consider 10 arms (K = 10),

100 agents (N = 100) and 500 time steps (T = 500). Communication graph between

agents is considered to be a Erdos Renyi random graph with edge probability 0.7.

Results are averaged over 100 Monte Carlo simulations. Additional experimental re-

sults for different graph structures and parameters (ξ, γ) are provided in Appendix

9.10.11.

Hyper parameters We use tuning parameter ξ = 1.01 for UCB based algorithms.

For results provided in Figure 10.3(b)-10.3(e) we use communication density param-

eter γ = 5. None of the competing algorithms, except UCB-Coop2, MP-UCB(D) and

MP-UCB(C) have hyperparameters. We tuned parameters of UCB-Coop2 to get best

results of that algorithm and used κ = 0.02, γ′ = 1.001, η = 0.001 (Equations 9 and 15

in [49]. Here we γ′ to avoid confusing with communication parameter γ used in this

paper) for final results. Decreasing γ′ below 1.001 and η below 0.001 did not offer any
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significant improvement. MP-UCB(D) and MP-UCB(C) are originally proposed in

[19] for heavy-tailed distributions, and we adapt them to sub-Gaussian distributions

as directed by the authors. For MP-UCB(D) and MP-UCB(C) we considered the

same C
(i)
k (t) as in our algorithms. Thus we used the same ξ = 1.01 value for a fair

comparison.

For results provided in Figures 10.3(a) and 10.3(d), we consider reward distri-

butions to be bounded [0, 1]. We consider triangle distributions with mod 1 for the

optimal arm and mod 0 for all sub-optimal arms. In simulations provided in Figures

10.3(b), 10.3(c) and 10.3(e) we consider Gaussian reward distributions. Expected

reward for the optimal arm is µ1 = 11 and for all sub-optimal arms k > 1 is µk = 10.

We let variance associated with all arms be σ2
k = 1,∀k. We use the notation Obs-UCB

to denote the algorithm presented in [63].

ComEx obtains same order of performance as full communication. Our

results in Figure 10.3 illustrate that ComEx obtains the same order of performance,

i.e., same order of group regret, as full communication. From Comparing Figures

10.3(a) and 10.3(b) we see that performance difference between full communication

and ComEx decrease when communication density γ increase. Comparing Figure

10.3(e) with others we see that performance difference between full communication

and ComEx is smaller when agents are using UCB based sampling rules and Thomp-

son based sampling rules. All results illustrate that our algorithms consistently out

preforms state-of-the-art algorithms in all five benchmark cooperative bandit frame-

works.

ComEx only incurs a logarithmic communication cost. Our simulation

results also illustrate that ComEx only incurs a logarithmic communication cost. In

Figure 10.3(a) we observe that Obs-UCB also incurs a logarithmic cost. However

ComEx-UCB incurs a smaller cost than Obs-UCB while suffering a smaller group re-
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gret. Further, results illustrate that ComEx enabled algorithms incurs a significantly

smaller communication cost compared to existing state-of-the-art algorithms.

Additional discussion. State-of-the-art algorithm for leader-follower setting is

DPE2 in [94]. DPE2 uses a phased communication protocol, where during the leader

selection phase, which lasts at least 2D rounds, where D is the diameter of the graph,

agents do not pull arms. Thus, this phase accumulates an expected group regret of at

least 2DNµ1. In our experimental setup, this alone exceeds the regret accumulated by

our algorithms during the entire time horizon. So a meaningful comparison cannot be

provided without modifying DPE2 to allow pulling arms during the leader selection

phase.

9.8 Discussion

Limitations. Main limitation of this work is that all the theoretical claims are

provided using upper bounds. Obtaining lower bounds for cooperative bandits that

communicate over general graphs are difficult due to the complex nature of the prob-

ability distribution associated with the sampling process of agents. This is an active

area of research. We provide a discussion in Appendix B for the optimality of our

regret bounds by providing a lower bound when G is a complete graph.

Future extensions. We plan to analyse regret and communication cost for the

algorithms provided in Section 9.6. Our intuition can be extended to the collision

setting by not allowing agents to share information about the first N instantaneously

optimal arms. In the collision setting when more than one agent pulls the same arm

at the same time step a collision occurs. This causes agents to either split the reward

or completely loose the reward at that time step. Another extension will be proposing

similar algorithms for linear bandits and adversarial bandits.
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9.9 Conclusion

We proposed ComEx, a general and effective communication protocol which obtains

same order of performance as full communication but incurs significantly smaller

communication cost than the latter. Next, we proposed novel algorithms for several

benchmark bandit frameworks by incorporating ComEx protocol. We provided the-

oretical guarantees followed by experimental results illustrating the state-of-the-art

performance of our algorithms.

9.10 Appendix

9.10.1 Proof of Theorem 17

We begin the proof of Theorem 17 by proving a few useful lemmas.

Lemma 4. (Restatement of results from [7]) Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T. For any

suboptimal arm k and ∀i, t we have

P
(
A

(i)
t+1 = k,N

(i)
k (t) > ηk

)
≤ P

(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)

Proof. Note that for any k > 1 we have

{
A

(i)
t+1 = k

}
⊂
{
Q

(i)
k (t) ≥ Q

(i)
1 (t)

}
⊂
{{

µ1 < µk + 2C
(i)
k (t)

}
∪
{
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
}
∪
{
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

}}
.

Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T . Since N

(i)
k (t) > ηk the event

{
µ1 < µk + 2C

(i)
k (t)

}
does

not occur. Thus we have

P
(
A

(i)
t+1 = k,N

(i)
k (t) > ηk

)
≤ P

(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)
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This concludes the proof of Lemma 13.

Lemma 5. Let χ̄(G) is the clique covering number of graph G. Let ηk =(
8(ξ+1)σ2

∆2
k

)
log T. Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(G)ηk +N +

N∑
i=1

T−1∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal

arm k > 1 we have

N∑
i=1

E[n
(i)
k (T )] =

N∑
i=1

T∑
t=1

P
(
A

(i)
t = k

)
=
∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
(9.1)

Let τk,C be the maximum time step such that the total number of pulls from arm

k shared by agents in the clique C is at most ηk. This can be stated as

τk,C := max
{
t ∈ [T ] :

∑
i∈C
∑t

τ=1 1
{
A

(i)
τ = k,A

(i)
τ 6= arg maxl∈[K] µ̂

(i)
l (τ − 1)

}
≤ ηk

}
.

Then for all i ∈ C we have N
(i)
k (t) > ηk,∀t > τk,C. We analyse the expected number

of times all agents pull suboptimal arm k as follows.

∑
C∈C

∑
i∈C

T∑
t=1

1
{
A

(i)
t = k

}
=
∑
C∈C

∑
i∈C

τk,C∑
t=1

1
{
A

(i)
t = k

}
(9.2)

+
∑
C∈C

∑
i∈C

T∑
t>τk,C

1
{
A

(i)
t = k,N

(i)
k (t− 1) > ηk

}
(9.3)

Taking the expectation of (9.3) we have

∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
=
∑
C∈C

∑
i∈C

τk,C∑
t=1

P
(
A

(i)
t = k

)
(9.4)

+
∑
C∈C

∑
i∈C

T∑
t>τk,C

P
(
A

(i)
t = k,N

(i)
k (t− 1) > ηk

)
(9.5)
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Now we proceed to upper bound the first term of right hand side of (9.3) as follows.

Note that we have

∑
i∈C

τk,C∑
t=1

1
{
A

(i)
t = k

}
=
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t 6= arg max

l∈[K]

µ̂
(i)
l (t− 1)

}

+
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

}

≤ ηk +
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

}
(9.6)

Taking the expectation of (9.6) we have

∑
i∈C

τk,C∑
t=1

P
(
A

(i)
t = k

)
≤ ηk +

∑
i∈C

τk,C∑
t=1

P

(
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

)
(9.7)

Now we proceed to upper bound last term of (9.7) as follows. Note that for any

suboptimal arm k we have,

P

(
A

(i)
t+1 = k,A

(i)
t+1 = arg max

l∈[K]

µ̂
(i)
l (t)

)

≤ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

≤ P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

(9.8)

+ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

(9.9)

Now we proceed to upper bound the last term of (9.9) as follows. Note that we

have

P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

≤ P
(
µ̂

(i)
k (t) + C

(i)
k (t) > µ1 − C(i)

1 (t) + C
(i)
k (t)

)
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≤ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)
. (9.10)

From (9.9) and (9.10) we have

P

(
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

)
≤ P

(
µ̂

(i)
1 (t− 1) ≤ µ1 − C(i)

1 (t− 1)
)

(9.11)

+P
(
µ̂

(i)
k (t− 1) ≥ µk + C

(i)
k (t− 1)

)
(9.12)

From (10.9), (9.7) and (9.12) we have

∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
≤
∑
C∈C

ηk +
∑
C∈C

∑
i∈C

T∑
t>τk,C

P
(
A

(i)
t = k,N

(i)
k (t− 1) > ηk

)

+
∑
C∈C

∑
i∈C

τk,C∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
≤ χ̄(G)ηk +N +

N∑
i=1

τk,C∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
+
∑
C∈C

∑
i∈C

T−1∑
t>τk,C

P
(
A

(i)
t+1 = k,N

(i)
k (t) > ηk

)
(9.13)

From (9.1), (9.13) and Lemma 13 we have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(G)ηk +N

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

This concludes the proof of Lemma 5.

Now we proceed to bound the tail probabilities as follows.
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Lemma 6. (Tail probability bound) Let d(i) be the degree of agent i. For some

σ ≥ σk and for any ζ > 1

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σ

√
2(ξ + 1) log t

N
(i)
k (t)

)
≤ 1

log ζ

log
(
(d(i) + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

)

Proof. Let Xk be the sub-Gaussian random variable that models rewards drawn from

arm k. Then Xk has mean µk and variance proxy σk. Then we have

E (exp(λ(Xk − µk))) ≤ exp

(
λ2σ2

k

2

)
.

Recall that 1
{
A

(i)
τ = k

}
is a Fτ−1 measurable random variable. Then we have

E
(

exp
(
λ (Xk − µk) 1

{
A(i)
τ = k

}
1{(i, j) ∈ E}

) ∣∣∣Fτ−1

)
≤ exp

(
λ2σ2

k

2
1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

)

Define a new random variable such that ∀τ > 0.

Y
(i)
k (τ) = (Xk − µk)

N∑
j=1

1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}.

Note that E
(
Y

(i)
k (τ)

)
= E

(
Y

(i)
k (τ)|Fτ−1

)
= 0. Let Z

(i)
k (t) =

∑t
τ=1 Y

(i)
k (τ). For any

λ > 0

E
(

exp(λY
(i)
k (τ))|Fτ−1

)
= E

(
exp

(
λ (Xk − µk)

N∑
j=1

1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

)∣∣∣Fτ−1

)

= E

(
K∏
j=1

exp
(
λ (Xk − µk) 1

{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

) ∣∣∣Fτ−1

)
(a)
=

N∏
j=1

E
(

exp
(
λ (Xk − µk) 1

{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

) ∣∣∣Fτ−1

)
≤

N∏
j=1

exp

(
λ2σ2

k

2
1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

)
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= exp

(
λ2σ2

k

2

N∑
j=1

1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

)
.

Equality (a) follows from the fact that random variables
{

exp
(
λ (Xk − µk) 1

{
A

(i)
τ = k

}
1{(i, j) ∈ Eτ}

)}N
j=1

are conditionally independent with respect to Fτ−1. Since 1
{
A

(i)
τ = k

}
,1{(i, j) ∈ Eτ}

are Fτ−1 measurable random variable, and so

E

(
exp

(
λY

(i)
k (τ)− λ2σ2

k

2

N∑
j=1

1
{
A(i)
τ = k

}
1{(i, j) ∈ Eτ}

)∣∣∣Fτ−1

)
≤ 1.

Let N
(i)
k (t) =

∑t
τ=1

∑N
j=1 1

{
A

(i)
τ = k

}
1{(i, j) ∈ Eτ}. Then we have

Further, using the properties of conditional expectations

E
(

exp

(
λZ

(i)
k (t)− λ2σ2

k

2
N

(i)
k (t)

) ∣∣∣Ft−1

)
≤ exp

(
λZ

(i)
k (t− 1)− λ2σ2

k

2
N

(i)
k (t− 1)

)
.

Thus we see that

E
(

exp

(
λZ

(i)
k (t)− λ2σ2

k

2
N

(i)
k (t)

))
≤ 1.

Note that we have

P

(
exp

(
λZ

(i)
k (t)− λ2σ2

k

2
N

(i)
k (t)

)
≥ exp (2κϑ)

)
= P

(
λZ

(i)
k (t)− λ2σ2

k

2
N

(i)
k (t) ≥ 2κϑ

)

= P

 Z
(i)
k (t)√
N

(i)
k (t)

≥ 2κϑ

λ

√
1

N
(i)
k (t)

+
σ2
k

2
λ

√
N

(i)
k (t)


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Let ζ > 1. Then 1 ≤ N
(i)
k (t) ≤ ζDt where Dt = log((d(i)+1)t)

log ζ
. For λl = 2

σk

√
κϑ

ζl−1/2

and ζ l−1 ≤ N
(i)
k (t) ≤ ζ l we have

2κϑ

λl

√
1

N
(i)
k (t)

+
σ2
k

2
λl

√
Nk
i (t) = σk

√
κϑ

√ ζ l−1/2

N
(i)
k (t)

+

√
N

(i)
k (t)

ζ l−1/2

 ≤ √ϑ,
where κ = 1

σ2
k

(
ζ

1
4 +ζ−

1
4

)2 .

Recall from the Markov inequality that P(Y ≥ a) ≤ E(Y )
a

for any positive random

variable Y . Thus,

P

 Z
(i)
k (t)√
N

(i)
k (t)

≥
√
ϑ

 ≤ DT∑
l=1

exp(−2κϑ).

Then we have,

P

(
Z

(i)
k (t)

N
(i)
k (t)

≥
√

ϑ

N
(i)
k (t)

)
≤

DT∑
l=1

exp(−2κϑ)

Substituting ϑ = 2σ2
k(ξ + 1) log t we get

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σk

√
2(ξ + 1) log t

N
(i)
k (t)

)
≤ log((d(i) + 1)t)

log ζ
exp

−4(ξ + 1) log t(
ζ

1
4 + ζ−

1
4

)2

 .

(9.14)

Since σ ≥ σk we have

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σ

√
2(ξ + 1) log t

N
(i)
k (t)

)
≤ log((d(i) + 1)t)

log ζ
exp

−4(ξ + 1) log t(
ζ

1
4 + ζ−

1
4

)2

 .
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Note that ∀ζ > 1 we have

4(
ζ

1
4 + ζ−

1
4

)2 ≥ 1− (ζ − 1)2

16
(9.15)

Then we have

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σ

√
2(ξ + 1) log t

N
(i)
k (t)

)
≤ 1

log ζ

log((d(i) + 1)t)

t
(ξ+1)

(
1− (ζ−1)2

16

) .

This concludes the proof of Lemma 15.

Lemma 7. Let ζ = 1.3, ξ ≥ 1.1, d(i) ≥ 0 and t ∈ [T ]. Then we have

T−1∑
t=1

1

log ζ

log
(
(d(i) + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) ≤ 12 log(3(d(i) + 1)) + 3
(
log (d(i) + 1) + 1

)
(9.16)

Proof. For ζ = 1.3 we have 1
log ζ

< 8.78. Further (ξ + 1)
(

1− (ζ−1)2

16

)
> 2 and ∀t ≥ 3

we see that
log((d(i)+1)t)

t
(ξ+1)

(
1− (ζ−1)2

16

) is monotonically decreasing. Thus we have

T−1∑
t=1

log
(
(d(i) + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) ≤ 1.362 log(3(d(i) + 1)) +

∫ T−1

3

log
(
(d(i) + 1)t

)
t2

dt (9.17)

Let z = (d(i) + 1)t. Then we have

∫ T−1

3

log
(
(d(i) + 1)t

)
t2

dt = (d(i) + 1)

∫ (d(i)+1)(T−1)

3(d(i)+1)

log z

z2
dz (9.18)

= (d(i) + 1)

[
− log z

z
− 1

z

](d(i)+1)(T−1)

3((d(i)+1)

(9.19)

Thus we have

∫ T−1

3

log
(
(d(i) + 1)t

)
t2

dt ≤ (d(i) + 1)

[
log(d(i) + 1)

3(d(i) + 1)
+

1

3(d(i) + 1)

]
(9.20)

=
1

3
log(d(i) + 1) +

1

3
(9.21)
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Recall that For ζ = 1.3 we have 1
log ζ

< 8.78. Thus the proof of Lemma 16 follows

from (10.59) and (10.63).

Now we proceed to prove Theorem 17. From definition of expected cumulative

group regret and Lemmas 5, 15 and 16 we have

E [R(T )] ≤
K∑
k=2

8(ξ + 1)σ

∆k

χ̄(G) log T + 4N
K∑
k=2

∆k (9.22)

+
N∑
i=1

(
12 log(3(d(i) + 1)) + 3 log (d(i) + 1)

) K∑
k=2

∆k (9.23)

This concludes the proof of Theorem 17.

9.10.2 Proof of Theorem 12

Recall that all the agents communicate their rewards and arm ids at time t = 1. Then

the expected communication cost can be given as

E [L(T )] =
N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
. (9.24)

Note that we have

N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
=

N∑
i=1

T−1∑
t=1

P

(
A

(i)
t = 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)

+
N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
.

(9.25)
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For all agents we first upper bound the expected number of times they shares rewards

and actions with their neighbors until time T when they pull a suboptimal arm:

N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤

N∑
i=1

T−1∑
t=1

P
(
A

(i)
t 6= 1

)
≤

N∑
i=1

K∑
k=2

E
[
n

(i)
k (T )

]
.

(9.26)

Next for all agents we upper bound the expected number of times they shares rewards

and actions with their neighbors until time T when they pull the optimal arm as

follows. Let k∗t be the suboptimal arm with highest estimated expected reward for

agents i at time t. This can be stated as k∗t = arg maxk 6=1,k∈[K] µ̂
(i)
k (t). Note that ∀i, t

we have

{
A

(i)
t+1 = 1, A

(i)
t+1 6= arg max

k∈[K]

µ̂
(i)
k (t)

}
⊆
{
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
}

∪
{
A

(i)
t+1 = 1, µ̂

(i)
1 (t) ≥ µ1 − C(1)

1 (t), µ̂
(i)
k∗t

(t) ≥ µ̂
(i)
1 (t)

}
.

Thus, we have

T−1∑
t=1

P

(
A

(i)
t = 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤

T∑
t=1

P
(
µ̂

(i)
1 (t− 1) ≤ µ1 − C(i)

1 (t− 1)
)

+
T∑
t=1

P
(
A

(i)
t+1 = 1, µ̂

(i)
1 (t− 1) ≥ µ1 − C(1)

1 (t− 1), µ̂
(i)
k∗t

(t− 1) ≥ µ̂
(i)
1 (t− 1)

)
.

(9.27)

Note that the first term on the right hand side of the above equation is the summation

tail probabilities of the estimate of the optimal arm. Now we proceed to upper bound

the second term as follows. Let τ
(i)
1 denote the maximum time step when the total

number of times agent i pulled the optimal arm and the total number of observations

it received from its neighbors about the optimal arm is at most η̄. This can be stated
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as τ
(i)
1 := max{t ∈ [T ] : N

(i)
1 (t) ≤ η̄}. Recall that N

(i)
1 (t) ≥ n

(i)
1 (t). Thus we have that

n
(i)
1 (t) ≤ η̄,∀t ≤ τ

(i)
1 .

Note that we have

T−1∑
t=1

P
(
A

(i)
t = 1, µ̂

(i)
1 (t− 1) ≥ µ1 − C(1)

1 (t− 1), µ̂
(i)
k∗t

(t− 1) ≥ µ̂
(i)
1 (t− 1)

)

≤
τ

(i)
1∑
t=1

P
(
A

(i)
t = 1, µ̂

(i)
1 (t− 1) ≥ µ1 − C(1)

1 (t− 1), µ̂
(i)
k∗t

(t− 1) ≥ µ̂
(i)
1 (t− 1)

)
+

T−1∑
t>τ

(i)
1

P
(
A

(i)
t = 1, µ̂

(i)
1 (t− 1) ≥ µ1 − C(1)

1 (t− 1), µ̂
(i)
k∗t−1

(t− 1) ≥ µ̂
(i)
1 (t− 1)

)

≤ η̄ + 1 +
T−2∑
t>τ

(i)
1

P
(
A

(i)
t+1 = 1, µ̂

(i)
1 (t) ≥ µ1 − C(1)

1 (t), µ̂
(i)
k∗t

(t) ≥ µ̂
(i)
1 (t), N

(i)
1 (t) > η̄

)
.

(9.28)

If agent i pulls the optimal arm at time t we have Q
(i)
1 (t − 1) ≥ Q

(i)
k∗t−1

(t − 1).

Further, if µ̂
(i)
k∗t−1

(t − 1) ≥ µ̂
(i)
1 (t − 1) then we have C

(i)
k∗t−1

(t − 1) < C
(i)
1 (t − 1). Let

η̄ = 8σ(ξ+1)

∆̄2 log T. Then we have

T−2∑
t>τ

(i)
1

P
(
A

(i)
t+1 = 1, µ̂

(i)
1 (t) ≥ µ1 − C(1)

1 (t), µ̂
(i)
k∗t

(t) ≥ µ̂
(i)
1 (t), N

(i)
1 (t) > η̄

)

≤
T−2∑
t>τ

(i)
1

P
(
A

(i)
t+1 = 1, µ̂

(i)
1 (t) ≥ µ1 − C(1)

1 (t), µ̂
(i)
k∗t−1

(t) ≥ µ̂
(i)
1 (t), µ1 > µk∗t + 2C

(i)
1 (t)

)

≤
T−2∑
t>τ

(i)
1

P
(
µ̂

(i)
k∗t−1

(t) ≥ µ1 − C(i)
1 (t), µ1 > µk∗t + 2C

(i)
1 (t)

)

≤
T−2∑
t>τ

(i)
1

P
(
µ̂

(i)
k∗t

(t) ≥ µk∗t + C
(i)
k∗t

(t)
)
. (9.29)
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From (9.27), (9.28) and (9.29) we have

T∑
t=1

P

(
A

(i)
t = 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤ 8σ(ξ + 1)

∆̄2
log T

(9.30)

+
T−1∑
t=1

P
(
µ̂

(i)
1 (t− 1) ≤ µ1 − C(i)

1 (t− 1)
)

+
T−1∑
t=1

P
(
µ̂

(i)
k∗t−1

(t− 1) ≥ µk∗t−1
+ C

(i)
k∗t−1

(t− 1)
)

(9.31)

From (9.31) and Lemma 15 we have

T∑
t=1

P

(
A

(i)
t = 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤ 8σ(ξ + 1)

∆̄2
log T + 2

T∑
t=1

1

log ζ

log
(
(d(i) + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

)
(9.32)

The proof of Theorem 12 follows from (9.24), (9.25), (9.26), (9.32) and Theorem 17.

9.10.3 Proof of Theorem 18

In section we follow an approach similar to Section ??. Recall that Gγ is the γth power

graph of G. Thus each pair of vertices in Gγ are adjacent if and only if they distance

between them in G is at most γ. We begin the proof of Theorem 18 by proving a

lemma similar to Lemma 5.

Lemma 8. Let χ̄(Gγ) is the clique covering number of graph Gγ. Let ηk =(
8(ξ+1)σ2

∆2
k

)
log T. Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(Gγ)ηk +N + (N − χ̄(Gγ))(γ − 1)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
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Proof. Let Cγ be a non overlapping clique covering of Gγ. Note that for each subop-

timal arm k > 1 we have

N∑
i=1

E[n
(i)
k (T )] =

∑
C∈Cγ

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
(9.33)

Let τk,C be the maximum time step such that the total number of messages about

pulls from arm k initiated by agents in the clique C is at most ηk + (|C| − 1) (γ − 1).

This can be stated as

τk,C := max

{
t ∈ [T ] :

∑
i∈C

t∑
τ=1

1

{
A(i)
τ = k,A(i)

τ 6= arg max
l∈[K]

µ̂
(i)
l (τ − 1)

}
≤ ηk + (|C| − 1) (γ − 1)

}
.

Further for all i ∈ C we have N
(i)
k (t) > ηk,∀t > τk,C. We analyse the expected number

of times all agents pull suboptimal arm k as follows.

∑
C∈C

∑
i∈C

T∑
t=1

1
{
A

(i)
t = k

}
=
∑
C∈C

∑
i∈C

τk,C∑
t=1

1
{
A

(i)
t = k

}
+
∑
C∈C

∑
i∈C

T∑
t>τk,C

1
{
A

(i)
t = k,N

(i)
k (t− 1) > ηk

}
(9.34)

Taking the expectation of (9.34) we have

∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
=
∑
C∈C

∑
i∈C

τk,C∑
t=1

P
(
A

(i)
t = k

)
+
∑
C∈C

∑
i∈C

T∑
t>τk,C

P
(
A

(i)
t = k,N

(i)
k (t− 1) > ηk

)
(9.35)

Now we proceed to upper bound the first term of right hand side of (9.34) as follows.

Note that we have

∑
i∈C

τk,C∑
t=1

1
{
A

(i)
t = k

}
=
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t 6= arg max

l∈[K]

µ̂
(i)
l (t− 1)

}

+
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

}
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≤ ηk + (|C| − 1) (γ − 1) +
∑
i∈C

τk,C∑
t=1

1

{
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

}
(9.36)

Taking the expectation of (9.36) we have

∑
i∈C

τk,C∑
t=1

P
(
A

(i)
t = k

)
≤ ηk + (|C| − 1) (γ − 1) +

∑
i∈C

τk,C∑
t=1

P

(
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

)
(9.37)

Now we proceed to upper bound last term of (9.37) as follows. Note that for any

suboptimal arm k we have,

P

(
A

(i)
t+1 = k,A

(i)
t+1 = arg max

l∈[K]

µ̂
(i)
l (t)

)

≤ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

≤ P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

(9.38)

Now we proceed to upper bound the last term of (9.38) as follows. Note that we have

P
(
µ̂

(i)
k (t) + C

(i)
k (t) ≥ µ̂

(i)
1 (t) + C

(i)
1 (t), µ̂

(i)
k (t) ≥ µ̂

(i)
1 (t), µ̂

(i)
1 (t) > µ1 − C(i)

1 (t)
)

≤ P
(
µ̂

(i)
k (t) + C

(i)
k (t) > µ1 − C(i)

1 (t) + C
(i)
k (t)

)
≤ P

(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)
. (9.39)
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From (9.38) and (9.39) we have

P

(
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

)
≤ P

(
µ̂

(i)
1 (t− 1) ≤ µ1 − C(i)

1 (t− 1)
)

(9.40)

+P
(
µ̂

(i)
k (t− 1) ≥ µk + C

(i)
k (t− 1)

)
. (9.41)

From (10.103), (9.37) and (9.41) we have

∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
≤
∑
C∈C

ηk +
∑
C∈C

∑
i∈C

τk,C∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
+
∑
C∈C

(|C| − 1) (γ − 1) +
∑
C∈C

∑
i∈C

T∑
t>τk,C

P
(
A

(i)
t = k,N

(i)
k (t− 1) > ηk

)

≤ χ̄(Gγ)ηk +
N∑
i=1

τk,C∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
+N + (N − χ̄(Gγ)) (γ − 1) +

∑
C∈C

∑
i∈C

T−1∑
t>τk,C

P
(
A

(i)
t+1 = k,N

(i)
k (t) > ηk

)
.

(9.42)

The proof of Lemma 8 follows from (9.33), (9.42) and Lemma 13.

Now we proceed to prove Theorem 18 as follows. We start by obtaining a modified

tail bound similar to the result in Lemma 15. Note that ∀i, k, t we have 1 ≤ N
(i)
k (t) <

d
(i)
γ t. Thus considering Dt =

log
((
d

(i)
γ +1

)
t
)

log ζ
for any ζ > 1 in Lemma 15 we get

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σ

√
2(ξ + 1) log t

N
(i)
k (t)

)
≤ 1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) . (9.43)

The proof of Theorem 18 follows from Lemmas 16, 8 and (9.43).
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9.10.4 Proof of Theorem 14

Following a similar approach to the proof of Theorem 12 we obtain

N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤

N∑
i=1

T−1∑
t=1

P
(
A

(i)
t 6= 1

)
≤

N∑
i=1

K∑
k=2

E
[
n

(i)
k (T )

]
.

(9.44)

Similarly we get

T−1∑
t=1

P

(
A

(i)
t = 1, A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤ 8σ(ξ + 1)

∆̄2
log T + 2

T∑
t=1

1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

)
(9.45)

From (9.44) and (9.45) we have

N∑
i=1

T∑
t=1

P

(
A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
≤

N∑
i=1

K∑
k=2

E
[
n

(i)
k (T )

]

+
N∑
i=1

8σ(ξ + 1)

∆̄2
log T + 2

N∑
i=1

T∑
t=1

1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) (9.46)

Note that (9.46) is the expected number of messages initiated by all the agents.

Recall that in ComEx-MPUCB a message initiated by agent i is subsequently passed

by agents within a γ − 1 distance in graph G. Thus we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

T∑
t=1

P

(
A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
(9.47)

From (9.46) and (9.47) we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

K∑
k=2

E
[
n

(i)
k (T )

]
+

N∑
i=1

(d
(i)
γ−1 + 1)

8σ(ξ + 1)

∆̄2
log T
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+2
N∑
i=1

(d
(i)
γ−1 + 1)

T∑
t=1

1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) (9.48)

From (9.43), (9.48) and Lemma 8 we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

K∑
k=2

(χ̄(Gγ)ηk +N + (N − χ̄(Gγ))(γ − 1))

+
N∑
i=1

(d
(i)
γ−1 + 1)

8σ(ξ + 1)

∆̄2
log T + 2K

N∑
i=1

(d
(i)
γ−1 + 1)

T∑
t=1

1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) (9.49)

Recall that ηk = 8σ(ξ+1)

∆2
k

log T. Thus the proof of Theorem 14 follows from (9.49) and

Lemma 16.

9.10.5 Proof of Theorem 15

We follow a similar approach to proof of Theorem 18. We begin the proof by providing

a lemma similar to Lemma 8.

Lemma 9. Let γ̄(Gγ) is the dominating number of graph Gγ. Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T.

Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ γ̄(Gγ)ηk +N + (N − γ̄(Gγ))(3γ − 1)

+
∑
i∈V ′γ

(∣∣∣N (i)
γ

∣∣∣+ 1
) T−1∑
t=1

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

where V ′γ is the maximal dominating set of Gγ and N (i)
γ is the set of followers of leader

i.
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Proof. Recall that V ′γ is the maximal dominating set of Gγ. Let N (i)
γ be the set of

followers of leader i. Then for each suboptimal arm k > 1 we have

N∑
i=1

E[n
(i)
k (T )] =

∑
i∈V ′γ

 T∑
t=1

P
(
A

(i)
t = k

)
+
∑
j∈N (i)

γ

T∑
t=1

P
(
A

(j)
t = k

) (9.50)

Let τ
(i)
k be the maximum time step such that the total number of times agent i

pulls arm k and the number of times agents in N (i)
γ initiated messages about pulls

from arm k is at most ηk +N (i)
γ (γ − 1). This can be stated as

τ
(i)
k := max

t ∈ [T ] :
t∑

τ=1

1
{
A(i)
τ = k

}
+
∑
j∈N (i)

γ

t∑
τ=1

1

{
A(i)
τ = k,A(i)

τ 6= arg max
l∈[K]

µ̂
(i)
l (τ − 1)

}

≤ ηk +N (i)
γ (γ − 1)

}
.

Then we have N
(i)
k (t) > ηk, ∀t > τ

(i)
k . We analyse the expected number of times all

agents pull suboptimal arm k as follows. Let d(i, j) be the distance between agents

i and j in graph G. Then note that for any j ∈ N (i)
γ we have A

(j)
t = A

(i)
t−d(i,j) and

d(i, j) ≤ γ.

∑
i∈V ′γ


T∑
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1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

T∑
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1
{
A

(j)
t = k
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
τ

(i)
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1
{
A
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t = k

}

+
∑
j∈N (i)

γ

τ
(i)
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1
{
A

(j)
t = k
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+
∑
i∈V ′γ


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(i)
k

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

T−d(i,j)∑
t>τ

(i)
k

1
{
A

(i)
t = k

}+
∑
i∈V ′γ

∑
j∈N (i)

γ

2d(i, j)

≤
∑
i∈V ′γ


τ

(i)
k∑
t=1

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

τ
(i)
k∑

t=d(i,j)

1
{
A

(j)
t = k

}+
∑
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(∣∣∣N (i)
γ

∣∣∣+ 1
) T∑
t>τ

(i)
k

1
{
A

(i)
t = k

}
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+2(N − γ̄(Gγ))γ

(9.51)

Now we proceed to upper bound the first two terms of right hand side of (9.51) as

follows. Note that we have

∑
i∈V ′γ


τ

(i)
k∑
t=1

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

τ
(i)
k∑

t=d(i,j)

1
{
A
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t = k

}
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
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1
{
A
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t = k
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+
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j∈N (i)

γ

τ
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{
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}

+
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{
A
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(i)
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(i)
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≤
∑
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)

+
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1

{
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(i)
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(9.52)

Taking the expectation of (9.51) and (9.52) we have

∑
i∈V ′γ

 T∑
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P
(
A

(i)
t = k

)
+
∑
j∈N (i)

γ
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t = k
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+
∑
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(∣∣∣N (i)
γ

∣∣∣+ 1
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t>τ

(i)
k

P
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)
+
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(9.53)

Now we proceed to upper bound last term of (9.53) as follows. Note that for any

suboptimal arm k we have,

P

(
A

(i)
t+1 = k,A

(i)
t+1 = arg max

l∈[K]

µ̂
(i)
l (t)

)
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≤ P
(
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(i)
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1 (t)
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(9.54)

Now we proceed to upper bound the last term of (9.54) as follows. Note that we have

P
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(i)
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(i)
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(i)
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(i)
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(i)
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)
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(i)
k (t)

)
. (9.55)

From (9.54) and (9.55) we have

P

(
A

(i)
t = k,A

(i)
t = arg max

l∈[K]

µ̂
(i)
l (t− 1)

)
≤ P
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(i)
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+P
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)
. (9.56)

Recall that N
(i)
k (t) > ηk,∀t > τ

(i)
k . Thus from (9.53), (9.56) and Lemma 13 we

have

∑
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)
+
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j∈N (i)

γ

T∑
t=1

P
(
A
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+
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)
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(i)
k (t)

)]
.

(9.57)

The proof of Lemma 9 follows from (9.50) and (9.57).
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Now we proceed to prove Theorem 15 as follows. We start by obtaining a modified

tail bound similar to the result in Lemma 15. Note that ∀i ∈ V ′γ we have 1 ≤ N
(i)
k (t) <

d
(i)
γ t. Thus considering Dt =

log
((
d

(i)
γ +1

)
t
)

log ζ
for any ζ > 1 in Lemma 15 we get

P

(∣∣∣µ̂(i)
k (t)− µk

∣∣∣ ≥ σ

√
2(ξ + 1) log t

N
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k (t)

)
≤ 1

log ζ

log
(

(d
(i)
γ + 1)t

)
t
(ξ+1)

(
1− (ζ−1)2

16

) . (9.58)

The proof of Theorem 15 follows from Lemmas 16, 9 and (9.58).

9.10.6 Proof of Theorem 16

Following a similar approach to the proof of Theorem 14 we obtain

N∑
i=1

T−1∑
t=1

P

(
A

(i)
t 6= 1, A

(i)
t 6= arg max

k∈[K]
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)
≤

N∑
i=1

K∑
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E
[
n
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]
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(9.59)

Similarly we get
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P

(
A

(i)
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1

log ζ

log
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(d
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)
t
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(
1− (ζ−1)2

16

)
(9.60)

From (9.59) and (9.60) we have

N∑
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P
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E
[
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1

log ζ
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(d
(i)
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)
t
(ξ+1)

(
1− (ζ−1)2

16

) (9.61)

Note that (9.61) is the expected number of messages initiated by all the agents.

Recall that in ComEx-LFUCB a message initiated by agent i is subsequently passed
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by agents within a γ − 1 distance in graph G. Thus we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

T−1∑
t=1

P

(
A

(i)
t 6= arg max

k∈[K]

µ̂
(i)
k (t− 1)

)
(9.62)

From (9.61) and (9.62) we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

K∑
k=2

E
[
n

(i)
k (T )

]
+
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(d
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∆̄2
log T

+2
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1

log ζ

log
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t
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(
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16

) (9.63)

From (9.58), (9.63) and Lemma 9 we have

E [L(T )] ≤
N∑
i=1

(d
(i)
γ−1 + 1)

K∑
k=2

γ̄(Gγ)ηk +N + (N − γ̄(Gγ))(3γ − 1)

+
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) (9.64)

Recall that ηk = 8σ(ξ+1)

∆2
k

log T. Thus the proof of Theorem 16 follows from (9.64) and

Lemma 16.

9.10.7 Regret Under Full Communication

In this section we provide theoretical bounds for group regret of Full-UCB, Full-

MPUCB and Full-LFUCB as follows.

9.10.8 Group Regret for Full-UCB

We start by proving a Lemma similar to Lemma 5.

Lemma 10. Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T. Let C be a non overlapping clique covering

and χ̄(G) be the clique covering number of the graph G. Let τk,C be the maximum time
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step such that the total number of pulls from arm k by agents in the clique C ∈ C is

at most ηk. Define τk := minC τk,C. Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(G)ηk +N +

N∑
i=1

T−1∑
t>τk

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

Proof. Let C be a non overlapping clique covering of the graph G. Then we have

N∑
i=1

E[n
(i)
k (T )] =

∑
C∈C

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
(9.65)

Let τk,C be the maximum time step such that the total number of pulls from

arm k by agents in the clique C is at most ηk. This can be stated as τk,C :=

max
{
t ∈ [T ] :

∑
i∈C
∑t

τ=1 1
{
A

(i)
τ = k

}
≤ ηk

}
. Further for all i ∈ C we have

N
(i)
k (t) > ηk,∀t > τk,C. We analyse the expected number of times all agents

pull suboptimal arm k as follows.

∑
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∑
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1
{
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t = k

}
=
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}
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1
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A
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}
(9.66)

Taking the expectation of (9.66) we have
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P
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A
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(9.67)
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Let τk := minC τk,C∈C. Similarly to Lemma 5 from (9.65), (9.67) and Lemma 13 we

have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(G)ηk +N +

N∑
i=1

T−1∑
t>τk

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

This concludes the proof of Lemma 10.

Then from Lemmas 15, 16 and 10 it follows that

E [R(T )] = O (Kχ̄(G) log T +KN) .

9.10.9 Group Regret for Full-MPUCB

We start by proving a Lemma similar to Lemma 8.

Lemma 11. Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T. Let Cγ be a non overlapping clique covering

and χ̄(Gγ) be the clique covering number of the graph Gγ, which is the γth power

graph of G. Let τk,C be the maximum time step such that the total number of pulls

from arm k by agents in the clique C ∈ Cγ is at most ηk + (|C − 1|)(γ − 1). Define

τk := minC τk,C. Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(Gγ)ηk +N + (N − χ̄(Gγ))(γ − 1)

+
N∑
i=1

T−1∑
t>τk

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

Proof. Let Cγ be a non overlapping clique covering of the graph Gγ. Then we have

N∑
i=1

E[n
(i)
k (T )] =

∑
C∈Cγ

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
(9.68)
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Let τk,Cγ be the maximum time step such that the total number of pulls from

arm k by agents in the clique C is at most ηk. This can be stated as τk,C :=

max
{
t ∈ [T ] :

∑
i∈C
∑t

τ=1 1
{
A

(i)
τ = k

}
≤ ηk + (|C| − 1)(γ − 1)

}
. Further for all

i ∈ C we have N
(i)
k (t) > ηk,∀t > τk,C. We analyse the expected number of times all

agents pull suboptimal arm k as follows.

∑
C∈Cγ

∑
i∈C

T∑
t=1

1
{
A

(i)
t = k

}
=
∑
C∈Cγ

∑
i∈C

τk,C∑
t=1

1
{
A

(i)
t = k

}
+
∑
C∈Cγ

∑
i∈C

T∑
t>τk,C

1
{
A

(i)
t = k,N

(i)
k (t− 1) > ηk

}
(9.69)

Taking the expectation of (9.69) we have

∑
C∈Cγ

∑
i∈C

T∑
t=1

P
(
A

(i)
t = k

)
=
∑
C∈Cγ

∑
i∈C

τk,C∑
t=1

P
(
A

(i)
t = k

)
+
∑
C∈Cγ

∑
i∈C

T∑
t>τk,C

P
(
A

(i)
t = k,N

(i)
k (t− 1) > ηk

)
≤ χ̄(Gγ)ηk +N + (N − χ̄(Gγ))(γ − 1) (9.70)

+
∑
C∈Cγ

∑
i∈C

T−1∑
t>τk,C

P
(
A

(i)
t+1 = k,N

(i)
k (t) > ηk

)
(9.71)

Let τk := minC∈Cγ τk,C. Similarly to Lemma 8 from (9.68), (9.71) and Lemma 13 we

have

N∑
i=1

E[n
(i)
k (T )] ≤ χ̄(Gγ)ηk +N + (N − χ̄(Gγ))(γ − 1)

+
N∑
i=1

T−1∑
t>τk

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

This concludes the proof of Lemma 11.

Then from Lemmas 15, 16 and 11 it follows that

E [R(T )] = O (Kχ̄(Gγ) log T +KN) .
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9.10.10 Group Regret for Full-LFUCB

We begin the proof by providing a lemma similar to Lemma 9.

Lemma 12. Let γ̄(Gγ) is the clique covering number of graph Gγ. Let ηk =(
8(ξ+1)σ2

∆2
k

)
log T. Then we have

N∑
i=1

E[n
(i)
k (T )] ≤ γ̄(Gγ)ηk +N + (N − γ̄(Gγ))(3γ − 1)

+
∑
i∈V ′γ

(∣∣∣N (i)
γ

∣∣∣+ 1
) T−1∑
t>τ

(i)
k

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]

where V ′γ is the maximal dominating set of Gγ and N (i)
γ is the set of followers of

leader i. Here τ
(i)
k be the maximum time step such that the total number of times

agent i pulls arm k and the number of times agents in N (i)
γ pull from arm k is at

most ηk +N (i)
γ (γ − 1).

Proof. Recall that V ′γ is the maximal dominating set of Gγ. Let N (i)
γ be the set of

followers of leader i. Then for each suboptimal arm k > 1 we have

N∑
i=1

E[n
(i)
k (T )] =

∑
i∈V ′γ

 T∑
t=1

P
(
A

(i)
t = k

)
+
∑
j∈N (i)

γ

T∑
t=1

P
(
A

(j)
t = k

) (9.72)

Let τ
(i)
k be the maximum time step such that the total number of times agent

i pulls arm k and the number of times agents in N (i)
γ pull from arm k is at most

ηk +N (i)
γ (γ − 1). This can be stated as

τ
(i)
k := max

t ∈ [T ] :
t∑

τ=1

1
{
A(i)
τ = k

}
+
∑
j∈N (i)

γ

t∑
τ=1

1
{
A(i)
τ = k

}
≤ ηk +N (i)

γ (γ − 1)

 .
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Then we have N
(i)
k (t) > ηk, ∀t > τ

(i)
k . We analyse the expected number of times all

agents pull suboptimal arm k as follows. Let d(i, j) be the distance between agents

i and j in graph G. Then note that for any j ∈ N (i)
γ we have A

(j)
t = A

(i)
t−d(i,j) and

d(i, j) ≤ γ.

∑
i∈V ′γ


T∑
t=1

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

T∑
t=1

1
{
A

(j)
t = k

} ≤
∑
i∈V ′γ


τ

(i)
k∑
t=1

1
{
A

(i)
t = k

}

+
∑
j∈N (i)

γ

τ
(i)
k∑

t=d(i,j)

1
{
A

(j)
t = k

}
+
∑
i∈V ′γ


T∑

t>τ
(i)
k

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

T−d(i,j)∑
t>τ

(i)
k

1
{
A

(i)
t = k

}+
∑
i∈V ′γ

∑
j∈N (i)

γ

2d(i, j)

≤
∑
i∈V ′γ


τ

(i)
k∑
t=1

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

τ
(i)
k∑

t=d(i,j)

1
{
A

(j)
t = k

}
+
∑
i∈V ′γ

(∣∣∣N (i)
γ

∣∣∣+ 1
) T∑
t>τ

(i)
k

1
{
A

(i)
t = k

}
+ 2(N − γ̄(Gγ))γ (9.73)

Now we proceed to upper bound the first two terms of right hand side of (9.73) as

follows. Note that we have

∑
i∈V ′γ


τ

(i)
k∑
t=1

1
{
A

(i)
t = k

}
+
∑
j∈N (i)

γ

τ
(i)
k∑

t=d(i,j)

1
{
A

(j)
t = k

}
≤
∑
i∈V ′γ

(
ηk +N (i)

γ (γ − 1)
)

+
∑
i∈V ′γ

∣∣∣N (i)
γ

∣∣∣ τ (i)
k∑
t=1

1
{
A

(i)
t = k

}
(9.74)

Taking the expectation of (9.73) and (9.74) we have

∑
i∈V ′γ

 T∑
t=1

P
(
A

(i)
t = k

)
+
∑
j∈N (i)

γ

T∑
t=1

P
(
A

(j)
t = k

) ≤ γ̄(Gγ)ηk +N + (N − γ̄(Gγ))(3γ − 1)
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+
∑
i∈V ′γ

(∣∣∣N (i)
γ

∣∣∣+ 1
) T∑
t>τ

(i)
k

P
(
A

(i)
t = k

)
+
∑
i∈V ′γ

∣∣∣N (i)
γ

∣∣∣ τ
(i)
k∑

t>τ
(i)
k

P
(
A

(i)
t = k

)
(9.75)

Recall that N
(i)
k (t) > ηk,∀t > τ

(i)
k . Thus from (9.75) and Lemma 13 we have

∑
i∈V ′γ

 T∑
t=1

P
(
A

(i)
t = k

)
+
∑
j∈N (i)

γ

T∑
t=1

P
(
A

(j)
t = k

) ≤ γ̄(Gγ)ηk + (N − γ̄(Gγ))(3γ − 1)

+
∑
i∈V ′γ

(∣∣∣N (i)
γ

∣∣∣+ 1
) T−1∑
t>τ

(i)
k

[
P
(
µ̂

(i)
1 (t) ≤ µ1 − C(i)

1 (t)
)

+ P
(
µ̂

(i)
k (t) ≥ µk + C

(i)
k (t)

)]
.

(9.76)

The proof of Lemma 12 follows from (9.72) and (9.76).

Then from Lemmas 15, 16 and 12 it follows that

E [R(T )] = O (Kγ̄(Gγ) log T +KN) .

9.10.11 Additional Experimental Results

In this section we provide additional simulation results. We observe that performance

of the algorithms improve when we decrease ξ. Thus for simulations provided in this

section we use ξ = 1.001. Further when γ is increased communication density increases

and performance improve. For simulations provided in this section we consider γ = 7.

We use the same graph structure and reward structures used in the results provided

in the main paper.

Additional details on estimate sharing Note that in estimate sharing agents

average their estimates of instantaneously suboptimal arms at every time step. Thus

at each time step each agent creates 2K number of messages (estimated sum of re-
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Figure 9.3: A comparison of expected cumulative group regret and communication cost
of our algorithms and existing state-of-the-art algorithms in several benchmark cooperative
bandit frameworks.

wards for each arm and estimated number of pulls from each arm). If the number of

arms are of same order as time horizon this leads to O(T 2) cost for Full-EstUCB and

O(T log T ) cost for ComEx-EstUCB. However we consider that nummber of arms

are fixed and K << T for large T and when providing simulation results for the

communication cost we only considered the communication cost associated with ini-

tiating messages and passing them through network neglecting the dependence on

number of arms. This leads to O(T ) cost for Full-EstUCB and O(log T ) cost for

ComEx-EstUCB.

9.10.12 Pseudo code of ComEx-UCB

9.11 Pseudo code of ComEx-MPUCB

9.12 Pseudo code of ComEx-LFUCB

For all i ∈ V ′γ the indicator variable I
(i)
t takes value 1 if A

(i)
t is instantaneously

suboptimal.
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Algorithm 3: ComEx-UCB

Input: Arms k ∈ [K], variance proxy upper bound σ2, parameter ξ

Initialize: N
(i)
k (0) = µ̂

(i)
k (0) = C

(i)
k (0) = 0,∀k, i

for each iteration t ∈ [T ] do
Et ← ∅
for each agent i ∈ [N ] do

/* Sampling phase */

if t = 1 then

A
(i)
t ← RandomArm ([K])

end
else

A
(i)
t ← arg maxk µ̂

(i)
k (t− 1) + C

(i)
k (t− 1)

end
/* Send messages */

if A
(i)
t 6= arg maxk µ̂

(i)
k (t− 1) then

Send
(
m

(i)
t :=

〈
A

(i)
t , X

(i)
t

〉)
end

m
(i)
t ← m

(i)
t

end
for each agent i ∈ [N ] do

/* Receive messages */

for each neighbor j s. t. {(j → i) ∈ E} do

m
(i)
t ←m

(i)
t ∪m(j)

t

end
for each agent j ∈ [N ] do

if m
(j)
t ∈m

(i)
t then

Et ← Et ∪ {(j → i)}
end

end
/* Update estimates */

for each arm k ∈ [K] do

Calculate
(
N

(i)
k (t), µ̂

(i)
k (t), C

(i)
k (t)

)
end

end

end

9.13 Pseudo code of ComEx-EstUCB

Let N̂
(i)
k (t) be the estimated number of pulls from arm k for agent i up to time t.
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9.14 Pseudo code of ComEx-MPThompson

In Thompson sampling for each arm k each agent i maintains a posterior distribution

φ
(i)
k and updates the distribution according to the available information. Then draw

samples from the posterior distribution and pull the arm with highest sample value.
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Algorithm 4: ComEx-MPUCB

Input: Arms k ∈ [K], variance proxy upper bound σ2
k, parameter ξ, γ

Initialize: N
(i)
k (0) = µ̂

(i)
k (0) = C

(i)
k (0) = 0,∀k, i

for each iteration t ∈ [T ] do
Et ← ∅
for each agent i ∈ [N ] do

/* Sampling phase */

if t = 1 then

A
(i)
t ← RandomArm ([K])

end
else

A
(i)
t ← arg maxk µ̂

(i)
k (t− 1) + C

(i)
k (t− 1)

end
/* Send messages */

if A
(i)
t 6= arg maxk µ̂

(i)
k (t− 1) then

Create
(
m

(i)
t :=

〈
i, t, A

(i)
t , X

(i)
t

〉)
m

(i)
t ← m

(i)
t

end

Send
(
m

(i)
t

)
end
for each agent i ∈ [N ] do

/* Receive messages */

for each neighbor j s. t. {(j → i) ∈ E} do

m
(i)
t ←m

(i)
t ∪m(j)

t

end
/* Discard messages older than γ */

for each neighbor j ∈ [N ] do

m
(i)
t ←m

(i)
t \m(j)

τ ,∀τ s. t. τ < t− γ
for each time step τ ∈ {t− γ + 1, . . . , t} do

if m
(j)
τ ∈m

(i)
t then

Eτ ← Eτ ∪ {(j → i)}
end

end

end
/* Update estimates */

for each arm k ∈ [K] do

Calculate
(
N

(i)
k (t), µ̂

(i)
k (t), C

(i)
k (t)

)
end

m
(i)
t+1 ←m

(i)
t

end

end
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Algorithm 5: ComEx-LFUCB

Input: Arms k ∈ [K], variance proxy upper bound σ2
k, parameter ξ, γ

Initialize: N
(i)
k (0) = µ̂

(i)
k (0) = C

(i)
k (0) = 0,∀k, i

for each iteration t ∈ [T ] do
Et ← ∅
for each agent i ∈ V ′γ do

/* Sampling phase */

Same as ComEx-MPUCB
/* Send messages */

Create
(
m

(i)
t :=

〈
i, t, A

(i)
t , I

(i)
t

〉)
m

(i)
t ← m

(i)
t

Send
(
m

(i)
t

)
for each agent j ∈ N (i)

γ do
/* Sampling phase */

if t < d(i, j) then

A
(i)
t ← RandomArm ([K])

end
else

A
(j)
t ← A

(i)
t−d(i,j)

end

if I
(i)
t−d(i,j) = 1 then

Create
(
m

(j)
t :=

〈
j, t, A

(j)
t , X

(j)
t

〉)
m

(j)
t ← m

(j)
t

end

end

end
for each agent i ∈ V ′γ do

/* Receive messages */

for each neighbor j s. t. {(j → i) ∈ E} do

m
(i)
t ←m

(i)
t ∪m(j)

t

end
/* Discard messages older than γ */

for each neighbor j ∈ [N ] do

m
(i)
t ←m

(i)
t \m(j)

τ ,∀τ s. t. τ < t− γ
for each time step τ ∈ {t− γ + 1, . . . , t} do

if m
(j)
τ ∈m

(i)
t then

Eτ ← Eτ ∪ {(j → i)}
end

end

end
/* Update estimates */

for each arm k ∈ [K] do

Calculate
(
N

(i)
k (t), µ̂

(i)
k (t), C

(i)
k (t)

)
end

m
(i)
t+1 ←m

(i)
t

end

end
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Algorithm 6: ComEx-EstUCB

Input: Arms k ∈ [K], variance proxy upper bound σ2
k, parameter ξ, γ

Initialize: N̂
(i)
k (0) = µ̂

(i)
k (0) = C

(i)
k (0) = 0,∀k, i

for each iteration t ∈ [T ] do
Et ← ∅
for each agent i ∈ [N ] do

/* Sampling phase */

if t = 1 then

A
(i)
t ← RandomArm ([K])

end
else

A
(i)
t ← arg maxk µ̂

(i)
k (t− 1) + C

(i)
k (t− 1)

end
/* Send messages */

if A
(i)
t 6= arg maxk µ̂

(i)
k (t− 1) then

Create
(
m

(i)
t :=

〈
i, t, N̂

(i)
t , µ̂

(i)
k (t− 1)

〉)
m

(i)
t ← m

(i)
t

end

Send
(
m

(i)
t

)
end
for each agent i ∈ [N ] do

/* Receive messages */

for each neighbor j s. t. {(j → i) ∈ E} do

m
(i)
t ←m

(i)
t ∪m(j)

t

end
/* Discard messages older than γ */

for each neighbor j ∈ [N ] do

m
(i)
t ←m

(i)
t \m(j)

τ ,∀τ s. t. τ < t− γ
for each time step τ ∈ {t− γ + 1, . . . , t} do

if m
(j)
τ ∈m

(i)
t then

Eτ ← Eτ ∪ {(j → i)}
end

end

end
/* Update estimates */

for each arm k ∈ [K] do

Calculate
(
N̂

(i)
k (t), µ̂

(i)
k (t), C

(i)
k (t)

)
according to consensus algorithm

end

m
(i)
t+1 ←m

(i)
t

end

end
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Algorithm 7: ComEx-MPThompson

Input: Arms k ∈ [K], parameter γ

Initialize: φ
(i)
k (0),∀k, i

for each iteration t ∈ [T ] do
Et ← ∅
for each agent i ∈ [N ] do

/* Sampling phase */

for each arm k ∈ [K] do

y
(i)
k (t) ∼ φ

(i)
k (t− 1)

A
(i)
t ← arg maxk y

(i)
k (t)

end
/* Send messages */

Create
(
m

(i)
t :=

〈
i, t, A

(i)
t , X

(i)
t

〉)
m

(i)
t ← m

(i)
t

Send
(
m

(i)
t

)
end
for each agent i ∈ [N ] do

/* Receive messages */

for each neighbor j s. t. {(j → i) ∈ E} do

m
(i)
t ←m

(i)
t ∪m(j)

t

end
/* Discard messages older than γ */

for each neighbor j ∈ [N ] do

m
(i)
t ←m

(i)
t \m(j)

τ ,∀τ s. t. τ < t− γ
for each time step τ ∈ {t− γ + 1, . . . , t} do

if m
(j)
τ ∈m

(i)
t then

Eτ ← Eτ ∪ {(j → i)}
end

end

end
/* Update estimates */

for each arm k ∈ [K] do

Calculate
(
φ

(i)
k (t)

)
end

m
(i)
t+1 ←m

(i)
t

end

end
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Chapter 10

One More Step Towards Reality:

Cooperative Bandits with

Imperfect Communication

Udari Madhushani, Abhimanyu Dubey, Naomi Ehrich Leonard

and Alex Pentland

The cooperative bandit problem is increasingly becoming relevant due to its ap-

plications in large-scale decision-making. However, most research for this problem

focuses exclusively on the setting with perfect communication, whereas in most real-

world distributed settings, communication is often over stochastic networks, with

arbitrary corruptions and delays. In this paper, we study cooperative bandit learn-

ing under three typical real-world communication scenarios, namely, (a) message-

passing over stochastic time-varying networks, (b) instantaneous reward-sharing over

a network with random delays, and (c) message-passing with adversarially corrupted

rewards, including byzantine communication. For each of these environments, we

propose decentralized algorithms that achieve competitive performance, along with

near-optimal guarantees on the incurred group regret as well. Furthermore, in the set-
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ting with perfect communication, we present an improved delayed-update algorithm

that outperforms the existing state-of-the-art on various network topologies. Finally,

we present tight network-dependent minimax lower bounds on the group regret. Our

proposed algorithms are straightforward to implement and obtain competitive empir-

ical performance.

10.1 Introduction

The cooperative multi-armed bandit problem involves a group of N agents collectively

solving a multi-armed bandit while communicating with one another. This problem

is relevant for a variety of applications that involve decentralized decision-making,

for example, in distributed controls and robotics [81] and communication [43]. In

the typical formulation of this problem, a group of agents are arranged in a network

G = (V , E), wherein each agent interacts with the bandit, and communicates with its

neighbors in G, to maximize the cumulative reward.

A large body of recent work on this problem assumes the communication network

G to be fixed [42, 49]. Furthermore, these algorithms inherently require precise com-

munication, as they construct careful confidence intervals for cumulative arm statistics

across agents, e.g., for stochastic bandits, it has been shown that the standard UCB1

algorithm [7] with a neighborhood confidence interval is close to optimal [19, 42],

and correspondingly, for adversarial bandits, a neighborhood-weighted loss estimator

can be utilized with the EXP3 algorithm to provide competitive regret [13]. Such

approaches are indeed feasible when communication is perfect, e.g., the network G is

fixed, and messages are not lost or corrupted. In real-world environments, however,

this is rarely true: messages can be lost, agents can be byzantine, and communication

networks are rarely static [53]. This aspect has hence received much attention in the

distributed optimization literature [99]. However, contrary to network optimization
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where dynamics in communication can behave synergistically [34], bandit problems

additionally bring a decision-making component requiring an explore-exploit trade-

off. As a result, external randomness and corruption are incompatible with the default

optimal approaches, and require careful consideration [91, 57]. This motivates us to

study the multi-agent bandit problem under real-world communication, which reg-

ularly exhibits external randomness, delays and corruptions. Our key contributions

include the following.

Contributions . We provide a set of algorithms titled Robust Communication

Learning (RCL) for the cooperative stochastic bandit under three real-world commu-

nication scenarios.

First, we study stochastic communication, where the communication network G

is time-varying, with each edge being present in G with an unknown probability p.

For this setting, we present a UCB-like algorithm, RCL-LF (Link Failures), that directs

agent i to discard messages with an additional probability of 1 − pi in order to con-

trol the bias in the (stochastic) reward estimates. RCL-LF obtains a group regret of

O
((∑N

i=1(1− p · pi) +
∑
C∈C(maxi≤C pi) · p

)(∑K
k=1

log T
∆k

))
, where C is a non over-

lapping clique covering of G, T is time horizon, and ∆k is the difference in reward

mean between the optimal and kth arm. The regret exhibits a smooth interpola-

tion between known rates for no communication (p = 0) and perfect communication

(p = 1).

Second, we study the case where messages from any agent can be delayed by a

random (but bounded) number of trials τ with expectation E[τ ]. For this setting, sim-

ple reward-sharing with a natural extension of the UCB algorithm (RCL-SD (Stochastic

Delays)) obtains a regret of

O
(
χ̄(G) ·

(∑
k>1

log T

∆k

)
+
(
N · E[τ ] + log(T ) +

√
N · E[τ ] log(T )

)
·
∑
k>1

∆k

)
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, which is reminiscent of that of single-agent bandits with delays [38] (Remark 16).

Here χ̄(G) is the clique covering number of G.

Third, we study the corrupted setting, where any message can be (perhaps in

a byzantine manner) corrupted by an unknown (but bounded) amount ε. This

setting presents the two-fold challenge of receiving feedback after (variable) delays

as well as adversarial corruptions, making existing arm elimination [57, 15, 30]

or cooperative estimation [19] methods inapplicable. We present algorithm

RCL-AC (Adversarial Corruptions) that overcomes this issue by limiting explo-

ration only to well-positioned agents in G, who explore using a hybrid robust

arm elimination and local confidence bound approach. RCL-AC obtains a regret

of O
(
ψ(Gγ) ·

∑K
k=1

log T
∆k

+N
∑K

k=1
log log T

∆k
+NTKγε

)
, where ψ(Gγ) denotes the

domination number of the γ graph power of G, which matches the rates obtained for

corrupted single-agent bandits without knowledge of ε.

Finally, for perfect communication, we present a simple modification of coopera-

tive UCB1 that provides significant empirical improvements, and also provides minimax

lower bounds on the group regret of algorithms based on message-passing.

Related Work. A variant of the networked adversarial bandit problem without

communication constraints (e.g., delay, corruption) was studied first in the work of [8],

who demonstrated an average regret bound of order
√

(1 + K/N)T . This line of inquiry

was generalized to networked communication with at most γ rounds of delays in the

work of [13], that demonstrate an average regret of order
√

(γ + α(Gγ)/N)KT where

α(Gγ) denotes the independence number of Gγ, the γ-power of network graph G.

This line of inquiry has been complemented for the stochastic setting with problem-

dependent analyses in the work of [42] and [19]. The former presents a UCB1-style

algorithm with instantaneous reward-sharing that obtains a regret bound of O(α(G) ·

163



∑K
k=1

log T
∆k

) that was generalized to message-passing communication with delays in

the latter.

Alternatively, [49] consider the multi-agent bandit where communication is done

instead using a running consensus protocol, where neighboring agents average their

reward estimates using the DeGroot consensus model [17]. This algorithm was re-

fined in the work of [66] by a delayed mixing scheme that reduces the bias in the

consensus reward estimates. A specific setting of Huber contaminated communica-

tion was explored in the work of [20]; however, in contrast to our algorithms, that

work assumes that the total contamination likelihood is known a priori. Addition-

ally, multi-agent networked bandits with stochastic communication was considered

in [61, 64, 65], however, only for regular networks and multi-star networks.

Our work also relates to aspects of stochastic delayed feedback and corruptions in

the context of single-agent multi-armed bandits. There has been considerable research

in these areas, beginning from the early work of [98] that proposes running multiple

bandit algorithms in parallel to account for (fixed) delayed feedback. [91] discuss the

multi-armed bandit with stochastic delays, and provide algorithms using optimism

indices based on the UCB1 [7] and KL-UCB [25] approaches. Stochastic bandits with

adversarial corruptions have also received significant attention recently. [57] present

an arm elimination algorithm that provides a regret that scales linearly with the total

amount of corruption, and present lower bounds demonstrating that the linear depen-

dence is inevitable. This was followed up by [29] who introduce the algorithm BARBAR

that improves the dependence on the corruption level by a better sampling of worse

arms. Alternatively, [3] discuss best-arm identification under contamination, which

is a weaker adversary compared to the one discussed in this paper. The corrupted

setting discussed in our paper combines both issues of (variable) delayed feedback

along with adversarial corruptions, and hence requires a novel approach.
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Table 10.1: Quantity (with notation) for any graph G.

Average degree (d̄) Maximum degree (dmax) Degree of i (di)
Message life (γ) Minimum degree (dmin) Neighborhood of i (Ni)
k-power of G (Gk) Diameter (d?) Ni ∪ {i} (N+

i )
Independence number (α) Domination number (ψ) Clique covering number (χ̄)

In another line of related work, Chawla et al.[15] discuss gossip-based commu-

nication protocols for cooperative multi-armed bandits. While the paper provides

similar results, there are several differences in the setup considered in Chawla et al

compared to our setup. First, we can see that Chawla et al.do not provide a uni-

form O( 1
N

) speedup, but in fact, their regret depends on the difficulty of the first K
N

arms, which is a O( 1
N

) speed up only when all arms are “uniformly” suboptimal, i.e.,

∆i ≈ ∆j∀i, j ∈ [K]. In contrast, our algorithm will always provide a speed up of order

α(Gγ)

N
regardless of the arms themselves, and when we run our algorithm by setting the

delay parameter γ = d?(G) (diameter of the graph G), we obtain an O( 1
N

) speedup

regardless of the sparsity of G. Additionally, our constants (per-agent) scale as O(K)

in the worst case, whereas Chawla et al obtain a constant between O(K + (logN)β)

and O(K +Nβ) for some β � 1, based on the graph structure, which can dominate

the log T term when we have a large number of agents present.

10.2 Preliminaries

Notation (Table 10.1). We denote the set a, ..., b as [a, b], and as [b] when a = 1.

We define the indicator of a Boolean predicate x as 1{x}. For any graph G with

diameter d?(G), and any 1 ≤ γ ≤ d?(G), we define Gγ as the γ-power of G, i.e., the

graph with edge (i, j) if i, j are at most a distance γ.

Problem Setting. We consider the cooperative stochastic multi-armed bandit

problem with K arms and a group V of N agents. In each round t ∈ [T ], each agent
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i ∈ V pulls an arm Ai(t) ∈ [K] and receives a random reward Xi(t) (realized as ri(t))

drawn i.i.d. from the corresponding arm’s distribution. We assume that each reward

distribution is sub-Gaussian with an unknown mean µk and unknown variance proxy

σ2
k upper bounded by a known constant σ2. Without loss of generality we assume

that µ1 ≥ µ2 . . . ≥ µK and define ∆k := µ1 − µk,∀k > 1, to be the reward gap (in

expectation) of arm k. Let ∆ := mink>1 ∆k be the minimum expected reward gap.

For brevity in our theoretical results, we define g(ξ, σ) := 8(ξ + 1)σ2 = o(1) and

f(M,G) := M
∑

k>1 ∆k+4
∑N

i=1 (3 log(3(di(G) + 1)) + (log (di(G) + 1)))·∑k>1 ∆k =

o((M +N logN) ·∑k>1 ∆k).

Networked Communication (Figure 10.1). Let G = (V , E) be a connected,

undirected graph encoding the communication network, where E contains an edge

(i, j) if agents i and j can communicate directly via messages with each other. After

each round t, each agent j broadcasts a message mj(t) to all their neighbors. Each

message is forwarded at most γ times through G, after which it is discarded. For any

value of γ > 1, the protocol is called message-passing [55], but for γ = 1 it is called

instantaneous reward sharing, as this setting has no delays in communication.

Exploration Strategy (Figure 10.2). For Sections 10.3 and 10.4 we use a natural

extension of the UCB1 algorithm for exploration. Thus we modify UCB1 [7] such that

at each time step t for each arm k each agent i constructs an upper confidence bound,

i.e., the sum of its estimated expected reward µ̂ik(t− 1) (empirical average of all the

observed rewards) and the uncertainty associated with the estimate Ci
k(t − 1) :=

σ
√

2(ξ+1) log t

N i
k(t−1)

where ξ > 1, and pulls the arm with the highest bound.

Regret. The performance measure we consider, group regret, is a straightforward

extension of pseudo regret for a single agent. Group regret is the regret (in expecta-

tion) incurred by the group V by pulling suboptimal arms. The group regret is given
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by RegG(T ) =
∑N

i=1

∑
k>1 ∆k · E [nik(t)], where nik(t) is the number of times agent i

pulls the suboptimal arm k up to (and including) round t.

Before presenting our algorithms and regret upper bounds we present some graph

terminology.

Definition 7 (Clique covering number). A clique cover C of any graph G = (V , E) is

a partition of V into subgraphs C ∈ C such that each subgraph C is fully connected,

i.e., a clique. The size of the smallest possible covering C? is known as the clique

covering number χ̄(G).

Definition 8 (Independence number). The independence number α(G) of G = (V , E)

is the size of the largest subset of Vα ⊆ V such that no two vertices in Vα are connected.

Definition 9 (Domination number). The domination number ψ(G) of G = (V , E) is

the size of the smallest subset Vψ ⊆ V such that each vertex not in Vψ is adjacent to

at least one agent in Vψ.

Organization. In this paper, we study three specific forms of communication errors.

Section 10.3 discusses the case when, for both message-passing and instantaneous

reward-sharing, any message forwarding fails independently with probability p, re-

sulting in stochastic communication failures. Section 10.4 discusses the case when

instantaneous reward-sharing incurs a random (but bounded) delay. Section 10.5

discusses the case when the outgoing reward from any message may be corrupted by

an adversarial amount at most ε. Finally, in Section 10.6, we discuss an improved al-

gorithm for the case with perfect communication and present minimax lower bounds

on the problem. We present all proofs in the Appendix and present proof-sketches

highlighting the central ideas in the main paper.
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For t = 1, 2, ... each agent i ∈ V

1. Plays arm Ai(t), gets reward ri(t), computes mi(t) = 〈Ai(t), ri(t), i, t〉.

2. Adds mi(t) to the set of messages Mi(t), broadcasts all messages in Mi(t) to its
neighbors and receives messages M′i(t) from its neighbors.

3. Computes Mi(t + 1) from M′i(t) by discarding all messages sent prior to round
t− γ.

This is called instantaneous reward sharing for γ = 1 (no delays), and message-passing
for γ > 1.

Figure 10.1: The cooperative bandit protocol with delay parameter γ.

For t = 1, 2, ..., each agent i ∈ V

1. Calculates, for each arm k ∈ [K], Qik(t−1) = µ̂ik(t−1)+σ

√
2(ξ+1) log(t−1)

N i
k(t−1)

, where

N i
k(t− 1) is the number of reward samples available for arm k at time t.

2. Plays arm Ai(t) = argmaxkQ
i
k(t− 1)

Figure 10.2: Cooperative UCB1 which uses additional arm pulls from messages.

10.3 Probabilistic Message Selection for Random

Communication Failures

The fundamental advantage of cooperative estimation is the ability to leverage ob-

servations about suboptimal arms from neighboring agents to reduce exploration.

However, when agents are communicating over an arbitrary graph, the amount of

information an agent receives varies according to its connectivity in G. For example,

agents with a large number of neighbors receive more information, leading them to

begin exploitation earlier than agents with fewer neighbors. This means that well-

connected agents exhibit better performance early on, but because they quickly do

only exploiting, agents that are poorly connected typically only observe exploitative

arm pulls, which requires them to explore for longer in order to obtain similarly

good estimates for suboptimal arms, increasing their regret. The disparity between
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performance in well-connected versus poorly connected agents is exacerbated in the

presence of random l ink failures, where any message sent by an agent can fail to reach

its recipient with a failure probability 1− p (drawn i.i.d. for each message).

Indeed, it is natural to expect the group regret to decrease with decreasing link

failure probability, i.e., increasing communication probability p. However, what we

observe experimentally (Section 10.7) is that this holds only for graphs G that are

regular (i.e., each agent has the same degree), or close to regular. When G is irregular,

as we increase p from 0 to 1, the group performance oscillates. While, in some cases,

the improved performance in the well-connected agents can outweigh the degradation

observed in the weakly-connected agents (leading to lower group regret), it is prudent

to consider an approach that mitigates this disparity by regulating information flow

in the network.

Information Regulation in Cooperative Bandits. Our approach to regulate

information is straightforward: we direct each agent i to discard any incoming message

with an agent-specific probability 1− pi, while always utilizing its own observations.

For specific values of pi, we can obtain various weighted combinations of internal

versus group observations. Our first algorithm RCL-LF (Link Failures) is built on this

regulation strategy, coupled with UCB1 exploration using all selected observations for

each arm. Essentially, each agent runs UCB1 using the cumulative set of observations

it has received from its network. After pulling an arm, it broadcasts its pulled arm

and reward through the network, but incorporates each incoming message only with

a probability pi. Pseudo code for the algorithm is given in the appendix. We first

present a regret bound for RCL-LF when run with the instantaneous reward-sharing

protocol.

Theorem 17 (RCL-LF Regret with instantaneous reward-sharing). RCL-LF running

with the instantaneous reward-sharing protocol (Figure 10.1, γ = 1) obtains cumula-
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tive group regret of

RegG(T ) ≤ g(ξ, σ)

(
N∑
i=1

(1− pi · p) +
∑
C∈C

(max
i≤C

pi) · p
)(∑

k>1

log T

∆k

)
+ f(5N,G)

where C is a non-overlapping clique covering of G.

Proof sketch. We follow an approach similar to the analysis of UCB1 by [7] with

several key modifications. First, we partition the communication graph G into

a set of non-overlapping cliques and then analyze the regret of each clique. The

group regret can be obtained by taking the summation of the regret over each

clique. Two major technical challenges in proving the regret bound for RCL-LF

are (a) deriving a tail probability bound for probabilistic communication, and (b)

bounding the regret accumulated by agents by losing information due to com-

munication failures and message discarding. We overcome the first challenge by

noticing that communication is independent of the decision making process thus

E
(

exp
(
λ
∑t

τ=1X
i
τ1{Aiτ = k} − µkN i

k(t)−
λ2σ2

k

2
N i
k(t)
))
≤ 1 holds under probabilis-

tic communication. We obtain the tail bound by combining this result with the

Markov inequality and optimizing over λ using a peeling type argument. We address

the second challenge by proving that the number of times agents do not share

information about any suboptimal arm k can be bounded by a term that increases

logarithmically with time and scales with number of agents, G, and communication

probabilities, as
∑N

i=1(1− pi · p) +
∑
C∈C(maxi≤C pi) · p. �

Remark 13 (Regret bound optimality). Under perfect communication (p = 1) and

no message discarding, i.e., pi = p = 1, ∀i ∈ [N ] the dominant term in our re-

gret bound scales with χ̄(G), obtaining identical performance to deterministic com-

munication over G [19]. Alternatively, when pi = p = 0, there is no communica-

tion, and hence, the regret bound is O(N log T ). Theorem 17 quantifies the benefit

of communication in reducing the group regret under probabilistic link failure and
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when agents incorporate observations with an agent-specific probability. Note that∑N
i=1(1− pi · p) +

∑
C∈C(maxi≤C pi) · p = N − p ·

(∑N
i=1 pi −

∑
C∈C(maxi≤C pi)

)
. Since

the clique covering is non-overlapping, the results show that agents obtain improved

group performance for any communication probability p > 0 for any nontrivial graph

as compared to the case with no communication in which each agent learns on its

own.

Remark 14 (Controlling information disparity). In order to regulate the information

disparity across the network we set pi = dmin(G)
di(G)

. Thus, the agent(s) with minimum

degree dmin incorporate each message they receive with probability 1 and we have that

the expected number of messages for each agent is the same, i.e., T · dmin(G). There-

fore, every agent receives the same amount of information (in expectation), providing

a large performance improvement for irregular graphs (see Section 10.7).

Message-Passing. Under this communication protocol each agent i communicates

with neighbors at distance at most γ, where each hop adds a 1-step delay. Our

algorithm RCL-CF obtains a similar regret bound in this setting as well, when all

agents use the same UCB1 exploration strategy (Figure 10.2).

Theorem 18 (RCL-LF Regret with message-passing). Let C be a minimal clique cov-

ering of Gγ. For any C ∈ C and i, j ∈ C let γi = maxj∈C d(i, j) be the maximum

distance (in graph G) between agents i and j. RCL-LF running with the message-

passing protocol (Figure 10.1) with delay parameter γ obtains cumulative group regret

of

RegG(T ) ≤ g(ξ, σ)

(
N∑
i=1

(1− pi · pγi) + χ̄(Gγ) · (max
i≤N

pi · pγi)
)(∑

k>1

log T
∆k

)
+ f((γ + 4)N,Gγ).

Proof sketch. We partition the graph Gγ into non-overlapping cliques, analyze the

regret of each clique and take the summation of regrets over cliques to obtain group
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regret. In addition to the challenges encountered in Theorem 17 here we are required

to account for having different probabilities of failures for messages due to having

multiple paths of different length between agents and to account for the delay incurred

by each hop when passing messages. We overcome the first challenge by noting that

agent i receives each message with at least probability pγi . We overcome the second

challenge by identifying that regret incurred by delays can be upper bounded using(∑N
i=1 γi −N

)∑
k>1 ∆k. �

Remark 15. Finding an optimal observation probability {pi}N1=1 for RCL-LF with

message-passing is difficult due to the delays added by each hop when forwarding

messages. If messages are forwarded without a delay, optimal performance can be ob-

tained by using pi = dmin(Gγ)

di(Gγ)
. For dense Gγ, the above choice of observation probability

provides near-optimal performance. When γ = d?(G) we have that Gγ is a complete

graph, pi = dmin(Gγ)

di(Gγ)
= 1, and agents do not discard any message. However, when

γ < d?(G), the graph Gγ is not complete. Therefore agents receive different amounts

of information which are approximately proportional to the degree distribution of Gγ.

As explained earlier this information disparity leads to a performance disparity among

agents. As a result group performance decreases. In this case we design the algorithm

such that each agent i discards messages with 1 − pi where pi = dmin(Gγ)

di(Gγ)
. This regu-

lates the information flow mitigating the bias introduced by information disparity. As

a result the group obtains near-optimal performance.

10.4 Instantaneous Reward-sharing Under Stochas-

tic Delays

Next, we consider a communication protocol, where any message is received after

an arbitrary (but bounded) stochastic delay. We assume for simplicity that each

message is sent only once in the network (and not forwarded multiple times as in
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message-passing), and leave the message-passing setting as future work. We assume,

furthermore that the delays are identically and independently drawn from a bounded

distribution with expectation E[τ ] (similar to prior work, e.g., [38, 91]). For this set-

ting, we demonstrate that cooperative UCB1, along with incorporating all messages as

soon as they are available, provides efficient performance, both empirically and theo-

retically. We denote this algorithm as RCL-SD (Stochastic Delays), and demonstrate

that this approach incurs only an extra O(
√
N log T + log T ) overhead compared to

perfect communication.

Theorem 19 (RCL-SD Regret). Let Dtotal = N · E[τ ] + 2 log T + 2
√
N · E[τ ] log T

denote an upper bound on the total number of outstanding messages. RCL-SD obtains,

with probability at least 1− 1
T
, cumulative group regret of

RegG(T ) ≤ g(ξ, σ) · χ̄(G) ·
(∑
k>1

log T

∆k

)
+Dtotal ·

(∑
k>1

∆k

)
+ f(5N,G).

Proof sketch. We first demonstrate that the additional group regret due to stochas-

tic delays can be bounded by the maximum number of cumulative outstanding mes-

sages over all agents at any given time step. Then we apply a result similar to Lemma

2 of [38] to bound the total number of outstanding messages using the cumulative

expected delay N · E[τ ], giving the result. �

Remark 16. The Dtotal term is a succinct upper bound on the maximum number of

cumulative outstanding messages over all agents, and when the expected delay E[τ ] =

o(1), we see that the contribution of Dtotal is O(
√
N log T + log T ). We conjecture

that this cannot be improved without restricting communication, as each agent will

send T messages in total. The result obtained by [38] has a similar dependence for

a single agent.
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10.5 Hybrid Arm Elimination for Adversarial Re-

ward Corruptions

In this section, we assume that any reward when transmitted can be corrupted by a

maximum value of ε, i.e., maxt,n |rn(t)−r̃n(t)| ≤ ε where r̃n(t) denotes the transmitted

reward. Furthermore, we assume that the corruptions can be adaptive, i.e., can

depend on the prior actions and rewards of each agent. This model includes natural

settings, where messages can be corrupted during transmission, as well as byzantine

communication [20]. If ε were known, we could then extend algorithms for misspecified

bandits [27] to create a robust estimator and a subsequent UCB1-like algorithm that

obtains a regret of O(χ̄(Gγ)K( log T
∆

)+TNKε). However, this approach has two issues.

First, ε is typically not known, and the dependence on Gγ can be improved as well.

We present an arm-elimination algorithm called RCL-AC (Adversarial Corruptions)

that provides better guarantees on regret, without knowledge of ε in Algorithm 8.

The central motif in RCL-AC’s design is to eliminate bad arms by an epoch-based

exploration, an idea that has been successful in the past for adversarially-corrupted

stochastic bandits [57, 29]. The challenge, however, in a message-passing decentralized

setting is two-fold. First, agents have different amounts of information based on their

position in the network, and hence badly positioned agents in G may be exploring

for much larger periods. Secondly, communication between agents is delayed, and

hence any agent naively incorporating stale observations may incur a heavy bias from

delays. To ameliorate the first issue, we partition the group of agents into two sets

- exploring agents (I) and imitating agents (V \ I). The idea is to only allow well-

positioned agents in I to direct the exploration strategy for their neighboring agents,

and the rest simply imitate their exploration strategy. We select I as a minimal

dominating set of Gγ, hence |I| = ψ(Gγ). Furthermore, since V \ I is a vertex cover,

this ensures that each imitating agent is connected (at distance at most γ) to at least

174



one agent in I. Next, observe that there are two sources of delay: first, any imitating

agent must wait at most γ trials to observe the latest action from its corresponding

exploring agent, and second, each exploring agent must wait an additional γ trials

for the feedback from all of its imitating agents. We propose that each exploring

agent run UCB1 for 2γ rounds after each epoch of arm elimination, using only local

pulls. This prevents a large bias due to these delays, at a small cost of O(log log T )

suboptimal pulls.

Theorem 20 (RCL-RC Regret). RCL-RC obtains, with probability at least 1− δ, group

regret of

RegG(T ) = O
(
KTNγε+ ψ(Gγ) ·

∑
k>1

log T
∆k

log
(
Kψ(Gγ) log T

δ

)
+N

∑
k>1

∆k +
∑
k>1

N log(γ log T )
∆k

)
.

Proof sketch. Since the dominating set covers V , we can decompose the group

regret into the cumulative regret of the subgraphs corresponding to each agent in

ψ(Gγ). For each subgraph, we can consider the cumulative regret incurred when the

exploring agent follows UCB1 versus arm elimination. We have that arm elimination

occurs for log T epochs, and since UCB1 runs for 2γ rounds between succesive epochs,

we have that in any subgraph of size n, the cumulative regret from UCB1 rounds is of

O(nK log(γ log T )). For arm elimination, we can bound the subgraph regret using a

modification of the approach in [29]: the difference in our approach is to construct

a multi-agent filtration for arbitrary (reward-dependent) corruptions from message-

passing, and then applying Freedman’s bound on the resulting martingale sequence.

Subsequently, the regret in each epoch is bounded in a manner similar to [29], and

finally applying a union bound. �

Remark 17 (Regret Optimality). Theorem 20 demonstrates a trade-off between com-

munication density and the adversarial error, as seen by the first two terms in the
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regret bound. The first term (KTNγε) is a bound on the cumulative error introduced

due to message-passing, which is increasing in γ, whereas the second term denotes

the logarithmic regret due to exploration, where ψ(Gγ) decreases as γ increases: for

γ = d?(G), ψ(Gγ) = 1, matching the lower bound in [19]. This too is expected, as

fewer exploring agents are needed with a higher communication budget. Furthermore,

we conjecture that the first term is optimal (in terms of T , up to graphical constants):

a linear lower bound has been demonstrated for the single-agent setting in [57].

Remark 18 (Computational complexity). While the dominating set problem is

known to be NP-complete [40], the problem admits a polynomial-time approxima-

tion scheme (PTAS) [16] for certain graphs, for which our bounds hold exactly.

However, RCL-RC can work on any dominating set of size n, and suffer regret of

Õ(KTNγε+ n
∑

k>1
log T
∆k

)1.

10.6 An Algorithm for Perfect Communication

and Lower Bounds

For perfect communication, we present Delayed MP-UCB, a simple improvement to

UCB1 with message-passing where each agent i only incorporates messages originated

prior to γ̄ ≤ γ time steps, reducing disparity in information across agents.

Theorem 21 (Delayed MP-UCB Regret). Delayed(MP)-UCB obtains cumulative group

regret of

RegG(T ) ≤ g(ξ, σ)χ̄(Gγ)

(∑
k>1

log T

∆k

)
+ (N − χ̄(Gγ) (γ − 1)

∑
k>1

∆k+ f(5N,Gγ) + h(Gγ, γ̄)

where h(Gγ, γ̄) =

(
(N − χ̄(Gγ)γ̄ +

∑T
t>γ̄

log
(

1− di(Gγ )γ̄

(di(Gγ )+1)t)

)
log 1.3

1

t
(ξ+1)(1− 0.09

16 )

)∑
k>1 ∆k.

1The Õ notation ignores absolute constants and log log(·) factors in T .
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Proof sketch. Following a similar approach to the proof of Theorem 18 we partition

the graph Gγ into a set of non-overlapping cliques, analyze the regret of each clique

via a UCB1 type analysis and take the summation of regret over cliques. However,

using less information (due to delayed information usage) in estimates leads to a

large confidence bound Ci
k(t) and this reduces the contribution to the regret from

tail probabilities. Note that log
(

1− di(Gγ)γ̄

(di(Gγ)+1)t)

)
is negative ∀t > γ̄, and hence lower

regret achieved due to low tail probabilities is given by the second term of h(Gγ, γ̄).

�

Remark 19. Incorporating only the messages originated before γ̄ time steps is similar

to communicating over Gγ̄ after a delay of γ̄ time steps. When G is connected and

γ̄ = γ = d∗ this is similar to communicating over a complete graph with a delay of

d∗. Thus Delayed MP-UCB mitigates the disparity in information used by each agent,

leading to improved group performance.

Lower Bounds. Without strict assumptions, a lower bound of O
(∑

k>1
log T/∆k

)
has been demonstrated both for γ = 1 (instantaneous reward-sharing, [42]) and

γ > 1 (message-passing, [19]), which both suggest that a speedup of 1
N

is poten-

tially achievable. For a more restrictive class of individually consistent and non-

altruistic policies (i.e., that do not contradict their local feedback), a tighter lower

bound of O
(
α(G2)

∑
k>1

log T/∆k

)
can be demonstrated for reward-sharing [42], and

consequently O
(
α(Gγ+1)

∑
k>1

log T/∆k

)
for message-passing. To supplement these

results, we present a lower bound to characterize the minimax optimal rates for the

problem. We present first an assumption on multi-agent policies.

Assumption 1 (Agnostic decentralized policies). A set of N policies π1, ..., πN are

termed agnostic decentralized policies, if for every pair (i, j) of agents that communi-

cate in G and each t ∈ [T ], πi(t) is independent of {πj(τ)}t−d(i,j)
τ=1 conditioned on the

rewards {(Aj(τ), Xj(τ))}t−d(i,j)
τ=1 .
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Theorem 22 (Minimax Rate). For any policy A, there exists a K-armed environment

over N agents with ∆k ≤ 1 for any connected graph G and γ ≥ 1 such that, for some

absolute constant c,

RegG(A, T ) > c

√
KN(T + d̃(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K-armed envi-

ronment over N agents with ∆k ≤ 1 for any connected graph G and γ ≥ 1 such that,

for some absolute constant c′,

RegG(A, T ) > c′
√
α?(Gγ)KNT.

Here d̃(G) =
∑d?(G)

i=1 d̄=i · i denotes the average delay incurred by message-passing

across the network G, and α?(Gγ) = N
1+dγ

is Turan’s lower bound [90] on α(Gγ).

Remark 20 (Tightness of lower bound). The first minimax bound does not make

any assumptions on the policy A, and hence we only see an additive dependence of

the average delay incurred by communication over G. This dependence generalizes

the minimax rate for delayed multi-armed bandits [72] to graphical feedback. For the

latter bound, observe that a variety of cooperative extensions of single-agent bandit

algorithms [42, 19, 13] obey this assumption, where the decision-making for any agent

is independent of any other agent, conditioned on the observed rewards. In this setting,

agents merely treat messages as additional pulls to construct stronger estimators, and

do not strategize collectively. This bound is exact (up to constants) for a variety of

communication graphs G. For instance, for linear and circular graphs, α?(Gγ)

α(Gγ)
= o(1),

and for d-regular graphs, α?(Gγ) = α(Gγ) [90].
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10.7 Experimental Results

We consider the 10-armed bandit with rewards drawn from Gaussian distributions

with σk = 1 for each arm, such that µ1 = 1 and µk = 0.5 for k 6= 1, and the number of

agents N = 50, where we repeat each experiment 100 times with G selected randomly

from different families of random graphs. The bottom row of Figure 10.3 corresponds

to Erdos-Renyi graphs with p = 0.7. The top row of Figure 10.3 (a), (c) and (d)

corresponds to multi-star graphs and (b) and (e) to random tree graphs. We set

ξ = 1.1 and γ = max{3, d?(G)/2}.

Stochastic Link Failure . Figure 10.3(a) and Figure 10.3(b) summarize perfor-

mance of RCL(RS)-LF and RCL(MP)-LF, comparing it with the corresponding reward-

sharing and message-passing UCB-like algorithms in which pi = 1, ∀i ∈ [N ], for dif-

ferent p values. The group regret is given at T = 500. The results validate our claim

that probabilistic message discarding improves performance for irregular graphs and

provides competitive performance for near -regular graphs.

Stochastic Delays. We compare performance of RCL-SD with UCB1. We draw

delays from a bounded distribution with E[τ ] = 10 and τmax = 50. The results are

summarized in Figure 10.3(c).

Adversarial Communication. We compute the (approximate) dominating set

using the algorithm provided in networkx for each connected component in Gγ. We

draw corruptions uniformly from the range [0, ε] for each message, where ε is increased

from 10−3 to 10−2. The group regret at T = 500 as a function of ε is shown in

Figure 10.3(d) and compared against individual UCB1 and cooperative UCB with

message-passing (MP-UCB), which incur larger regret increasing linearly with ε.

179



6000

8000
G

ro
u

p
R

eg
re

t

Link Failure(RS)

RCL(RS)-LF

RS-UCB

6000

7000

8000

Link Failure(MP)

RCL(MP)-LF

MP-UCB

0

5000

10000

Stochastic Delay

RCL-SD

UCB1

2000

4000

6000

Random Corruption

RCL-RC

MP-UCB

UCB1

0

2500

5000

7500

Perfect Communication

delayed(MP)-UCB

MP-UCB

0.0 0.5 1.0
Probability (p)

2000

4000

6000

8000

G
ro

u
p

R
eg

re
t

(a)

0.0 0.5 1.0
Probability (p)

2500

5000

7500

(b)

0 500 1000
Time (t)

0

5000

10000

(c)

0.002 0.004
Corruption (ε)

2000

4000

6000

8000

(d)

0 500 1000
Time (t)

0

2500

5000

7500

(e)

Figure 10.3: Experimental results for various imperfect communication settings.

Perfect Communication . We compare the regret curve for T = 1000 for our

Delayed(MP)-UCB against regular MP-UCB in Figure 10.3(e). We use γ̄ = 2. It is

evident that delayed incorporation of messages markedly improves performance across

both networks.

10.8 Conclusions

In this paper, we studied the cooperative bandit problem in three different imper-

fect communication settings. For each setting, we proposed algorithms with com-

petitive empirical performance and provided theoretical guarantees on the incurred

regret. Further, we provided an algorithm for perfect communication that comfort-

ably outperforms existing baseline approaches. We additionally provided a tighter

network-dependent minimax lower bound for the cooperative bandit problem. We

believe that our contributions can be of immediate utility in applications. Moreover,

future inquiry can be pursued in several different directions, including multi-agent

reinforcement learning and contextual bandit learning.

Ethical Considerations. Our work is primarily theoretical, and we do not foresee

any negative societal consequences arising specifically from our contributions in this

paper.
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10.9 Appendix

10.9.1 Proof of Theorem 17

We consider the case where each message fails with probability 1− p and each agent

i uses the messages it receives from its neighbors with probability pi. This is equiv-

alent to each agent i receiving messages from its neighbors with probability pip. Let

1{(i, j) ∈ Et} be the indicator random variable that takes value 1 if agent i receives

reward value and arm id from agent j at time t and 0 otherwise.

We start by proving some useful lemmas.

Lemma 13. (Restatement of results from [7]) Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T. For

any suboptimal arm k and ∀i, t we have

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
≤ P

(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)

Proof. Let Qi
k(t) = µ̂ik(t) + Ci

k(t). Note that for any k > 1 we have

{Ai(t+ 1) = k} ⊂
{
Qi
k(t) ≥ Qi

1(t)
}

⊂
{{
µ1 < µk + 2Ci

k(t)
}
∪
{
µ̂i1(t) ≤ µ1 − Ci

1(t)
}
∪
{
µ̂ik(t) ≥ µk + Ci

k(t)
}}

.

Let ηk =
(

8(ξ+1)σ2

∆2
k

)
log T . Since N i

k(t) > ηk the event {µ1 < µk + 2Ci
k(t)} does not

occur. Thus we have

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
≤ P

(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)

This concludes the proof of Lemma 13.
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Lemma 14. Let χ̄(G) is the clique covering number of graph G. Let ηk =(
8(ξ+1)σ2

k

∆2
k

)
log T. Then we have

N∑
i=1

E[nik(T )] ≤
(

N∑
i=1

(1− pip) + χ̄(G)pmaxp

)
ηk + 2N (10.1)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.2)

Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal

arm k > 1 we have

N∑
i=1

E[nik(T )] =
N∑
i=1

T∑
t=1

P (Ai(t) = k) =
∑
C∈C

∑
i∈C

T∑
t=1

P (Ai(t) = k) . (10.3)

Let τk,C denote the maximum time step when the total number of times arm k has

been played by all the agents in clique C is at most ηk + |C| times. This can be

stated as τk,C := max{t ∈ [T ] :
∑

i∈C n
i
k(t) ≤ ηk + |C|}. Then, we have that ηk <∑

i∈C n
i
k(τk,C) ≤ ηk + |C|.

For each agent i ∈ C let

N̄ i
k(t) :=

∑
j∈C

t∑
τ=1

1{Aj(τ) = k}1{(i, j) ∈ Eτ},

denote the sum of the total number of times agent i pulled arm k and the total number

of observations it received from agents in its clique about arm k until time t. Define

τ̄ ik,C := max{t ∈ [T ] : N̄ i
k(t) ≤ ηk}. Then we have that ηk − |C| < N̄ i

k(τ̄
i
k,C) ≤ ηk.

Note that N i
k(t) ≥ N̄ i

k(t),∀t, hence for all i ∈ C we have N i
k(t) > ηk, ∀t > τ̄ ik,C.

Here we consider that τ̄
(i)
k,C ≥ τk,C,∀i. From regret results it follows that regret for this

case is greater than the regret for the case where τ̄ ik,C < τk,C for some (or all) i.
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We analyse the expected number of times agents pull suboptimal arm k as follows,

∑
C∈C

∑
i∈C

T∑
t=1

1{Ai(t) = k} (10.4)

=
∑
C∈C

∑
i∈C

τk,C∑
t=1

1{Ai(t) = k}+
∑
C∈C

∑
i∈C

τ̄ ik,C∑
t>τk,C

1{Ai(t) = k}+
∑
C∈C

∑
i∈C

T∑
t>τ̄ ik,C

1{Ai(t) = k}

(10.5)

≤
∑
C∈C

(ηk + |C|) +
∑
C∈C

∑
i∈C

τ̄ ik,C∑
t>τk,C

1{Ai(t) = k}+ |C| (10.6)

+
∑
C∈C

∑
i∈C

T−1∑
t>τ̄ ik,C

1{Ai(t+ 1) = k}1
{
N i
k(t) > ηk

}
. (10.7)

Taking expectation we have

∑
C∈C

∑
i∈C

T∑
t=1

P (Ai(t) = k) ≤
∑
C∈C

(ηk + 2|C|) (10.8)

+
∑
C∈C

∑
i∈C

τ̄ ik,C∑
t>τk,C

P (Ai(t) = k) +
∑
C∈C

∑
i∈C

T−1∑
t>τ̄ ik,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
.

(10.9)

Note that we have

∑
i∈C

τ̄ ik,C∑
t>τk,C

1{Ai(t) = k} (10.10)

=
∑
i∈C

N̄ i
k(τ̄

i
k,C)−

∑
i∈C

τk,C∑
t=1

1{Ai(t) = k} −
∑
i∈C

∑
j 6=i,j∈C

τ̄ ik,C∑
t=1

1{Aj(t) = k}1{(i, j) ∈ Et}

(10.11)

=
∑
i∈C

N̄ i
k(τ̄

i
k,C)−

∑
i∈C

nik(τk,C)−
∑
i∈C

∑
j 6=i,j∈C

τ̄ ik,C∑
t=1

1{Aj(t) = k}1{(i, j) ∈ Et} (10.12)
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≤ |C|ηk − ηk −
∑
i∈C

∑
j 6=i,j∈C

τ̄ ik,C∑
t=1

1{Aj(t) = k}1{(i, j) ∈ Et} (10.13)

≤ |C|ηk − ηk −
∑
i∈C

∑
j 6=i,j∈C

τk,C∑
t=1

1{Aj(t) = k}1{(i, j) ∈ Et}. (10.14)

Taking the expectation

∑
i∈C

τ̄ ik,C∑
t>τk,C

P (Ai(t) = k) ≤ |C|ηk − ηk −
∑
i∈C

pip
∑

j 6=i,j∈C

τk,C∑
t=1

P (Aj(t) = k) (10.15)

= |C|ηk − ηk −
∑
i∈C

pip
∑

j 6=i,j∈C

E(njk(τk,C)) (10.16)

= |C|ηk − ηk −
(∑

i∈C

pip

)(∑
i∈C

E(nik(τk,C))

)
+
∑
i∈C

pipE(nik(τk,C))

(10.17)

≤ |C|ηk − ηk − p
(∑
j∈C

pj − pmax

)
E

(∑
i∈C

nik(τk,C)

)
(10.18)

≤ |C|ηk − ηk − p
(∑
j∈C

pj − pmax

)
ηk (10.19)

=

(
|C| − 1− p

(∑
j∈C

pj − pmax

))
ηk. (10.20)

Substituting this results to (10.9) we get

∑
C∈C

∑
i∈C

T∑
t=1

P (Ai(t) = k) ≤
∑
C∈C

(ηk + 2|C|) +
∑
C∈C

(
|C| − 1− p

(∑
j∈C

pj − pmax

))
ηk

(10.21)

+
∑
C∈C

∑
i∈C

T−1∑
t>τ̄ ik,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
. (10.22)
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Thus from Lemma 13 and (10.22) we have

∑
C∈C

∑
i∈C

T∑
t=1

P (Ai(t) = k) (10.23)

≤
∑
C∈C

ηk + 2N +
∑
C∈C

(
|C| − 1− p

(∑
j∈C

pj − pmax

))
ηk (10.24)

+
∑
C∈C

∑
i∈C

T−1∑
t>τk,C

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.25)

(a)
= χ̄(G)ηk +

(
N −

N∑
i=1

pip−X (G)(1− pmaxp)

)
ηk + 2N (10.26)

+
N∑
i=1

T−1∑
t>τk,C

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.27)

≤
(

N∑
i=1

(1− pip) + χ̄(G)pmaxp

)
ηk + 2N (10.28)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]
, (10.29)

where (a) follows from the fact that clique covering is non overlapping. This concludes

the proof of Lemma 14.

Lemma 15. Let di(G) be the degree of agent i in graph G. For any σk > 0 some

constant ζ > 1

P

(∣∣∣µ̂ik(t)− µk∣∣∣ > σk

√
2(ξ + 1) log t

N i
k(t)

)
≤ log((di(G) + 1)t)

log ζ

1

t
(ξ+1)

(
1− (ζ−1)2

16

) . (10.30)

Proof. For all k letX i
k(t) for all i, t be iid copies ofXk. Then we haveX i

t1{Ai(t) = k} =

X i
k(t)1{Ai(t) = k}. Recall that reward distribution of arm k has mean µk and variance

proxy σk. Thus ∀i, t we have

E
(
exp

(
λ
(
X i
k(t)− µk

)))
≤ exp

(
λ2σ2

k

2

)
. (10.31)
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Define local history at every agent i as follows

Hi
t := σ

(
X i
τ , Ai(τ), Xj

τ1{(i, j) ∈ Eτ}, Aj(τ)1{(i, j) ∈ Eτ},∀ τ ∈ [t], j ∈ Ni(G)
)
.

(10.32)

Since 1{Aj(τ) = k}1{(i, j) ∈ Eτ} for j ∈ Ni(G) is a Hi
τ−1 measurable random vari-

able, we have

E
(

exp
(
λ
(
Xj
τ − µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)∣∣Hi
τ−1

)
(10.33)

= E
(

exp
(
λ
(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)∣∣Hi
τ−1

)
(10.34)

≤ exp

(
λ2σ2

k

2
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)
. (10.35)

Define a new random variable such that ∀τ > 0.

Y i
k (τ) =

N∑
j=1

(
Xj
k(τ)1{Aj(τ) = k}1{(i, j) ∈ Eτ} − E

[
Xj
k(τ)1{Aj(τ) = k}1{(i, j) ∈ Eτ}

∣∣∣Hi
τ−1

])
(10.36)

=
N∑
j=1

(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}. (10.37)

Note that E (Y i
k (τ)) = E

(
Y i
k (τ)|Hi

τ−1

)
= 0. Let Zi

k(t) =
∑t

τ=1 Y
i
k (τ). For any λ > 0

E
(
exp(λY i

k (τ))|Hi
τ−1

)
(10.38)

= E

(
exp

(
λ

N∑
j=1

(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)∣∣∣∣∣Hi
τ−1

)
(10.39)

= E

(
N∏
j=1

exp
(
λ
(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)∣∣∣∣∣Hi
τ−1

)
(10.40)

(a)
=

N∏
j=1

E
(

exp
(
λ
(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)∣∣Hi
τ−1

)
(10.41)
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≤
N∏
j=1

exp

(
λ2σ2

k

2
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)
(10.42)

= exp

(
λ2σ2

k

2

N∑
j=1

1{Aj(τ) = k}1{(i, j) ∈ Eτ}
)
. (10.43)

Equality (a) follows from the fact that random variables
{

exp
(
λ
(
Xj
k(τ)− µk

)
1{Aj(τ) = k}1{(i, j) ∈ Eτ}

)}N
j=1

are conditionally independent with respect toHi
τ−1. Since 1{Aj(τ) = k},1{(i, j) ∈ Eτ}

are Hi
τ−1 measurable, and so

E

(
exp

(
λY i

k (τ)− λ2σ2
k

2

N∑
j=1

1{Aj(τ) = k}1{(i, j) ∈ Eτ}
)∣∣∣∣∣ |Hi

τ−1

)
≤ 1. (10.44)

Let N i
k(t) =

∑t
τ=1

∑N
j=1 1{Ai(τ) = k}1{(i, j) ∈ Eτ}. Further, using the tower

property of conditional expectation we have

E
(

exp

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t)

)∣∣∣∣Hi
t−1

)
≤ exp

(
λZi

k(t− 1)− λ2σ2
k

2
N i
k(t− 1)

)
.

(10.45)

Repeating the above step t times we have

E
(

exp

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t)

))
≤ 1. (10.46)

Note that we have

P

(
exp

(
λZi

k(t)−
λ2σ2

i

2
N i
k(t)

)
≥ exp (2κϑ)

)
(10.47)

= P

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t) ≥ 2κϑ

)
(10.48)

= P

(
Zi
k(t)√
N i
k(t)
≥ 2κϑ

λ
√
N i
k(t)

+
σ2
k

2
λ
√
N i
k(t)

)
. (10.49)
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Fix a constant ζ > 1. Then 1 ≤ N i
k(t) ≤ ζDt where Dt = log((di(G)+1)t)

log ζ
. For

λl = 2
σk

√
κϑ

ζl−1/2 and ζ l−1 ≤ N i
k(t) ≤ ζ l we have

2κϑ

λl

√
1

N i
k(t)

+
σ2
k

2
λl

√
N i
k(t) = σk

√
κϑ

√ζ l−1/2

N i
k(t)

+

√
N i
k(t)

ζ l−1/2

 ≤ √ϑ, (10.50)

where κ = 1

σ2
k

(
ζ

1
4 +ζ−

1
4

)2 .

Then we have

{
Zi
k(t)√
N i
k(t)
≥
√
ϑ

}
⊂ ∪Dtl=1

{
Zi
k(t)√
N i
k(t)
≥ 2κϑ

λl
√
N i
k(t)

+
σ2
k

2
λl

√
N i
k(t)

}
(10.51)

= ∪Dtl=1

{
λlZ

i
k(t)−

λ2
l σ

2
k

2
N i
k(t) ≥ 2κϑ

}
. (10.52)

Recall from the Markov inequality that P(Y ≥ a) ≤ E(Y )
a

for any positive random

variable Y . Thus from (10.52) and Markov inequality we get,

P

(
Zi
k(t)√
N i
k(t)
≥
√
ϑ

)
≤

Dt∑
l=1

exp(−2κϑ). (10.53)

Then we have,

P

(
Zi
k(t)

N i
k(t)
≥
√

ϑ

N i
k(t)

)
≤

Dt∑
l=1

exp(−2κϑ) (10.54)

Substituting ϑ = 2σ2
k(ξ + 1) log t we get

P

(∣∣∣µ̂ik(t)− µk∣∣∣ > σk

√
2(ξ + 1) log t

N i
k(t)

)
≤ log((di(G) + 1)t)

log ζ
exp

−4(ξ + 1) log t(
ζ

1
4 + ζ−

1
4

)2

 .

(10.55)

188



Note that ∀ζ > 1 we have

4(
ζ

1
4 + ζ−

1
4

)2 ≥ 1− (ζ − 1)2

16
(10.56)

Then we have

P

(∣∣∣µ̂ik(t)− µk∣∣∣ > σk

√
2(ξ + 1) log t

N i
k(t)

)
≤ log((di(G) + 1)t)

log ζ

1

t
(ξ+1)

(
1− (ζ−1)2

16

) . (10.57)

This concludes the proof of Lemma 15.

Lemma 16. Let ζ = 1.3, ξ ≥ 1.1, di ≥ 0 and t ∈ [T ]. Then we have

T−1∑
t=1

1

log ζ

log ((di + 1)t)

t
(ξ+1)

(
1− (ζ−1)2

16

) ≤ 12 log(3(di + 1)) + 3 (log (di + 1) + 1) (10.58)

Proof. For ζ = 1.3 we have 1
log ζ

< 8.78. Further (ξ + 1)
(

1− (ζ−1)2

16

)
> 2 and ∀t ≥ 3

we see that log((di+1)t)

t
(ξ+1)

(
1− (ζ−1)2

16

) is monotonically decreasing. Thus we have

T−1∑
t=1

log ((di + 1)t)

t
(ξ+1)

(
1− (ζ−1)2

16

) ≤ 1.362 log(3(di + 1)) +

∫ T−1

3

log ((di + 1)t)

t2
dt (10.59)

Let z = (di + 1)t. Then we have

∫ T−1

3

log ((di + 1)t)

t2
dt = (di + 1)

∫ (di+1)(T−1)

3(di+1)

log z

z2
dz (10.60)

= (di + 1)

[
− log z

z
− 1

z

](di+1)(T−1)

3((di+1)

(10.61)

Thus we have

∫ T−1

3

log ((di + 1)t)

t2
dt ≤ (di + 1)

[
log(di + 1)

3(di + 1)
+

1

3(di + 1)

]
(10.62)

=
1

3
log(di + 1) +

1

3
(10.63)
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Recall that For ζ = 1.3 we have 1
log ζ

< 8.78. Thus the proof of Lemma 16 follows

from (10.59) and (10.63).

Now we prove Theorem 17 as follows. Recall that group regret can be given as

RegG(T ) =
∑N

i=1

∑
k>1 ∆k · E [nik(t)] . Thus using Lemmas 14, 15 and 16 we obtain

RegG(T ) ≤ 8(ξ + 1)σ2
k

(
N∑
i=1

(1− pip) + χ̄(G)pmaxp

)(∑
k>1

log T

∆k

)
(10.64)

+5N
∑
k>1

∆k + 4
N∑
i=1

(3 log(3(di(G) + 1)) + (log (di(G) + 1)))
∑
k>1

∆k (10.65)

10.9.2 Proof of Theorem 18

In this section we consider the case where agents pass messages up to γ hop neigh-

bors with each hop adding a delay of 1 time step. Let Cγ be a non overlapping

clique covering of Gγ. For any C ∈ Cγ and i, j ∈ C let γi = maxj∈C d(i, j) be the

maximum distance (in graph G) between agent i and any other agent j in the same

clique in graph Gγ. Let 1{(i, j) ∈ Eτ ′,τ} is a random variable that takes value 1 if at

time τ agent i receives the message initiated by agent j at time τ ′. Recall that each

communicated message fails with probability 1− p and each agent i incorporates the

messages it receives from its neighbors with probability pi.

We follow an approach similar to proof of Theorem 17. We star by providing a

tail probability bound similar to Lemma 15.

Lemma 17. Let di(Gγ) be the degree of agent i in graph Gγ. For any σk > 0 some

constant ζ > 1

P

(∣∣∣µ̂ik(t)− µk∣∣∣ > σk

√
2(ξ + 1) log t

N i
k(t)

)
≤ log((di(Gγ) + 1)t)

log ζ

1

t
(ξ+1)

(
1− (ζ−1)2

16

) . (10.66)

Proof. For all k letX i
k(t) for all i, t be iid copies ofXk. Then we haveX i

t1{Ai(t) = k} =

X i
k(t)1{Ai(t) = k}. Recall that reward distribution of arm k has mean µk and variance
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proxy σk. Thus ∀i, t we have

E
(
exp

(
λ
(
X i
k(t)− µk

)))
≤ exp

(
λ2σ2

k

2

)
. (10.67)

Define local history at every agent i as follows

Hi
t := σ

(
X i
τ ′ , Ai(τ

′), Xj
τ ′1{(i, j) ∈ Eτ ′,τ}, Aj(τ ′)1{(i, j) ∈ Eτ ′,τ},∀ τ ′, τ ∈ [t], j ∈ Ni(Gγ)

)
.

(10.68)

Since 1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ} for j ∈ Ni(Gγ) is a Hi
τ−1 measurable random

variable, we have ∀τ ′ ≤ τ

E
(

exp
(
λ
(
Xj
τ ′ − µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

)∣∣Hi
τ−1

)
(10.69)

= E
(

exp
(
λ
(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

)∣∣Hi
τ−1

)
(10.70)

≤ exp

(
λ2σ2

k

2
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

)
. (10.71)

Define a new random variable such that ∀τ > 0 and τ ′ ≤ τ

Y i
k (τ) =

N∑
j=1

τ∑
τ ′=1

(
Xj
k(τ
′)1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ} (10.72)

−E
[
Xj
k(τ
′)1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

∣∣∣Hi
τ−1

])
(10.73)

=
N∑
j=1

τ∑
τ ′=1

(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}. (10.74)

Note that E (Y i
k (τ)) = E

(
Y i
k (τ)|Hi

τ−1

)
= 0. Let Zi

k(t) =
∑t

τ=1 Y
i
k (τ). For any λ > 0

E
(
exp(λY i

k (τ))|Hi
τ−1

)
(10.75)

= E

(
exp

(
λ

N∑
j=1

τ∑
τ ′=1

(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

)∣∣∣Hi
τ−1

)
(10.76)
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= E

(
N∏
j=1

τ∏
τ ′=1

exp
(
λ
(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

) ∣∣∣Hi
τ−1

)
(10.77)

(a)
=

N∏
j=1

τ∏
τ ′=1

E
(

exp
(
λ
(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

) ∣∣∣Hi
τ−1

)
(10.78)

≤
N∏
j=1

τ∏
τ ′=1

exp

(
λ2σ2

k

2
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}

)
(10.79)

= exp

(
λ2σ2

k

2

N∑
j=1

τ∑
τ ′=1

1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}
)
. (10.80)

Equality (a) follows from the fact that ∀τ ′ ≤ τ random variables
{

exp
(
λ
(
Xj
k(τ
′)− µk

)
1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′τ}

)}N
j=1

are conditionally independent with respect toHi
τ−1. Since 1{Aj(τ ′) = k},1{(i, j) ∈ Eτ ′,τ}

are Hi
τ−1 measurable, and so

E

(
exp

(
λY i

k (τ)− λ2σ2
k

2

N∑
j=1

τ∑
τ ′=1

1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}
)∣∣∣∣∣ |Hi

τ−1

)
≤ 1.

(10.81)

Let N i
k(t) =

∑t
τ=1

∑τ
τ ′=1

∑N
j=1 1{Ai(τ ′) = k}1{(i, j) ∈ Eτ ′,τ}. Further, using the

tower property of conditional expectation we have

E
(

exp

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t)

)∣∣∣∣Hi
t−1

)
≤ exp

(
λZi

k(t− 1)− λ2σ2
k

2
N i
k(t− 1)

)
.

(10.82)

Repeating the above step t times we have

E
(

exp

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t)

))
≤ 1. (10.83)

Note that we have

P

(
exp

(
λZi

k(t)−
λ2σ2

i

2
N i
k(t)

)
≥ exp (2κϑ)

)
(10.84)
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= P

(
λZi

k(t)−
λ2σ2

k

2
N i
k(t) ≥ 2κϑ

)
(10.85)

= P

(
Zi
k(t)√
N i
k(t)
≥ 2κϑ

λ
√
N i
k(t)

+
σ2
k

2
λ
√
N i
k(t)

)
. (10.86)

Fix a constant ζ > 1. Then 1 ≤ N i
k(t) ≤ ζDt where Dt = log((di(Gγ)+1)t)

log ζ
. For

λl = 2
σk

√
κϑ

ζl−1/2 and ζ l−1 ≤ N i
k(t) ≤ ζ l we have

2κϑ

λl

√
1

N i
k(t)

+
σ2
k

2
λl

√
N i
k(t) = σk

√
κϑ

√ζ l−1/2

N i
k(t)

+

√
N i
k(t)

ζ l−1/2

 ≤ √ϑ, (10.87)

where κ = 1

σ2
k

(
ζ

1
4 +ζ−

1
4

)2 .

Then we have

{
Zi
k(t)√
N i
k(t)
≥
√
ϑ

}
⊂ ∪Dtl=1

{
Zi
k(t)√
N i
k(t)
≥ 2κϑ

λl
√
N i
k(t)

+
σ2
k

2
λl

√
N i
k(t)

}
(10.88)

= ∪Dtl=1

{
λlZ

i
k(t)−

λ2
l σ

2
k

2
N i
k(t) ≥ 2κϑ

}
. (10.89)

Recall from the Markov inequality that P(Y ≥ a) ≤ E(Y )
a

for any positive random

variable Y . Thus from (10.89) and Markov inequality we get,

P

(
Zi
k(t)√
N i
k(t)
≥
√
ϑ

)
≤

Dt∑
l=1

exp(−2κϑ). (10.90)

Then we have,

P

(
Zi
k(t)

N i
k(t)
≥
√

ϑ

N i
k(t)

)
≤

Dt∑
l=1

exp(−2κϑ) (10.91)

Recall that ∀ζ > 1 we have

4(
ζ

1
4 + ζ−

1
4

)2 ≥ 1− (ζ − 1)2

16
(10.92)
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Substituting ϑ = 2σ2
k(ξ + 1) log t we get

P

(∣∣∣µ̂ik(t)− µk∣∣∣ > σk

√
2(ξ + 1) log t

N i
k(t)

)
≤ log((di(Gγ) + 1)t)

log ζ

1

t
(ξ+1)

(
1− (ζ−1)2

16

) . (10.93)

This concludes the proof of Lemma 17.

We prove a Lemma similar to Lemma 14 for message-passing as follows.

Lemma 18. Let χ̄(Gγ) is the clique number of graph Gγ. Let ηk =
(

8(ξ+1)σ2
k

∆2
k

)
log T.

Then we have

N∑
i=1

E[nik(T )] ≤
(

N∑
i=1

(1− pipγi) + χ̄(Gγ) max
i∈[N ]

pip
γi

)
ηk +N(γ + 1)+ (10.94)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.95)

Proof. Note that for each suboptimal arm k > 1 we have

N∑
i=1

E[nik(T )] =
N∑
i=1

T∑
t=1

P (Ai(t) = k) =
∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) . (10.96)

Let τk,C denote the maximum time step when the total number of times arm k

has been played by all the agents in clique C is at most ηk + |C| times. This can

be stated as τk,C := max{t ∈ [T ] :
∑

i∈C n
i
k(t) ≤ ηk + |C|}. Then, we have that

ηk <
∑

i∈C n
i
k(τk,C) ≤ ηk + |C|.

For each agent i ∈ C let

N̄ i
k(t) :=

∑
j∈C

t∑
τ=1

τ∑
τ ′=1

1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ},

denote the sum of the total number of times agent i pulled arm k and the total

number of observations it received from agents in its clique about arm k until time
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t. Define τ̄ ik,C := max{t ∈ [T ] : N̄ i
k(t) ≤ ηk}. For each agent i ∈ [N ] let τ ik,C =

max{τk,C + γi − 1, τ̄ ik,C}.

Note that N i
k(t) ≥ N̄ i

k(t),∀t, hence for all i ∈ C we have N i
k(t) > ηk,∀t > τ ik,C.

Here we consider that τ̄ ik,C ≥ τk,C,∀i. From regret results it follows that regret for this

case is greater than the regret for the case where τ̄ ik,C < τk,C for some (or all) i.

We analyse the expected number of times agents pull suboptimal arm k as follows,

∑
C∈Cγ

∑
i∈C

T∑
t=1

1{Ai(t) = k} (10.97)

=
∑
C∈Cγ

∑
i∈C

τk,C∑
t=1

1{Ai(t) = k}+
∑
C∈Cγ

∑
i∈C

τ ik,C∑
t>τk,C

1{Ai(t) = k}+
∑
C∈Cγ

∑
i∈C

T∑
t>τ ik,C

1{Ai(t) = k}

(10.98)

≤
∑
C∈Cγ

(ηk + |C|) +
∑
C∈Cγ

∑
i∈C

τ ik,C∑
t>τk,C

1{Ai(t) = k} (10.99)

+
∑
C∈Cγ

∑
i∈C

T∑
t>τ ik,C

1{Ai(t) = k}1
{
N i
k(t− 1) > ηk

}
. (10.100)

Taking expectation we have

∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) (10.101)

≤
∑
C∈Cγ

(ηk + 2|C|) +
∑
C∈Cγ

∑
i∈C

τ ik,C∑
t>τk,C

P (Ai(t) = k) (10.102)

+
∑
C∈Cγ

∑
i∈C

T−1∑
t>τ ik,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
. (10.103)

Case 1. For agent i we have that τk,C+γi−1 ≥ τ̄ ik,C then we have τ ik,C = τk,C+γi−1.

Then we have
∑τ ik,C

t>τk,C
1{Ai(t) = k} ≤ γi − 1
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Case 2. For agent i we have that τk,C + γi − 1 < τ̄ ik,C then we have τ ik,C = τ̄ ik,C.

τ ik,C∑
t>τk,C

1{Ai(t) = k} (10.104)

= Ñ i
k(τ

i
k,C)−

τk,C∑
t=1

1{Ai(t) = k} −
∑

j 6=i,j∈C

τ ik,C∑
t=1

t∑
τ=1

1{Aj(τ) = k}1{(i, j) ∈ Eτ,t}

(10.105)

≤ Ñ i
k(τ

i
k,C)−

τk,C∑
t=1

1{Ai(t) = k} −
∑

j 6=i,j∈C

τk,C+γi−1∑
t=1

t∑
τ=1

1{Aj(τ) = k}1{(i, j) ∈ Eτ,t}.

(10.106)

Taking the expectation we have

∑
i∈C

τ ik,C∑
t>τk,C

P (Ai(t) = k) ≤ |C|ηk − ηk +
∑
i∈C

(γi − 1)−
∑
i∈C

pip
γi
∑

j 6=i,j∈C

τk,C∑
t=1

P (Aj(t) = k)

(10.107)

= |C|ηk − ηk +
∑
i∈C

(γi − 1)−
∑
i∈C

pip
γi
∑

j 6=i,j∈C

τk,C∑
t=1

E
(
njk(τk,C)

)
(10.108)

≤
(
|C| − 1−

(∑
j∈C

pjp
γj −max

i∈[N ]
pip

γi

))
ηk +

∑
i∈C

(γi − 1).

(10.109)

Substituting these results to (10.103) we get

∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) ≤
∑
C∈Cγ

(
|C| − 1−

(∑
j∈C

pjp
γj −max

i∈[N ]
pip

γi

))
ηk +

∑
i∈[N ]

(γi − 1)

(10.110)
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+
∑
C∈Cγ

(ηk + 2|C|) +
∑
C∈Cγ

∑
i∈C

T−1∑
t>τ ik,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)

(10.111)

≤
(

N∑
i=1

(1− pipγi) + χ̄(Gγ) max
i∈[N ]

pip
γi

)
ηk +

∑
i∈[N ]

γi +N

(10.112)

+
∑
C∈Cγ

∑
i∈C

T−1∑
t>τ ik,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)

(10.113)

This concludes the proof of Lemma 18.

Now we prove Theorem 18 as follows. Thus using Lemmas 16, 17 and 18 we obtain

RegG(T ) ≤ 8(ξ + 1)σ2
k

(
N∑
i=1

(1− pipγi) + χ̄(Gγ) max
i∈[N ]

pip
γi

)(∑
k>1

log T

∆k

)
(10.114)

+

(
N∑
i=1

γi + 4N

)∑
k>1

∆k + 4
N∑
i=1

(3 log(3(di(Gγ) + 1)) + (log (di(Gγ) + 1)))
∑
k>1

∆k

(10.115)

10.9.3 Proof of Theorem 19

Agents receive information from their neighbors with a stochastic time delay. Let

ND be the maximum number of outstanding arm pulls by all the agent. We start by

proving a result similar to Lemma 14.

Lemma 19. Let χ̄(G) is the clique number of graph G. Let ηk =
(

8(ξ+1)σ2
k

∆2
k

)
log T.

Then we have

N∑
i=1

E[nik(T )] ≤ χ̄(G)ηk + E[ND] + 2N+ (10.116)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.117)
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Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal

arm k > 1 we have

N∑
i=1

E[nik(T )] =
N∑
i=1

T∑
t=1

P (Ai(t) = k) =
∑
C∈C

∑
i∈C

T∑
t=1

P (Ai(t) = k) . (10.118)

Let τk,C denote the maximum time step such that the total number of arm pulls

shared by agents in clique C from arm k is at most ηk + |C|. For each agent i ∈ C let

Di(τk,C) be the number of outstanding messages by agent i from arm k at time τk,C.

This can be stated as τk,C := max{t ∈ [T ] :
∑

i∈C n
i
k(t) ≤ ηk +

∑
i∈C Di(τk,C) + |C|}.

Then, we have that ηk +
∑

i∈C Di(τk,C) <
∑

i∈C n
i
k(τk,C) ≤ ηk +

∑
i∈C Di(τk,C) + |C|.

Note that for all i ∈ C we have N i
k(t) > ηk, t > τk,C.

We analyse the expected number of times agents pull suboptimal arm k as follows,

∑
C∈C

∑
i∈C

T∑
t=1

1{Ai(t) = k} (10.119)

=
∑
C∈C

∑
i∈C

τk,C∑
t=1

1{Ai(t) = k}+
∑
C∈C

∑
i∈C

T∑
t>τk,C

1{Ai(t) = k} (10.120)

≤
∑
C∈C

(
ηk +

∑
i∈C

Di(τk,C) + 2|C|
)

+
∑
C∈C

∑
i∈C

T−1∑
t>τk,C

1{Ai(t+ 1) = k}1
{
N i
k(t) > ηk

}
.

(10.121)

Taking expectation we have

∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) (10.122)

≤ χ̄(Gγ)ηk + E

[
max
t∈[T ]

N∑
i=1

Di(t)

]
+ 2N +

N∑
i=1

T−1∑
t=1

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)

(10.123)

The proof of Lemma 19 follows from Lemma 13 and (10.123).
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We upper bound the expected number of outstanding messages by any agent using

results by [38] as follows.

Lemma 20. . Let Dtotal be the maximum number of outstanding messages by all the

agent at any time step t ∈ [T ] and let E[τ ] be the expected delay of any message. Then

with probability at least 1− 1
T

we have

E[Dtotal] ≤ NE[τ ] + 2 log T + 2
√
NE[τ ] log T . (10.124)

Proof. The proof directly follows from Lemma 2 by [38].

From Lemmas 19, 15, 16 and 20 we obtain with probability at least 1− 1
T

RegG(T ) ≤ 8(ξ + 1)σ2
kχ̄(G)

(∑
k>1

log T

∆k

)
(10.125)

+
(
NE[τ ] + 2 log T + 2

√
NE[τ ] log T

)∑
k>1

∆k (10.126)

+ 5N
∑
k>1

∆k + 4
N∑
i=1

(3 log(3(di(G) + 1)) + (log (di(G) + 1)))
∑
k>1

∆k

(10.127)

10.9.4 Proof of Theorem 20

We first restate the result for clarity.

Theorem 23. Algorithm 8 obtains, with probability at least 1− δ, cumulative group

regret of

RegG(T ) = O
(
KTNγε+ ψ(Gγ)

∑
k 6=k?

log T

∆k

log

(
Kψ(Gγ) log T

δ

)
+N∆k +

N log(Nγ log T )

∆k

)
.

Proof. We decompose the regret based on the dominating set and epoch. Let I ⊆ V

be an dominating set of Gγ and Mi be the number of epochs run for the subgraph
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covered by agent i. Observe that the total regret can be written as,

RegG(T ) =
∑
i∈I

 K∑
k=1

T∑
t=1

∆k ·

P(Ai(t) = k) +
∑

j∈Ni(Gγ)

P(Aj(t) = k)

 . (10.128)

First, observe that Aj(t) = Ai(t − d(i, j)) for all j ∈ Ni(Gγ) and all t ∈ [d(i, j), T ].

Rearranging the above, we have,

RegG(T ) 6
∑
i∈I

 K∑
k=1

∆k ·

 T∑
t=1

P(Ai(t) = k) +
∑

j∈Ni(Gγ)

T−d(i,j)∑
t=1

P(Ai(t) = k) + d(i, j)


(10.129)

6
∑
i∈I

(
K∑
k=1

∆k · |N+
i (Gγ)| ·

(
T−γ∑
t=1

P(Ai(t) = k) + γ

))
(10.130)

=
∑
i∈I

(
|N+

i (Gγ)|
K∑
k=1

∆k

(
T−γ∑
t=1

P(Ai(t) = k)

))
+Nγ

K∑
k=1

∆k. (10.131)

(10.132)

Now, observe that we run two algorithms in tandem for each subgraph of G induced

by N+
i (Gγ). Let us split the total number of rounds of the game into epochs that

run arm elimination and the intermittent periods of running UCB1. We denote the

cumulative regret in the ith induced subgraph from rounds γ to T as RegN+
i (Gγ)(T ),

and analyse it separately.

RegN+
i (Gγ)(T ) 6 |N+

i (Gγ)|
K∑
k=1

(
∆k

( ∑
t≤T−γ:t∈Mi

P(Ai(t) = k) +
∑

t≤T−γ:t6∈Mi

P(Ai(t) = k)

))
.

(10.133)

Here Mi denotes the rounds in which arm elimination is played in the agents in the

ith induced subgraph. Since each UCB1 period after each epoch is of length 2γ, we have

at most 2γMi rounds of isolated UCB1. We analyse the second term in the bound first.
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By the standard analysis of the UCB1 algorithm [7], we have that the leader agent,

i.e. agent i, incurs O(K log T/∆) regret. We therefore have,

|N+
i (Gγ)|

K∑
k=1

(
∆k

(∑
t6∈Mi

P(Ai(t) = k)

))
6 |N+

i (Gγ)| ·
K∑
k=1

((
1 +

π2

3

)
∆k +

8 log(2γMi)

∆k

)
.

Now, we analyse the first term in the regret bound. By Theorem 24, we have that with

probability at least 1− δ simultaneously for each induced subgraph corresponding to

agent i ∈ I,

K∑
k=1

(
∆k

( ∑
m∈Mi

E
[
nik(m)

]))
= O

(
γε ·KT |N+

i (Gγ)|+
∑
k>1

log T

∆k

log

(
Kψ(Gγ)

δ
log T

))
.

Summing over each leader agent, we have that with probability at least 1− δ,

∑
i∈I

K∑
k=1

(
∆k

( ∑
m∈Mi

E
[
nik(m)

]))
= O

(
γε ·KTN +

∑
k>1

log T

∆k

log

(
Kψ(Gγ)

δ
log T

))
.

Next, observe that for all i, |Mi| ≤ log(MT ) by Lemma 21. Replacing this result in

the UCB1 regret for each leader, and summing over all i ∈ I, we have,

RegG(T ) = O
(
γε ·KTN +

∑
k>1

ψ(Gγ)
log T

∆k

log

(
Kψ(Gγ) log T

δ

)
+N∆k +

N log(Nγ log T )

∆k

)
.

Lemma 21. For any leader i, let Li(m) denote the length of the mth epoch of arm

elimination. Then, we have that Li(m) satisfies,

22m−2λ ≤ Li(m) ≤ K22m−2λ.

Furthermore, the number of arm elimination epochs for agent i satisfies Mi ≤ log2(T−

2γ).
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Proof. The proof closely follows the proof of Lemma 2 in [29]. For any leader i,

let k̂ be the optimal arm under ri(m), therefore ri?(m) − ri
k̂
(m) ≤ 0 and therefore

∆i
k̂
(m) = 2−m, and therefore Li(m + 1) ≥ ni

k̂
(m + 1) = λ(∆i

k̂
(m))−2 ≥ 22mλ. Next,

observe that ∆i
k(m) ≥ 2−m for each arm k, and therefore nik(m + 1) ≤ 22mλ, giving

the upper bound.

For the second part, observe that
∑Mi

m=1 L
i(m) ≤ T − 2γMi ≤ T − 2γ, and that

Li(m) ≥ 22m−2λ
|N+
i (Gγ)| . Summing over m ∈ [Mi] and taking the logarithm provides us with

the result.

Lemma 22. Denote E to be the event for which,

∀m, i, k,
∣∣rik(m)− µk

∣∣ ≤ 2γε+
∆i
k(m− 1)

16

∧ ∑
t∈Mi(m)

j∈N+
i (Gγ)

Xj
k(t+ d(i, j)) ≤ 2nik(m)


Then, we have that P(E) ≥ 1− δ.

Proof. Recall that at each step in the epoch, the leader agent picks an arm k with

probability pik(m) =
nik(m)

Li(m)
, and let Xj

k(t) denote whether agent j picks arm k at time

t. Let Cj→i(t) = r̃j→i(t)− rj(t) denote the corruption in the transmitted reward from

agent j when it reaches agent i, andMi(m) = [Ti(m− 1) + 1, · · · , Ti(m)] denote the

Li(m) steps in the mth epoch for the arm elimination algorithm run by the leader i.

We then have,

rik(m) =
1

nik(m)

 ∑
t∈Mi(m)

j∈N+
i (Gγ)

Xj
k(t+ d(i, j)) · (rj(t+ d(i, j)) + Cj→i(t+ d(i, j)))


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For simplicity, let

Aik(m) =
∑

t∈Mi(m)

j∈N+
i (Gγ)

Xj
k(t+d(i, j))·rj(t+d(i, j)), Bi

k(m) =
∑

t∈Mi(m)

j∈N+
i (Gγ)

Xj
k(t+d(i, j))·Cj→i(t+d(i, j)).

We can bound the first summation by a multiplicative version of the Chernoff-

Hoeffding bound [5] as each rj is bounded within [0, 1] and X i
k is a random variable in

{0, 1} with mean pik(m)Li(m)µk ≤ nik(m). We obtain that with probability at least

1− β/2,

∣∣∣∣Aik(m)

nik(m)
− µi

∣∣∣∣ ≤
√

3 log( 4
β
)

nik(m)
.

To bound the second term, we must construct a filtration that ensures that the

corruption is measurable. For the set N+
i (Gγ), consider an order σ of the N agents,

such that σ[1] = i, followed by the agents at distance 1 from i, then the agents at

distance 2, and so on until distance γ, and next consider the ordering {r̃τ}|N
+
i (Gγ)|t

τ=1 of

the rewards generated by all agents withinMi(m) where r̃τ is the reward obtained by

agent j = (σ(τ) mod |N+
i (Gγ)|) during the round b τ

|N+
i (Gγ)|c+ d(i, j), and similarly

consider an identical ordering of the pulled arms {X̃τ}|N
+
i (Gγ)|t

τ=1 . Now consider the

filtration {Ft}T |N
+
i (Gγ)|

t=1 generated by the two stochastic processes of r̃ and X̃. Clearly,

the corruption Cσ(j)→i(t) is deterministic conditioned on Ft−1. Moreover, we have

that the pulled arm satisfies, for all τ ∈ [|N+
i (Gγ)|t] that E[X̃τ |Fτ−1] = pik(m).

Furthermore, since the corruption in each round is bounded and deterministic, we

have that the sequence Zτ = (X̃τ − pik(m)) · C̃τ (where C̃τ is the corresponding

ordering of corruptions) is a martingale difference sequence with respect to {Fτ}Tτ=1.

Now, consider the slice of [|N+
i (Gγ)|t] that is present within Bi

k(m), and let the

corresponding indices be given by the set M̃i(m). Using the fact that the observed

rewards are bounded, we have that,
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∑
τ∈M̃i(m)

E[Z2
τ |Fτ−1] ≤

∑
τ∈M̃i(m)

|C̃τ | · V(Zτ ) ≤ pik(m) ·
∑

τ∈M̃i(m)

C̃τ ≤ γCLi(m).

We then have by Freedman’s inequality that with probability at least 1− β
4
,

Bi
k(m)

nik(m)
≤ pik(m)

nik(m)

 ∑
τ∈M̃i(m)

C̃τ +
γCLi(m) + log(4/β)

nik(m)

 ≤ 2γε+

√
log(4/β)

16nik(m)
.

The last inequality follows from the fact that nik(m) ≥ λ ≥ 16 ln(4/β). With the

same probability, we can derive a bound for the other tail. Now, observe that since

each X i
k is a random variable with mean pik, we have by the multiplicative Chernoff-

Hoeffding bound that the probability that the sum of Li(m) i.i.d. bernoulli trials with

mean pik(m) is greater than 2pik(m) · Li(m) = 2nik(m) is at most 2 exp(−nik(m)/3) ≤

2 exp(−λ/3) ≤ β.

To conclude the proof, we apply each of the above bounds with β = δ
2Kα(Gγ) log T

to

each epoch and arm. Observe that β ≥ 4 exp
(
− λ

16

)
. Now, since log(4/β) = λ/(32)2

we have that,

P

∣∣rik(m)− µk
∣∣ ≥ 2γε+

∆i
k(m− 1)

16

∧ ∑
t∈Mi(m)

j∈N+
i (Gγ)

Xj
k(t+ d(i, j)) ≥ 2nik(m)

 ≤ δ

2Kα(Gγ) log T
.

The proof concludes by a union bound over all epochs, arms and agents in I.

Lemma 23. If the event E (Lemma 22) occurs then for each i ∈ I,m ∈Mi,

−2γε− ∆i
?(m− 1)

8
≤ ri?(m)− µ? ≤ 2γε.
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Proof. Observe that ri?(m) ≥ rik?(m)− 1
16

∆i
k?(m− 1). This fact coupled with the fact

that E holds provides the lower bound. The upper bound is obtained by observing

that,

ri?(m) ≤ max
i

{
µi + 2γε+

∆i
k(m− 1)

16
− ∆i

k(m− 1)

16

}
≤ µ? + 2γε.

Lemma 24. If the event E (Lemma 22) occurs then for each i ∈ I,m ∈Mi,

∆i
k(m) ≥ ∆k

2
− 6γε

m∑
n=1

8n−m − 3

4
2−m.

Proof. We first bound ∆i
k(m) ≤ 2(∆k+2−m+2γε ·∑m

n=1 8n−m) under E by induction.

Observe that when m = 1 we have that trivially ∆i
k(1) ≤ 1 ≤ 2 · 2−1. Now, if the

bound holds for epoch m− 1 for any agent, we have by Lemma 23,

ri?(m)− rik(m) = ri?(m)− µ? + µ? − µk + µk − rik(m) ≤ 4γε+ ∆k +
∆i
k(m− 1)

16
.

Replacing the induction hypothesis in the upper bound, we have,

ri?(m)− rik(m) ≤ 4γε+ ∆k +
1

8

(
∆k + 2−(m−1) + 2γε ·

m−1∑
n=1

8n−m+1

)

≤ 2(∆k + 2−m + 2γε ·
m∑
n=1

8n−m).

Now, we bound the gaps as,

∆i
k(m) ≥ ri?(m)− rik(m) ≥ ∆k − 4γε−

(
∆i
k?(m− 1)

8
− ∆i

k(m− 1)

16

)
.
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The last inequality follows from Lemma 23 and the event E . Replacing the bound

from induction we obtain,

∆i
k(m) ≥ ∆k − 4γε−

(
6γε

8

m∑
n=1

2n−m +
3

8
2−(m−1) +

∆k

8

)

≥ ∆k

2
− 6γε

m∑
n=1

8n−m − 3

4
2−m.

Theorem 24. The cumulative regret for all agents within each independent set cor-

responding to leader i ∈ I satisfy simultaneously, with probability at least 1− δ,

Mi∑
m=1

K∑
k=1

∆kE[nik(m)] = O
(

log

(
Kψ(Gγ)

δ
log(T )

)
log(T )

(
K∑
k=1

1

∆k

)
+ γε ·KT · |N+

i (Gγ)|
)
.

Proof. We bound the regret in each epoch m ∈ Mi for each arm k 6= k? based on

three cases.

Case 1. 0 ≤ ∆k ≤ 4/2m: We have that nik(m) ≤ λ22(m−1) since ∆i
k(m−1) ≥ 2m−1,

and hence,

∆kE[nik(m)] ≤ 4λ

∆2
k

·∆k = 4λ · 1

∆k

.

Case 2. ∆k > 4/2m and γε
∑m

n=1 8n−m ≤ ∆k/64: We have by Lemma 24,

∆i
k(m) ≥ ∆k

2
− 6γε

m∑
n=1

8n−m − 3

4
2−m ≥ ∆k

(
1

2
− 3

32
− 3

8

)
=

∆k

32
.

Therefore, we have that nik(m) ≤ 1024λ
∆2
k

, and hence the regret is,

∆kE[nik(m)] ≤ 1024λ

∆2
k

·∆k = 1024λ · 1

∆k

.
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Case 3. ∆k > 4/2m and γε
∑m

n=1 8n−m > ∆k/64: This implies that ∆k ≤

64γε ·∑m
n=1 8n−m. Therefore,

∆kE[nik(m)] ≤ 64λγε

(
m∑
n=1

8n−m

)
· 22(m−1)

≤ 64λγε

(
8m+1

7

)
· 22(m−1)

23m

≤ 512

7
γε · Li(m).

Here the last inequality follows from Lemma 21. Putting it together and summing

over all epochs and arms, we have with probability at least 1− δ simultaneously for

each i ∈ I,

Mi∑
m=1

K∑
k=1

∆kE[nik(m)] ≤ 10242 log

(
8Kψ(Gγ)

δ
log(T )

)
log(T )

(
K∑
k=1

1

∆k

)
+ 74γε ·KT · |N+

i (Gγ)|.

10.9.5 Proof of Theorem 21

In this section we consider that each agent passes messages upto γ-hop neighbors.

Agents do not use the messages received during last γ̄ number of time steps.

Lemma 25. Let χ̄(Gγ) is the clique number of graph Gγ. Let ηk =
(

8(ξ+1)σ2
k

∆2
k

)
log T.

Then we have

N∑
i=1

E[nik(T )] ≤ χ̄(Gγ)ηk + (N − χ̄(Gγ)) (γ̄ + γ − 1) + 2N+ (10.134)

+
N∑
i=1

T−1∑
t=1

[
P
(
µ̂i1(t) ≤ µ1 − Ci

1(t)
)

+ P
(
µ̂ik(t) ≥ µk + Ci

k(t)
)]

(10.135)
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Proof. Let Cγ be a non overlapping clique covering of Gγ. Note that for each subop-

timal arm k > 1 we have

N∑
i=1

E[nik(T )] =
N∑
i=1

T∑
t=1

P (Ai(t) = k) =
∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) . (10.136)

Let τk,C denote the maximum time step when the total number of times arm k has

been played by all the agents in clique C is at most ηk+(|C|−1)(γ̄+γ−1)+ |C| times.

This can be stated as τk,C := max{t ∈ [T ] :
∑

i∈C n
i
k(t) ≤ ηk+(|C|−1)(γ̄+γ−1)+|C|}.

Then, we have that ηk+(|C|−1)(γ̄+γ−1) <
∑

i∈C n
i
k(τk,C) ≤ ηk+(C−1)(γ̄+γ−1)+|C|.

For each agent i ∈ C let

N̄ i
k(t) :=

t∑
τ=1

1{Ai(τ) = k}+
∑

j 6=i,j∈C

t−γ̄∑
τ=1

τ∑
τ ′=1

1{Aj(τ ′) = k}1{(i, j) ∈ Eτ ′,τ},

denote the sum of the total number of times agent i pulled arm k and the total

number of observations it received from agents in its clique about arm k until time t.

Note that for all i ∈ C we have N i
k(t) > ηk,∀t > τk,C.

We analyse the expected number of times agents pull suboptimal arm k as follows,

∑
C∈Cγ

∑
i∈C

T∑
t=1

1{Ai(t) = k} (10.137)

=
∑
C∈Cγ

∑
i∈C

τk,C∑
t=1

1{Ai(t) = k}+
∑
C∈Cγ

∑
i∈C

T∑
t>τ ik,C

1{Ai(t) = k} (10.138)

≤
∑
C∈Cγ

(ηk + (|C| − 1)(γ̄ + γ − 1) + 2|C|) +
∑
C∈Cγ

∑
i∈C

T−1∑
t>τk,C

1{Ai(t+ 1) = k}1
{
N i
k(t) > ηk

}
.

(10.139)

Taking expectation we have

∑
C∈Cγ

∑
i∈C

T∑
t=1

P (Ai(t) = k) (10.140)
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≤
∑
C∈Cγ

(ηk + (|C| − 1)(γ̄ + γ − 1) + 2|C|) +
∑
C∈Cγ

∑
i∈C

T−1∑
t>τk,C

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)
.

(10.141)

= χ̄(Gγ)ηk + (N − χ̄(Gγ)) (γ̄ + γ − 1) + 2N +
∑
C∈Cγ

∑
i∈C

T−1∑
t=1

P
(
Ai(t+ 1) = k,N i

k(t) > ηk
)

(10.142)

The proof of Lemma 25 follows from Lemma 13 and (10.142).

Now we prove Theorem 21 as follows. Thus using Lemmas 16, 17 and 25 we obtain

RegG(T ) ≤ 8(ξ + 1)σ2
kχ̄(Gγ)

(∑
k>1

log T

∆k

)
+ ((N − χ̄(Gγ) (γ̄ + γ − 1) + 5N)

∑
k>1

∆k

(10.143)

+ 4
N∑
i=1

(3 log(3(di(Gγ) + 1)) + (log (di(Gγ) + 1)))
∑
k>1

∆k (10.144)

10.9.6 Lower Bounds

22

Theorem 25 (Minimax Rate). For any multi-agent algorithm A, there exists a

K−armed environment over N agents with ∆k ≤ 1 such that,

RegG(A, T ) > c

√
KN(T + d̃(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K − armed envi-

ronment over N agents with ∆k ≤ 1 for any connected graph G and γ ≥ 1 such that,

for some absolute constant c′

RegG(A, T ) > c′
√
α?(Gγ)KNT.
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Where d̃(G) =
∑d?(G)

i=1 d̄=i · i denotes the average delay incurred by message-passing

across the network G, d=i = 1
N

∑
i,j 1{d(i, j) = i} denotes the number of agent pairs

that are at distance exactly i, and α?(Gγ) = N
1+dγ

is Turan’s lower bound [90] on

α(Gγ).

Proof. Our approach is an extension of the single-agent bandit lower bound [12]. Let

A be a deterministic (multi-agent) algorithm, and let the empirical distribution of

arm pulls across all agents be given by pi(t) = (pi1(t), ..., piK(t)), where pk(t) =
nki (T )

T
.

Consider the random variable J it drawn according to pi(t) and Pi denote the law of

Jt when drawn from arm k having parameter 1+ε
2

(and other arms with parameter

1−ε
2

). We have,

Pk
(
J it = j

)
= Ek

[
nki (T )

T

]
.

Since on pulling any arm k′ 6= k, we obtain regret ε, we therefore have for the group

regret,

Ek

[
T∑
t=1

(
N · rk(t)−

∑
i∈V

rAi(t)

)]
= ε · T ·

∑
i∈V

Pk
(
J it = k′

)
= ε · T ·

∑
i∈V

(
1−

∑
k′ 6=k

Pk
(
J it = k′

))
.

By Pinsker’s inequality and averaging over all k ∈ [K], we have for any i ∈ V ,

1

K

K∑
k=1

Pk
(
J it = k

)
6

1

K
+

1

K

K∑
k=1

√
1

2
KL(P0,Pk).

We now bound the R.H.S. using the chain rule for KL-divergence. Since we assume

that A is deterministic, we have that the rewards obtained by the agent i until time

t from its neighborhood alone determine uniquely the empirical distribution of plays.

Here, the analysis diverges from that of the single-agent bandit as a richer set of
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observations is available to each agent. Denote the set of rewards observed by agent

i at instant τ be given by Oi(τ). First, observe that since each reward is i.i.d., we

have for any k,

KL(P0(Oi(τ)),Pk(Oi(τ))) = |Oi(τ)| · KL
(

1− ε
2

,
1 + ε

2

)

For k = 0 the above divergence is 0. When we consider the standard single-agent

setting, |Oi(τ)| = 1, recovering the usual bound. Now, by the chain rule, we have

that, at round t for any agent i, and arm k ∈ [K],

KL(P0(t),Pk(t)) = KL(P0(1),Pk(1)) +
t∑

τ=2

|Oi(τ)|KL
(

1− ε
2

,
1 + ε

2

)

= KL

(
1− ε

2
,
1 + ε

2

)
E0

[∑
j∈V

nkj (t− d(i, j))

]
.

Replacing this result in the earlier equation, we have by the concavity of KL diver-

gence:

1

K

K∑
k=1

Pk
(
J it = k

)
6

1

K
+

1

K

K∑
k=1

√
1

2
KL(P0,Pk)

6
1

K
+

1

K

K∑
k=1

√√√√KL

(
1− ε

2
,
1 + ε

2

)
E0

[∑
j∈V

nkj (T − d(i, j))

]

6
1

K
+

√√√√(TN −∑d?(G)
j=1 d=j(i) · j
K

)
· KL

(
1− ε

2
,
1 + ε

2

)
.

Now, observe that the KL divergence between Bernoulli bandits can be bounded as

KL(p, q) ≤ (p− q)2

q(1− q) .
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Substituting we get,

1

K

K∑
k=1

Pk
(
J it = k

)
6

1

K
+

√
4ε2(NT −∑d?(G)

j=1 d=j(i) · j)
(1− ε2)K

.

Replacing this in the regret and using ε 6 1/2, we get that,

Ek

[
T∑
t=1

(
N · rk(t)−

∑
i∈V

rAi(t)

)]

> ε · T ·
∑
i∈V

1− 1

K
−

√
4ε2(NT −∑d?(G)

j=1 d=j(i) · j)
(1− ε2)K


> ε · T ·

∑
i∈V

1

2
− 4ε

√
(NT −∑d?(G)

j=1 d=j(i) · j)
3K


=
ε ·NT

2
− 4ε2NT√

K

(∑
i,j∈V

T − d(i, j)

)1/2

Setting ε = c ·
√

K

N(T−
∑d?(G)
j=1 d̄=j ·j)

where c is a constant to be tuned later, we have,

Ek

[
T∑
τ=1

(
N · rk,t −

∑
i∈V

rAi(t),t

)]
>

(
c

2
− 4c2

√
3

)
·
√

KN2T 2

N(T −∑d?(G)
j=1 d̄=j · j)

> 0.027

√√√√KN(T +

d?(G)∑
j=1

d̄=j · j).

This proves the first part of the theorem. Now, when the policies are decentralized

and agnostic, the chain rule step can be factored as follows.

KL(P0(t),Pk(t)) = KL(P0(1),Pk(1)) +
t∑

τ=2

|Oi(τ)|KL
(

1− ε
2

,
1 + ε

2

)

= KL

(
1− ε

2
,
1 + ε

2

)
E0

 ∑
j∈N+

γ (G)

nkj (t− d(i, j))

 .
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Note that here instead of taking the cumulative sum over all V we select only those

agents that are within the γ−neighborhood of i in G, since conditioned on these

observations the rewards of the agents are independent of all other rewards (by As-

sumption), and hence the higher-order KL divergence terms are 0. Replacing this

in the analysis gives us the following decomposition (after similar steps as the first

part):

Ek

[
T∑
t=1

(
Nrk(t)−

∑
i∈V

rAi(t)

)]
>
NTε

2
− 4ε2T√

3K
·
∑
i∈V

 ∑
j:N+

γ (i)

T − d(i, j)

1/2

>
NTε

2
− 4ε2N1/2T√

3K
·

∑
i∈V

∑
j:N+

γ (i)

T − d(i, j)

1/2

Setting ε = c ·
√

NK∑
i∈V

∑
j:N+

γ (i)
T−d(i,j)

where c is a constant to be tuned later, we have,

Ek

[
T∑
t=1

(
N · rk(t)−

∑
i∈V

rAi(t)

)]
>

(
c

2
− 4c2

√
3

)
·
√

N3T 2∑
i∈V
∑

j∈N+
i (Gγ) T − d(i, j)

>

(
c

2
− 4c2

√
3

)
·
√

N3T∑
i∈V 1 + di(Gγ)

>
3

4

(
c

2
− 4c2

√
3

)√
α?(Gγ)NT

> 0.019
√
α?(Gγ)NT.

The constants in both settings are obtained by optimizing c over R. Extending this to

random (instead of deterministic) algorithms is straightforward via Fubini’s theorem,

see Theorem 2.6 of [11].

10.9.7 Pseudo code
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Algorithm 8: RCL-RC: Cooperative Hybrid Arm Elimination

Parameters: Confidence δ ∈ (0, 1), horizon T , graph G with exploration set

I ⊆ V . Initialize Ti(0) = K, ∀i ∈ Iλ = 1024 log
(

8Kψ(Gγ)

δ
log2 T

)
and

∆i
k(0) = 1,∀ k ∈ [K] and i ∈ I.

for each subgraph N+
i (Gγ) where i ∈ I do

for t = 1, ..., K, each agent j ∈ N+
i (Gγ) do

Play arm K and get reward rj(t).
end
for epoch mi = 1, 2, ..., do

Set nik(mi) = λ(∆i
k(mi − 1))−2∀k ∈ [K].

Ni(mi) =
∑

k n
i
k(mi) and Ti(mi) = Ti(mi) +Ni(mi) + 2γ.

for agent j ∈ N+
i (Gγ) do

for t = Ti(mi − 1) to s = Ti(mi − 1) + 2γ do
if j 6= i then

if t ≤ K + d(i, j) then
Pull random arm.

end
else

Pull Aj(t) = Ai(t− d(i, j)) and get reward rj(t).
end

end
else

Pull Aj(t) = UCB1(t)
end

end
for t = Ti(mi − 1) + 2γ to Ti(mi) do

if j 6= i then
Pull Aj(t) = Ai(t− d(i, j)) and get reward rj(t).

end
else

Pull an arm Ai(t) = k ∈ [K] with probability
nik(mi)/Nk(mi).

end

end

end

end

end
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Algorithm 9: RCL-LF

Input: Arms k ∈ [K], variance proxy upper bound σ2, parameter ξ
Initialize: N i

k(0) = µ̂ik(0) = Ci
k(0) = 0,∀k, i

for each iteration t ∈ [T ] do
for each agent i ∈ [N ] do

/* Sampling phase */

if t = 1 then
Ait ← RandomArm ([K])

end
else

Ait ← arg maxk µ̂
i
k(t− 1) + Ci

k(t− 1)
end
/* Send messages */

Create
(
mi

t :=
〈
Ait, r

i
t, i, t

〉)
Send

(
Mi

t ←Mi
t−1 ∪mi

t

)
end
for each agent i ∈ [N ] do

/* Receive messages */

for each neighbor j ∈ Ni(Gγ) do
/* Discard messages with probability 1− pi */

for each message m ∈Mj
t do

with probability pi, Mi
t ←Mi

t ∪m
with probability 1− pi, Mi

t ←Mi
t

end

end
/* Update estimates */

for each arm k ∈ [K] do
Calculate (N i

k(t), µ̂
i
k(t), C

i
k(t))

end

end

end
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Chapter 11

Heterogeneous Explore-Exploit

Strategies on Multi-Star Networks

Udari Madhushani and Naomi Ehrich Leonard

We investigate the benefits of heterogeneity in multi-agent explore-exploit decision

making where the goal of the agents is to maximize cumulative group reward. To

do so we study a class of distributed stochastic bandit problems in which agents

communicate over a multi-star network and make sequential choices among options in

the same uncertain environment. Typically, in multi-agent bandit problems, agents

use homogeneous decision-making strategies. However, group performance can be

improved by incorporating heterogeneity into the choices agents make, especially

when the network graph is irregular, i.e. when agents have different numbers of

neighbors. We design and analyze new heterogeneous explore-exploit strategies, using

the multi-star as the model irregular network graph. The key idea is to enable center

agents to do more exploring than they would do using the homogeneous strategy,

as a means of providing more useful data to the peripheral agents. In the case all

agents broadcast their reward values and choices to their neighbors with the same

probability, we provide theoretical guarantees that group performance improves under
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the proposed heterogeneous strategies as compared to under homogeneous strategies.

We use numerical simulations to illustrate our results and to validate our theoretical

bounds.

11.1 Introduction

The influence of agent heterogeneity on cooperation in social learning has been a

recent focus of research in many fields, including ecology, sociology, and decision the-

ory [?]. Studies on evolutionary human behavior provide evidence that individual

differences can be leveraged to enhance collective prosperity [?]. Motivated by ap-

plications such as social foraging and multi-robot coordination tasks, we study and

design cooperative strategies for a group of agents making sequential explore-exploit

decisions in an uncertain environment. The strategies we design incorporate agent

heterogeneity to optimize the performance of the group through collective learning.

Consider a group of agents, each making a sequence of choices among options in an

uncertain environment in order to maximize collective payoff. At each time step in the

sequence, each agent chooses an option depending on the knowledge it has acquired

about the environment up to that time step. Maximizing payoff necessitates striking

a balance between making choices that yield high immediate payoff, i.e., exploiting,

and making choices that yield high information content and possibly high future

payoffs, i.e., exploring. When an agent fails to acquire sufficient information about

the environment to make optimal decisions, it must sacrifice exploitation potential

in order to explore. However, in the group setting, agents can recover exploitation

potential by gaining information through cooperation i.e., through collective learning.

Sequential decision making in uncertain environments that requires trading off

exploitation and exploration is modeled mathematically by the bandit framework

[79]. In the multi-armed bandit (MAB) problem, an agent is repeatedly faced with
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the task of choosing an option from a given set of options. At each time step the agent

receives a stochastic reward drawn from a fixed probability distribution associated

with the chosen option. The agent’s goal is to maximize the cumulative reward by

the end of the decision-making process. This requires choosing frequently enough

the optimal option i.e., the option with highest expected reward. In order to meet

this requirement, the agent must simultaneously choose options that are known to

provide high rewards (exploit) and choose lesser known options (explore) that might

potentially provide even higher rewards [44, 7].

Maximizing cumulative reward is equivalent to minimizing cumulative regret, de-

fined as the loss incurred by an agent choosing a sub-optimal option instead of the op-

timal option. Since the probability distribution associated with each option is fixed,

cumulative regret can be minimized by reducing the number of times sub-optimal

options are chosen. Performance of the proposed algorithms for this problem is mea-

sured using expected cumulative regret. The paper [44] establishes that any efficient

policy chooses suboptimal options asymptotically logarithmically in time. The paper

[7] proposes an Upper Confidence Bound (UCB) based sampling rule that achieves a

logarithmic expected cumulative regret uniformly in time.

The papers [46, ?, 66, 84, 63, 62, 14, 61, 48, 94, 42] extend to the multi-agent set-

ting and capture different aspects of collective learning. In [46, ?, 66, 84], agents share

their estimates of the expected reward of options with neighbors according to fixed

communication structures. The papers [46, ?] use a running consensus algorithm to

update estimates and provide graph-structure-dependent performance measures that

predict the relative performance of agents and networks. The paper [?] also addresses

the case of a constrained reward model in which agents that choose the same option

at the same time step receive no reward. The paper [66] proposes an accelerated con-

sensus procedure assuming agents know the spectral gap of the communication graph

and designs a decentralized UCB algorithm based on delayed rewards. The paper [84]
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considers a P2P communication where an agent is only allowed to communicate with

two other agents at each time step.

The papers [63, 62, 14, 61, 48, 94, 42] consider the case in which agents share

reward values and choices with neighbors. In [63, 62, 14], agents use stochastic com-

munication structures that depend on the decision-making process. In [63], each agent

observes rewards and actions of its neighbors when it is exploring. In [62], each agent

instead broadcasts its rewards and actions to its neighbors when it is exploring. In

[14], at each time step, agents decide either to sample an option or to broadcast the

last obtained reward to the entire group.

The setup in our earlier paper [61] is closest to that in the present paper: agents

observe reward values and actions of their neighbors defined by a network graph that

changes in time according to probabilistic edge weights. An underlying fixed network

graph is given, and each agent k observes its neighbors with probability pk. The

communication structure is independent of the decision-making process.

The papers [46, ?, 66, 84, 63, 62, 14, 61] consider homogeneous protocols, whereas

the papers [48, 94, 42] consider protocols where some agents (followers) copy actions

of others (leaders). In [48], followers observe rewards and choices of their neighbors.

In [94] one leader explores and estimates the mean reward of options, while all other

agents choose the option with highest estimated mean per the leader. The paper [42]

proposes the FYL algorithm, which uses a deterministic communication protocol and

exploits degree heterogeneity of the communication network graph. FYL outperforms

our algorithm when pk = p = 1; however, our algorithm provides a method to exploit

agent heterogeneity when agents share information with probability 0 < p < 1.

When communication among agents is defined by an irregular network graph, e.g.,

some agents serve as information hubs, group performance can be improved by using

heterogeneous explore-exploit strategies. To understand this, consider an environ-

ment with unconstrained resources. Then, agents can only influence the decisions
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of one another through the information they share, and the structure of interactions

that defines neighbors, i.e., who is sharing information with whom, strongly affects

the quality and quantity of information received by each individual.

We consider the case that all agents broadcast their instantaneous rewards and

actions to their neighbors with probability p. This communication protocol is moti-

vated by real-world applications in which estimates of mean rewards or the sum of

collected rewards, which rely on the history of choices and rewards, are deliberately

not disclosed to protect privacy [23]. For example, in user targeted recommender sys-

tems [96] (or clinical trials [89]), sharing user (patient) history of choices can reveal

sensitive information about users (patients). Even when an agent is broadcasting

only its current rewards and actions to neighbors, an adversarial agent can listen to

the broadcasts and access the history of choices made by the agent. To reduce such

privacy leakage we consider agents that broadcast instantaneous rewards and actions

probabilistically. Further, if communication failures are possible, then having agents

broadcast only current rewards and actions avoids problems associated with agents

losing track of what information has and has not been received by neighbors. In this

context, 1− p represents the probability of communication failure.

In irregular and centralized networks like the multi-star, center agents have more

neighbors and thus receive more information than peripheral agents. This leads to an

imbalanced exploitation potential across the group [?, ?], and group performance de-

grades with increasing number of peripheral agents. We investigate improving group

performance by leveraging heterogeneity in the exploitation potential of agents. To

do so we propose heterogeneous explore-exploit strategies that require center agents

to explore more and thus increase the exploitation potential of peripheral agents.

The multi-star network models recommender systems, where there are many small

servers, assigned to different regions, that each make sequential recommendations

based on user feedback and communicate only with a large central server. Perfor-
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mance can be improved by using the central server to suggest more exploratory rec-

ommendations which allows the system to gather more information about user pref-

erences. Probabilistic communication accounts for random communication failures

between servers.

The paper is organized as follows. In Section ?? we provide the problem formu-

lation and notation. Section ?? presents the proposed algorithm and intuition. We

analyze performance of the proposed algorithm in Section ?? and provide improved

theoretical bounds for the expected cumulative group regret. In Section 9.10.11 we

show numerical simulations to illustrate and validate the theoretical results. We

conclude in Section ??.

11.2 Problem Formulation

In this section we present the problem formulation and relevant mathematical no-

tations. Consider a group of K agents, each faced with the same N -armed bandit

problem for T time steps. At each time step t ∈ {1, . . . , T}, each agent chooses an

option and receives a stochastic reward associated with the chosen option. Let Xi be

a sub-Gaussian random variable that denotes the reward associated with option i ∈

{1, . . . , N}. Sub-Gaussian rewards include widely used distributions such as Bernoulli,

Gaussian, and bounded rewards. Define µi = E(Xi) and σ2
i as the expected reward and

variance proxy associated with option i, respectively. Let i∗ = argi max{µ1, . . . , µN}

be the optimal option with highest expected reward. Define ∆i = µi∗ − µi as the

expected reward gap between option i∗ and option i.

Let G(V , E) be a fixed undirected network graph that defines the structure of

the interactions between agents. This captures the inherent hard communication

constraints of the system. Here V is a set of K vertices such that each vertex cor-

responds to an agent. Each edge e(k, j) ∈ E in the graph denotes that agent k and
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agent j are neighbors. At each time step, each agent broadcasts its reward value and

action to its neighbors with broadcasting probability p. Let It{k,j} be the indicator ran-

dom variable that takes value 1 if agent k receives information from agent j at time

t and 0 otherwise. Then, for every time t, E(It{k,j}) = p,∀k, j such that e(k, j) ∈ E ,

and E(It{k,j}) = 0 otherwise. We define It{k,k} = 1,∀k, t.

Let dk be the degree (number of neighbors) of agent k and davg = 1
K

∑K
k=1 dk be

the average degree of the network. Let davgk be the average degree of neighbors of agent

k: davgk = 1
dk

∑K
e(k,j)∈E dj.

We focus on multi-star graphs defined as follows. Let there be m center agents

and K−m peripheral agents. Without loss of generality let each agent k, k ≤ m, be a

center agent. All center agents are neighbors of one another, i.e., e(k, j) ∈ E ,∀k, j ≤

m, and a center agent’s degree dk is at least m− 1. Each peripheral agent k, k > m,

has exactly one neighbor (dk = 1), and the neighbor is a center agent. To reduce

complexity, we assume the graph is symmetric, which implies that all center agents

have the same number of neighbors. Thus K−m is an integer multiple of m. If K > 2

and m < K, the multi-star graph is irregular, i.e., the degree of center agents differs

from the degree of peripheral agents. Let dcen be the degree of each center agent.

Then, dcen = K−m
m

+ m − 1. When m = 1 the graph is a star, the most irregular

multi-star graph. When m = K, there are no peripheral agents and the graph is

all-to-all and thus regular.

Let ϕkt be a random variable that denotes the option chosen by agent k ∈

{1, . . . , K} at time t ∈ {1, . . . , T}. Let I{ϕkt=i} be an indicator random variable that

takes value 1 if agent k chooses option i at time t and 0 otherwise. Let nki (t) be

the total number of times agent k chooses option i until time t and let Nk
i (t) be the

total number of times agent k observes option i until time t. The total number of

observations is the sum of the number of samples taken from option i by agent k and
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the number of broadcasts on option i by its neighbors:

nki (t) =
t∑

τ=1

I{ϕkτ=i}, Nk
i (t) =

t∑
τ=1

K∑
j=1

I{ϕjτ=i}I
τ
{k,j}. (11.1)

Let µ̂ki (t) denote the estimate of expected reward of agent k for option i at time t.

Then, µ̂ki (t) =
Ski (t)

Nk
i (t)

, where Ski (t) =
∑t

τ=1

∑K
j=1XiI{ϕjτ=i}I

τ
{k,j}.

Expected regret is defined as the expected loss suffered by agents by sampling sub-

optimal options. Let R(t) be the cumulative group regret at time t. Then expected

cumulative group regret can be computed as

E (R(t)) =
N∑
i=1

K∑
k=1

∆iE
(
nki (t)

)
. (11.2)

11.3 Algorithm

To realize the goal of maximizing cumulative group reward, agents should minimize

the number of times they sample sub-optimal options. Each agent employs an agent-

based strategy that captures the trade-off between exploring and exploiting by con-

structing an objective function that strikes a balance between the estimation of the

expected reward and the uncertainty associated with the estimate [7].

Since center agents have more neighbors they are more likely to obtain a high

number of observations. This reduces the uncertainty associated with their estimate

of the expected reward of options. Thus, identifying the optimal option requires

less exploring, which increases their exploitation potential. Since peripheral agents

only have one neighbor they are more likely to obtain a low number of observations.

Thus, identifying the optimal option requires more exploring, which decreases their

exploitation potential. Further, since center agents do less exploring, the usefulness

of the information they broadcast is reduced, also decreasing the peripheral agents’

exploitation potential. Accordingly, homogeneous sampling rules in irregular, multi-
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star networks lead to imbalanced exploitation potential across the group and thus

degraded group performance.

To improve group performance, we propose heterogeneous explore-exploit strate-

gies that regulate exploitation potential across the network. When center agents

are more exploratory their performance degrades, but the usefulness of the informa-

tion they broadcast increases and so the performance of peripheral agents improves.

When there are more peripheral agents than center agents, and broadcasting prob-

ability p is sufficiently high, the performance improvement obtained by peripheral

agents outweighs the performance degradation incurred by center agents, and group

performance increases. If p is too small, for example, when broadcasting is costly

or risky, center agents do not broadcast enough information to benefit peripheral

agents. Thus it doesn’t pay for center agents to increase their exploration. Indeed,

when p = 0 all agents have the same exploitation potential.

Using this intuition, we propose the following heterogeneous sampling rules. As-

sume that variance proxy σ2
i for each option i is known to all agents.

Definition 10. (Heterogeneous Sampling Rules) The sampling rule {ϕkt }T1 of

agent k at time t ∈ {1, . . . , T} is

I{ϕkt+1=i} =

 1 , i = arg max{Qk
1(t), · · · , Qk

N(t)}

0 , o.w.

with

Qk
i (t) = µ̂ki (t) + Ck

i (t) (11.3)

Ck
i (t) = σi

√
2(1 + αk)(ξ + 1) log t

Nk
i (t)

(11.4)
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where ξ > 1 and

αk =


p1−p(dk−davgk )

dk
, k ≤ m

0 , k > m.
(11.5)

Ck
i (t) in (11.4) represents agent k’s uncertainty in its estimated mean of option

i, and Definition 10 implies that for any agent k, when Ck
i (t) is high, agent k will

more likely explore. By (11.4), Ck
i (t) can be high when Nk

i , the number of agent k’s

observations of option i, is low, i.e., when option i is under-sampled. Ck
i (t) can also

be high when agent k’s exploration bias αk > 0 is high.

By (11.5), αk 6= 0 only for center agents. Since peripheral agents have one center

agent neighbor, davgk ≤ dk and thus αk ≥ 0 for every center agent k ≤ m. In fact,

αk ≥ 0 is designed to grow with increasing irregularity: in the regular case (all-to-all)

when m = K, αk = 0, and in the most irregular case (star) when m = 1, d1 = K − 1

and davg1 = 1 so (d1−davg1 )/d1 = (K−2)/(K−1). Further, αk grows with p according

to the factor p1−p, which grows rapidly for intermediate values of p and is large (i.e.,

saturates to 1) only when center agents are broadcasting their reward values and

actions with sufficiently high probability p.

Definition 11. To get the corresponding homogeneous sampling rules let αk = 0,∀k,

in Definition 10. Heterogeneous and homogeneous rules for peripheral agents are the

same.

By design, the heterogeneous rules of Definition 10 drive center agents to explore

more than the corresponding homogeneous rules and only when it benefits group

performance.
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11.4 Performance Analysis

In this section we analyze the performance of the heterogeneous sampling rules of

Definition 10. Using an approach similar to [7] with a few key modifications, we

upper bound the expected cumulative group regret E(R(T )). We show that the

bound is lower than the upper bound in the case of the corresponding homogeneous

sampling rules, and so we can conclude that the designed heterogeneous strategies

provide better group performance than the homogeneous strategies.

By (11.2), we upper bound E(R(T )) if we upper bound
∑K

k=1 E(nki (T )), where

nki (T ) is the number of times agent k samples sub-optimal option i until time T .

By Definition 10, agent k chooses sub-optimal option i at time t if Qk
i (t) ≥ Qk

i∗(t).

Then, nki (t) =
∑t

τ=1 I{ϕkτ=i} ≤
∑t

τ=1 I{Qki (τ)≥Qk
i∗ (τ)}. For each option i and agent k let

{ηki (t)}T1 be a sequence of nonnegative nondecreasing functions. Then,

K∑
k=1

E
(
nki (T )

)
≤

K∑
k=1

T∑
t=1

E
(
I{ϕkt=i}, N

k
i (t) ≤ ηki (t)

)
+

K∑
k=1

T∑
t=1

P
(
Qk
i (t) ≥ Qk

i∗(t), N
k
i (t) > ηki (t)

)
. (11.6)

It remains to upper bound the right hand side of (11.6) and we do so in two steps.

First, we upper bound the second summation term of (11.6) as follows. From (11.3)

we have

{
Qk
i (t) ≥ Qk

i∗(t)
}
⊆
{
µi∗ < µi + 2Ck

i (t)
}

∪
{
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
}
∪
{
µ̂ki (t) ≥ µi + Ck

i (t)
}
. (11.7)

For all k let

ηki (t) = (1 + αk)ηi(t), ηi(t) =
8σ2

i (ξ + 1) log t

∆2
i

. (11.8)
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Then, by (11.4), {µi∗ < µi + 2Ck
i (t)}∩ {Nk

i (t) > ηki (t)} = ∅ where ∅ is the empty set.

Using (11.7) we obtain

P
(
Qk
i (t) ≥ Qk

i∗(t), N
k
i (t) > ηki (t)

)
≤

P
(
µ̂ki∗(t) ≤ µi∗ − Ck

i∗(t)
)

+ P
(
µ̂ki (t) ≥ µi + Ck

i (t)
)
. (11.9)

To upper bound the right hand side of (11.9) we use the tail probability bound

provided in the following lemma.

Lemma 26. For any ξ > 1, some ζ > 1 and for σi > 0 in the uncertainty Ck
i (t)

given by (11.4), we get

P
(∣∣µ̂ki (t)− µi∣∣ > Ck

i (t)
)
≤ 1

log ζ

log ((1 + dk)t)

t(ξ+1)(1+αk)
.

Proof. From Theorem 1 in the paper [61] we have for some ζ > 1 and for σi > 0 there

exists a ϑk > 0 such that

P

(
µ̂ki (T )− µi >

√
ϑk

Nk
i (T )

)
≤ ν log((dk + 1)T )

exp(2κϑk)

where, ν = 1
log ζ

, κ = 1

σ2
i

(
ζ

1
4 +ζ−

1
4

)2 . Since αk ≥ 0,∀k, we can use ϑk = 2σ2
i (1+αk)(ξ+

1) log t to get the statement of the lemma.

Using the statement of Lemma 26 in (11.9),

P
(
Qk
i (t) ≥ Qk

i∗(t), N
k
i (t) > ηki (t)

)
≤ 2

log ζ

log ((1 + dk)t)

t(ξ+1)(1+αk)
. (11.10)
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Summing the right hand side of (11.10) over t we get

T∑
t=1

log ((1 + dk)t)

t(ξ+1)(1+αk)
≤ log(1 + dk)

+
log(1 + dk)(ξαk + ξ + αk) + 1

(ξαk + ξ + αk)2
. (11.11)

Since log is concave, substituting (11.11) into (11.10) we get

K∑
k=1

T∑
t=1

P
(
Qk
i (t) ≥ Qk

i∗(t), N
k
i (t) > ηki (t)

)
≤ 2K

log ζ
log(1 + davg)

+
2

log ζ

K∑
k=1

log(1 + dk)(ξαk + ξ + αk) + 1

(ξαk + ξ + αk)2
, (11.12)

which upper bounds the second summation of (11.6).

Next, we upper bound the first summation term of (11.6) as follows. Since we

restrict to symmetric graphs where all center agents have the same number and type

of neighbors, αk = α, ∀k ≤ m. Then, by (11.8) we have ηki (t) = (1 + α)ηi(t), ∀k ≤ m,

and ηki (t) = ηi(t),∀k > m. Let [x]+ = max{x, 0}.

Lemma 27. Let G be a symmetric multi-star graph with m center agents and K−m

peripheral agents. Let {ηki (t)}T1 be the sequence of nonnegative nondecreasing func-

tions given by (11.8). Then with some high probability 1− δ(p)

K∑
k=1

T∑
t=1

P
(
I{ϕkt=i}= 1, Nk

i (t) ≤ ηki (t)
)
≤ (K −m)ηi(T )

+
m

1 + p(m− 1)

[
1− pK −m

m

]+

(1 + α)ηi(T ).
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Proof. Recall the definitions of nki (t) and Nk
i (t) in (??). Since the communication

structure is independent of the decision-making process ∀k,

E
(
nki (t)

)
+ p

K∑
e(k,j)∈E

E
(
nji (t)

)
= E

(
Nk
i (t)

)
. (11.13)

Since Nk
i (t) is a nonnegative random variable, Nk

i (t) ≤ ηki (t) =⇒ E
(
Nk
i (t)

)
≤ ηki (t).

Thus, from (11.13), for all k,

E
(
nki (t), N

k
i (t) ≤ ηki (t)

)
+ p

K∑
e(k,j)∈E

E
(
nji (t), N

k
i (t) ≤ ηki (t)

)
≤ ηki (t). (11.14)

To upper bound
∑K

k=1

∑T
t=1 P

(
I{ϕkt=i}= 1, Nk

i (t) ≤ ηki (t)
)

we maximize
∑K

k=1 E(nki (t))

subject to the constraint given by (11.14). This is the linear programming opti-

mization problem: maximize
∑K

k=1 E
(
nki (t), N

k
i (t) ≤ ηki (t)

)
subject to (11.14) and

E
(
nki (t), N

k
i (t) ≤ ηki (t)

)
≥ 0 for all k. For p = 1 the solution is the sum of ηki (t)

over the maximal independent set of G, which for a multi-star graph is the set of

peripheral agents k ≥ m+ 1. Thus, for general p we have

K∑
k=1

T∑
t=1

P
(
I{ϕkt=i}= 1, Nk

i (t) ≤ ηki (t)
)
≤

K∑
k=m+1

ηki (T )

+
m∑
k=1

1

1 + p(m− 1)

[
1− pK −m

m

]+

ηki (T ),

and the statement of the lemma follows.

This concludes upper bounding the first summation of (11.6).

Theorem 26. Consider a distributed stochastic bandit problem with N options, K

agents, and T time steps. Let communication graph G be a symmetric multi-star graph

with m center agents and K −m peripheral agents. If all agents sample according to
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the heterogeneous sampling rules defined in Definition 10, with some high probability

1− δ(p) the expected cumulative group regret satisfies

E (R(T )) ≤ c1(K,m, α, p)
N∑
i=1

8σ2
i (ξ + 1) log T

∆i

+
2

log ζ

N∑
i=1

∆i

(
K log(1 + davg) + (K −m)

ξ log 2 + 1

ξ2

+m
log(1 + dcen)(ξα + ξ + α) + 1

(ξα + ξ + α)2

)
,

c1(K,m, α, p) = K −m+
m(1 + α)

1 + p(m− 1)

[
1− pK −m

m

]+

,

where ∆i is the expected reward gap between the options i∗ and i, σ2
i is the variance

proxy, and ξ, ζ > 1.

Proof. Result follows from (11.2), (11.6), (11.12) and Lemma 27.

Remark 21. Recall that under the corresponding homogeneous sampling rules we

have αk = 0,∀k. Thus, we can recover the expected cumulative group regret bound for

the homogeneous sampling rules as follows:

E (R(T )) ≤ c2(K,m, p)
N∑
i=1

8σ2
i (ξ + 1) log T

∆i

+
2

log ζ

N∑
i=1

∆i

(
K log(1 + davg) + (K −m)

ξ log 2 + 1

ξ2

+m
log(1 + dcen)ξ + 1

ξ2

)
,

c2(K,m, p) = K −m+ m
1+p(m−1)

[
1− pK−m

m

]+
.

When the network graph has a large enough ratio of peripheral agents to center

agents and a sufficiently high broadcasting probability p, i.e. p(K −m)/m > 1, we
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have
[
1− pK−m

m

]+
= 0, which implies c1 = c2 = K −m. And since α > 0 we have

log(1 + dcen)(ξα + ξ + α) + 1

(ξα + ξ + α)2
<

log(1 + dcen)ξ + 1

ξ2
.

Plugging these results into the bounds of Theorem 26 and Remark 21, we see that

the heterogeneous sampling rules provide a lower theoretical regret bound than the

corresponding homogeneous sampling rules, which implies that the heterogeneous

sampling rules provide better group performance than the homogeneous sampling

rules.

Remark 22. Our bounds hold for sub-exponential reward distributions, where Xi

is a sub-exponential random variable with mean µi and parameters (σ2
i , b) with b ≤

σi

2
√

2(ξ+1) log T
.

11.5 Simulation Results

In this section we provide numerical simulations to illustrate results and validate the-

oretical bounds. For all simulations, we consider 10 options (N = 10) with Gaussian

reward distributions. Expected reward for the optimal option is µi∗ = 11 and for all

sub-optimal options i 6= i∗ is µi = 10. We let variance associated with all options

i be σ2
i = 1. Because the expected reward gaps ∆i = 1, i 6= i∗, are equal to the

variances σ2
i = 1, it is a challenging problem to distinguish the optimal option from

the sub-optimal options. For all simulations, we consider 1000 time steps (T = 1000)

and use 1000 Monte Carlo simulations with ξ = 1.01.

We show simulation results for performance of a group of K = 36 agents that

communicate over two different symmetric multi-star graphs and use the heteroge-

neous sampling rules of Definition 10. We compare to the case when agents use

the corresponding homogeneous sampling rules of Definition 11. The first multi-star

graph has m = 2 center agents and K − m = 34 peripheral agents, with each cen-
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ter agent communicating with 17 peripheral agents and the other center agent. The

second multi-star graph has m = 3 center agents and K −m = 33 peripheral agents,

with each center agent communicating with 11 peripheral agents and the other center

agents. In each case, center agents are interchangeable and peripheral agents are in-

terchangeable, so the average performance of a center (peripheral) agent is the same

as the individual performance of a center (peripheral) agent.

Figure 11.1 shows how average expected cumulative group regret varies with

broadcasting probability p for agents using the heterogeneous rules (dotted) and ho-

mogeneous rules (solid). Regret is inversely related to performance: lower group

regret implies higher group performance. Results are plotted on the left for the graph

with 2 center agents and on the right for the graph with 3 center agents. When p = 0

there is no communication at all. So when p becomes even just a little positive and

agents learn about options from their neighbors, regret falls, i.e., group performance

rises.
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Figure 11.1: Average expected cumulative group regret for K = 36 agents at time t = 1000
as a function of broadcasting probability p with communication over a symmetric multi-
star graph. Left: 2 center and 34 peripheral agents. Right: 3 center and 33 peripheral
agents. Dotted lines and solid line shows average regret when agents use heterogeneous and
homogeneous sampling rules, respectively.

In the case of the homogeneous rules, as p increases through intermediate values,

center agents do less and less exploring and the usefulness of the information received

by peripheral agents decreases. This leads to increased regret for peripheral agents,

and the group overall, and thus degraded group performance. When p approaches 1,

center agents receive sufficient information from their peripheral neighbors such that
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their improved performance outweighs the degraded performance of peripheral agents.

This leads to a final decrease in group regret and increase in group performance.

The improvement in performance provided by the heterogeneous rules relative to

the homogeneous rules, as predicted by Theorem 26 and Remark 21, can be clearly

seen in Figure 11.1 by observing how much lower the dotted regret curve is than

the solid regret curve. The growth in regret in the homogeneous case, as p increases

through intermediate values, is reduced in the heterogeneous case. This is because,

by design, center agents are biased toward more exploring, which improves the infor-

mation that peripheral agents receive. The group performance increase that comes,

as p increases further, occurs in the heterogeneous case well before p approaches 1.

The influence of irregularity of the graph can be observed in Figure 11.1 by com-

paring the left plot (2 center agents and more irregular) to the right plot (3 center

agents and less irregular). The results suggest that performance is higher with more

center agents, i.e., with greater regularity in the graph.

Figure 11.2 shows expected cumulative regret as a function of time t for center

(blue), peripheral (pink), and average (black) agents, when p = 0.8 and agents use

the heterogeneous rules (dotted) and homogeneous rules (solid). Results are plotted

on the left for the graph with 2 center agents and on the right for the graph with 3

center agents. It can be observed that, as predicted for the heterogeneous rules, the

peripheral agent performance increases and the center agent performance decreases,

such that group performance (as represented by the average agent) improves. Further,

a comparison of left and right plots suggests that group performance improves with

more center agents (more regularity).
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Figure 11.2: Expected cumulative regret of center agent, peripheral agent, and average
agent for K = 36 agents as a function of time t for p = 0.8 and the same two symmetric
multi-star graphs as in Figure 11.1: 2 center agents (left) and 3 center agents (right) where
agents use heterogeneous (dotted) and homogeneous (solid) sampling rules.

11.6 Conclusion

We have designed and analyzed new heterogeneous rules for how a group of agents

that share information over a network should sample an uncertain environment to

maximize group reward. We consider communication networks defined by symmetric

multi-star graphs, since these exemplify realistic settings. Using the multi-armed

bandit problem as the explore-exploit framework, we show how sampling rules for

center agents that favor exploring over exploiting make the information that center

agents broadcast to their neighbors more useful, thereby increasing the total reward

accumulated by the group.

Our analysis and design advance understanding of the role that heterogeneity does

and can play in collective decision making. And our demonstration that heterogeneity

can be leveraged to improve the performance of a cooperative multi-agent system

suggests that further investigation is warranted.
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Chapter 12

Heterogeneous Social Value

Orientation Improves Meaningful

Diversity in Various Incentive

Structures

Udari Madhushani, Kevin R. McKee, John P. Agapiou,

Joel Z. Leibo, Richard Everett, Thomas Anthony, Edward

Hughes, Karl Tuyls and Edgar A. Duéñez-Guzmán

In reinforcement learning, Social Value Orientation (SVO) is an intrinsic moti-

vation that remaps agent rewards based on particular target distributions of group

reward. Prior studies show that groups of agents endowed with heterogeneous SVO

learn diverse policies, particularly in settings that resemble the Prisoner’s dilemma.

Our work extends this body of results and demonstrate that (1) heterogeneous SVO

leads to meaningfully diverse policies across a range of incentive structures in sequen-

tial social dilemmas, as measured by task-specific diversity metrics; and (2) learning

a best response to these diverse policies leads to better zero-shot generalization in se-
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quential social dilemmas with multiple equilibria. We show that these best-response

agents learning a conditional policy, which we posit is the reason for improved zero-

shot generalization results.

12.1 Introduction

In psychology research, Social Value Orientation (SVO) is a cognitive construct re-

flecting a person’s preference for resource allocation between themselves and others

[28, 54, 71]. While some individuals may solipsistically focus on maximizing their

personal success, others demonstrate different motivations, including maximizing the

difference between their own and others’ outcomes (a competitive orientation), maxi-

mizing collective welfare (a prosocial orientation), or maximizing other peoples’ ben-

efit (an altruistic orientation). In artificial intelligence research, various algorithms

draw inspiration from these insights in their design or implementation [68, 80]. In

reinforcement learning, SVO is an intrinsic motivation that transforms an agent’s

reward based on its particular target distribution between its reward and the reward

of others. Recently, there’s been research investigating the role of SVO in situations

where a group of agents or players interact in ways that involve trade-offs between

their self-interest and the collective interest of the group. This research has generated

valuable insights into the impact of SVO on the emergence of diverse behaviors and

cooperation [68], generalization [69] wherein agents interact with novel scenarios dur-

ing test time, and partner choices [67] in sequential social dilemmas. SVO research

has focused primarily on social dilemmas with underlying incentive structures resem-

bling the prisoner’s dilemma [77], wherein each player has an incentive to defect, even

though both would be better off if they both cooperated.

Sequential social dilemmas [51] are a class of social dilemma in which the decision-

making process of the interacting agents is temporally and spatially extended. Per-
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forming well in a sequential social dilemmas tends to require the consideration of

long-term consequences, interdependence, and cooperation among group members.

Research on sequential social dilemmas has been widely studied in the context of

emergence and maintenance of cooperation [52, 75], inequity aversion [37], partner

choices [21, 67] wherein agents have a choice with whom to interact, and generalization

[69, 1] wherein agents interact with novel scenarios during test time.

In sequential social dilemmas, it is useful to think of players as having an intrinsic

reward in addition to the environment-provided extrinsic reward. Intrinsic reward

can be used to capture the social preferences of players, and are typically functions of

the vector of all players’ reward. In most research in sequential social dilemmas, all

players either have no intrinsic reward, or they all have the same function (i.e. they

have homogeneous social preferences) [52, 93]. However, it has been observed that

having a population of agents who differ in their intrinsic reward function (i.e. they

have heterogeneous social preferences) can lead to higher levels of cooperation [37]. In

[68, 69, 67], the authors showed that heterogeneity can produce behavioral diversity.

Diversity in policies has been demonstrated to improve various aspects of agent

performance, such as exploration [100], adaptation to environmental changes [18],

positive group outcomes [68, 85], generalization to novel co-players [56], and col-

laboration with humans [82]. One way to quantify diversity is through state-action

variation, which measures the distribution of state-action pairs that an agent explores

during training. State-action diversity can be assessed by measuring differences in

the state visitation frequency [100], action selection frequency in a given state [69],

or differences between state-action trajectories starting from a specific state [56]. To

complement these methods, diversity can also be quantified by examining the reward

an agent obtains when interacting with different co-players (often called strategic di-

versity) [9, 26], which can provide a complementary measure of diversity in behavior.
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However, defining a universal diversity metric from trajectories can be challenging,

and so it is possible instead to use environment-specific measures of diversity.

Zero-shot generalization [36, 35, 82, 50, 69] seeks to develop general agents that

are capable of successfully interacting with novel agents during test time (i.e., agents

they have not seen during training). In such situations, the policies of the novel

agents encountered at test time can be out-of-distribution for the agents, leading

to poor coordination in purely cooperative settings [36, 56], and getting exploited in

competitive settings [74]. In mixed-motive games, failure to generalize to novel agents

can lead to deadweight loss by missing an opportunity to cooperate [50]. Learning a

best response to partners/opponents with meaningfully diverse policies has emerged

as a promising approach to zero-shot generalization [82]. The intuition behind this

approach is that training with a set of diverse policies decreases the likelihood of

encountering out-of-distribution policies at test time. Despite this promise these best

response techniques have not yet been applied in a wide range of incentive structures.

In this work, we assess heterogeneous SVO in a range of incentive structures in

sequential social dilemmas. We include temporally and spatially extended environ-

ments with an underlying structure that is like: Prisoner’s dilemma; Chicken, where

both players have an incentive to choose a risky behavior, but where the worst out-

come is if both choose the high risk; and Stag hunt wherein players have a safe choice,

and an incentive to coordinate on a high-reward strategy that carries a risk of costly

miscoordination. Chicken and Stag hunt are equilibrium selection social dilemmas.

We show that heterogeneous SVO leads to diverse policies, as measured with

task-specific diversity metrics. We also show that this diversity can be leveraged

via best response results in better zero-shot generalization in equilibrium selection

sequential social dilemmas. We found that best-response agents adapted to part-

ners/opponents with diverse behaviors by learning a conditional policy during train-

ing. However, when the test scenario contained conditional policies and the sequen-
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tial social dilemma was not an equilibrium-selection problem, we found that best

responses to diverse behaviors collapsed to one unconditional policy, leading to poor

zero-shot generalization. Our results extend to multi-player games with more than 2

players.

The paper is organized as follows. Section 2 outlines the methodology employed in

the paper. In Subsection 2.1, we present the formulation of the N-agent partially ob-

servable Markov process used in the paper. Subsection 2.2 describes the Social Value

Orientation (SVO) framework and its implementation. In Subsection 2.3, we discuss

the various environments used in the study and their characteristics. Subsection 2.4

details the procedure for generating diverse policies in sequential social dilemmas.

In Subsection 2.5, we present the process for training a best response agent with a

population of agents and evaluating zero-shot generalization performance. Further-

more, we provide a description of the agent’s architecture in Subsection 2.5. Section

3 presents the results of the work. In Subsection 3.1 and 3.2, we present the results

obtained from generating diverse policies in environments with different incentive

structures. In Subsection 3.3, we present the results of zero-shot generalization per-

formance evaluation. Finally, in Section 4, we provide additional discussions and

conclusions. The section summarizes the main contributions of the work and discuss

potential societal impacts.

12.2 Method

12.2.1 N-agent POMDP

We consider a multi-agent partially observable Markov decision process defined by

the tuple
〈
N,S,A,R, P, γ

〉
, where N is the number of agents, S is the joint state

space, A = ×Ni=1Ai is the joint action space, P is the state transition probability

distribution, R is the reward function and γ is the discount factor. At each time
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Figure 12.1: Overview of the methodology.

step t, each agent i ∈ 1, . . . , N observes a private (local) observation oit and takes

an action ait from a set of actions Ai. The joint action of all agents at time step

t is denoted as at = (a1
t , . . . , a

N
t ). The state st is unobservable, and the partial

observation oit depends on the current state of the environment st and the agent’s

observation function. The observation function for agent i is denoted as Oi(oit|st).

Each agent i receives a reward rit which is a function of the joint action at and the

state st of the environment. The state of the environment transitions according to a

probability distribution P (st+1|st, at).

The objective of each agent i is to maximize their cumulative expected discounted

reward, over a given finite time horizon, defined as J i = E
[∑T

t=0 γ
trit

]
, where γ ∈

[0, 1] balances the importance of immediate and future rewards. The agents’ policies

are defined as the mapping from the agent’s observation history to an action, i.e.,

πi(ait|oi1, · · · , oit). The policies are updated using a multi-agent reinforcement learning

algorithm that maximizes the agents’ objective functions.
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12.2.2 Social Value Orientation

Omitting the dependence on t, let ri be the reward of agent i. Let r̄−i be the average

reward of all the agent except agent i. Then we have

r̄−i =
1

N − 1

N∑
j=1,j 6=i

rj.

Let svoi denote the SVO value of agent i. Following the definition given in [67],

we define the effective reward r̂i of agent i as

r̂i = ri cos(svoi) + r̄−i sin(svoi).

Then agent i optimizes the objective function

Ĵ i = E

[
T∑
t=0

γtr̂it

]
.

12.2.3 Environments

We provide a brief description of the environments. For all experiments in this paper,

we use environments from Meltingpot 2.0 [1].

Intertemporal “in the matrix” repeated games: The “in the matrix” repeated

games are a family of sequential social dilemmas in Melting Pot 2.0 where two-players

interact. In the beginning of each episode the environment is initialized according to

a given resource layout, and a set of fixed points where players can spawn. The

map consists of two types of resources which can be distinguished by their colour;

red corresponds to defection and blue corresponds to cooperation (see Figure 12.3).

Players can pick up resources by walking over them, and these resources go into a

player inventory. Players spawn with one of each resource type in their inventory.
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After spawning, each player can move around the map, collect resources, and interact

with the co-player by firing an interaction beam. When players interact (by one player

hitting the other using their interaction beam), each player gets a reward equal to

the expected payoff calculated from the inventory counts and environment-specific

payoff matrix. The agent who zaps the other agent is considered as the row player.

The inventory count of each player defines a mixed strategy where the probability

of playing each pure strategy is equivalent to the percentage of the corresponding

resource. Let N i
r and N i

g denote the inventory count, number of red resources and

green resources respectively, for agent i ∈ 1, 2. For each agent i their mixed strategy

is given as

p =
[ N i

r

N i
r +N i

g

,
N i
g

N i
r +N i

g

]
Let A be the payoff matrix for both row player and column player. Let rrow and rcol

be the reward of row player and column player respectively. Let prow and pcol be the

mixed strategy probability vector of row player and column player respectively. Then

the rewards can be defined as

rrow = pTrowApcol, rcol = pTcolA
Tprow

These reward calculations correspond to those used in game theory for matrix games

and iterated social dilemmas [97].

The payoff matrices A used are given in Figure 12.2. After interacting, players

receive their reward from interaction, have their inventory counts reset (to one of

each), and get re-spawned after a delay. Players can have multiple interactions within

an episode. Once a resource is picked up, it begins to regenerate after a delay of 10

steps, with a 20% chance of regenerating on each subsequent step.
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Stag hunt Chicken Prisoner’s dilemma

Figure 12.2: Payoff matrices

Externality mushrooms: Externality Mushrooms is sequenctial social dilemma

where players immediately get affected from pro(anti)social behaviors of their co-

players. This is a 5-player game where players eat mushrooms in order to receive

rewards. Four types of mushrooms grow (in different amounts) on the map: red,

green, blue, and orange. Eating a red (fize: full internality zero externality) mushroom

gives a reward of 1 to the player who consumed the mushroom. Eating a green

(hihe: half internality half externality) mushroom gives a total reward of 2/5 to all

players. Eating a blue (zife: zero internality full externality) mushroom gives a total

reward of 3/4 divided equally among all players excluding the player who consumed it.

Eating an orange (nize: negative internality zero externality) mushroom causes red

mushrooms to be destroyed, each with probability 0.25, and gives a reward of −0.1 to

the player who consumed it. After eating a mushroom, the player who consumed it

freezes for the mushroom’s digestion time: 0 (red), 10 (green), 15 (blue), and 15 steps

(orange). After spawning, a mushroom is removed from the map after its perishing

time: 200 (red), 100 (green), and 75 steps (blue). Orange mushrooms never perish.

Mushrooms respawn from spores depending on consumption of other mushrooms.

Eating a red, green, or blue mushroom releases 3 spores for red mushrooms, each spore

will spawn a mushroom with probability 0.25. Eating a green or blue mushrooms also

releases 3 spores for green mushrooms which spawn with probability 0.4. Eating a
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Figure 12.3: ”in the matrix” repeated games. This is a 2-player game where agents
can gather 2 types of resources. When agents interact (using an interaction beam)
they get rewards according to their inventory counts and a game specific payoff matrix.
The payoff matrix can be Stag hunt, Chicken or Prisoner’s dilemma type payoff matrix

blue mushroom also releases a blue spore which spawn with probability 0.6. Eating

an orange mushroom releases a spore for a new orange mushroom which spawns with

probability 1.

Externality mushrooms has an incentive structure similar to Chicken, where re-

ward is maximized selfishly by consuming red mushrooms while the others are con-

suming blue or green mushrooms. But if everyone else is eating red mushrooms,

the selfish strategy is to eat green mushrooms, as otherwise all mushrooms would be

eventually depleted.
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Figure 12.4: Externality Mushrooms. This is a 5-player sequential social dilemma
game with immediate feedback. Agents instantaneously share rewards with others
depending on the mushroom they are picking.

12.2.4 Generating diverse policies in sequential social dilem-

mas

In the beginning of the training process we define distinct SVO angles for each agent.

Each environment has a fixed number of players. We train the agents in a distributed

asynchronous manner by initializing ’arenas’ to train a population of agents. Arenas

run in parallel and each arena is a copy of the environment with the number of

players specified for that environment. This is a multi-agent version of A3C [70] that

is commonly used for multi-agent reinforcement learning [1]. Players in each arena

plays the game for one episode either in self-play or in population-play (with equal

probability). During population-play we sample agents without replacement. We

train each agent for 109 learner steps.
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12.2.5 Training a best-response agent and zero-shot general-

ization performance evaluation

We train a selfish naive learner without intrinsic reward, to best respond against the

policies generated using heterogeneous SVO. In order to avoid confusion we use the

term best-response agent for the training agent, and SVO bots for the pre-trained

diverse agents trained with heterogeneous SVO values. In each episode the best-

response agent plays with a set of SVO bots sampled without replacement. We train

the best-response agent for 109 learner steps.

We use environments from Melting Pot 2.0 [1], which provides a protocol for

evaluating generalization to novel social partners, which are packaged with the suite

as a held-out set of co-players in a suite of test scenarios. We measure the performance

of the best-response agent using the Melting Pot test protocol. blueWe provide an

overview of the end to end methodological pipeline in Figure 12.1.

12.2.6 Agent architecture

The neural network of the agent consists of two convolutional layers, a two-layer

perceptron, and an LSTM—all separated by ReLU activation functions. The convo-

lutional layers have 16 and 32 output channels, kernel shapes of 8 and 4, and strides

of 8 and 1. The perceptron layers are 64 neurons each, and the LSTM layer has 128

units. The policy and baseline for the critic are created by multilayer perceptrons

(256 hidden units with ReLU activations) connected to the output of the LSTM.

Representation shaping is achieved through the use of an auxiliary loss and con-

trastive predictive coding [73], which is used to differentiate between nearby time

points via LSTM state representations. PopArt [33] is used to adjust for the different

reward scales of the different substrates. The optimization method used is RMSProp

with a learning rate of 4× 10−4, epsilon of 10−5, zero momentum, decay of 0.99, and
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batch size of 256. The baseline cost for the critic is 0.5, and the entropy regularization

cost for the policy is 0.003.

12.3 Experimental results

12.3.1 Experiment 1: Generating diverse policies in “in the

matrix” repeated games

Experimental setup: We consider Stag hunt, Chicken and Prisoners’ dilemma “in

the matrix” repeated games. In each of the 3 games, there is a 10% chance that the

episode will end after every 100 steps, with a minimum of 1000 steps per episode. For

each game we average the results over 3 random seeds. For each seed, we train four

agents with SVO values of −15°, 0°, 60°, and 75°, respectively. The “in the matrix”

repeated games are 2-player games. At the beginning of every episode, we randomly

select between two options with equal probability: training one agent in self-play, or

training two agents sampled without replacement in population-play. In addition to

SVO bots we also train a set of selfish-baseline bots, i.e., no intrinsic reward, using

the same procedure for comparison.

Finding 1: Heterogeneous SVO bots learn meaningfully diverse policies

We use the inventory count of the bots at the time of interaction as an

environment-specific diversity measure. Since the inventory counts define the mixed

strategy probability vectors, sufficiently distinct ratios of inventory counts indi-

cate distinct mixed strategies. During evaluation agents play in either self-play or

population-play with equal chance.

Figure 12.6 shows the inventory counts for the 4 bots averaged over the last 500

interactions during evaluation after the completion of training. Top and bottom rows
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Figure 12.5: Comparing meaningful diversity of policies of selfish-baseline bots and
SVO bots. Each subfigure shows average inventory counts during evaluation for 4
agents, trained with 50% self-play and 50% population play, evaluated in self-play and
population-play in repeated ”in the matrix” games. Dotted and solid bars correspond
to self-play and population respectively. The bottom row corresponds to SVO bots
with svoi ∈ {−15°, 0°, 60°, 75°} and the top row corresponds to selfish-baseline bots.
Green and red represents cooperative and defective resource counts respectively. Error
bars show the standard deviation of results over 3 random seeds.

correspond to resource counts of selfish-baseline bots and SVO bots respectively.

Figures 12.6(a), 12.6(b) and 12.6(c) correspond to Stag hunt, Chicken and Prisoners’

dilemma respectively. The error bars presented in the figure correspond to the average

results of 3 independent runs. The results demonstrate that in each game, all 4

selfish-baseline bots have comparable inventory count ratios, suggesting that their

policies lack diversity. Conversely, the 4 SVO bots exhibit varied inventory count

ratios, indicating diverse behaviors. For each “in the matrix“ repeated game, resource

counts correspond to SVO bots with svo = [−15°, 0°, 60°, 75°], where svoi = svo[i], i ∈
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Figure 12.6: Comparing meaningful diversity of policies of selfish-baseline bots and
SVO bots. Each subfigure shows average return during evaluation for for different pair
of agents, trained with 50% self-play and 50% population play, evaluated in self-play
and population-play in repeated ”in the matrix” games. The return value represents
the return obtained by agent when playing with the corresponding co-player. The
bottom row corresponds to SVO bots with svoi ∈ {−15°, 0°, 60°, 75°} and the top row
corresponds to selfish-baseline bots. Results are averaged over 3 independent runs

{1, 2, 3, 4}. We denote the cooperative resource counts and defective resource counts

using green and red respectively. As the SVO angles increase from −15° to 75°,

the ratio between the red and green resource counts increases, indicating a more

cooperative, prosocial or altruistic behavior.

Similarly we present results for the return agents obtain when they play with dif-

ferent co-players. For selfish-baseline agents obtain similar returns suggesting that

agents are learning similar policies. For SVO agents obtain different returns suggest-

ing that agents learn diverse policies.
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12.3.2 Experiment 2: Generating diverse policies in Exter-

nality Mushrooms

Experimental setup: Similar to “in the matrix“ repeated games, in Externality

Mushrooms each episode runs for at least 1000 steps. Following that the episode

terminates with probability 0.2 at every 100 steps. Similar to the training process in

“in the matrix“ repeated game we average the results from 3 random seeds. For each

seed we train 5 agents with SVO values of −15°, 0°, 60°, 75°, and 90°, respectively.

In addition to SVO bots we also train a set of selfish-baseline bots, using the

same procedure for comparison. Similar to the “in the matrix“ repeated games in

Externality mushrooms game also as the SVO angles increase from −15° to 90°, the

ratios between the red and green mushroom fractions, the ratios between the green

and blue mushroom fractions, increases, indicating a more cooperative, prosocial or

altruistic behavior.

Finding 2: The results extends to multi-player games with more than 2

players

We show that our method scales to games with more than 2 players. Figure

12.7 shows that in Externality Mushrooms, agents trained using heterogeneous SVO

learn diverse policies. We use the count of mushrooms consumed of each type as

the environment-specific diversity metric. The selfish-baseline bots tend to consume

mushrooms at similar ratios across different types, whereas the SVO bots consume

varying ratios of different mushroom types exhibiting meaningfully diverse behaviors.

Agents with low (or negative) SVO consume the selfish mushroom (red), and even the

spiteful mushroom (orange), whereas those with high SVO, tend to consume more of

the prosocial mushrooms (green and blue).
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Figure 12.7: Comparing meaningful diversity of policies of selfish-baseline bots and
SVO bots. Each plot shows average fraction of mushrooms consumed by 5 agents
during evaluation, trained with 50% self-play and 50% population play, evaluated in
self-play and population-play in Externality mushrooms dense game. Dotted and solid
bars correspond to self-play and population respectively. The bottom row corresponds
to SVO agents with svoi ∈ {−15°, 0°, 60°, 75°, 90°} and the top row corresponds to
selfish-baseline agents. Error bars show the standard deviation of results over 3
random seeds.

12.3.3 Experiment 3: Zero-shot generalization evaluation

We evaluate the zero-shot generalization performance of a learned best response

to the SVO bots trained using heterogeneous SVO. We use the Melting Pot test
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scenarios for evaluation in Stag hunt, Chicken, Prisoners’ dilemma “in the matrix “

repeated games and Externality mushrooms. Test scenario details are provided below.

Test scenarios for “in the matrix” repeated:

S0: Best-response agent encounters either a cooperator or a defector with 0.5

probability

S1: Best-response agent encounters a cooperator

S2: Best-response agent encounters a defector

S3: Best-response agent encounters a player who starts by cooperating and

defect for the rest the episode when best-response agent defects once

S4: Best-response agent encounters a player who starts by cooperating and

defect for the rest the episode when best-response agent defects twice

S5: Best-response agent encounters a player who plays tit-for-tat

S6: Best-response agent encounters a player who a player who plays tit-for-tat

and occasionally unconditionally defect. (noisy tit-for-tat)

S7: Best-response agent encounters a player who cooperate during the first few

interactions and defect for the rest of the episode

S8: Best-response agent encounters a player who starts with defection and

switch to tit-for-tat strategy when best-response agent defects

S9: Best-response agent encounters a player who starts with defection and

switch to noisy tit-for-tat strategy when best-response agent defects

Test scenarios for Externality mushrooms:

S0: Best response agent encounters 4 cooperators
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S1: Best response agent encounters 4 defectors

S2: 2 copies of the best-response agent encounter 3 cooperators

S3: 2 copies of the best-response agent encounter 3 defectors

Baselines: We compare the performance of a learned best response policy for SVO

bots with a best response to selfish-baseline bots, Fictitious co-play (FCP, a type of

best response that includes also earlier checkpoints of the agents to best respond to)

[82] and exploiters (i.e., a best response agent trained on the test scenario directly)

[1]. We train one exploiter for each test scenario. To train FCP agents we train a

naive learning agent with 3 checkpoints for each bot from a bot population. Here we

use the first checkpoint, mid checkpoint and last checkpoint. The mid checkpoint is

the time during training where the agent first obtains half of its final reward, of the

policies of the bots. We report results for FCP applied to the heterogeneous SVO

bots FCP(SVO), as well as to selfish baselines FCP(selfish-baseline).

Experimental setup: We train best-response agents for the selfish-baseline bots

and SVO bots. Recall that we trained each type of bots, i.e., selfish-baseline or

SVO, for 3 random seeds in this setup. We train a best-response agent for bots from

each seed. For each type of bots we show the average performance evaluation runs

correspond to these 3 training runs.

Finding 3: Our method outperforms the baselines

Figure 12.8 and Figure 12.9 show zero-shot generalization performance results

for best-response agents trained with SVO bots and selfish-baseline bots, FCP best

response agents and exploiters for Stag hunt and Chicken in ”in the matrix” games

respectively. Figure12.8(a) illustrates that in most of the scenarios of Stag hunt

best-response agents trained with SVO bots outperform or perform comparably to
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Figure 12.8: (a) Comparing zero-shot generalization performance of best-response
agents. (b) Comparing how well best-response agents learn conditional policies. Re-
sults for zero-shot generalization performance of best-response agents in Stag hunt.
The best-response agents play in Melting Pot scenarios. We show results for best
response to SVO bots and best response to selfish-baseline bots. Also we show results
for FCP for SVO bots and selfish-baseline bots. Figure (a) shows average reward
obtained by best-response agents during evaluation. Figure (b) shows the fraction of
interactions wherein the best-response agent cooperated Vs the fraction of interac-
tions wherein the agents in the test population cooperated.

best-response agents trained with selfish-baseline bots. Figure 12.9(a) shows that

in scenarios of Chicken best-response agents trained with SVO bots mostly perform

comparably to best-response agents trained with selfish-baseline bots. In the next

section we show that the best-response agents trained with SVO bots in Chicken

learn better conditional policies.

Finding 4: Best-response agents learn a conditional behaviour

In order to get a better understanding about the learned policies of the best-

response agents we further analyze the behaviour of the best-response agents during

test time. For each test bot, Figures 12.8(b) and 12.9(b) show the fraction of

interactions where the best-response agent cooperated with a bot with respect to

the fraction of interactions where the bot cooperated with the best-response agent.

Figure 12.8(b) corresponds to Stag hunt “in the matrix“ repeated and 12.9(b)

corresponds to Chicken ”in the matrix” repeated. In this analysis we define the
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Figure 12.9: (a) Comparing zero-shot generalization performance of best-response
agents. (b) Comparing how well best-response agents learn conditional policies. Re-
sults for zero-shot generalization performance of best-response agents in Chicken. The
best-response agents play in Melting Pot scenarios. We show results for best response
to SVO bots and best response to selfish-baseline bots. Also we show results for FCP
for SVO bots and selfish-baseline bots. Figure (a) shows average reward obtained by
best-response agents during evaluation. Figure (b) shows the fraction of interactions
wherein the best-response agent cooperated Vs the fraction of interactions wherein
the agents in the test population cooperated.

best-response agent’s interaction as a cooperation when they have higher number

of cooperative resources than defective resources in their inventory at the time of

interaction. In Stag hunt both agents cooperating, i.e., both agents playing Stag,

yields a higher reward, but it is a riskier strategy. Defecting, yields a secure payoff.

Both agents cooperating or both defecting are Nash equilibria, that is, there is no

incentive to unilaterally deviate from that strategy. An agent who cooperates with

a defector gets 0 reward. When trained in Stag hunt selfish-baseline bots learn to

defect. The best response to unconditional defectors is defecting. Hence the best-

response agents trained with selfish-baseline bots learn to unconditionally defect.

In contrast the heterogeneous SVO bot population consists of both defectors and

cooperators with different levels of cooperation and defection. Best-response agents

training with SVO bots encounter both cooperators and defectors and subsequently

learn a conditional policy that tends to cooperate with cooperators and defect with

defectors. In Chicken the two Nash equilibria are for one agent to cooperate (swerve)
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Figure 12.10: (a) Comparing zero-shot generalization performance of best-response
agents. (b) Comparing how well best-response agents learn conditional policies. Re-
sults for zero-shot generalization performance of best-response agents in Prisoners’
Dilemma. The best-response agents play in Melting Pot scenarios. We show results
for best response to SVO bots and best response to selfish-baseline bots. Also we
show results for FCP for SVO bots and selfish-baseline bots. Figure (a) shows aver-
age reward obtained by best-response agents during evaluation. Figure (b) shows the
fraction of interactions wherein the best-response agent cooperated Vs the fraction of
interactions wherein the agents in the test population cooperated.

and the other agent to defect (straight). In this case selfish-baseline agents learn

to do both defection and cooperation. Hence the best-response agents trained with

selfish-baseline bots also learn to defect and cooperate. However in Figure 12.9(b) we

see that this behaviour is not conditional. In contrast best-response agents training

with SVO bots encounter mostly cooperative and mostly defective bots, leading to

best-response agents learning a conditional behavior where they tend to cooperate

with defectors and defect against cooperators.

Finding 5: Failure case with Prisoners’ dilemma

Figure 12.6(c) shows that SVO bots learn diverse policies when trained with

heterogeneous SVO values. This indicates that SVO bots are learning policies with

different levels of cooperation. However, we see in Figure 4(a) that best-response

agents trained with SVO bots perform similarly to the best-response agents trained

with selfish-baseline bots. Further, from Figure 4(b) we can see that all the best-
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Figure 12.11: Comparing zero-shot generalization performance of best-
response agents. Results for zero-shot generalization performance, average reward
during evaluation, of best-response agents in Externality mushrooms. The best-
response agents play in Melting Pot scenarios. We show results for best response
to SVO bots and best response to selfish-baseline bots. Also we show results for FCP
for SVO bots and selfish-baseline bots.

response agents are learning to defect regardless of the level of cooperation of their

partners. This is due to the fact that the best response to an unconditional coopera-

tor and an unconditional defector is unconditionally defecting.

Finding 6: Zero-shot generalization in Externality mushrooms

Figure 12.11 shows results for zero-shot generalization performance of best-

response agents for SVO bots and selfish bots. The figure also shows results for

FCP best-response agents and exploiters. We see that when the best-response agent

is visiting a group of cooperators and defectors, the best response to SVO, and

FCP to SVO outperform or perform comparably to their counter-parts trained with

selfish-baseline bots. In scenario two, best-response agents trained with SVO bots
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perform worse than baseline methods. In scenario 3 best-response agents perform

comparably.

12.4 Discussion

In this paper we investigated the impact of heterogeneous social value orientation on

different incentive structures in sequential social dilemmas. We tested whether the

presence of heterogeneous SVO leads to diverse policies and if learning a best response

to these policies improves zero-shot generalization. The study found that the presence

of heterogeneous SVO does indeed lead to measurable diversity in policies, and this

diversity often results in better zero-shot generalization for agents that best respond

to them.

The best-response agents achieve better performance by learning a conditional

policy that adapts to novel agents during test time. The study also revealed that when

the sequential social dilemma is not an equilibrium-selection problem, this method

still generates meaningful diversity in policies, but it fails to achieve better zero-shot

generalization performance. This occurs because the best response to a diverse set of

policies collapses to one unconditional policy that performs poorly when encountering

conditional policies during test time.

Additionally, the study demonstrated that the results extend to multi-player

games with more than two players. Our findings have implications for understanding

how heterogeneous SVO impacts incentive structures and policy diversity, and how

agents can learn to adapt to diverse policies during test time to achieve better zero-

shot generalization performance. Our findings provide new insights into the behavior

of agents in sequential social dilemmas and highlights the importance of considering

the role of heterogeneity in SVO in the design of incentive structures.
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In the method proposed in this paper the agent learning a best response to a

population with diverse policies, is optimizing for its own reward. This may not

align with the well-being of the other agents in the population, leading to negative

consequences for them. In order to prevent these negative externalities, it is essential

to ensure that the policies of best response agents align with human values.

One method of achieving this is by incorporating ethical considerations, such as

fairness and safety, into the agent’s reward function or constraints. This can help

to ensure that the policies of agents align with human values and that it does not

harm others in its pursuit of its own reward. By implementing these mechanisms, it

is possible to mitigate the negative impacts of using a best-response agent.

We observed that SVO agents were able to learn cooperative policies in all of the

environments we tested. This hints at the potential value of using SVO to capture at

least some of the aspects necessary to align agents with human values.
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[50] Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Aga-
piou, Peter Sunehag, Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mor-
datch, and Thore Graepel. Scalable evaluation of multi-agent reinforcement
learning with melting pot. In International Conference on Machine Learning,
pages 6187–6199. PMLR, 2021.

[51] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. Multi-agent reinforcement learning in sequential social dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, pages 464–473, 2017.

[52] Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in com-
plex social dilemmas using deep reinforcement learning. arXiv preprint
arXiv:1707.01068, 2017.

[53] Jurij Leskovec. Dynamics of large networks. PhD thesis, Carnegie Mellon
University, School of Computer Science, Machine Learning, 2008.

[54] Wim BG Liebrand and Charles G McClintock. The ring measure of social
values: A computerized procedure for assessing individual differences in infor-
mation processing and social value orientation. European journal of personality,
2(3):217–230, 1988.

[55] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on
computing, 21(1):193–201, 1992.

[56] Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory
diversity for zero-shot coordination. In International Conference on Machine
Learning, pages 7204–7213. PMLR, 2021.

[57] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits
robust to adversarial corruptions. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 114–122, 2018.

264



[58] Udari Madhushani, Abhimanyu Dubey, Naomi Leonard, and Alex Pentland.
One more step towards reality: Cooperative bandits with imperfect commu-
nication. Advances in Neural Information Processing Systems, 34:7813–7824,
2021.

[59] Udari Madhushani and Naomi Leonard. It doesn’t get better and here’s why:
A fundamental drawback in natural extensions of ucb to multi-agent bandits.
In ”I Can’t Believe It’s Not Better!”NeurIPS 2020 workshop, 2020.

[60] Udari Madhushani and Naomi Leonard. When to call your neighbor?
strategic communication in cooperative stochastic bandits. arXiv preprint
arXiv:2110.04396, 2021.

[61] Udari Madhushani and Naomi Ehrich Leonard. Heterogeneous stochastic in-
teractions for multiple agents in a multi-armed bandit problem. In European
Control Conference, pages 3502–3507, 2019.

[62] Udari Madhushani and Naomi Ehrich Leonard. Distributed learning: Sequential
decision making in resource-constrained environments. In ”Practicle Machine
Learning for Developing Countries”ICLR 2020 workshop, 2020.

[63] Udari Madhushani and Naomi Ehrich Leonard. A dynamic observation strategy
for multi-agent multi-armed bandit problem. In European Control Conference,
pages 1677–1682, 2020.

[64] Udari Madhushani and Naomi Ehrich Leonard. Distributed bandits: Proba-
bilistic communication on d-regular graphs. In European Control Conference,
2021.

[65] Udari Madhushani and Naomi Ehrich Leonard. Heterogeneous explore-exploit
strategies on multi-star networks. IEEE Control Systems Letters, 5(5):1603–
1608, 2021.

[66] David Mart́ınez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized
cooperative stochastic bandits. In Advances in Neural Information Processing
Systems, pages 4531–4542, 2019.

[67] Kevin R McKee, Xuechunzi Bai, and Susan T Fiske. Warmth and competence in
human-agent cooperation. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, pages 898–907, 2022.

[68] Kevin R McKee, Ian Gemp, Brian McWilliams, Edgar A Duèñez-Guzmán,
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