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Abstract

Robots navigating spaces shared with humans must be capable of making fast, socially appropriate decisions
about their movements while remaining adaptable to dynamic and uncertain environments. This dissertation
presents a novel opinion-driven navigation framework for embodied, cooperative decision-making by a social
robot. We focus on modeling the opinion formation such that opinions are proactive — swiftly prescribing
robust socially aware motion (e.g., passing a person on the expected side) as soon as a robot is sensitive
to a human — and agile — rapidly adapting in response to changing environmental cues — while remaining
analytically tractable.

This work centers around an adaptation of the Nonlinear Opinion Dynamics (NOD) model by Bizyaeva
et al. [1], originally formulated to describe collective decision-making in multi-agent systems, to a social
navigation setting for human-robot interaction. We present this specialized NOD model, where opinions
represent motion preferences (e.g., to turn left or right) and directly affect the robot’s steering control. We
use bifurcation theory to analyze opinion formation behavior and guarantee deadlock-breaking of indecision
in the embodied robot.

We improve the sequential decision-making capabilities of NOD by introducing excitable dynamics in-
spired by spiking neuron behavior to create the Spiking Nonlinear Opinion Dynamics (S-NOD) model. The
spiking behavior of the opinion in S-NOD enables more responsive and flexible decision-making while main-
taining the tractability of NOD. We present a geometric analysis of the S-NOD model, showing how the
system’s bifurcation diagram and resultant spiking opinion behavior depend on model parameters.

We validate both NOD and S-NOD models with physical experiments of a mobile robot navigating around
human movers. Qualitative results show each system’s decision-making agility and social awareness, and
quantitative results demonstrate their efficiency and social intrusiveness. Comparative experiments reveal
that S-NOD provides the robot with increased efficiency over NOD in more complex navigation scenarios.

This work connects social robot navigation, dynamical systems, and biologically inspired decision-making
models to produce a simple yet powerful framework for human-aware robot navigation. The proposed models
enable robots to move cooperatively around humans without relying on predictive tools or machine learning

for motion planning, enabling more interpretable and computationally lightweight social navigation control.
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Part 1

Opinion-Driven Navigation:
Nonlinear Decision-Making

in Social Robots



Chapter 1

Introduction

1.1 Overview and motivation

Robots operating and navigating in environments with humans must be capable of making rapid and reliable
decisions about how to act, even in the presence of noise or rapidly changing contexts. There exists an entire
field of robotics research on these physical human-robot interaction (HRI) scenarios, aiming to identify the
most effective, efficient, and reliable methods for producing successful and safe robot actions. Many turn
to biology as an inspiration for its naturally occurring agile behavior. In this work, we develop navigation
algorithms that utilize mathematical models of two key characteristics of animal behavior: their capacity to
form consensus in decision-making within a group, and their ability to generate rapid, robust, yet flexible
responses to environmental changes. Our algorithms provide reliable, adaptable, and natural navigation
behavior around human movers with low levels of computational power. This section provides an overview
of relevant works on each of these topics. Subsequent chapters present our models of Nonlinear Opinion
Dynamics (NOD) and Spiking Nonlinear Opinion Dynamics (S-NOD), along with their detailed analysis and

validation through simulation and physical experiments.

1.1.1 Social robot navigation

A significant amount of research exists on the development of navigation algorithms to facilitate successful
interaction between humans and robots, balancing motion planning that is efficient, reliable, safe, and legible.
In this work, we utilize opinion dynamics to quantify and compute the collaborative turning preference (be
it towards the left or right, and by how much) of a robot that passes a human. This process is highly

reactive to its environment, robust to uncertainty, relatively lightweight in terms of sensor requirements,



computationally efficient, and proactive in its decision-making, anticipating and avoiding a collision when it
becomes imminent. Our algorithms provide a compact and powerful framework that is novel in its ability to
generate this analytically tractable reactive, robust, and proactive behavior. We contextualize our approach
and its features within recent and relevant works in the field.

Numerous surveys of the field provide comprehensive overviews of the behavioral goals and navigation
approaches of various social robot algorithms [244]. These works emphasize the challenge of achieving
legible, safe, and socially compliant motion in real-world environments with changing uncertainty. They also
highlight the diverse human behavior modeling strategies in use, ranging from minimally sensor-dependent
methods that rely on observing a human’s orientation and walking speed, to more sensor and computationally
complex approaches that consider human gaze and attention cues. Some methods take a more data-driven
approach by training robots on datasets of human-in-the-loop navigation. These reviews categorize and
compare methods within the core paradigms of robot navigation behavior, including reactive, predictive,
learned, and hybrid approaches. We adopt this framing in this discussion, beginning with the reactive
robot approaches, which are most relevant to the work of this dissertation. We then discuss predictive
motion planning strategies, which generally introduce greater computational demands to output various
paths forward, especially when they incorporate learning-based methods that model human behavior.

Several reactive navigation methods are relevant to our work. Most comparable to our minimally sensor-
dependent method is that of the Social Momentum framework of Mavrogiannis et al. [5]. They propose
a reactive robot that uses only the geometry of an observed human to gauge and align with their angular
momentum, turning in a cooperative fashion through a passing scenario. While this approach shares a similar
spirit with the opinion-driven method we present, it organizes decision-making within if/else statements in
its algorithm and does not guarantee the resolution of decision-making in the face of low information. Our
work utilizes a continuous set of equations that enable predictable and intuitive decision-making, while also
providing analytic guarantees on the system’s behavior and ability to form decisions even in environments
where no decision is clearly best. More broadly, the Social Force Model (SFM) [6] sets the foundational
framework for many other reactive social robot algorithms. SFM represents human motion as that of
particles drawn towards their goals by an attractive force and deterred from colliding with other pedestrians
by repellent forces. While this provides a simple physics approach and an intuitive lens through which to
approach the problem, it struggles to find success in modeling human movement in high-density crowds.
Many works incorporate this premise into more sophisticated models capable of more complex planning.
Reddy et al. [7] present a hybrid model that combines a potential field into its computation, adding another
social force to the SFM framework and increasing the robot’s proactivity. While this is primarily reactive,

elements of predictive path planning are still present, which increase its complexity. Kamezaki et al. [§] build



upon the SFM by inducing reactivity only when humans are observed to engage with the robot. Interestingly,
this paper equates proactivity in robot movement with the prediction of human motion goals. In contrast, we
define proactivity through the lens of opinion dynamics: robust, rapid decision-making that incorporates the
observed preferred passing side of a human yields cooperative behavior without requiring explicit forecasting
or probabilistic modeling.

Predictive methods of social robot navigation use environmental cues to generate a set of prospective
forward motion plans, weighted by the likelihood of human cooperation. These approaches build on historical
data of the navigation interaction, predicting future states of the human, and planning the best course forward
to interact with the most likely next steps. However, their performance is only as sound as the approach’s
prediction or the human behavior it uses. Many rely on machine learning methods to model human behavior.
While powerful, these approaches are computationally expensive and often sacrifice interpretability in their
decision-making. Given the prevalence of learning-based methods in the field of HRI navigation, we focus our
discussion on a few representative examples. Kretzschmar et al. [9] present an algorithm that utilizes machine
learning to fit model parameters to best match the navigation behavior in a given set of human trajectories
in various navigation scenarios. This results in a trained model that considers how a human indicates that
they will pass on the robot’s left or right and incorporates the variance of many other likelihoods of its
next steps, allowing it to generalize to new settings. However, this process requires many computational
steps to analyze, fit, and model human behavior, predict multiple forward paths the robot may take, and
optimize these predicted paths against various design constraints. To reduce the costly computation, the
authors assume a well-initialized trajectory to reduce the convergence time of the algorithm. Chen et al. [10]
admit that the modeling of human behavior for direct replication by a social robot is challenging and instead
defer to having the robot learn based on a reward function that penalizes breaking social conventions. They
specifically utilize deep reinforcement learning to develop their navigation policy, avoiding explicit human
modeling. Neural networks can already sacrifice interpretability of their output due to their hidden layers;
the deep neural networks used within this work further obscure how specific observations lead to particular
navigation decisions. Okal and Arras [11] similarly present an algorithm to prompt the robot to follow social
norms, but instead utilize Bayesian inverse reinforcement learning (BIRL) to model its behavior accordingly.
The robot’s reward function is similarly built upon demonstrations of socially appropriate trajectories,
but is more interpretable as its features (such as maintaining a distance from humans and approximating
heading directions) are hand-crafted. Still, its results depend on the quality and level of representation of
relevant navigation scenarios within the demonstration data. While this line of physical HRI navigation
produces exciting results, our work prides itself on its intuitive, tractable, and low-cost models for social

robot navigation, which still result in legible, cooperative, and efficient motion.



A problem widely considered in social robot navigation, included within each of the works mentioned
above, is that of decision deadlock by the robot, also known as the freezing robot problem. As defined in |12],
this describes the navigation scenario in which all paths forward become indistinguishable because they are
all equally unsafe, leaving the robot unable to commit to a forward direction and effectively paralyzed. Many
works, some mentioned above, utilize stops or if/else statements to prompt the robot out of its indecision,
thereby removing it from a deadlock state. However, the results of [13] showed that a robot specifically
designed to signal and seek cooperation with interacting humans was able to avoid freezing. Their findings,
supported by surveys in [14], indicated that humans feel safer and prefer when robots move in a human-
like fashion, moving cooperatively and at a constant speed. The opinion dynamics model used in this
dissertation achieves precisely that: it enables proactive, socially cooperative navigation with analytically

guaranteed deadlock-breaking to resolve motion indecision.

1.1.2 Decision-making in dynamic contexts

Models of decision-making aim to capture the mechanisms of information exchange, the influence of neighbor
interactions, and the evolution of opinions prevalent across the social world through mathematical rules.
They require rapid formation and adaptive adjustment of decisions in response to new information. Opinion
dynamics address the same challenge as seen in the countermeasures for the freezing robot problem, aiming
to avoid indecision or delays in decision-making when options must be chosen quickly. There is an extensive
history of opinion dynamic formulations, with the work of [15] providing an overview of previous opinion
dynamics modeling within the field. This survey predates the publication of the Bizyaeva et al. NOD
model [1], but highlights a similar formulation called the Baumann model [16] in which an agent’s opinion
state develops according to negative and saturated, nonlinear positive feedback. However, this model and
others from its time lack the tunable sensitivity that is crucial to the flexibility of the NOD model.

We highlight some recent works that incorporate opinion dynamics into robotic decision-making, demon-
strating the value of such models for producing collective behavior. In Montes de Oca et al. [17], an opinion
dynamics model is used for task allocation decisions within a decentralized swarm of robots, showing that
a preference for the fastest executable task consistently and reliably spreads through the team. Salem et
al. [18] propose a “gossip”-based mechanism of opinion dynamics for a robot team, in which a single random
robot at each timestep shares information to influence the opinion of a single nearby robot within a group.
Even with this slow incorporation of neighbor opinion, the opinion dynamics ultimately create predictable
levels of consensus within the group across various neighbor graph structures. In Li et al. |19, opinion

dynamics are ruled by a model that incorporates higher-order derivatives to predict complex dynamics in



multi-robot systems. While this method reports higher precision in its model of interaction between robots,
it comes with more expensive mathematical computation. Collectively, these approaches demonstrate that
opinion dynamics provide a valuable framework for modeling coordination and decision-making in robots.

The work of this dissertation builds on the Nonlinear Opinion Dynamics (NOD) model presented in [1],
which draws inspiration from biological sources such as honeybee cooperation [20,21]. In subsequent chapters,
we propose an approach in which a robot uses environmental context and responsive sensitivity to rapidly
form an opinion that represents the strength of its preferred passing side — left or right, and by how
much — for navigating around an oncoming human. This opinion is then used to control the robot’s
motion directly. The use of a NOD model creates analytical tractability of the system. It reveals that a
neutral opinion, indicating indecision in motion, becomes unstable when a parameter of sensitivity exceeds
a predictable implicit threshold. Further work [22}23] revealed the NOD model’s ability to prompt and
manage opinion cascades and opinion switching in a multi-agent system, generalizing to decision-making
over multiple options [24]. The generality and benefits of the model have made it attractive for various
applications in recent years. Many works have adopted this formulation to describe robot motion in human-
robot interaction [25H27|, learn parameterization links between passing behaviors in an autonomous racing
scenario [28], and govern the behavior of real unmanned surface vessels between options to explore, exploit,
or migrate in their environment [29).

This dissertation adapts the NOD model to enable proactive social navigation and then introduces in-
creased responsiveness and flexibility by incorporating excitable behavior into that model. This increases

the system’s agility while preserving NOD’s soundness in decision modeling and control.

1.1.3 Excitability and spiking models

The fast, flexible, and adaptive behavior observed in biology can be credited to the excitable nature of cellular
signaling [30H33]. Mathematical models of excitability seek to represent the spiking response to stimuli seen
in analog biophysical processes. The foundational FitzHugh-Nagumo model [34] provides a simplified form
of the Hodgkin-Huxley equations [35] that describe the spiking activation of neurons to current changes in
their membrane. Spiking control systems [36] and neuromorphic engineering [37] build control policies from
these excitable models that combine the adaptability of continuous-time analog systems with the reliability
of discrete-event signaling. These are characterized by on-demand, event-based spikes that occur even in the
presence of small-scale inputs so long as the system is sufficiently close to its excitability threshold.
Despite their advantages and applications to control systems, we note that these existing models describe

only single-input/single-output [38] spike-based signal processing. This binary activity encodes a binary



decision—to spike or not to spike-based on the input signals that push the system toward its excitability
threshold [39]. This restricts current spiking models from being applied to decision-making involving mul-
tiple options. In scenarios with many options, such as neurons tuned to specific visual orientations in the
cortex [40], or decision-making in sensorimotor control tasks |41], excitatory behaviors must be superimposed
with other mechanisms to produce more complex outputs.

The primary contribution of this dissertation concerning excitability lies in the development and valida-
tion of two-option spiking in a two-dimensional, two-timescale model to create an agile system that is fast,
flexible, and adaptive. We call this model Spiking Nonlinear Opinion Dynamics (S-NOD) as it derives from
the aforementioned Nonlinear Opinion Dynamics (NOD) framework in [1,42]. With the introduction of a
single additional term inspired by the dynamics of excitable systems, S-NOD equips the NOD model with
self-regulating, spiking decision-making that can occur in as many directions as there are options. We apply
this extended framework to the social robot navigation problem and leverage S-NOD to enable efficient and

agile movement while preserving the proactive motion generation of NOD.

1.2 Outline of contributions

We detail the development of NOD and S-NOD models as applied to social robot navigation in subsequent
chapters. Motivated by the open questions raised in the discussion above, we present the contributions listed

below in this dissertation.

Part I presents the core contributions of this thesis and contains the following sections:

1. In Chapter [2| we present key theoretical tools and context for the mathematical concepts discussed
within this dissertation. We begin with a review of bifurcations, equilibrium solutions, and stability
within a nonlinear dynamical system. We present and discuss the normal forms of fundamental bi-
furcations that are leveraged within this work: the supercritical pitchfork, the subcritical pitchfork,
the extended normal form of the subcritical pitchfork, and the Hopf. We then introduce the general
Nonlinear Opinion Dynamics (NOD) model presented by Bizyaeva et al. [1] that the work of this
dissertation adapts for social robot navigation. We conclude the chapter with information about the

hardware used for the experimental demonstrations presented in later chapters.

2. In Chapter [3| we motivate and present a specialized form of NOD for social robot navigation. We
begin by defining the working environment of the robot and then present the adapted form of the

NOD equations to implement the robot’s opinion as an element of its navigation control. We clarify



the refinements made to this model, which were updated from previously published iterations of the
work. We present an analysis that proves the guarantee of deadlock-free navigation when controlled
with NOD, supplemented with illustrations and simulations of the robot navigation. We conclude this
chapter with new experimental validations of this deadlock-free guarantee and the flexibility of this
navigation approach in various passing scenarios. We report the detailed experimental setups to be
discussed in later chapters and define the metrics to be used for performance reviews of the robot’s

behavior.

. In Chapter 4] we build on the NOD model within the previous chapter and introduce the Spiking
Nonlinear Opinion Dynamics (S-NOD) model for increased agility in decision making. We motivate
this work with the biologically inspired excitable behavior in spiking systems and apply a slow-negative
feedback to the NOD equations to restore the system to a state of sensitivity, enabling spiking decision-
making. We present a formal analysis of a system with a single agent and two options, uncovering
and discussing how the shape of its pitchfork bifurcation depends on the model parameters. To the
best of our knowledge, this is the first such model to generalize spiking to more than one option. The
limitations of NOD are discussed, which motivates the development of S-NOD. We present a geometric
analysis of the phase plane of the S-NOD system, showcasing the spiking behavior and potential limit
cycles that exist within the system. We extend these results to a multi-agent setting and discuss the
synchronization and anti-synchronization behaviors possible. We conclude with an application of S-
NOD to a simulated social robot navigation setting, following the work of NOD. This Chapter was
based on the peer-reviewed publication of [26] in IEEE Control Systems Letters (L-CSS) and has been

lightly revised for presentation in this thesis.

. In Chapter we extend the S-NOD application to physical experiments with humans and more
than two option settings. We begin by introducing the specialized equations for S-NOD in the context
of social robot navigation. We then validate the deadlock-breaking guarantee and flexibility of the
approach, following the same experimental protocol as with NOD. The behaviors of the robot in
the S-NOD and NOD experiments are compared, and the differences in control efficiency between
them are discussed. We discuss the effect of key parameters with the NOD and S-NOD navigation
behaviors, highlighting the perceived limitations of the sequential decision-making capabilities in the
NOD performance. These are further revealed in a comparative simulation with NOD and S-NOD as

they navigate a larger, more crowded navigation setting.

. In Chapter [6] we conclude this part of the dissertation with an overview of the results of this work,

identify its limitations, and suggest future pathways and extensions.



Part II presents an unmodified published work to provide a complete record of the original research that

contextualizes the contributions of Part I.

6. In Chapter 7| we present the peer-reviewed publication of [25] in the 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2023). In this work, we present the original
formulation of the NOD model for social robot navigation. We present an analysis of this model
to demonstrate the guarantee of deadlock avoidance in the robot’s decision-making. We conclude
the paper with experiments that validate this deadlock-breaking guarantee and the flexibility of the
original formulation of the NOD approach for social robot navigation. The experimental results are
analyzed and reveal the trade-off between navigation efficiency and spatial intrusiveness present within
the original formulation of NOD when varying a single parameter. This work strongly motivated the

subsequent reformulation of NOD and its experimental validations in Chapters [ and



Chapter 2

Background

The work detailed in this thesis focuses on the modeling of a nonlinear dynamical system for social robot
navigation and its application to real-world experiments. We provide an analysis of behavioral guarantees
offered with the model using bifurcation analysis. Therefore, we provide background and context here,
including bifurcation theory, phase plane visualizations, and fundamental forms of relevant bifurcations in
nonlinear models, as well as an overview of the opinion dynamics model employed in this thesis. We conclude

with a description of the equipment used for social robot navigation experiments.

2.1 Nonlinear system analysis

This section is prepared based on definitions and analysis methods documented in various textbooks [43H46].

2.1.1 Overview and linearization

A dynamical system is a system of equations describing the evolution of a set of state variables over time.
Time can be considered as either a discrete or continuous variable in the system. Dynamical systems
that evolve continuously in time are described by either ordinary differential equations (ODEs) or partial
differential equations (PDEs), the latter of which being generally more difficult to analyze. The work of this
thesis considers the development, analysis, and application of a continuous-in-time dynamical system of the
form of a general ODE:

d
— == (), (2.1)
where z(t) € R™ depends on time ¢. When the vector field f(z) has no explicit time ¢ dependency, we call

this an autonomous system. If the state variable z has only one dimension, the ODE is a scalar differential
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equation. We are interested in understanding how a dynamical system evolves from an initial state z(ty) = 2o
at ¢t = tp.

An equilibrium solution z°7 of the system satisfies 2 = 0 = f(2°?) and corresponds to a steady-state.
Identifying equilibrium solutions and performing a stability analysis of the equilibrium solutions allows us to
determine the system’s long-term behavior. For example, it can help us predict conditions under which the
system will converge to an equilibrium, oscillate around a solution, or exhibit other, more complex behavior.

In our work, we analyze nonlinear ODEs that describe a dynamical system. Nonlinearity is intrinsic
to most models of complex natural behavior, but its analysis can be substantially more challenging than
its linear counterpart. However, we gain insight into local system behavior and utilize tools from local
bifurcation theory, which involves a Taylor series expansion of the dynamics about a singular equilibrium
solution.

To study the stability of equilibria away from the singular equilibrium solution, we can use linear stability
analysis by linearizing the nonlinear ODE about a nonsingular equilibrium point. The linearized dynamics
are y = J(2°%)y where J(2°?) is the Jacobian evaluated at the equilibrium point 2¢9. The Jacobian at an

equilibrium point z¢? is defined by

oz
T 9z '

z=z¢4

J(2°) (2.2)

The eigenvalues A of this Jacobian matrix determine the local system stability at the equilibrium point
z =2 If Re(\;) <0V i=1,...,N the equilibrium is locally asymptotically stable. If any eigenvalue
has a positive real part, that is, if IRe(\;) > 0, the equilibrium is unstable. We next introduce phase plane
methods, which offer an intuitive and geometric visualization of the evolution of solution trajectories over

time, and can qualitatively capture the system’s global behavior.

2.1.2 Phase plane geometric analysis

A phase portrait can be used to visualize the global behavior in a system of two or more dynamic equations.
They are constructed by considering information about two equations of the ODE. For convenience, we note
these as dynamic equations Z; and Z5. The phase portrait includes lines that represent the zero-level set of
an 21 = 0 and 25 = 0, vector fields representing the values of 21(z1, 22) and 25(z1, 22) throughout the plane,
and solution trajectories of 21,z following these trajectory fields. The resultant diagram can be used to

assess the equilibria and stability within the system and identify the presence of limit cycles.
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We step through the elements of a phase portrait below with an illustrative example of the FitzHugh-
Nagumo model for excitable behavior discussed in Chapter [1.1.3] The equations for this dynamical system

are

%:% al _ (A [hkez) , (2.3)
29 %9 fa(z1, 22)

where z1(t), 22(t) € R and the vector fields of each are described by fi(z1, 22), and fa(21, 22) respectively.
Note that this is an explicitly two-dimensional form of the general ODE .

The equilibrium points of the system describe where all state derivatives are zero, i.e., z; = 29 = 0. With
a phase plane, we can locate these points geometrically while simultaneously observing the system’s global
behavior by examining its nullclines, which are the curves in the phase plane where one component of the
vector field is a steady-state. That is, the z;-nullcline is defined by solutions to 2y = 0 = fi(21, 22), and the
zo-nullcline is defined by solutions to 2o = 0 = fa(21,22). These nullclines can be sketched on the 23 — 29
plane, and the system equilibria can be found where the curves intersect.

To complete the phase plane, we consider the direction of the vector field at various points within the
plane. That is, we evaluate the velocity vector (21, 22) = (f1(21, 22), f2(21, 22)) throughout the z; — 29 plane.
Arrows are drawn to indicate the direction and magnitude at each point in the plane.

From the completed sketch of the phase plane, the behavior of the system can be observed with sketches
of trajectories, which reveal the stability of equilibria. Trajectories represent the evolution of the states z1, z5
over time. Consider an initial solution of the system at ¢ = to defined by (z1,22)0 = (21(t0), 22(t0)). This
can be plotted as a point on the phase plane. From this point, we can follow the direction of the vector field
to sketch the shape of how the solution evolves from this initial point. This completes the phase portrait. If
we observe that the system’s trajectories diverge from an equilibrium point, we can classify its behavior as
unstable. Conversely, if the trajectories are attracted and trapped in an equilibrium solution, we can classify
its behavior as stable.

We present a representative phase portrait. To illustrate its structure and its application in stability inter-
pretation. This phase plane represents that of the excitable FitzHugh-Nagumo model [34], a key motivation
for the work within this dissertation. The following equations describe this model:

dz _d |a=v| |0} v—v3/3—w+1I 2.4

¢ dit 29 =W w c(v+a—bw)

where the states are z = [z, 23]7 = [v,w]T € R? and parameters are a,b,c, and I. See Fig. for three
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Figure 2.1: Phase planes and sample trajectories of the FitzHugh-Nagumo model . (Top) The v —w
phase plane. The v- and w-nullclines are drawn in pink and blue, respectively. A sample trajectory is
superimposed with a black trace that moves from the same initial point (yellow dot) to its final point (red
dot) in a simulation. (Bottom) The v and w solutions over time that correspond with the sample trajectory
shown in the top graphs. Parameters are: a = 0.7, b = 0.8, ¢ = 12.5 and T = {0.1, 0.32, 0.5} from left to
right graphs.

phase planes shown for the same parameters a, b, and ¢, but different current input value I.

As stipulated, the phase planes feature the nullclines of each state variable, with a vector field shown with
gray arrows indicating the flow about the system. An equilibrium point exists at the single point where the
nullclines intersect, but the behavior of the solution trajectory varies depending on the changing I value. In
the first, leftmost phase plane, we observe that a sample trajectory moves through the system’s flow but is
directly attracted to the equilibrium point; therefore, we can conclude that the equilibrium is stable. In the
middle image, we highlight that the vector field has changed due to the increased value of I. The solution
trajectory follows a similar initial path to the first example, but the solution oscillates about the equilibrium,
is quickly damped, and then settles. Therefore, we can conclude that the equilibrium is stable, although the
system exhibits oscillatory behavior. In the last, rightmost phase plane, we observe that a sample trajectory
moves through the system’s flow near and past the equilibrium point, becoming locked in a steady cycle;
therefore, we can conclude that the system exhibits a limit cycle.

A phase plane with solution tracing (i.e., a phase portrait) provides a geometric analysis that qualita-
tively explains the behavior of a dynamical system. However, it only captures the behavior of a system at

fixed parameter values. In the above example illustration, changing the input I caused drastically different
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behaviors within the system’s solutions. However, a single phase plane could not have revealed the varied
potential behaviors of the ODE. This motivates the subsequent discussion on theoretical tools to uncover

and study the parameter values that cause these qualitative changes, known as bifurcations.

2.1.3 Bifurcations

Some dynamical systems can behave in qualitatively distinct ways depending on a system parameter p.
To study these qualitative changes in behavior, we can consider what happens when we smoothly vary a
parameter p in a dynamical system . Loosely speaking, if a stark qualitative behavior change occurs as
p is varied, the system is said to have undergone a bifurcation. This can happen when equilibrium solutions
are created or destroyed, equilibria gain or lose stability, oscillatory responses emerge or disappear, or any
combination of these behaviors. Bifurcation theory focuses on identifying these points in the parameter
space where even a small perturbation of p can significantly alter the system’s response.

Bifurcation points can be identified by analyzing how the eigenvalues A; of the Jacobian matrix at an
equilibrium solution z = z°? depend on a parameter p. That is, a bifurcation may occur at z = 27 if
there exists a parameter value p = p* such that Re()\;(p*)) = 0 for at least one eigenvalue. The point
(z,p) = (2°%,px) is then referred to as a singular point. In the case that the singular point is a pitchfork
bifurcation, to be defined below, the equilibrium point z°? transitions between stability and instability as p
passes through p*. We can visualize these and other transitions with a bifurcation diagram, which graphs
the solutions z = 2°? of the dynamical system against the varied system parameter p on the (z,p)-plane.
Stable solutions are typically shown with solid lines, while unstable solutions are shown with dotted lines.
These provide a valuable tool for identifying regions of changing numbers of solutions and stability within
the system.

The work in this thesis is primarily focused on the existence and study of two fundamental types of bifur-
cations: pitchfork and Hopf bifurcations. Each of these types of bifurcation is accompanied by characteristic

variations, which are described in detail below.

Pitchfork bifurcation

The pitchfork bifurcation describes a symmetric system that undergoes a transition from a single equilibrium
point to three equilibria as a system parameter p is varied, producing a distinctive pitchfork shape in its

bifurcation diagram. The general normal form of a pitchfork bifurcation is

i=pz—eqz>, (2.5)

14



where z is the system state, p € R is the bifurcation parameter of note, and € € [—1, 1] assigns the sign to the
positive scaling factor ¢ > 0. Depending on the sign of ¢, the pitchfork bifurcation’s characteristic behavior
of the stability of its one and three equilibria changes.

The point at which the system transitions between one and three equilibria is called the bifurcation
point, also noted as the critical (singular) point of the system. Consider the behavior of the system as the
parameter p increases through this critical point. Two characteristic behaviors may occur at this bifurcation,
depending on the sign of € in . A supercritical pitchfork bifurcation occurs with € = 1 and describes
the creation and existence of a pair of stable equilibria beyond (super) the bifurcation (critical) point. A
subcritical pitchfork bifurcation occurs with e = —1 and describes the destruction and existence of a pair of
stable equilibria before (sub) the bifurcation (critical) point.

There is another variable that can be introduced that perturbs the pitchfork bifurcation, which we call

a bias b € R. Assume that b is small. Adding b to the normal form (2.5)), we get a more general form:
i=pz—eq2®+0. (2.6)

When b = 0, this recaptures the special case of the normal form . However, when b # 0, this term acts
to break the symmetry of the system and skews the solution branches toward the sign of this parameter.
This peels the solution branches apart from the bifurcation point, and the pitchfork is said to unfold.

We present the characteristic forms and solutions of the normal pitchfork bifurcation types and conclude

each with an illustration of its associated unfolded diagrams.

2.1.3.1 Supercritical

The supercritical pitchfork can be described by (2.5) with e = 1, thus
i=pz—q2®. (2.7)

We now consider the solutions for the zero-level set of the equations, where Z = 0, that describe the
system’s equilibria. This is described by 0 = pz — ¢2z® = z(p — ¢2?). Thus, we see that z;? = 0 and
2y = i\/g are these solutions. Note that the equilibrium z5? = 0 exists for all parameter values p; thus, it
is always an equilibrium point. However, zleq2 € R only when p > 0, and grow in magnitude as p increases.
At p =0, a single solution z;? = 0 exists.

To analyze the stability of the equilibria, we first compute the Jacobian J(z,p) = 02/0z = p — 3¢z>.

Evaluating the Jacobian at the equilibrium 2% = 0 we get J(z = 0,p) = p, indicating that the stability of
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the origin changes as p crosses zero. The equilibrium 2°? = 0 is singular when p = p* = 0, and this point
(z, p) = (2°1, p*) = (0,0) marks the pitchfork bifurcation. We can use the Jacobian to study the stability
of z = 0 for p # 0 and the other pair of equilibria points for p > 0. However, because J(0,0) = 0, the
linearization fails to determine the stability of the bifurcation point. In this case, we can use a Lyapunov
function — a scalar function that decreases along the system’s trajectories — to assess stability without
relying on linearization. Note that when p = 0 the dynamics reduce to 2 = —¢qz3, therefore a Lyapunov
function like V(z) = 22 yields V =223 = —2¢z* < 0. This indicates that the singular point z = 0 is
asymptotically stable, and all trajectories will converge to this point.

When p < 0, only z57 = 0 exists. At this point, J(z5?,p) = J(0,p) = p, and as p < 0, we see J(z5%,p) < 0.
Thus, z = 0 is globally exponentially stable for p < 0.

When p > 0, three equilibria 28?1’2 exist. We begin by considering the same equilibrium as above, at
zo1 = 0. At this point, J(z5?,p) = J(0,p) = p, and as p > 0, we see J(z;?,p) > 0. Thus, z = 0 is unstable
for p > 0. We now consider the two other equilibria, 27% and 257. These points describe solutions at equal
and opposite values |z| = \/1%, so we refer to them together with a slight abuse of notation as zti. At
these points, J(21%,p) = J(+/p/q, p) = p — 3¢(£1/p/q)* = —2p, and as p > 0, we see J(21%,p) < 0. Thus,
z = £+/p/q are locally exponentially stable for p > 0.

Putting this information all together, the characteristic bifurcation diagram of a supercritical pitchfork
can be seen in Fig. [2.2] which visually captures the information described above.

We also present the representative bifurcation diagrams of an unfolded supercritical pitchfork bifurcation

in Fig. This illustrates the bifurcation of the biased supercritical pitchfork described by
f=pz—q2®+b, (2.8)

with b € R. When b > 0, the upper stable solution branch is favored. When b < 0, the lower stable solution
branch is favored. Note that for higher magnitudes of bias b, the previously discussed critical point (at p = 0)

appears to shift to the left and completely disappear with sufficiently high bias.

2.1.3.2 Subcritical

The subcritical pitchfork can be described by (2.5) with e = —1, thus

i=pztqzt. (2.9)
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Figure 2.2: Supercritical pitchfork bifurcation. Top: Function z. Bottom: Bifurcation diagram of z solutions
against parameter p.
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Figure 2.3: Unfolded supercritical pitchfork bifurcation diagram by bias b. (Left) Positive bias, b > 0.

(Right) Negative bias, b < 0. Line features to illustrate stability are as in Fig. with colors of higher
intensity associated with higher magnitude b.
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We now consider the solutions for the zero-level set of the equations, where Z = 0, that describe the system’s
equilibria. This is described by 0 = pz 4 ¢2* = z(p + ¢2?). Thus, we see that z;? = 0 and z1% = :I:i\/%
are these solutions. Note that the equilibrium z5? = 0 exists for all parameter values p; thus, it is always an
equilibrium point. However, zf?Q € R only when p < 0, and grow in magnitude as |p| increases. At p =0, a
single solution z;? = 0 exists.

To analyze the stability of the equilibria, we first compute the Jacobian J(z,p) = 02/0z = p + 3¢2>.
Evaluating the Jacobian at the equilibrium 2¢? = 0 we get J(z = 0,p) = p, indicating that the stability of
the origin changes as p crosses zero. The equilibrium 2°? = 0 is singular when p = p* = 0, and this point
(z, p) = (2°9, p*) = (0,0) marks the pitchfork bifurcation. We can use the Jacobian to study the stability
of z = 0 for p # 0 and the other pair of equilibria points for p < 0. However, because J(0,0) = 0, the
linearization fails to determine the stability of the bifurcation point. As before, we can use a Lyapunov
function to assess stability without relying on linearization. Note that when p = 0 the dynamics reduce to
% = q2°, therefore a Lyapunov function like V() = 22 yields V = 223 = 2¢z* > 0. This indicates that the
singular point z = 0 is unstable, and all trajectories will diverge from this point.

When p > 0, only 257 = 0 exists. At this point, J(z;?,p) = J(0,p) = p, and as p > 0, we see J(z5%,p) > 0.
Thus, z = 0 is unstable for p > 0.

When p < 0, three equilibria 28?172 exist. We begin by considering the same equilibrium as above, at
267 = 0. At this point, J(z5?,p) = J(0,p) = p, and as p < 0, we see J(z;?,p) < 0. Thus, z = 0 is locally
stable for p < 0. We now consider the two other equilibria, z{? and 25%. These points describe solutions at
equal and opposite values |z| = \/]%, so we refer to them together with a slight abuse of notation as szlQ.
At these points, J(21%,p) = J(+i\/p/q, p) =p — 3q(+i\/p/q)* = —2p, and as p < 0, we see J(21%,p) > 0.
Thus, z = iim are unstable for p < 0.

Putting this information all together, the characteristic bifurcation diagram of a subcritical pitchfork can

be seen in Fig. which visually captures the information described above.

We also show the subcritical pitchfork unfolded by bias b € R with
i=pz4+q22+0b. (2.10)

Fig. 25 shows the unfolding effect of varying values of b on the subcritical pitchfork. The single stable
solution branch moves farther from the previously discussed critical point (at p = 0), and disappears as the

magnitude of the bias increases.
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Figure 2.4: Subcritical pitchfork bifurcation. Top: Function Z. Bottom: Bifurcation diagram of z solutions
against parameter p.

|b| increases with color intensity

0 b>0 0 b<0
~
Th--..~ I -----.~
~~ ....
R
d Qaa---------
—“‘ t’

L —_,—— —__——‘
-l -

| |

0 0

p p

Figure 2.5: Unfolded subcritical pitchfork bifurcation diagram by bias b. (Left) Positive bias, b > 0. (Right)
Negative bias, b < 0. Line features to illustrate stability are as in Fig. 2.4} with colors of higher intensity
associated with higher magnitude b.
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2.1.3.3 Subcritical - extended

The subcritical pitchfork defined by equation defines a dynamical system in which solutions can grow
unbounded due to the unrestrained 23 term. While this is a useful normal form for contrasting the supercrit-
ical pitchfork, it does not accurately reflect the behavior of most physical systems, where typically some form
of saturation or other constraint limits growth. To model this bounded behavior, a higher-order stabilizing
term can be added to the normal form. Preserving the symmetry structure in the pitchfork normal form,
the next appropriate term is of order z°. Therefore, the extended normal form of the subcritical pitchfork

with a fifth-order stabilizing term is described by
F=pz4qz®—r2d, (2.11)

with parameter r > 0.
We now consider the solutions for the zero-level set of the equations, where Z = 0, that describe the

5 = 2(p+ qz? — rz*). Thus, we see that 25! =0

system’s equilibria. This is described by 0 = pz + ¢2% — 7z
and solutions to (p+ ¢ z? —r 2*) = 0 are the equilibria. We solve the function (p + ¢ 22 —r 2*) = 0 using the
quadratic equation and the substitution method. This yields four further solutions, written here in shorthand

pairs as z7 and z5. Real-valued solutions z} = i\/ (q +1/q% + 4rp> / (2r) exist only when p > —¢?/4r and

grow in magnitude as p increases. Real-valued solutions z5 = :I:\/ (q -V + 4rp) / (2r) exist only when
—q?/4r < p < 0 and grow in magnitude as |p| increases. Note that the equilibrium z5? = 0 exists for all

67 =0 exists.

parameter values p; thus, it is always an equilibrium point. At p = 0, a single solution z,

To analyze the stability of the equilibria, we first compute the Jacobian J(z,p) = 92/0z = p+3qz? —5rz*.
Evaluating the Jacobian at the equilibrium 2¢? = 0 we get J(z = 0,p) = p, indicating that the stability of
the origin changes as p crosses zero. The equilibrium 2°? = 0 is singular when p = p* = 0, and this point
(z, p) = (2¢9, p*) = (0,0) marks the pitchfork bifurcation. We can use the Jacobian to study the stability of
z = 0 for p # 0 and the equilibria points for p > —q?/4r. However, because J(0,0) = 0, the linearization fails
to determine the stability of the bifurcation point. In this case, we can use a Lyapunov function — a scalar
function that decreases along the system’s trajectories — to assess stability without relying on linearization.
Note that when p = 0 the dynamics reduce to z = ¢z — rz°, therefore a Lyapunov function like V (z) = 22
yields V = 222 = 22%(q — 2r22). Note that near z = 0, the ¢ > 0 term dominates the smaller 222 term in
V, thus V > 0 near z = 0. This indicates that the singular point z = 0 is unstable, and all trajectories will

diverge from this point.

When p < —¢?/4r, only 25?7 = 0 exists. At this point, J(z%,p) = J(0,p) = p, and as p < 0, we see
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J(251,p) < 0. Thus, z = 0 is locally asymptotically stable for p < —g?/4r.

When —¢?/4r < p < 0, five equilibria z5?, 27, 25 exist where 27 and 23 each describe equal and opposite
pairs of solutions. We begin by considering the same equilibrium as above, at z;? = 0. At this point,
J(z5%,p) = J(0,p) = p, and as p < 0, we see J(z;%,p) < 0. Thus, z = 0 is locally asymptotically stable
for all p < 0. At the equilibrium points described by 27, we evaluate the Jacobian J(zf,p). We save the
reader from the complicated resultant algebraic function and announce its solution, that J(z7,p) < 0 with
—q?/4r < p < 0. Thus, both of the equilibria described by 2} are locally asymptotically stable. Similarly, at
the equilibrium points described by z3, we evaluate the Jacobian J(z3,p). We again save the reader from the
complicated resultant algebraic function and announce its solution, that J(z4,p) > 0 with —¢?/4r < p < 0.
Thus, both of the equilibria described by zi are unstable.

When p > 0, three equilibria z;? and 2 exist. We begin by considering the equilibrium at z5? = 0.
At this point, J(z5%,p) = J(0,p) = p, and as p > 0, we see J(z;?,p) > 0. Thus, z = 0 is unstable for
p > 0. We now consider the two other equilibria, zf. At the equilibrium points described by 2}, we evaluate
the Jacobian J(z7,p). We again save the reader from the complicated resultant algebraic function and
announce its solution, that J(z7,p) < 0 with p > 0. Thus, both of the equilibria described by 27 are locally
asymptotically stable for p > 0.

Putting this information all together, the characteristic bifurcation diagram of a subcritical pitchfork,
extended with an additional stabilizing term, can be seen in Fig. [2.6] which visually captures the information
described above. Notice that the bifurcation diagram at the bottom of Fig. 2.6 appears to be a merging of
the supercritical and subcritical bifurcation diagrams for the pitchfork normal forms.

This diagram can also be unfolded by bias b € R with

f=pz+qd—r2®40b. (2.12)

Fig. shows the unfolding effect of varying values of b on the subcritical pitchfork extended with a
stabilizing term. Its influence echoes that of the supercritical pitchfork. When b > 0, the upper stable
solution branch is favored. When b < 0, the lower stable solution branch is favored. The differences lie in the
fact that these solution branches feature a small, unstable region along the favored solution branch, which
was nonexistent in the supercritical case. Notably, the critical point (at p = 0) disappears quickly with the

nonzero bias.
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Figure 2.6: Subcritical pitchfork extended with a stabilizing fifth-order term. Top: Function 2. Bottom:
Bifurcation diagram of z solutions against parameter p.
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Figure 2.7: Unfolded subcritical pitchfork bifurcation extended with a stabilizing fifth-order term by bias
b. (Left) Positive bias, b > 0. (Right) Negative bias, b < 0. Line features to illustrate stability are as in
Fig. with colors of higher intensity associated with higher magnitude b.
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Hopf bifurcation

The Hopf bifurcation describes a system (which is necessarily not one-dimensional) that undergoes a change
in stability of an equilibrium point, generating or losing a limit cycle and causing periodic orbits in its
solutions. In this case, we define the system behavior that classifies the bifurcation. This can be done by
analyzing the Jacobian matrix of a general dynamical system: J(z,p) = % = %(f(z,p)).

All Hopf bifurcations have this general form: the Jacobian matrix has a pair of complex-conjugate
eigenvalues that cross the imaginary axis as a bifurcation parameter is varied.

We turn to Theorem 11.12 in [45] to guide the definition of this bifurcation. Assume that (27, p*) = (0, 0)

is an equilibrium of the system. This point is a Hopf bifurcation if it satisfies the following criteria:

1. There is a complex conjugate pair of eigenvalues (A(p)) of the Jacobian matrix J(z°%,p*) that are

purely imaginary. Thus, A(p*) = A(0) = £iw(0) where w(0) > 0.

2. All other eigenvalues of the Jacobian matrix satisfy Re(A(p*)) < 0 and would otherwise indicate

equilibrium stability.

3. The real part of the conjugate pair of eigenvalues crosses the imaginary axis with nonzero speed. That

iS, ORe(A(p)) 75 0.
=0

o |,

This would indicate that as p is varied, the pair of complex conjugate eigenvalues crosses the imaginary
axis. As p > 0, a limit cycle forms. The stability of this limit cycle is determined by the stability of
the function f(z,p). A Hopf bifurcation is considered supercritical when its created limit cycle is stable,
attracting nearby solution trajectories into its orbit; and a Hopf bifurcation is considered subcritical when
its created limit cycle is unstable, repelling nearby solution trajectories away from its orbit.

While a bifurcation diagram can reveal the location of a Hopf bifurcation, the distinction in its super-
critical and subcritical behaviors is best observed with a phase portrait.

Fig. [2-8 showcases a supercritical Hopf bifurcation. Its system is defined by the ODE below, following
an example in [46, Ch. 8.2]:

T T x —wy — x(z? + y?
d: _d _ _ | y — y)7 (2.13)

y py + wr —y(z? 4+ y?)

where the states are z = [z,y]T € R? and parameters are j and w. We observe that as the parameter y
transitions from a negative to a positive value, the system shifts from having a single stable solution at the

origin to exhibiting a stable limit cycle.
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Figure 2.8: Phase planes and sample trajectories of the model with a supercritical Hopf bifurcation.
(Top) The x — y phase plane. The z— and y—nullclines are drawn in pink and blue, respectively. A sample
trajectory is superimposed with a black trace that moves from the same initial point (yellow dot) to its final
point (red dot) in a simulation. (Bottom) The x and y solutions over time that correspond with the sample
trajectory shown in the top graphs. Parameters are: w =2 and u = —1, 0, 1 from left to right graphs.
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Figure 2.9: Phase planes and sample trajectories of the model with a subcritical Hopf bifurcation.
(Top) The x — y phase plane. The z— and y—nullclines are drawn in pink and blue, respectively. A sample
trajectory is superimposed with a black trace that moves from the same initial point (yellow dot) to its final
point (red dot) in a simulation. (Bottom) The x and y solutions over time that correspond with the sample
trajectory shown in the top graphs. Parameters are: w =2 and g = —1, 0, 1 from left to right graphs.

Fig. showcases a subcritical Hopf bifurcation. Its system is defined by the ODE below, following an
example in [46, Ch. 8.2]:

d d |x T x —wy + z((x? +y?) — (22 +y?)?
z _ _ (pe ey a((@® ) — y))’ (2.14)

dat — dt :
0] py +wa +y((2® +y°) = (2% +°)?)
where the states are z = [x,y]”7 € R? and parameters are y and w, as above. We observe that as the parameter
1 transitions from a negative to a positive value, a solution with an initial condition near the origin shifts
from moving toward the stable origin to moving away from the unstable origin into a larger-amplitude limit

cycle.

2.2 Nonlinear Opinion Dynamics (NOD) model

Virtually all actions made in life are the result of a decision-making process that considers various options
and influences and can adapt to any changing context surrounding the decision. Nearly everything can

be categorized into a decision-making process, such as determining which task to spend time on, what
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food to eat, or where to move within a room. Due to its universal relevance, decision-making has long
attracted research seeking to formulate and generalize models that encapsulate its nuanced dynamics. The
work presented within this dissertation builds upon the general Nonlinear Opinion Dynamics (NOD) model
developed by Bizyaeva et al., presented in |1] and detailed further in [42]. These papers introduce a framework
for a nonlinear, saturated opinion exchange between agents (a term that can describe either an individual
or a population) about a multitude of options as a decision-making process. The NOD model captures the
building of a collective opinion within a group or cooperative team due to social and environmental influences,
and maintains flexibility in changing contexts due to its nonlinearity that saturates extreme opinions.

The Bizyaeva et al. model of Nonlinear Opinion Dynamics is presented here in its most general form,
and its parameters are described. This serves as a reference point in this thesis before the presentation and
discussion of a specialized form of NOD for social robot navigation.

Consider the formation of an opinion, represented by variable z. The NOD model provides a framework
for a nonlinear and saturated opinion exchange between agents (a term that can describe either an individual
or a population) about a multitude of options. Consider agent i = 1,..., N, within a group of N, agents
as it forms an opinion about option j = 1,..., N, within a group of N, options. It follows that the opinion
about this option is noted by the variable z;;. The magnitude of z;; represents the strength of the agent’s
opinion about this option, and its sign (positive, negative) represents its preference (favor, disfavor) for the
option. When the opinion is zero, z;; = 0, agent ¢ is neutral about option j. If we consider when all agents
are neutral about all options, z = 0, then the system is undecided. These opinions are modulated within the
model by various parameters that encourage intra- and inter-agent opinion exchanges about each option.
The opinion is tuned by each agent’s sensitivity, represented by variable u. According to this model, an agent
i’s sensitivity u; can change dynamically, dependent on some basal level of sensitivity ug that it may have
and/or the increasing opinions of the agent itself and/or its neighbors. With these most relevant variables

now defined, the general form of the Nonlinear Opinion Dynamics of Bizyaeva et al. is presented below:

Nq N, No, N,
Zij=—dizij + S | ui | o zij + Z agy 2k + Z a;?lzil + Z Z a?ka?lzkl + bij (2.15)
k=1 I#7 k=1 1#j
ki 2 ki 121
N, N,
Tl = —ui +ug+ Ky Y Y ay (z)° (2.16)
J=1 k=1

The parameters for the opinion z;; in equation (2.15) are as follows:

e d; > 0 describes the resistance of the agent to forming an opinion about option i and serves to damp
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the linear impact of the agent’s current opinion state.

e S:R — R is a bounded saturation function that satisfies the conditions S(0) = 0,5’(0) = 1, and

S5"(0) = 0. For the duration of this thesis and much of other work involving NOD, S(-) = tanh(-).
ozg > 0 describes the self-reinforcement of an agent’s opinion about an option.

— Note that the signs of d;, ag > 0 create no redundancy, the first serving to only dampen and the
second to only strengthen an opinion when the parameters are nonzero, otherwise serving to have

no effect if zero.

e af,. € R describes the inter-agent, same-option gain on the influence from different agents opinions

Zkj, k # i on agent i about the same option j.

— Note the signed influence of this term. When positive, af; > 0 reflects an excitatory influence of
the communicated opinion of agent £ on agent i. When negative, af, < 0 reflects an inhibitory
influence of the communicated opinion of agent k£ on agent 7. When zero, af,, = 0 indicates that

there is no influence communicated between agents ¢ and k.

e aj € R describes the intra-agent, different-option gain on the influence from agent i’s opinions z;

about all other options than j, [ # j.

— Note the signed influence of this term. When positive, af, > 0 reflects an excitatory influence
of agent i’s opinion of option j on its opinion of option /. When negative, af, < 0 reflects an
inhibitory influence of agent 4’s opinion of option j on its opinion of option /. When zero, af, = 0

indicates that there is no link between options j and I.
The parameters for the sensitivity u; in equation are as follows:
e 7, > 0 is a time constant on the sensitivity,
e ugy > 0 is the basal sensitivity present in the agent,
e K, > 0is a gain on the influence of agents’ opinions on the increase of its sensitivity,
e a}, > 0 is the gain on the influence from agent £’s opinions z;; on the sensitivity of agent i.

As a final note, for much of the work presented within this dissertation we consider that 7, — 0 and thus

the dynamic sensitivity of (2.16]) becomes algebraic with u; = ug + K, Z;\fz"l Ziv:‘ll a¥ (z1)°.
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2.3 Hardware for experimental demonstration

The experimental portion of this work was conducted using two primary hardware sources. The Jackal UGV
was utilized for navigation in all human-robot interaction experiments within this body of work, and all
motion-related data were acquired using a Vicon motion capture system. The relevant specifications of each

are described in detail below.

2.3.1 Jackal UGV research robot

Navigation experiments utilized the Jackal UGV (Unmanned Ground Vehicle) made by Clearpath Robotics
[47). The Jackal is a small, four-wheeled mobile robot equipped with GPS, IMU, and upgraded with a
Jetson TX2 computing device [48] for increased memory and bandwidth. Its internal computer runs the
Linux Ubuntu 16.04 version with the ROS (Robot Operating System) Kinetic Kame distribution.

The robot uses skid-steer drive, a multi-wheeled form of differential drive, to move and turn as it navigates.
This entails turning multiple wheels per side of the robot (rather than one wheel per side) to increase the
rotational velocity higher than that on the other side, creating a turn towards the side with lower rotational
velocity. For example, both right wheels of the Jackal will turn faster than its two left wheels, causing the
robot to turn towards the left.

For additional sensing, the Jackal is also fitted with a Velodyne PUCK LiDAR sensor [49] at its front.
This equipment can measure depths of up to 100 meters in a 360° horizontal and 30° vertical range. In
experiments, this 3D visual field information is measured to verify that the robot is a safe operating distance
away from nearby obstacles. Suppose the robot observes an obstacle nearby but is unable to navigate away
from a collision safely. In that case, the LiDAR information will trigger a backup stop protocol as a fail-safe.
This ensures that the Jackal will not collide with any obstacles, whether they are static elements of the
environment or humans.

For detailed, real-time data on the Jackal’s position and orientation, specialized markers are attached
to the robot’s top and tracked by the Vicon motion capture cameras. Data is broadcast through the
vicon_bridge driver on ROS [50] such that this reliable pose information can be collected and used within

the robot’s algorithm.

2.3.2 Vicon motion capture system

The position and orientation data of humans and robots within experiments are tracked using the Vicon
motion capture system in the H-121 laboratory space. Unique marker plates are used to identify relevant

objects in each study. For example, each human participant in a study wears a unique plate attached to a
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hat during a navigation experiment, and each robot has a unique plate attached to its top. Twelve Vicon
Vero v2.2 cameras [51] line the perimeter of the room’s ceiling, are calibrated before each batch of trials,
and provide real-time pose information of tracked objects at 330 Hz. The precise position and orientation

data for tracked objects is then shared through the ROS vicon_bridge software as a quaternion.
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Chapter 3

Nonlinear Opinion Dynamics (NOD)

for proactive social robot navigation

In this chapter, we introduce the setting and design of a Nonlinear Opinion Dynamics (NOD) model to
control the navigation behavior of robots interacting with humans. This chapter draws heavily from the
published work of Proactive Opinion-Driven Robot Navigation around Human Movers of [25] presented at
the 2024 TEEE/RSJ International Conference on Intelligent Robots and Systems, which can be seen in
Chapter [7}] The application to a navigation problem for a social robot is expanded upon from the published
work. We leverage bifurcation theory to analyze the model and provide a guarantee on its deadlock-breaking
ability. We conclude with experimental validations of NOD to create flexible and reliable navigation between

a single robot interacting with either one or two humans.

3.1 Motivations

Robots are increasingly desired to be, and some are already becoming, commodities in human-centric en-
vironments, from hospitals to homes. The deployment of robots in these human-populated environments
requires robotic navigation systems that are not only collision-free but also socially appropriate and aware.
Many state-of-the-art navigation strategies leverage data-driven, computationally intensive tools, such as
reinforcement learning and machine learning, to construct models of human behavior, predict navigation
path options, or make more complex decisions. However, these methods are often difficult to analyze and
do not guarantee that indecision (deadlock) will not occur when the robot faces the vast navigation options

and constraints that exist in human interaction. We instead turn to considering the analytically tractable
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Nonlinear Opinion Dynamics (NOD) of [1] to create a novel opinion-driven model for socially competent
robot motion control. This work builds on the preliminary efforts of [52] to design legible robot motion
for navigation with human interaction using a simplified version of the NOD model. We construct a set of
continuous dynamical equations for a robot’s evolving opinion on navigating around humans and leverage
bifurcation theory to establish a guarantee of deadlock-free decision-making in robot-human navigation. We
aim to showcase how this computationally light model can proactively respond to human movement in real
time, enabling robots to make real-time decisions that are responsive to social cues and provide the ability

to comfortably adapt to others in a shared space.

3.1.1 Navigation environment and notation

We define the setup of the navigation environment and the notation describing the spatial and angular
relationships in human-robot interaction scenarios. Let robot i = 1,..., N, describe a mobile robot within
a team of N, robots. Let human ¢ = 1,..., N} describe a human detected in the environment by robot ¢
within a set of N humans. Each robot ¢ moves with constant velocity V; and each human ¢ moves with
velocity Vj,.

We define the relevant spatial and angular geometry for a navigation scenario that involves human-robot
interaction. The two-dimensional position of robot ¢ is given by x; = (z;,¥;) and its goal is located at
Xg, = (%g;,Yq,)- The heading (or turning) angle of robot 4 relative to the horizontal axis is given by 6;.
Similarly, human ¢’s position and heading angle are given by x5, = (zn,,yn,) and 0, respectively. The
FEuclidean distance between robot ¢ and human /¢ is denoted D;;. We consider three relative angles within

the environment:
1. ¢;, the angle between robot i’s heading and the direction of its goal,
2. mje, the angle between robot ¢’s heading and the direction to human ¢,

3. nn,,, the angle between human ¢’s heading and the direction to robot i.

These angles, along with the robot-human distance, are illustrated in Fig. and their functions are
described in Table The function atan2(y,z) computes a real solution of the four-quadrant inverse

tangent of y and z following the east counter-clockwise convention.

3.2 NOD specialized for social robot navigation

We build upon the NOD model by Bizyaeva et al., simplified to a case with two mutually exclusive options,

as discussed in Chapter[2.2] Thus, N, = 2 and z;; = —z;2. The opinion state is therefore captured by a single
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Figure 3.1 & Table 3.1: Geometry and notation of the human-robot navigation setting.

scalar variable z;, whose sign indicates the option preference and whose magnitude indicates the strength
of the preference. We assume 7, — 0 in (2.16), which simplifies the dynamic sensitivity to an algebraic
expression for the social robot navigation setting. We therefore consider the simplified set of equations

below as the general two-option NOD model to adapt for navigation:

N,
Zi=—djz + S| uw; | ajzi + Z ik 2k +b;, (31&)
ki
k=1
No N
u; = ug + K, al. (z1;)7 . (3.1b)
G=1 k=1

We propose a robot navigation model that uses NOD to direct the navigation of a robot so that it moves
comfortably around nearby human movers. We begin by outlining the desired behavior of a robot that

navigates with NOD and then introduce the ruling equations to satisfy these design requirements.

3.2.1 Physical interpretation of opinion z;

We first detail the meaning of the opinion variable z; in the context of human-robot interaction. We define
the opinion z; to represent robot i’s opinion for passing a human on the left or the right and by how much.
That is, for robot i: z; = 0 represents no preferred passing side (i.e., move straight), z; > 0 represents a
left-preferred passing side, and z; < 0 represents a right-preferred passing side. Robot ¢ should form this
preferred passing side based on social cues relevant to comfortable and cooperative navigation. These cues
include the opinions of nearby robots on a team (zj, where k # ¢) and an estimate of the preference of passing
humans, which we represent as a proxy opinion (2,) for each human ¢. These cues should be weighted more
heavily as collisions become more likely. This implies that the sensitivity u; that acts as a gain on the social

cues should increase as collisions become more likely. Finally, we consider that robot ¢ may have an internal
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bias b; on which side to pass someone, e.g., associated with a social convention like passing on the right in
the United States. These behavioral requirements for social robot navigation guide our specialization of the

z; and u; variables within the general NOD equations (3.1)).

3.2.2 Opinion-driven motion control

With the behavioral interpretation of the preferred passing side captured by opinion z;, we can now consider
how its value should affect robot motion. This extends beyond the general Bizyaeva et al. model, requiring
us to construct an angular velocity command 0, that incorporates the opinion’s influence and the goal
direction ¢;. The robot’s sensitivity to humans can be used to control the balance between these two turning
influences. These required turning behaviors are incorporated into the motion control formulation for the
robot.

The specialized NOD equations for social robot navigation are

Ng Np,
Ty 2i = —d; zi +tanh | u; | a;2; + Z a2k + Z aieZn, | +bi |, (3.2&)
ki =1
k=1
u; = max(uo,,) + Ky, 27, (3.2b)
0; = ko, sin (ug,, - B; - tanh(z;) + (1 — ug,,) ¢ ) - (3.2¢)

We begin by defining the parameters and variables within the opinion update in equation . Recall
that S(-) = tanh(-) acts as the saturating function within NOD. The parameters are as follows: 7., > 0 is
the opinion time constant, d; > 0 is the damping coefficient, a; > 0 is the self-reinforcement gain, a;; € R is
the weight of robot k’s opinion, a;; € R is the weight of human ¢’s proxy opinion, 2, is the proxy opinion of
human ¢, and b; € R is an internal bias. Note that this bias b; is moved within the saturating function such
that the robot will only act upon this internal turning preference when a human is observed (i.e, u; # 0) and
will otherwise move directly toward its goal. We define 25, = sin(—ny,) as the proxy opinion of human Z.
The weight a;¢ is defined as a;; = ; - max(0, uq,, / Zé\[:’ll up,,) where ; > 0 is a gain and uo,, is the basal level
of sensitivity of robot ¢ to human ¢, where with a slight abuse of language we allow this “basal” sensitivity
to change value. Note that the max function in a;s serves to avoid divisions by 0 when there are no observed
humans (i.e., when Zév:hl up,, = 0). In this chapter, we focus on a single robot case (i = N, = 1) and
therefore defer the definition of a; to later chapters.

We now describe the sensitivity parameters in equation (3.2b)), along with the geometric calculations
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specific to the navigation setting. Each robot ¢ calculates a basal level of sensitivity ug,, to human ¢ based
on their proximity, which represents how strongly the robot should respond to the human’s movements.
The basal sensitivity is computed as a function of the distance, x;0 = Dy = ||x; — Xp,|| and direction,
Kie = Derit i -exp(l — max(cos 1;¢, 0)’1), between robot 7 and human ¢. Here, D ; is the critical distance
at which robot i begins to meaningfully respond to human ¢. The function to describe the basal sensitivity
is based on the inverse Hill equation, a bounded sigmoidal curve, and is ug,, = U;( &}, /(kl, + xI;)). The
parameter U; > 0 describes the upper bound of the basal level of sensitivity, and n > 0 describes the Hill
coefficient of the function that determines the curve’s steepness. Fig. illustrates the sensitivity function
across distance and various interaction angles 7;,. Equation describes the total sensitivity experienced
by the robot. Its parameters are as follows: ug,, is the basal level of sensitivity robot ¢ shows to human
¢, and K,, > 0 is the gain on the robot’s own opinion. The maximum basal level of sensitivity max(uo,,)
represents the single largest value of ug,, for all humans I € [1, Np].

Finally, we combine the influence of both the opinion and sensitivity on the turning command sent to
robot i by its angular velocity, 6;, as defined in equation . The parameters are as follows: ky, > 0
is a gain, ug ¢ is the normalized maximum basal sensitivity experienced by robot i, and 3; € (0, ] is the
maximum dodging angle used when interacting with a human. To interpret the role of design parameter f3;,
note that when z; is sufficiently large such that tanh(z;) ~ 1 (resp. -1), steers the robot i’s heading
angle by an additional 8; radians in the counterclockwise (resp. clockwise) direction from the orientation
toward the goal location ¢;. Thus, we can tune §; to prescribe how much robot i’s heading angle should
deviate from its direct path toward its goal when it detects a human and forms a strong preference for a
passing direction. We calculate ug ;¢ = meax(uo)ig) /U;. This value represents the largest normalized basal
level of sensitivity of robot i. Accordingly, when robot i’s sensitivity is high, even if only to one human, it
turns based on its formed opinion z;. Otherwise, robot 7 will proceed directly toward its goal direction ¢;.

For the duration of this chapter, only a single robot (i = N, = 1) is considered. Therefore, the subscript
i can be dropped from variable and parameter notation. The equations for a single robot interacting with

Np, humans then simplify to

Nh
T,2 = —d z + tanh (u (az + Z agéh[> + b) , (3.3a)

(=1
u = max(up,) + K,2%, (3.3b)
0 = kgsin (ug, - B - tanh(z) + (1 — w,) @) . (3.3¢)
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Figure 3.2: The ug,, function, constructed as an inverse hill function. Various values of n;, are shown.

We use these equations to analyze a navigation interaction scenario with a single robot and a single

human to guarantee the deadlock-breaking properties of the NOD model.

3.2.3 Model refinements

There are two significant differences between the model presented and studied in this chapter and those
in the published work of and in Chapters [4] and First, we consider a different function for the
proxy opinion of a human, Z5, within NOD. Second, we consider a different function for the sensitivity u
of the robot. Both changes ensure consistency throughout the work presented in this dissertation without
sacrificing the analysis of NOD.

In previous iterations of this work, the proxy opinion for a human was defined as 2, = tan(—ny). The new
definition of 2;, = sin(—7;,) maintains the sign and opinion information conveyed by this previous proxy, but
improves subsequent work by maintaining continuity between proxy opinions formed as 1, passes through
0 and 27 radians. This change does not affect any reported results in published works, but its update in
simulations and experiments conducted for this dissertation improves the performance of robot navigation.
Previously, experiments could be compromised by the discontinuity caused by a human crossing from one
side to the other of a robot’s heading direction (thus, a crossing between the asymptote at 0 and 27 radians
in tangent).

Finally, the sensitivity variable u was previously defined as a dynamic variable for consistency with the
general NOD model of Bizyaeva et al. in , transcribed in Chapter [2| The definition was 7,4 = —u + g(-),
with g(-) a function of the environment’s geometry. However, it was noted that experimental trials benefited
from assuming 7, — 0, yielding an algebraic function of sensitivity v = g(-). This change provided more
control over the desired behavior of the robot. In this work, we treat sensitivity solely as an algebraic function
and do not consider v in a dynamic state. This unifies the algorithms used in simulations and experiments,

enabling a more accurate comparison of the robot’s observed behaviors.

35



3.3 Guarantee on deadlock-free navigation

A key contribution of this work is the guarantee of deadlock-free navigation for the robot. We establish this
performance guarantee by analyzing the single robot navigation model with a single human (¢ = N, = 1)
as a proof of concept. Using tools from nonlinear dynamical systems theory [43], we can show how the robot
can always rapidly and reliably form a strong opinion to select one of the two options - either move left (z > 0)
or right (z < 0) - to avoid colliding with a human. We achieve this by considering the challenging case in
which a human maintains a path straight for the robot, such that Z; = 0, which provides no information on
which passing side to prefer, and the robot has no bias (b = 0) to internally prompt a preferred passing side.

This reduces the navigation NOD model to

T.2 = —d z + tanh (uaz) , (3.4a)
u=ug + K,2%, (3.4b)

) — Losin (29 . 5. _ o
0 = kg sin ( i B - tanh(z) + (1 U) d)) . (3.4¢)

We focus on equations (3.4a))-(3.4b]). Substituting in the function of u into (3.4al), we get

7,2 = —d z + tanh ((uo + Kuzg)az) . (3.5)

We use the Jacobian J(z) of the system to linearly approximate the local behavior of the system (3.5

around point z:
J(2) = 2= = —d + (a(ug + Ky2%) + 2K,a2?) - sech? ((up + K, 2%)az).

We analyze the equilibrium of equation to gain insight into the dynamics and stability of the
system. The neutral opinion z = 0 is always an equilibrium solution of . If the robot remains in this
unopinionated state, it will experience deadlock in its decision-making, ultimately leading to a collision with
the oncoming human directly ahead. Therefore, we linearizﬂ the system about this equilibrium to
characterize its stability. Deadlock-breaking is guaranteed if this z = 0 equilibrium is unstable.

The Jacobian at the neutral equilibrium is J(z = 0) = —d + aug, which is a function of only ug. As
it is a single value, this is the unique eigenvalue A of the linearization at equilibrium z = 0. The neutral
equilibrium is stable if its eigenvalue is negative (A < 0) and unstable if its eigenvalue is positive (A > 0).

Here, a bifurcation occurs when the neutral equilibrium changes stability. Setting A = 0 = —d + aug yields

1We will explore further analysis methods in subsequent chapters to further investigate the effects of various parameters on
system behavior. Currently, linearization serves as a tool to identify and characterize the bifurcation parameter of interest.
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the bifurcation point u§ = d/a. As stated, deadlock-breaking is guaranteed if there exists some parameter
regime where the neutral z = 0 equilibrium is unstable. We can now assess: when ug < uj, A < 0, and the
neutral equilibrium is stable; when uo > u, A > 0, and the neutral equilibrium is unstable. Thus, when the
basal level of attention ug of the robot exceeds this uj value, deadlock-breaking is guaranteed as the neutral
solution becomes unstable.

Furthermore, it can be demonstrated that in the parameter regime where ug > uf, two symmetric
bistable solutions emerge, one corresponding to moving to the left and the other to moving to the right.
These equilibria are equal and opposite, such that z{* = —z39, and both are locally exponentially stable.
This meets the criteria of the pitchfork bifurcation described in Chapter |2} For this chapter, we consider the
parameters that create a supercritical pitchfork bifurcation in the system. A discussion of the parameters
that cause a subcritical pitchfork bifurcation is provided in the following chapter.

The supercritical pitchfork bifurcation diagram for this social navigation scenario is seen at the top of
Fig. The bifurcation diagram shows the equilibrium values of opinion z plotted as a function of the
bifurcation parameter ug. The curves in blue represent stable solutions, and those in dashed red represent
unstable solutions (saddle points). Note that the strength of preferences (i.e., the magnitude of the opinion
z) increases with increasing ug > ug. In this regime, deadlock is unstable, and thus the robot’s opinion will
necessarily converge on one of the two non-neutral, opinionated solutions. The selected solution branch will
depend on the initial conditions of the system and measurement noise. When the robot is biased (b # 0) or
the human is approaching the robot obliquely (1, # 0), the pitchfork bifurcation unfolds, as illustrated at
the bottom of Fig.

We illustrate the deadlock-breaking behavior with simulations in Fig. [3.3b] The human (trajectory in
black) heads straight for the robot. In the unbiased case (b = 0), the robot (trajectory in pink) moves
straight briefly before arbitrarily choosing to turn right to pass around the human. This corresponds to
behavior indicated by the negative blue curve at the top of Fig. In the biased case (b > 0), the robot
(trajectory in wine) follows its bias and moves left, departing sooner from the centerline than in the unbiased

case. This corresponds to the positive blue curve at the bottom of Fig.

3.4 Experimental validations of NOD

The NOD algorithm was validated through both simulated and experimental trials with NOD-embodied
robots navigating past a single oncoming moving human. Simulations were rendered using MATLAB, and
the behaviors observed in these idealized, noise-free simulations provided evidence for the general range of

parameter values to be used in real experiments.
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Figure 3.3: Deadlock breaking for uy > u§ in a robot’s opinion dynamics. Example human-robot
interaction scenarios and their associated pitchfork bifurcation diagram. Top: Symmetric, Bottom: Unfolded.
@ Example trajectories of unbiased (b = 0) and biased (b > 0) robots facing a directly oncoming human.
Dots along trajectories are temporal markers.

Previous work by , as seen in Chapter expanded on a NOD robot’s behavior in an environment with
two humans. This work employed an algorithm with minor differences from the NOD model presented in this
chapter. Therefore, although these experiments were not fully recreated for this dissertation, the movement
data from the previous experiments were used to simulate a robot’s response using NOD, consistent with
the findings of this dissertation.

Our experimental objectives are threefold:

1. To demonstrate the flexibility of our approach by showing that the robot can reliably navigate envi-

ronments and interact with multiple human movers across a variety of scenarios.

2. To validate our algorithm’s analysis, confirming that the robot can always resolve deadlock situa-
tions—gracefully maneuvering around an oncoming human, even if the human is unaware of or ignores

the robot, and even when the robot’s preferred passing side conflicts with that of the human.

3. To test our hypothesis that the trade-off between efficiency and spatial intrusiveness in navigation

behavior can be tuned using a single algorithm parameter, 5.
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3.4.1 General experimental setup

Experiments were conducted in an uncluttered 8 m x 8 m laboratory space equipped with 12 Vicon motion
capture cameras to track the real-time positions and orientations of marked objects in the space. A single
UGV Jackal robot, fitted with a Vicon tracking marker, was placed at an initial location and provided
a goal point (set with another Vicon tracking marker) to navigate towards at a constant speed. Further
specifications of the cameras and robot are described in Section Each human participant in the space
wore a hat fitted with a Vicon tracking marker. The robot utilized real-time position and orientation Vicon
data from nearby humans to react to their movements.

In all trials, the robot’s objective was to move through the room toward its goal. If no humans were
present in the robot’s forward field of view, the robot proceeded directly toward its goal, mimicking the
classic “go-to-goal” behavior seen in PID control. If humans were present, the robot’s behavior depended
on whether an internal bias b # 0 was included in the NOD model to predispose the robot’s preference for
moving around nearby humans, either to the left or to the right. If no internal bias was set (b = 0), the
robot develops its preferred passing side around a human based solely on its observations of the human’s
position and orientation. The NOD algorithm guided the robot away from approaching or nearby humans
cooperatively and collaboratively (e.g., moving towards its left if a human appeared to be moving on the
robot’s right side).

Two forms of experiments were conducted, wherein
1. a single robot navigates around a single human, each moving toward the other’s initial location,
2. a single robot navigates around two humans moving within the space.

The instructions and objectives given to the human participants varied depending on the experiment format.

For the single robot/single human experiments, the human was initially placed opposite the robot in the
lab space, facing the robot directly. The participant’s goal location was the robot’s initial position. The
human was instructed to move toward this goal in one of three ways: walk directly toward the goal as if
unaware of the robot’s presence, or walk toward the goal with a curving trajectory toward either their left
or right. The human was instructed to walk at a comfortable pace and to stop their movement only once
they had arrived at their goal location. Further details are described in Section [3.4.2.2]

For the single robot/two humans experiments, the humans were allowed to move freely through the
laboratory space. The experiment naturally produced trials in which humans directly moved from an initial
location to a goal location. Participants could start or stop their movement at will throughout a trial.

Further details are described in Section [3.4.2.3]
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In each experiment, the positions and orientations of all tracked objects were recorded, along with their
timestamps. The relative angles and distances between objects relevant to the robot (e.g., its goal, any
nearby humans) were also logged. The robot’s opinion z, opinion rate of change 2, basal level of sensitivity
ug, sensitivity w, and angular velocity 6 were calculated and recorded. This information, along with all
parameters used within the NOD model, was compiled into a single .csv file for each experiment. All data
analysis was performed in MATLAB. Each experiment was recorded on video from the start of movement
until the robot reached its goal.

Participants in the study were recruited through word of mouth, and any identifying features in both
the data and video were anonymized. Study #14788 has been approved by the International Review Board

(IRB) of Princeton University.

3.4.2 Results
3.4.2.1 Metrics reported

We first define the metrics used to analyze the trajectories taken by the robot in experimental trials. They

are as follows:

Efficiency Metrics

Spatial Intrusiveness Metrics™

Definition Unit Definition Unit
Navigation time: The time it took for the Minimum distance**: The distance be-
robot to arrive at its goal location from its S tween the robot and a passing human at the m
initial position. closest point in their paths.
Path length: The total distance the robot Invasion distance: The distance the robot
traveled as it moved between its initial and m traveled while invading the personal space m
goal locations. (surrounding 1.2 m***) of a passing human.
Centerline deviation: The cumulative area
under the robot’s curved path from the | m?

straight path to its goal.

Table 3.2: Performance metrics and their definitions.

*Note that these spatial intrusiveness metrics have been categorized as “indicators of human discomfort”

in [53]. The discomfort levels of humans are of interest to this work; however, this metric was not measured

as it requires a participant survey.

** Recall from Sectionthat Dy represents the distance between a single robot and human ¢. Therefore,

we can shorthand this metric as min(Dy) for the minimum distance between a single robot and human ¢.

**#% The 1.2 m value comes from the reported threshold in [54] between a “personal zone” preferred

by humans for comfortable interactions with friends and a “social zone” for comfortable interactions with
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strangers, according to data collected from northern Europeans (in England, France, and Germany). These
results summarize the work of Hall [55] on the introduction of prozemics, the study of how much space is
necessary and understood to be maintained throughout various social interactions. Setting a metric for the
desired minimum separation between a robot and a human throughout an interaction allows us to analyze
whether and how well the NOD navigation can innately adhere to social conventions without their explicit
inclusion in the model.

These metrics are generally accepted as common and necessary results to gauge social robot interaction
as in [5]. These are also supported in part by the findings of [56], which surveyed employees of various
organizations deploying social robots and ranked personal distance violations, path length, and path efficiency

among the most important success metrics.

3.4.2.2 Single-robot, single-human experiments

The setup of each experiment was as follows. Pairs of starting and goal locations for the robot and the
human were fixed across all trials at (0, 0) m and (0, 6) m, respectively. The goal location of the robot
was set at (0, 6.4)m, effectively mirroring the initial location of the human. The human was instructed to
move toward the robot’s initial location. Thus, the initial and goal locations of the robot and human were
swapped, causing them to move head-on toward one another.

We combined three robot bias cases with three movement prompt cases for the human participant,
yielding nine unique trial configurations. We conducted three experiments within each trial configuration,
resulting in a total of twenty-seven trials. For each trial, we tested two values of 3 in equation : B=m/4
and 8 = w/6. This resulted in a total of fifty-four trials. The resultant trajectories in each of these trials
are documented in Fig. which is modeled after Fig. in [25] and can be seen in Chapter [7] Further,
we note that the resultant metrics of these trials are illustrated in figures which are modeled after Fig.
and [7.7in [25] and can be seen in Chapter 7
Robot instructions

The robot was programmed to move at a constant speed V' = 0.7m/s toward its goal location, modifying
the direction of its trajectory when encountering movers according to the navigation model with
parameters 7, = 0.008,d = 1l,a = 2,v = 2K, = 0.3,U = 1,n = 2,D. .+ = 5.5bm, and ky = 3. We

designed three cases corresponding to three different values of the robot’s bias b:
1. unbiased (b = 0),
2. biased to its left (b =0.3),

3. biased to its right (b = —0.3).
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Figure 3.4: The trajectory data of a NOD robot for three runs each of the nine trial configurations, with
both 8, = w/4 (shaded yellow) and 8, = w/6 (unshaded). Axes correspond to the zy-plane in meters.
The robot paths are shown in red, with a red box indicating the robot’s starting position at approximately
(0,0)m. The human paths are shown in blue, with a blue box indicating the human’s starting position at
approximately (0,6) m. In trial configuration labels, L=left, U = unaware/unbiased, and R = right.

Human participant instructions

The participant was instructed to walk at their normal pace towards their goal location according to one
of three prompts: 1) go straight (labeled as the human was unaware of the robot), 2) bear to the left, and
3) bear to the right.

Efficiency results

We first consider the efficiency metrics and their trends across each trial.

The navigation time from the beginning of the experiment to the robot’s arrival at its goal is shown
in Fig. Shorter navigation time corresponds to a more efficient movement by the robot. We observe
a consistent trend of increased time to goal when the robot has the larger 8 value. This aligns with our
intuition: the robot that turns more sharply to avoid a passing human will spend time traveling to its goal
as it moves further off course. Thus, tuning the S parameter to a smaller value, thereby limiting the size of
a turn that the robot can make, can improve efficiency.

A comparable trend is observed in the robot’s path length, as shown in Fig. A shorter path length
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Figure 3.5: The average navigation times of a NOD robot in each of the nine configurations of trajectories
illustrated and labeled in Fig.|3.4. Blue colors link results with the robot biased to the left (b = 0.3), pink
colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3). Darker
colors distinguish trials with 8 = /4, lighter colors distinguish trials with 5 = /6. Dotted lines link results
associated with the same [ value. Error bars show the standard deviation of each average.
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Figure 3.6: The average path lengths of a NOD robot in each of the nine configurations of trajectories
illustrated and labeled in Fig.|3.4. Blue colors link results with the robot biased to the left (b = 0.3), pink
colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3). Darker
colors distinguish trials with 8 = 7/4, lighter colors distinguish trials with 8 = 7 /6. Dotted lines link results
associated with the same [ value. Error bars show the standard deviation of each average.

corresponds to a more direct and efficient movement toward the goal. Again, a higher §# value in NOD
consistently produced longer paths towards the goal. This indicates that the robot moved less efficiently
when permitted to make a larger turn away from an approaching human. We note that the LR and UR
experimental cases, where the human passed on their right, did not follow this trend. The data of each trial
reveals that in these LR cases and for each 3 value, there are two out of three trials with markedly similar
path lengths and one outlier value: for 5 = /4, the outlier is lower than the others, and for 8 = 7/6, the
outlier is higher than the others. If these outliers were removed from the dataset for the case, the trend
would hold as the average path length would be higher for the larger 8 value.

Finally, we examine the centerline deviation of the paths taken by the robot in each trial. This metric
quantifies how far the robot deviated from the straight go-to-goal path while navigating around the oncoming

human and is shown in Fig. This was computed by summing the perpendicular distances of all trajectory
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Figure 3.7: The average centerline deviations of a NOD robot in each of the nine configurations of trajectories
illustrated and labeled in Fig. m Blue colors link results with the robot biased to the left (b = 0.3), pink
colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3). Darker
colors distinguish trials with 8 = 7/4, lighter colors distinguish trials with 8 = /6. Dotted lines link results
associated with the same [ value. Error bars show the standard deviation of each average.

points x(t) = x; within the trial from the line created connecting the initial location x(t = 0) = x¢ and goal

location x,. This equation is as follows:

dXt

XT _ _ .
centerline deviation(xg, X, Xg) = / |(yg o) (xg 2 fojv t xgy(; : yng‘
xo vV (Yg — y0)? + (x4 — 20)

This follows from the distance found between a single point (here, x;) and a line that is defined by two points
(here, the line between points xg and x4). A lower deviation value indicates that the robot remained more
aligned with a direct trajectory, reflecting higher efficiency. We again observe that a larger £ value results in
a greater deviation from the centerline, consistent with the findings on path length. However, this pattern
does not hold for the experimental cases of LR and RL, in which the robot initially moved with a bias that
conflicted with the human’s intended passing side. This created paths that initially veered one way but
ultimately turned in the other direction, allowing for cooperative passing. In these cases, the robot’s internal
bias was overridden by a more substantial influence from the human’s proxy opinion state. Still, the robot was
internally influenced by its bias b that contradicted the direction taken to adjust its course to accommodate
a human. Therefore, these trials exhibited lower deviations from the centerline in their trajectories than
other trials with the same [, suggesting that this resistant yet responsive adjustment to human movement
can produce more efficient interactions than those with immediate, bias-driven avoidance. In all efficiency
metrics, we observe the same general trend across experimental cases — that robot performance is least
efficient when paired with an unaware human (cases LU, UU, RU). This result is expected, as an unaware
human provides no clear proxy opinion to the robot, leading the robot to build its preferred passing side
based solely on small perturbations in the environment rather than a dedicated direction to cooperate. This

causes a delay in the formation of strong opinions, which in turn delays the cooperative passing process.
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An increase in efficiency was noted in the biased robot (cases LU and RU) of previous work [25] and in the
left biased robot (case LU) in these experiments, compared to the unbiased robot facing an unaware human
case. This follows logically, as a biased robot has an internal prompt to form an opinion and take some
action when interacting with a human. In contrast, an unbiased robot must build from an unopinionated
state with minimal input from the human. However, an unbiased robot is the most sensitive and responsive
to the movements of a passing human. This pattern highlights the inherent trade-off between efficiency in
goal-directed movement and flexibility as a cooperative passing partner in a human-robot interaction.

We note that there is a consistent anomaly in navigation duration across trials where the robot’s bias
b = —0.3 indicates a right-turning preference. One would expect relatively symmetric results between biased
trials with b # 0, as their biases were equal but opposite; therefore, passing behavior was anticipated to be
symmetric and mirrored across the centerline. However, these right-biased trials resulted in longer paths to
the goal, affecting the navigation time, path length, and centerline deviation. Upon reflection, we believe
that the robot’s goal position may have become slightly misaligned as the trials progressed, resulting in an
uneven goal distance, particularly in right-biased experiments.

Spatial intrusiveness results

We now consider the spatial intrusiveness metrics and their trends across each trial.

The minimum distance reached between the robot and human in each case is shown in Fig. [3.8] The
lower the minimum distance, the closer the robot came to colliding with the human, which indicates more
spatially intrusive passing behavior. We observe a consistent pattern across cases: the unbiased robot reaches
a markedly lower minimum distance than its biased counterparts. The lowest minimum distance for both
B values was the unbiased robot, unaware human (UU) case. As expected, trials with the lower 8 value
consistently resulted in shorter minimum distances across all cases. These results indicate that a biased
robot with ample turning allowance, as provided by a high 3, creates the least spatially intrusive setting for
successful passing.

Finally, we examine the invasion distance metric to analyze the robot’s ability to naturally maintain
socially acceptable passing conventions. These results are illustrated in Fig. Ideally, the robot should not
invade the personal space (1.2 m) surrounding the passing human, and personal space would be maintained
if the invasion distance were 0. In all cases where the human’s movement was directed—either left (LL, UL,
RL) or right (LR, UR, RR)—the robot maintained a zero invasion distance. Only when the human moved
in the unaware case directly towards the goal (LU, UU, RU) did the robot invade their personal space. The
invasion distance was noticeably lower when the 8 value was higher, such that even if the robot could not

maintain full personal space, it was able to move itself further away quickly.
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Figure 3.8: The average minimum distances between a NOD robot and a human in each of the nine
configurations of trajectories illustrated and labeled in Fig. [3.40 Blue colors link results with the robot
biased to the left (b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot
biased to the left (b = —0.3). Darker colors distinguish trials with 8 = 7/4, lighter colors distinguish trials
with 8 = m/6. Dotted lines link results associated with the same / value. Error bars show the standard
deviation of each average.
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Figure 3.9: The average invasion distances by a NOD robot to a human in each of the nine configurations
of trajectories illustrated and labeled in Fig. Blue colors link results with the robot biased to the left
(b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left
(b = —0.3). Darker colors distinguish trials with 5 = m/4, lighter colors distinguish trials with 8 = 7/6.
Dotted lines link results associated with the same ( value. Error bars show the standard deviation of each
average.
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3.4.2.3 Single-robot, two-human experiments

The setup of each experiment was as follows. The robot was placed at an initial location (3.5, -3.5)m in the
space, facing its goal at (-3.5, ~3.7)m directly. Two human participants would move around the room of
their own accord. Four representative navigation trials are reported in this work to showcase the flexibility
of the NOD control of the robot. Trials are each qualitatively described, and their performance metrics are
subsequently compared.

Robot instructions

The robot was programmed to move at a constant speed V,. = 0.75m/s toward its goal location, modifying
its trajectory when encountering movers according to the navigation model with parameters 7, =
0.1,d = 0.1,a = 0.1,y = 4,b = 0,K,, = 0.0027,U = 1.1,n = 7,ks = 1 and § = w/4. The robot was
kept unbiased (b = 0) for maximum flexibility in passing behavior. The critical distance D.,.;; is the only
parameter that differed between trials, set such that the resultant paths qualitatively match those observed
in [25].

Human participant instructions

Two participants were instructed to walk freely in the room at any speed, without a requirement for
consistency in direction or pace, if desired. The selected trials presented here show each human moving from
an initial location directly to a single goal location.

Trial descriptions

Trial 1: Two humans walk independently within the laboratory space as shown in Fig. This
experiment used human navigation data from Fig. in [25], reproduced in Chapter [/} Human 1 moves
perpendicularly across the robot’s path from the robot’s right side towards its left. We see the sensitivity rise
as Human 1 approaches, the robot’s opinion pitches negative, and the robot turns towards its right to quickly
avoid Human 1. The sensitivity drops as Human 1 is passed, but rises again as Human 2 remains stationary
along the robot’s path on the robot’s right side. The opinion pitches upward and becomes positive, causing
the robot to turn to the left. The robot then reaches its goal.

Trial 2: Two humans walk independently but close together within the laboratory space as shown in
Fig. [3.11] This experiment used human navigation data from Fig. in [25], reproduced in Chapter
This interaction causes a more pronounced turn by the robot and extends the trial duration by approximately
one second compared to Trial 1. Human 2 moves at an angle across the robot’s path from the robot’s left
side towards its right side. The sensitivity is higher than that seen in Trial 1, as this human is initially closer
to the robot. The robot’s opinion becomes positive and turns to its left to avoid Human 2. Human 1 then

appears very nearby in the robot’s path on its left side. The robot’s sensitivity increases further, but the
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opinion reverses sharply to become negative, causing the robot to turn right. With no further humans to
avoid, the robot moves towards its goal.

Trial 3: Two humans walk closely together within the laboratory space as shown in Fig. [3.13] This
experiment used human navigation data from Fig. in [25], reproduced in Chapter [7| Humans 1 and 2
walk so close to each other that a single sensitivity peak captures the influence of both. This rise in sensitivity
prompts a more positive opinion to form, one of larger magnitude than the opinions seen in trials 1 and 2,
and the robot turns left. This single turn avoids both humans, allowing the robot to then go towards its
goal unobstructed for the duration of its path.

Trial 4: Two humans walk together within the laboratory space as shown in Fig. [3.13] This experiment
used human navigation data from Fig. in [25], reproduced in Chapter|7] Though still nearby one another,
Humans 1 and 2 begin moving at different times. This allows the robot to interact with each independently
rather than as a unit, as seen in Trial 3. Human 2 is seen first on the robot’s right side, increasing the
robot’s sensitivity and pitching its opinion positively. The robot turns to the left, but then is immediately
on a collision path with Human 1, who is positioned on its left side. This raises the sensitivity again, and
the opinion becomes negative. The robot turns right to avoid Human 1, then moves towards its goal. Visual
inspection of the resultant trajectories shows that the robot comes noticeably closer to the passing humans

in this trial than in the others.

48



4
4 -2 0 2 4

-4
4 -2 0 2 4
X [m] X [m]

% Robot's goal -&- Human 1 <A Human 2 —— Opinion, z —e— Attention, u

4
A
2 >
£ o
)
-2
L
-4
4 -2 0 2 4
x [m]
‘+Robot
5
z 0
5
0 5 10
1
U 0.5
0
0 5 10
t[s]

U‘ S o

UY o o
CI! o ot

R
OE{A 05L

t[s] t[s] t[s] t[s]

Figure 3.10: NOD Trial 1. Human 1 walks across the robot’s path, causing the robot to turn right to avoid
them. Meanwhile, Human 2 abruptly stops moving while in the robot’s path, prompting the robot to turn
left to avoid them. D..;; = 3m. Experimental data from , illustrated in Fig of Chapter E
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Figure 3.11: NOD Trial 2. Humans 1 and 2 walk across the robot’s path. The robot first turns left to avoid
Human 2, then right to avoid Human 1. D.,.;; = 4m. Experimental data from , illustrated in Fig of
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Figure 3.12: NOD Trial 3. Humans 1 and 2 walk toward the robot’s initial position with no passing space
in between them. The robot avoids both humans by turning left. D..;; = bm. Experimental data from ,
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Trial comparisons and results

Finally, we compare the performance metrics across trials. These are listed in Table Trial 4 exhibits
the shortest navigation time and path length, but also the lowest minimum distances to both humans and
the most extended invasion distances seen across all trials. Thus, it is our most efficient yet least comfortable
(as it is the most spatially intrusive) case. In contrast, Trial 2 is the least efficient yet most spacious passing
case with the least spatial intrusiveness.

Trials 1 and 2 are similar to one another, as are Trials 3 and 4. We compare these pairs. Between
Trials 1 and 2, we observe that neither invades the personal space of either Human 1 or 2; however, Trial 2
maintains more space throughout the experiment. However, this comes at the cost of a longer path length
and increased navigation time. Between Trials 3 and 4, we see that both invade the personal space of at least
Human 1 along their paths. In these Trials, the robot needs to swiftly change its opinion to the opposite
preferred passing side as it interacts with little room between itself and the Human it passes. We believe
this is due to the inherent difficulty of managing real-time sequential decisions; however, parameters can
be tuned to improve performance. We explore the trade-off between forming robust, strong opinions to
produce comfortable passing behavior and the flexibility of changing these opinions quickly to better handle

sequential decision-making.

Trial | Navigation time | Path Length | min(D;) | min(D2) | Invasion Distance | Invasion Distance
# [s] [m] [m] [m] of Human 1 [m] of Human 2 [m]
1 12.53 8.77 2.03 1.38 0 0
2 13.20 9.24 2.18 1.55 0 0
3 12.93 9.05 0.54 1.29 0.28 0
4 12.13 8.49 0.36 1.01 0.47 0.28

Table 3.3: Performance metrics of the robot navigating in trials 1-4 (reported in Figures 3.13)).
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Chapter 4

Spiking Nonlinear Opinion Dynamics

(S-NOD) for agile decision-making

CHARLOTTE CATHCART, IAN XUL BELAUSTEGUI, ALESSIO FRANCI, AND NAOMI EHRICH LEONARD
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present an updated version of Fig.

Abstract

We present, analyze, and illustrate a first-of-its-kind model of two-dimensional excitable (spiking) dynamics
for decision-making over two options. The model, Spiking Nonlinear Opinion Dynamics (S-NOD), provides
superior agility, characterized by fast, flexible, and adaptive responses to rapid and unpredictable changes
in context, environment, or information received about available options. S-NOD derives through the intro-
duction of a single extra term to the previously presented Nonlinear Opinion Dynamics (NOD) for fast and
flexible multi-agent decision-making behavior. The extra term is inspired by the fast-positive, slow-negative
mixed-feedback structure of excitable systems. The agile behaviors brought about by the new excitable na-
ture of decision-making driven by S-NOD are analyzed in a general setting and illustrated in an application

to multi-robot navigation around human movers.

4.1 Introduction

The fast, flexible, and adaptive behavior observed in biology owes much to the excitable (spiking) nature of
cellular signaling [30H33|. Models of excitability represent the analog molecular and/or biophysical processes
that produce spikes in response to stimuli. These models inherit the adaptive behavior of analog (continuous)
systems and the reliability of digital (discrete) systems, foundational to spiking control systems [36] and
neuromorphic engineering [37]. However, existing models describe single-input/single-output 38| spike-based
signal processing. This is spiking activity that can only encode binary, single-option decisions: to spike or
not spike, as determined by the input signal pushing the system toward its excitability threshold [39]. This
limits the use of these models in studying and designing spiking decision-making over multiple observed
options, e.g., with neurons in cortical columns that activate at specifically oriented visual patterns [40] or in
sensorimotor (sensory-based action) decision-making [41].

We present a generalized model of excitable (spiking) dynamics that allows for fast, flexible, and adaptive
decision-making over multiple options. In this paper we focus on two-option spiking in a two-dimensional,

two-timescale model, and we use “agile” to mean “fast, flexible, and adaptive.” To the best of our knowledge,
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Figure 4.1: (a): Trajectory of a robot controlled with NOD (S-NOD) is shown with a blue (pink) line as
it navigates towards a goal (star) in the presence of an oncoming human mover (black). The NOD robot
experiences a collision while the S-NOD robot does not. (b): Opinion z of the robot over time ¢. Circles
mark matching points in time along trajectories and time-evolution of opinions. Figures are animated at
https://spikingNOD.github.io|

this is the first such model to generalize spiking to more than one option, i.e., spiking that can occur in any
of the multiple directions corresponding to the multiple options available to the excitable decision-maker.
We call our model Spiking Nonlinear Opinion Dynamics (S-NOD) as it derives from the Nonlinear Opinion
Dynamics (NOD) model of through the introduction of an extra term that makes NOD excitable, i.e.,
spiking.

NOD models the time evolution of opinions of a group of agents engaged in a collective decision-making
process over a set of options. The derivation of NOD was tailored to model and study the principles of fast
and flexible decision-making in biological collectives and to use these principles to design fast and
flexible decision-making in built collectives [1}[22[24]. Decision-making driven by NOD is fast because
it can diverge quickly from indecision even in the absence of informative inputs about the options. It is
flexible because the sensitivity (versus robustness) of opinion formation to informative inputs is tunable.
NOD exhibits a mixed-feedback structure : opinion formation arises from the balance of a negative
feedback loop that regulates agent opinions to a neutral solution and positive feedback loops (at single-
agent and network levels) that destabilize the neutral solution and trigger nonlinear opinion formation.
Both speed and flexibility are determined by a tunable threshold for opinion formation where negative and
positive feedback are perfectly balanced and the dynamics become singular.

To derive S-NOD, we introduce in NOD a slow regulation term inspired by the dynamics of excitable

(spiking) signal processing systems. The resulting excitable dynamics give S-NOD its superior agility in
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decision-making. Where NOD allows for a fast decision, S-NOD allows for autonomous fast sequential
decision-making, not requiring any ad-hoc reset of the model state once a decision is made. Where NOD is
flexible, S-NOD is flexible and capable of fast “changes of mind” and adaptive responses when the information
about the options changes rapidly and unexpectedly. Further, S-NOD provides on-demand (event-based)
opinion formation in the sense that large opinions are formed sparsely in time as “decision events” and only
when context requires it. This makes S-NOD efficient. The agility of S-NOD is illustrated in Fig. in the
context of a robot navigating around a human mover as studied in [25].

Our major contributions in this paper are the presentation, analysis, and illustration of a first-of-its-kind
model of two-dimensional excitable (spiking) dynamics for decision-making over two options, which provides
superior agility (fast, flexible, and adaptive behavior), especially important in changing contexts. Also, in
Section [.2] we present a new analysis of the singularity in NOD for a single decision-making agent and two
options. We prove how a single feedback gain K, tunes opinion formation. We show that when K, gets
too large, an opinion can become so robust that it will not change quickly enough if a new input arrives
in favor of the alternative option. In Section [£:3] we present S-NOD for a single agent and two options.
S-NOD provides fast opinion changes with the arrival of new informative input even for large K,,. We use
geometric analysis to show the existence of the spiking limit cycles associated with the excitable behavior of
S-NOD. We show further how this provides agility in decision-making. We generalize S-NOD to a network

of multiple agents and apply it to a social robot navigation problem in Section [£.4]

4.2 Fast and flexible decision-making: NOD

We recall NOD [1142] in Section for a single agent evolving continuously over time its real-valued
opinion about two mutually exclusive options with possible input present. In Section we analyze
stability of the neutral opinion solution and prove conditions on feedback gain K, that determine the type
of singularity (type of pitchfork bifurcation) in the dynamics. We show that, by shaping bifurcation branches,
K, tunes opinion formation. In Section [4.2.3] we show limits on tunability of NOD that sacrifice agility in

decision-making, motivating S-NOD, which is introduced in Section 4.3

4.2.1 NOD for single decision-maker and two options

We let an agent represent a single decision-maker. Let z(¢) € R define the agent’s opinion at time ¢ about two
mutually exclusive options. The more positive (negative) is z, the more the agent favors (disfavors) option
1 and disfavors (favors) option 2. When z = 0, the agent is neutral about the two options, i.e., in a state of

indecision. Let u(t) > 0 define the attention of the agent at time ¢ to its observations; u is implemented as a
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gain in the dynamics. Let b(¢) € R define an input signal at time ¢ that represents external stimulus and/or
internal bias. When b(t) > 0 (b(t) < 0), it provides information (evidence) in favor of option 1 (option 2).
Decision-making variables z, u evolve in continuous time ¢ according to the following NOD, adapted

from [1}/42]:

7,2 = —d z + tanh (u (az) + b) , (4.1a)

u =g+ K,2°, (4.1b)

where 2 := dz/dt. 7, > 0 is a time constant, and damping coefficient d > 0 weights the negative feedback
on z that regulates to the neutral solution z = 0. The second term in provides a nonlinear positive
feedback on z with weight given by the product of u and amplification coefficient a > 0, plus the effects of
b. The saturation nonlinearity given by the tanh function enables fast-and-flexible decision-making through
opinion-forming bifurcations [1,/42]. The positive feedback gain, attention u, is state-dependent according
to and grows with z2. Hence, small deviations from the neutral solution (z = 0) in response to
small inputs b leave attention v small and do not trigger large, nonlinear opinion formation. Large enough
deviations from the neutral solution in response to large enough inputs b cause a sharp increase in attention
u and trigger large, nonlinear opinion formation z. The resulting implicit threshold distinguishing small and

large inputs is tuned by ug and K.

4.2.2 Analysis of single-agent, two-option NOD

We study the dynamics and stability of solutions of system — using bifurcation theory. A local
bifurcation refers to a change in number and/or stability of equilibrium solutions of a nonlinear dynamical
system as a (bifurcation) parameter is changed. The state and parameter values at which this change occurs
is the bifurcation point. At a bifurcation point, one or more eigenvalues of the Jacobian of the model must
have zero real part [44,46], i.e., a bifurcation point is a singularity of the model vector field.

Our main interest is in the pitchfork bifurcations. There are two generic types of pitchforks. A super-
critical pitchfork bifurcation describes how one stable solution becomes unstable and two stable solutions
emerge as the bifurcation parameter increases. A subcritical pitchfork bifurcation describes how two unstable
solutions disappear and one stable solution becomes unstable as the bifurcation parameter increases.

Our objective is to understand how thresholds of fast-and-flexible decision-making are controlled by the

model parameters with the goal of designing feedback control laws for those parameters that can make
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decision thresholds adaptive to context. Substituting (4.1b]) into (4.1a]) yields
7%= —dz + tanh ((uo 4 Ku2?) - (a2) + b) . (4.2)

We first study (4.2) in the case b = 0, i.e., when there is no evidence to distinguish the options, and
bifurcations are symmetric. Then, we introduce b # 0 and use unfolding theory [44] to understand the

effects of inputs.

Lemma 1. (NOD Taylor expansion and singularity): Consider (4.2)) and let b = 0. Then the solution z = 0

is always an equilibrium, and the Taylor expansion of (4.2)) about z =0 is

1 2,3 20203
Z‘:T<(au0—d)z+a<Ku—a3uO> 23+a3u8< alsuo —Ku> 25> +0(27). (4.3)
z

d

A singularity exists at (ug, z) = (ug,0), with ug = &. The solution z = 0 is stable (unstable) when uy < ug

(uo > uf).

Proof. When z = 0 and b = 0, the right hand side of is zero, thus z = 0 is always an equilibrium.
We expand with b = 0 about z = 0. The Taylor expansion of the hyperbolic tangent is tanh(w) =
w—w?/3 + 2w®/15 + O(w"). Using this in yields (£-3). The Jacobian J(z) = % of evaluated at
z=01is J(0) = (aup — d)/7, which is singular when uy = uj = ¢. When u < ug, J(0) < 0 thus z = 0 is

exponentially stable. When u > uf, J(0) > 0 thus z = 0 is unstable. |

We next explore in Proposition [I]and Fig. [£.2) the effect of parameter K, on the cubic and quintic terms

of (4.3) and its role in determining the type of singularity at (u, z) = (ug,0).

Proposition 1. (K, determines singularity type): Let b = 0, ufy = g. The singularity of dynamics (4.2))

d3

at (u, z) = (ug,0) as proved in Lemma corresponds to a supercritical pitchfork bifurcation for K, < §-,

a

quintic pitchfork bifurcation for K, = %, and a subcritical pitchfork bifurcation for K, > %.

Proof. Denote p = (K, — g—z) and ¢ = (%i — K,) as the coefficients of az3/7, and ad?2®/7, in (4.3

resp. at up = uj = <. When K, < g—z (Ky > g—Z), then p < 0 (p > 0) and |i is the normal form of
the supercritical (subcritical) pitchfork bifurcation [44]. When K, = g—z, then p = 0, ¢ < 0 and 1] is
the normal form of the quintic pitchfork, by recognition problem [44, Prop. VI.2.14] and its Zs-symmetric

universal unfolding [44] Prop. VI1.3.4; Fig. VI.3.3]. |

Proposition [1| uncovers the key role of K, in tuning opinion formation (Fig. |4.2)): (i) K, controls the

supercritical vs. subcritical nature of opinion formation, and (ii) increasing K, increases opinion strength
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Figure 4.2: The effect of K, on the bifurcation diagram of and the cubic and quintic terms of .
(a): Bifurcation diagrams of NOD (4.2) with K, values corresponding to the vertical dashed lines in (b).
Stable (unstable) solutions are shown with solid (dotted) lines. The bifurcation point is (ug, z) = (ug,0).
(b): Coeficient p (¢) as a function of K, shown as a solid (dashed) black line.

of non-neutral solutions. Bifurcation diagrams in Fig. plot equilibrium solutions of ([4.2)), i.e., solutions
of 2 = 0, as a function of bifurcation parameter ug for different values of K, (Fig. 4.2b)). The singularity
at (ug,z) = (ug,0) is a pitchfork bifurcation: blue, gray, green lines show supercritical, quintic, subcritical
solutions, respectively. For all K,: when uy < ug, z = 0 is stable; when ug > uf, 2 = 0 is unstable and there
is a bistable symmetric pair of solutions. When K, < %, the pitchfork is supercritical: there are no other
solutions. When K, > %, the pitchfork is subcritical: two stable non-neutral solutions appear for ug < uj
through saddle-node bifurcations. As K, grows more positive, these solutions emerge for smaller values of

ug and increase in magnitude, reflecting increasing opinion strength.

4.2.3 Limitation on tuning of NOD

We prove that the region of multi-stability in the subcritical bifurcation of NOD grows as K, gets large.

Proposition 2. (K, determines region of multi-stability): Letb =0 and (ug, 21 be either of the two saddle-
node bifurcation points of the subcritical pitchfork of NOD (4.2) for K, > g. Then ug is a monotonically

8ug

Lo <.

decreasing function of K., i.e.

Proof. Let K| > g—z and f(z, Ky, ug) := —dz+tanh(az(u0 + KuZQ)). By hypothesis, f(zT,Kl,u(];) =0. We
have g—f(zf, Kiul) = azt tanh’(azf(ug; + K (21)?)) # 0, since 2t # 0. Following , the implicit function

Uuo

theorem shows the existence of g : R? — R such that for some neighborhood of (2', K1), f(z, Ky, 9(z, K.)) =

0. We get
dg (af> -t ( of ) ~a(zh)? tanh (a2l (uf + K} (:1)?) oy
oK, dug 0K, azt tanh’ (azt (v + K§(21)2)) '
Since 2 # 0, ug is monotonically decreasing in K. |
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Figure 4.3: Opinion solutions of NOD and S-NOD over time and associated bifurcation diagrams. (A):
Opinion solutions z of NOD (4.2)) with larger and smaller values of K, and of S-NOD with larger value
of K, all with initial condition z(0) = 0.01 and ug = 0.9, and us(0) = 0 for S-NOD. Input signal b is also
shown over time. (B): Bifurcation diagrams of for the two values of K, with the solutions z in A
superimposed: (left) from ¢ = 0 to ¢ = 100 and (right) from ¢ = 100 to ¢ = 200.

Proposition [2] implies that one limitation of NOD is that large K, can make the region of multi-stability
of NOD so large and robust that solutions can get “stuck” in one of the decision attractors unless very
large inputs in favor of another decision state are applied. This is illustrated in Fig. {:3]A, where the first
(dark blue) and second (light blue) NOD differ only in their K, parameters (K,, > K,, > g—i) but their
solutions are distinctively different. At the stimulus onset (b > 0 for 0 < ¢ < 100), the solution of the first
NOD converges to z > 0 much more rapidly than that of the second NOD. However, when the input switches
values (b < 0 for ¢t > 100), the solution of the first NOD gets stuck at a positive value, whereas the solution
of the second NOD is able to track the change in input sign. This example reveals a fundamental trade-off
between speed/robustness (first, dark blue NOD) and flexibility (second, light blue NOD).

Instead of aiming to fine-tune the gain K, around a hard-to-define fast/robust enough yet flexible enough

decision-making behavior, we use mixed-feedback principles to make the system ezcitable, inheriting both
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the speed of NOD with large K, and the flexibility of NOD with small K,, and imparting system agility. The
behavior of the resulting S-NOD is shown in pink in Fig. {:3]A. By generating “decision spikes” the S-NOD
is as fast as the high K,-NOD and as flexible as the low-K, NOD. In what follows, we present the S-NOD

model, its analysis, and its multi-agent generalization.

4.3 Agile decision-making: S-NOD

We present and analyze the Spiking Nonlinear Opinion Dynamics (S-NOD) model.

4.3.1 S-NOD for a single agent and two options

We define S-NOD by introducing a slow regulation variable us to NOD ({4.2)), as in the fast-positive, slow-

negative mixed-feedback structure of excitable systems [30H33]:

7,2 = —d z + tanh ((uo —us 4 K,2%) - (az) + b) , (4.4a)

Tusus = Kusz4 — Us, (44b)

where 7, > T, is larger by at least an order of magnitude such that us responds more slowly than z. S-NOD
defined by (4.4)) describes dynamics with excitability: a fast positive feedback (mediated by z) acts to excite
the system, while a slow negative feedback (mediated by us) regulates it back to near the ultrasensitive

pitchfork singularity (as seen in Fig. 4.2)).

4.3.2 Geometric analysis of single-agent, two-option S-NOD

We use phase-plane analysis to study and illustrate the spiking and decision-making behavior of S-NOD (|4.4)).
To construct the phase-plane, we first compute the nullclines.

The z-nullcline is defined as the solution pairs (us, z) that satisfy 2 = 0 for . This is equivalent to
solving for the equilibrium solutions of as a function of ug as in Section m Thus, the z-nullcline
(pink in Fig. is analogous to the bifurcation diagram of , mirrored about the vertical axis and
shifted right by wg, with u} = ug — d/a = up — uf. When b = 0, the neutral solution z = 0 is a stable
(unstable) equilibrium of for us > u¥ (us < uk). The us-nullcline (blue in Fig. is defined as the
solution pairs (us, z) that satisfy s = 0 in , which gives the quartic parabola us = K,,_2*. The larger
K, , the more narrow this parabola is.

The intersections of the nullclines determine equilibrium solutions of S-NOD and, as shown in

Fig. depend on the value of ug. If b = 0, the neutral solution (us,z) = (0,0) is always an equilibrium.
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Two more equilibria, symmetric about z = 0, may be present for high enough uy.

Fig. depicts the phase-plane when b = 0 and u¢ < u. The nullclines have one point of intersection
at the neutral solution. The neutral solution is stable. Trajectories will converge to and settle at this point
and no excitable behavior in the decision-making will take place.

Fig. depicts the phase-plane when b = 0 and ug = u(;. The nullclines have three points of intersection,
the neutral solution and two unstable equilibria symmetric about z = 0. The neutral solution is a saddle-
node bifurcation with one exponentially stable eigendirection (along z = 0) and one marginally unstable
eigendirection (along us = 0). There are two saddle-node-homoclinic (infinite period) cycles, diverging
upward and downward from the saddle-node. In the absence of noise/exogenous perturbations, all trajectories
asymptotically converge to the neutral solution. The presence of any arbitrarily small noise makes the
trajectory escape from the neutral solution at random time instants along either the upward or downward
saddle-node-homoclinic cycle, leading to large prototypical excursions in the (us, z) plane.

These large prototypical excursions resemble the “spiking” trajectories of excitable neuronal system. By
analogy, we call them “decision spikes” or “excitable decisions”. In contrast to neuronal spikes which happen
in only one direction, decision spikes can happen in as many directions as there are options. For the one-
dimensional two-option dynamics studied here, both upward (in favor of option 1) and downward (in favor
of option 2) decision spikes are possible.

Fig. depicts the phase-plane when b = 0 and uwp > uj. Three fixed points are unstable and it
is possible to prove, along the same lines as [59], the existence of two limit cycles, symmetric about the
horizontal axis z = 0. These limit cycles are made of repetitive decision spikes, i.e., spiking decision limit
cycles. Geometric singular perturbation analysis [60,/61] provides the tools to rigorously prove the existence
of these spiking decision limit cycles. Such an analysis goes beyond the scope of this paper. Instead, we
leverage Fig. to describe qualitatively a typical oscillatory spiking decision behavior in the presence of
small noisy perturbations.

Consider Fig. and a trajectory with a large initial condition in w,. Initially, the trajectory rapidly
converges to the z = 0 axis, then slowly slides leftward and approaches the neutral solution. As soon as
the trajectory nears this equilibrium, noisy perturbations push it either upward or downward, generating an
upward or downward decision spike, respectively. The decision spike trajectory brings the trajectory back
to the pitchfork singularity, the next decision spike is generated, and the spiking decision cycle continues.

When input b # 0 and || is sufficiently large, the z-nullcline unfolds accordingly to the universal unfolding
of the pitchfork [44, Ch. III]. Due to the nullcline unfolding, the phase-plane geometry changes qualitatively
as shown in Fig. Similar geometric singular perturbation analysis methods as those employed for the

analysis of Fig. and reveal the existence of a unique spiking decision limit cycle associated to
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Figure 4.4: The system solutions and (us, z) phase portrait as the basal sensitivity ug increases. For all:
d=1,a=2, (thus u§ =0.5), K, =2, K,  =6,7,, /7. =10. (Top of each panel): Solutions of us and z over
time, with initial condition (us, z)|t=0 = (0.01,0.01) and additive Gaussian distributed white noise. (Bottom
of each panel): The us-nullcline (z-nullcline) is shown in blue (pink). Solid (dotted) lines indicate stable
(unstable) branches of the z-nullcline with respect to (4.4a)). Gray arrows denote the vector field. Black
circles show equilibria: filled are stable, unfilled are unstable, partially filled are saddle-node bifurcations.
Crosses show saddle equilibria. Saddle-node-homoclinic cycles in (b), and limit cycles in (c¢) and (d) are in
yellow.
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spiking decisions in the direction of the option favored by the inputs (e.g., upward decision spikes in the case
of Fig. where b > 0 provides evidence in favor of option 1).

Observe that in the presence of informative inputs (Fig. , the decision spiking frequency is higher
than in the case of endogenous decision spiking oscillations (Fig. [4.4c). This feature is similar to spike
frequency indicating input intensity in neural systems. In applications like robot navigation, ug can be

controlled to avoid endogenous spiking.

4.4 Agile multi-agent decision-making: S-NOD

4.4.1 S-NOD for multiple agents and two options

We can generalize the single-agent S-NOD equations to the case of N, agents in the same way that
NOD generalizes to N, agents [1]. The multi-agent NOD models the decision-making process of multiple
agents sharing and influencing one another’s opinions over a communication network. Examples include
agents choosing how they distribute their time over two resource patches or deciding whether to move to the
left or right when navigating a cluttered space, all while integrating information from other agents’ opinions.

In the multi-agent S-NOD, each agent ¢ has two state variables z; and us; with dynamics given by:

Ng
T,%2; = —d z; + tanh ((uo — U + K.2%) (Z aikzk> + bi> , (4.5a)
k=1

Tuyllss = —Us; + Ky 2}, (4.5b)

where A = [a;;] € RVa*Na is the S-NOD network adjacency matrix, capturing both the strength (a;; > 0)
of a self-reinforcing term and the strength (|a;x|) of the influence of the opinion of agent &k on the opinion of
agent i. If a;; is positive (negative), then an opinion of agent k in favor of one of the options influences an
opinion of agent ¢ in favor of the same (other) option. We assume homogeneous agents, i.e., all agents have
the same d, ug, K, and K,, . S-NOD as presented in is the networked, distributed version of .
In Fig. we simulate the opinion dynamics of for three agents in a network when agent 1 receives a
constant input by > 0 for ¢t € [10,40]. For the loop-free networks of Fig,. we see that when the weights a;x
are positive (negative) the spiking of agent 1 for option 1 triggers synchronized (anti-synchronized) spiking
of agents 2 and 3. With a;; > 0 (Fig. 7 all agents form spikes of positive opinion due to the positive
input to agent 1. With a;, < 0 (Fig. , agent 1’s behavior is unchanged but agents 2 and 3 instead
form spikes of negative opinion. Future work will characterize different possible behaviors, e.g., opinion spike

(anti)synchronization, for classes of network structures.
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Figure 4.5: S-NOD solutions over time of three agents with the directed communication network shown and
an input by applied only to agent 1. For i # k, (a) a; = +0.1 and (b) a;x = —0.1. For all: a;; =1, d =1,
K, =23, K, =16, up=0.9, 7, /7. = 20.
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Figure 4.6: Trajectories of social robots using S-NOD to navigate around approaching human movers.
Communication network and parameters as in Fig. with (a) a;, = +0.1 and (b) a;x = —0.1. (c) Plots of
z over time t for the robots. Table I lists performance metrics of the robots.

4.4.2 Application to social robot navigation

We use S-NOD to design a decentralized, agile controller for social robots navigating around oncoming
human movers in 2D. Each robot has a nominal control that steers it toward its goal by regulating its
heading direction through proportional negative feedback. The S-NOD state z; defines the strength of robot
’s preference for turning left (z; > 0) or right (z; < 0). A term mediated by z; is added as positive feedback
to the nominal steering controller. This overcomes negative feedback regulation and promotes fast reactive
steering when possible collisions with oncoming human movers are imminent. Simulations of the resulting
navigation behavior are in Fig. [£.1] and Fig. [£.6] and animated at https://spikingl0D.github.iol

To anticipate collisions, robot i can estimate its distance (p;) to a human, bearing angle (n;) on the

human, and angle (7;,;) between the human’s heading direction and the robot-human vector. Robots can
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exchange steering opinions zj over a communication network as in . We let the robot’s attention grow
above its basal level ug as collision risk grows with decreasing p; and n;. This increases the strength of (i)
the positive feedback loop of the steering controller, and (ii) the interactions with other robots to achieve
coordinated obstacle avoidance. Thus, each robot’s steering opinion deviates from navigating toward its goal
dependent on p;, 7, np,, and on other robot opinions. We let 2, (t) = tan(ny(t)) be a proxy for the human’s
opinion at time t and add 2 to the term ij:”l ;L2 in ‘ Coordination among robots derives from
the sign of a;r: when a;; > 0 (a;x < 0), robot i is influenced to make a similar (opposite) steering choice as
robot k. We let |a;i| decay with growing distance between robots 4, k.

Fig. compares the trajectory and opinion of a robot using NOD (adapted from [25]) and S-NOD
to navigate around a human mover. The S-NOD robot passes the human with a minimum distance of 0.96m
and arrives at its goal in 14.4 seconds. Without the return to the sensitive bifurcation point that S-NOD
provides, the NOD robot’s opinion change lags as the human makes a sharp turn and the robot experiences
a collision (moving closer than 0.3m to the human) less than 6 seconds into the simulation.

Fig. [4:6] showcases three robots navigating towards a common goal and around two approaching humans
using multi-agent S-NOD (4.5)). The communication networks are those in Fig. and we observe similar
spiking opinion formation behavior. Robots in Fig. exhibit the same synchronized opinion formation
behavior seen in Fig. In Fig. due to the distance dependent |a;|, robot 3 disagrees more with
robot 2 than robot 1, thus preferring the same opinion as robot 1, unlike in Fig. with constant |a;g|,
where agent 3 joins agent 2. Notably, in Fig. robot 2 initially turns right (opposite to robots 1 and 3)
to avoid human 1, but later switches to a left turn to avoid human 2. S-NOD gracefully navigates robot 2
out of consecutive potential collisions. This embodies the agility and sequential decision-making features of

S-NOD.

4.5 Final remarks

We presented and analyzed Spiking Nonlinear Opinion Dynamics (S-NOD) for a single agent and two options.
We showcased the ability of S-NOD to swiftly form opinions and regulate back to ultrasensitivity. S-
NOD provides first-of-its-kind two-dimensional excitable (spiking) dynamics for agile decision-making over
two options. We showed how NOD can become too robust, but the self-regulation of S-NOD recovers
flexibility. We analyzed existence of limit cycles for certain parameter regimes in S-NOD. We presented
S-NOD for multiple agents that communicate opinions over a network and highlighted potential for agent
(anti)synchronization. We illustrated S-NOD’s agility in a social robot navigation application and plan to

implement on physical robots. We aim to provide analytical guarantees on the onset of periodic spiking in
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limit cycles, to analyze synchronization patterns for multiple agents, and to generalize to multiple options.

4.6 Appendix

We present an extended form of Fig. [4.3] to visualize the additional us dimension on the bifurcation diagram
of z and ug. The top and middle panels are unchanged from the published figure, aside from colors within
the bifurcation diagrams. A final panel shows the loop in the ug dimension created with the S-NOD model

that creates the spiking behavior seen in (A) and represented with the pink bi-directional arrow in (B).
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Figure 4.7: An extended presentation of Fig. Middle section (B) has modified colors used to distinguish
the bifurcation diagrams with different K, values. Bottom section (C) illustrates the excitation loop in the
us direction previously unseen in the 2D bifurcation diagram of (B). The color bar shows the 12-timestep
shape of the loop that is followed by the trajectory before (in the left plot) and after (in the right plot) the
bias input b changes sign. Dots and streaks of the NOD trajectories are also shown, but move so quickly
that a color bar was unable to capture temporal information meaningfully and was therefore omitted.
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Chapter 5

Spiking Nonlinear Opinion Dynamics

(S-NOD) for social robot navigation

This chapter serves to validate and expand on the S-NOD model when applied to social robot navigation. We
begin this chapter with the explicit definition of the specialized S-NOD equations for social robot navigation.
We then replicate the experimental validation of S-NOD on a navigation social robot, following the one-
human and two-human experimental protocols outlined in Chapter Finally, we explore the parameter

sensitivity of navigation behavior by a robot navigating with S-NOD.

5.1 S-NOD specialized for social robot navigation

We begin by introducing the equations of S-NOD for social robot navigation. These are presented in line with
those behind the multi-agent, multi-human simulations of Fig. in the previous chapter. The parameter
definitions follow in line from those reported in equation for NOD specialized for social robot navigation
defined in Chapter For brevity, only new variables and/or parameters are described here. The equations

for S-NOD on a navigating social robot are as follows:

68



Na Nh
T, %2 = —d; z; + tanh <max(ui —ug, ,0) - <Z aikzE + Zaig2h£> + bl—) , (5.1a)
k=1 (=1

u; = max(up,,) + Ko, 27, (5.1b)
Tu, s, = Ku,, 2 —uy,, (5.1c)
0; = ko, sin (ug,, - B; - tanh(z;) + (1 — ug,,) ¢ ) - (5.1d)

All parameter and variable definitions for opinion z; update , sensitivity u; update , and
heading 6; update can be found in Chapter All parameter and variable definitions for the slow
recovery state us, update can be found in Chapter

A new parameter not previously discussed exists only within the opinion z; update in equation .
This is a;, € R, which defines the weight of robot k’s opinion on robot 4’s opinion update. A = [a;;,] € RNe*Na
is the S-NOD network adjacency matrix, which captures both the strength (a; > 0) of a self-reinforcing
term and the strength (Ja;x|) of the influence of the opinion of robot k& on the opinion of robot i. Note

that a;; = a; in the NOD model, combining the a;z; term into the sum of all robots’ influence on robot ’s

opinion. The term for all other robot influences where i # k is defined as a;;, = T - (1 — ( P? jr’;ik>m>_1,
with gain I € R, the distance between robots i and k described with D, = ||x; — xx|| and letting P > Dy
be the neighbor proximity threshold for communication. This function is a saturated curve between a value
of 0 when D;;, > P/2 and 1 when D;; < P/2 with a slope of m > 0, where P defines the distance at
which a;; = 0.5. Further, we let each robot i observe its robot teammate k& with the same 7;; formulation
as that for the relative angle 7;, for human movers. Therefore, we let a;; = 0 when cos(n;;) < 0 to stop
communication between robot ¢ and robot k if robot k is physically behind and therefore unobservable to
robot i. The sign of T determines the kind of inter-robot influence: if T is positive (negative), then a;; > 0
(air, < 0) and an opinion of robot k in favor of one passing side influences an opinion of robot ¢ in favor of
the same (other) passing side.

For the duration of this chapter, only a single robot (i = N, = 1) is considered. Therefore, the subscript

i can be dropped from variable and parameter notation. The equations for a single robot interacting with

Np, humans then simplify to:
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Nn
T,2 = —dz + tanh (max(u — g ,0)- (az + Z aéh[> + b) , (5.2a)

=1
u = max(ug, ) + K22, (5.2b)
Tu s = Ko, 2 — ug (5.2¢)
0 = kg sin (ug, - B - tanh(z) + (1 — w,) @) - (5.2d)

We use these equations to validate the efficacy and agility of the S-NOD model in navigating social robots

in both real experiments and simulations.

5.2 Experimental validations of S-NOD

As discussed in Chapter ] S-NOD offers several key advantages over the original NOD framework, partic-
ularly in the context of social robot navigation. We utilize experiments to showcase these benefits. With
its spike-based dynamics, S-NOD enables the robot to respond rapidly and effectively to dynamic human
behavior. This makes S-NOD well-suited for human-robot interactions, as the decision-making spikes allow
the robot to form an opinion on its preferred passing side, implement a turn, and then return to an unopin-
ionated and ultrasensitive state. That is, the robot can more responsively adapt to changes in the human’s
motion or intent than seen with NOD. Additionally, we demonstrate that the system’s behavior can be tuned
by its parameters, recovering the navigation behavior of NOD.

In this section, we present the results of experiments in human-robot navigation with a social robot using
the S-NOD algorithm, aiming to both validate these advantages and provide a direct comparison of robot
behavior under NOD and S-NOD control.

The S-NOD algorithm was validated through both simulated and experimental trials, with S-NOD-
embodied robots navigating past either a single oncoming moving human or around multiple oncoming
moving humans. Simulations were rendered using MATLAB, and the behaviors observed in these ideal-
ized, noise-free simulations provide evidence for the general range of parameter values to be used in real
experiments.

Experiments using the S-NOD algorithm on a social robot were conducted to directly parallel those used
to validate the NOD algorithm on a social robot in Chapter [3.4] Specifically, we tested the S-NOD algorithm
on a social robot under the same conditions as the single-robot, single-human and single-robot, two-human

scenarios that had been used to validate the NOD algorithm on a social robot. This allowed for a direct

70



comparison between the behaviors of S-NOD and NOD in social robot navigation.
Our experimental objectives are fourfold, some of them the same as those for the experimental validations

of NOD:

1. To demonstrate the flexibility of our approach by showing that the S-NOD robot can reliably navigate

environments and interact with multiple human movers across a variety of scenarios.

2. To validate our algorithm’s analysis, confirming that the robot can always resolve deadlock situations
- gracefully maneuvering around an oncoming human, even if the human is unaware of or ignores the

robot, and even when the robot’s preferred passing side conflicts with that of the human.
3. To replicate and compare the navigation results of the S-NOD algorithm to the NOD algorithm.

4. To identify behavioral differences between S-NOD and NOD in a robot’s physical motion.

5.2.1 General experimental setup

The setup for both the single-robot, single-human set of experiments and the single-robot, two-humans set of
experiments directly mirrors that described in Chapter We direct readers to this section for a detailed
description of the methodology for both sets of experiments.

Two sets of experiments were conducted for the single-robot, single-human framework. The first set
of experiments, designated as S-NOD 1 trials, was performed using the same parameters as those in the
NOD trials within the single-robot, single-human framework. This set of experiments serves to compare
the behavior of NOD and S-NOD when embodied and tuned in the same manner. The second set of
experiments, noted as S-NOD 2 trials, were done with adjusted parameters to replicate the behavior of
the NOD embodied robot. This enables us to evaluate the NOD and S-NOD algorithms through a direct
comparison under identical conditions (S-NOD 1) and demonstrate S-NOD’s versatility in replicating NOD-
like behavior (S-NOD 2).

5.2.2 Results
5.2.2.1 Metrics reported

The metrics used to analyze the trajectories taken by the robot in experimental trials include the same set
of efficiency and spatial intrusiveness metrics described in Chapter [3.4.2.1
Additionally, we consider the total opinion magnitude ||z|| exerted throughout a navigation trial. We

interpret the total opinion control ||z|| as a measure of the NOD or S-NOD algorithm’s exercised authority
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in controlling the robot’s turning when interacting with a human. At any time ¢ along the trial, ||z(t)]|
reflects the magnitude of the robot’s opinion, therefore its cumulative value ||z|| = fOT ||z(¢)||dt captures how
actively the robot formed its preferences in response to a human over time. A high ||z|| value indicates that
the robot was frequently—or persistently—prompted to turn away from its goal direction in response to an
interaction with a human. A low [|z|| value indicates that the opinion dynamics minimally influenced the
robot and thus the robot moved more directly in its goal direction. This provides us with a new efficiency

metric to compare alongside the results of the similar NOD experiments being replicated. The complete set

of metrics reported within this chapter is contained in the updated table below.

Efficiency Metrics

Spatial Intrusiveness Metrics

Definition Unit Definition Unit
Navigation time: The time it took for the Minimum distance*: The distance between
robot to arrive at its goal location from its S the robot and a passing human at the closest m
initial position. point in their paths.
Path length: The total distance the robot Invasion distance: The distance the robot
traveled as it moved between its initial and m traveled while invading the personal space m
goal locations. (surrounding 1.2 m) of a passing human.

Centerline deviation: The cumulative area
under the robot’s curved path from the m
straight path to its goal.

Opinion control ||z||: The total opinion
magnitude exerted during the robot’s full nav- 1
igation.

Table 5.1: Updated performance metrics and their definitions.

* Recall from Section [3.2]that D, represents the distance between a single robot and human £. Therefore,

we can shorthand this metric as min(Dy) for the minimum distance between a single robot and human £.

5.2.2.2 Single-robot, single-human experiments

The setup of these sets of experiments matches that detailed in Chapter [3.4.2.2] Pairs of starting and
goal locations for the robot and human were fixed across all trials at (0, 0) m and (0, 6) m. The robot’s
goal location was set at (0, 6.4)m, effectively mirroring the initial location of the human. The human was
instructed to move toward the robot’s initial location. Thus, the initial and goal locations of the robot and
human were swapped. This causes the robot and human to begin their movement by facing each other
head-on.

We combined three robot bias cases with three movement prompt cases for the human participant,

yielding nine unique trial configurations. We conducted three experiments within each trial configuration,

resulting in a total of twenty-seven trials. As before, in each trial, we tested two values of § in equation
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(5.2d): B =m/4 and B = 7/6. This resulted in a total of fifty-four trials per experiment set.
Robot instructions

Consistent with these sets of experiments and the NOD single-robot, single-human experiments, the robot
was programmed to move at a constant speed, V = 0.7 m/s, toward its goal location. The robot modifies
its trajectory when encountering movers according to the navigation model . Two experimental sets
were completed, each with different parameters, which are detailed in their respective sections. We designed

three cases corresponding to three different values of the robot’s bias b:
1. unbiased (b = 0),
2. biased to its left (b = 0.3),
3. biased to its right (b = —0.3).

Human participant instructions

The participant was instructed to walk at their normal pace towards their goal location according to one
of three prompts: 1) go straight (labeled as the human was unaware of the robot), 2) bear to the left, and
3) bear to the right.
Experiment sets

We conducted two sets of experiments within this chapter with the explicit purpose of comparing them
among themselves and to the NOD experiments of Chapter [3.4.2.2] One set of experiments, S-NOD 1,
used the same base parameters as those in the NOD single-robot, single-human experiments. The other set
of experiments, S-NOD 2, features adjusted parameters from those in the NOD single-robot, single-human

experiments to produce similar qualitative navigation behavior.

S-NOD 1: Parameters comparable to NOD experiments of Section [3.4.2.2

The parameters used in the S-NOD equation are as follows: 7, = 0.008,d = 1,a11 = a = 2,7 =
2,K,=03,U=1,n=2, Doyt = 55m, 1, =0.08, K,, =10, and kg = 3. Note that these parameters
are the same as those reported in the NOD single-robot, single-human set of experiments, except for the
new, S-NOD-specific variables 7,,, and K,,.

The resultant trajectories in each of these trials are documented in Fig.
Efficiency results

We first consider the efficiency metrics and their trends across each trial.

The navigation time from the beginning of the experiment to the robot’s arrival at its goal is shown

in Fig. Shorter navigation time corresponds to a more efficient movement by the robot. We observe a
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Figure 5.1: The trajectory data of a S-NOD 1 robot for three runs each of the nine trial configurations,
with both §, = w/4 (shaded yellow) and 8, = 7/6 (unshaded). This robot uses parameters comparable to
the NOD robot experiments of Section [3.4.2.2] Axes correspond to the zy-plane in meters. The robot paths
are shown in red, with a red box indicating the robot’s starting position at approximately (0,0)m. The
human paths are shown in blue, with a blue box indicating the human’s starting position at approximately
(0,6) m. In trial configuration labels, L=left, U = unaware/unbiased, and R = right.
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Figure 5.2: The average navigation times of a S-NOD 1 robot in each of the nine configurations of trajec-
tories illustrated and labeled in Fig. Blue colors link results with the robot biased to the left (b = 0.3),
pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3).
Darker colors distinguish trials with 5 = 7/4, lighter colors distinguish trials with § = 7/6. Dotted lines
link results associated with the same (§ value. Error bars show the standard deviation of each average.

similar trend to that seen in the NOD experiments, where an unaware human produces the longest navigation
times in each subset of robot biases. We also observe that the trend of increased navigation time for the
larger (8 value remains for all cases except for that of UL. Thus, we observe the same result as in NOD: tuning
the B parameter to a smaller value can improve efficiency. The notable difference between these results and
those from NOD is the reduction in navigation time for all cases. The S-NOD 3 = 7/4 experiments exhibit
an average 2.9% decrease of navigation time from their NOD counterparts. The S-NOD 8 = 7/4 experiments
exhibit an average 2.8% decrease in navigation time from their NOD counterparts. The increase of efficiency
is less stark in the S = 7/6 experiments, with the S-NOD experiments exhibiting an average 1.8% decrease
of navigation time from their NOD counterparts. Thus, we can declare that the S-NOD algorithm produces
more efficient navigation times than a comparable NOD algorithm in this setting.

A comparable trend is observed in the robot’s path length, as shown in Fig. A shorter path length
corresponds to a more direct and efficient movement toward the goal. Again, we observe the same result as
in NOD: a higher 8 value in S-NOD consistently produced longer paths towards the goal. Thus, the robot
moved less efficiently when permitted to make a larger turn away from an approaching human. This trend
is maintained in all cases except for that of RL; however, we note the similar and symmetric case of LR
in the NOD experiments, which displayed the same behavior. While this lack of adherence to the general
trend is more minimal than that observed in NOD, we note that it exists for the same reason as discovered
in NOD: in the RL case and for each 3 value, there are two out of three trials with markedly similar path
lengths and one outlier value: for 8 = 7/4, the outlier is lower than the others, and for 8 = 7/6, the outlier
is higher than the others. Removal of these outliers from the dataset would recover the trend of the increase
of path length for the larger 8 value. Furthermore, we observe that the path lengths of trials conducted

with 8 = /4 exhibit a 2.87% decrease compared to their NOD counterparts. The path lengths of trials
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Figure 5.3: The average path lengths of a S-NOD 1 robot in each of the nine configurations of trajectories
illustrated and labeled in Fig. Blue colors link results with the robot biased to the left (b = 0.3), pink
colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3). Darker
colors distinguish trials with 8 = 7/4, lighter colors distinguish trials with 8 = 7 /6. Dotted lines link results
associated with the same [ value. Error bars show the standard deviation of each average.

conducted with § = 7/6 show a 2.56% decrease from their NOD counterparts. Thus, we can declare that
the S-NOD algorithm produces shorter and more efficient path lengths than a comparable NOD algorithm
in this setting.

Finally, we examine the centerline deviation of the paths taken by the robot in each trial. This metric
quantifies how far the robot deviated from the straight go-to-goal path while navigating around the oncoming
human and is shown in Fig. [5.4] We note that these cases performed with consistently lower centerline
deviation values than those observed in the NOD experiments. A lower deviation value indicates that the
robot remained more aligned with a direct trajectory, reflecting higher efficiency. As previously observed
with NOD and consistent with the preceding results in this section, we again find that a larger 5 value results
in greater deviation from the centerline, which is consistent with the findings on path length. The centerline
deviations of S-NOD trials conducted with 8 = /4 show a 37.02% decrease from their NOD counterparts.
The centerline deviations of S-NOD trials conducted with 8 = 7/6 show a 41.93% decrease from their NOD
counterparts. Thus, we can declare that the S-NOD algorithm produces more goal-oriented, straight, and
efficient paths than a comparable NOD algorithm in this setting.

In all efficiency metrics, we observe the same general trend across experimental cases as was observed in
the comparable NOD experiments. That is, robot performance is least efficient when paired with an unaware
human (cases LU, UU, RU). The efficiency of both S-NOD and NOD can be improved by interacting with
an aware, cooperative human.

Spatial intrusiveness results
We now consider the spatial intrusiveness metrics and their trends across each trial.
The minimum distance reached between the robot and human in each case is shown in Fig. [5.5| The

lower the minimum distance, the closer the robot came to colliding with the human, which indicates more
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Figure 5.4: The average centerline deviations of a S-NOD 1 robot in each of the nine configurations of
trajectories illustrated and labeled in Fig. [5.1} Blue colors link results with the robot biased to the left
(b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left
(b = —0.3). Darker colors distinguish trials with 5 = m/4, lighter colors distinguish trials with 8 = 7/6.
Dotted lines link results associated with the same (3 value. Error bars show the standard deviation of each
average.

spatially intrusive passing behavior. The unbiased robot consistently reaches a markedly lower minimum
distance than its biased counterparts in all cases, as was previously observed in NOD experiments. We
note that the S-NOD algorithm yields very similar minimum distances between [ values, suggesting that
this 8 tuning has a less significant impact on the tuning of spatial intrusiveness in the algorithm. As in
NOD, the lowest minimum distance was observed for both § values in the unbiased robot, unaware human
(UU) case. Furthermore, we observe that the minimum distances of trials conducted with 5 = 7/4 exhibit
a 30.30% decrease compared to their NOD counterparts. The RR case with 8 = 7/6 is the most similar
in quantitative result to the NOD experiments, with only an 8.36% decrease in its average value. Aside
from that case, the minimum distances of trials conducted with § = 7/6 show an average 30.17% decrease
from their NOD counterparts. Thus, we can declare that the S-NOD algorithm produces lower minimum
distances between a robot and a passing human, indicating more spatially intrusive passing behavior and
possibly less comfortable passing behavior than a comparable NOD algorithm. As evidenced by the earlier
results, this is consistent with the S-NOD algorithm being notably more efficient. Consequently, a robot
controlled by it is less likely to deviate from its path to the goal strongly.

Finally, we examine the invasion distance metric to analyze the S-NOD robot’s ability to naturally
maintain socially acceptable passing conventions. Ideally, the robot should not invade the personal space
(1.2 m) surrounding the passing human, and personal space would be maintained if the invasion distance were
0. Differing from the NOD experiments, wherein all cases where the human’s movement was directed (LL,
UL, RL, LR, UR, RR) resulted in the robot maintaining a zero invasion distance, these S-NOD experiments
show that only the UL, UR, and RR cases achieved this ideal result. Otherwise, the more efficient S-
NOD robot invaded the personal space of the human for a non-negligible distance. We also note that the

previously observed differences between the invasion distance dependent on 3 are also roughly absent. The
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Figure 5.5: The average minimum distances between a S-NOD 1 robot and a human in each of the nine
configurations of trajectories illustrated and labeled in Fig. Blue colors link results with the robot biased
to the left (b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased
to the left (b = —0.3). Darker colors distinguish trials with § = m/4, lighter colors distinguish trials with
B = w/6. Dotted lines link results associated with the same § value. Error bars show the standard deviation
of each average.
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Figure 5.6: The average invasion distances by a S-NOD 1 robot to a human in each of the nine configurations
of trajectories illustrated and labeled in Fig. Blue colors link results with the robot biased to the left
(b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left
(b = —0.3). Darker colors distinguish trials with 8 = m/4, lighter colors distinguish trials with g = 7/6.
Dotted lines link results associated with the same g value. Error bars show the standard deviation of each
average.

invasion distance was noticeably lower when the 3 value was higher, such that even if the robot could not
maintain full personal space, it was able to move itself further away quickly. Thus, we can declare that the
S-NOD algorithm produces higher invasion distances between a robot and a passing human’s personal space,
indicating more spatially intrusive passing behavior and possibly less comfortable passing behavior than a
comparable NOD algorithm.

This consistent trend of increasing efficiency but sacrificing spatial unobtrusiveness with an S-NOD
algorithm compared against a parameter-comparable NOD algorithm motivates the subsequent experiments
to recover and replicate the desired behavior from the NOD algorithm by adjusting S-NOD’s parameters.
The parameters of NOD and S-NOD need not be the same, as the efficiency and agility of the S-NOD
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model are its most important characteristics. These qualities were evident in these experiments and can
be maintained with minor adjustments to produce less spatially intrusive, more comfortable passing with a

human.

S-NOD 2: Behavior comparable to NOD experiments of Section [3.4.2.2

The parameters used in the S-NOD equation are as follows: 7, = 0.008, d = 1,a1; = a = 0.5,y =
4, K, =2667,U =4,n =7, Depit = 8m, 7,, = 0.08, K,,, = 12, and kp = 2. Note that all parameters
are changed from those reported in the NOD single-robot, single-human set of experiments, except for the
values of 7, and d. Further, note that the S-NOD-specific variable 7,, remains consistent with that of the
S-NOD 1 set of experiments, but K,, has been increased. These parameters are set in such a way as to
produce trajectories by the S-NOD robot that more closely match the trajectories by the NOD robot seen in
Chapter [3.4.2:3}-that is, the behavior of the S-NOD robot is comparable to the behavior of the NOD robot.

The design of each parameter adjustment can be explained intuitively in terms of the desired outcome
of the behavior. For the opinion, the self-reinforcing weight a;; = a was decreased, allowing it to form an
opinion more quickly based on the proxy opinion of the human rather than on its own. Similarly, the weight
on the human’s opinion 7y was increased to reflect more emphasis on cooperating to form an opinion that
mirrored the passing behavior of the human. The K, value was increased to design the decision-making
as more sustained, wider spikes instead of thin, bursting decision-making spikes. This, in turn, produces
longer durations along the path where the robot is turning, prompting further deviations from its path
to the goal. Parameters U,n,and D..;; were all increased to shape the basal sensitivity ug function to be
reactive to humans that are further away, allowing the robot to more quickly respond to human behavior
with collaborative decision-making. The increase of gain K, creates more spiking behavior to maintain high
spiking frequency in light of the adjustment of K, that increased the width of the decision-making spikes.
Finally, kg was decreased to best suit the desired behavior of the NOD paths that these S-NOD results
sought to recreate.

The resultant trajectories in each of these trials are documented in Fig. As this set of experiments
was collected expressly to replicate the behavior of NOD experiments in Chapter [3.4.2.2] the similarities and
differences in their results are presented here. We direct readers to the previous chapter for a more thorough
analysis of the behavior in each case, independent of comparison.

Efficiency results
We first consider the efficiency metrics and their trends across each trial.
The navigation time of the robot is illustrated in Fig. [5.8] the path length in Fig.[5.9] and the centerline

deviation in Fig. [5.10} Their results, along with those of the NOD and S-NOD 1 experimental sets, are
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Figure 5.7: The trajectory data of a S-NOD 2 robot for three runs each of the nine trial configurations,
with both 8, = 7/4 (shaded yellow) and 8, = 7/6 (unshaded). This robot uses different parameters from
the NOD experiments of Section to create comparable behavior to that illustrated in Fig. Axes
correspond to the zy-plane in meters. The robot paths are shown in red, with a red box indicating the
robot’s starting position at approximately (0,0)m. The human paths are shown in blue, with a blue box
indicating the human’s starting position at approximately (0,6) m. In trial configuration labels, L=left, U
= unaware/unbiased, and R = right.
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Figure 5.8: The average navigation times of a S-NOD 2 robot in each of the nine configurations of trajec-
tories illustrated and labeled in Fig. [5.7] Blue colors link results with the robot biased to the left (b = 0.3),
pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3).
Darker colors distinguish trials with 5 = 7/4, lighter colors distinguish trials with § = 7/6. Dotted lines
link results associated with the same (§ value. Error bars show the standard deviation of each average.
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Figure 5.9: The average path lengths of a S-NOD 2 robot in each of the nine configurations of trajectories
illustrated and labeled in Fig. Blue colors link results with the robot biased to the left (b = 0.3), pink
colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left (b = —0.3). Darker
colors distinguish trials with 8 = 7 /4, lighter colors distinguish trials with 5 = 7/6. Dotted lines link results
associated with the same [ value. Error bars show the standard deviation of each average.

described in Tables We highlight that the navigation times observed for both the NOD (Fig. [3.5))
and S-NOD 2 (Fig. experiment sets in the cases with a right-biased (b < 0) robot (RL, RU, and RR)
are nearly identical. When the S-NOD robot is biased left b > 0, these cases (LL, LU, LR) produce slightly
higher navigation times than those observed in NOD. When the robot is unbiased (b = 0), these cases (UL,
UU, UR) experience: 1) navigation times lower than the NOD experiments for trials with g = /4, 2)
navigation times higher than the NOD experiments for trials with 5 = /6. These results show us that
navigation times of S-NOD experiments in each case between those with § = n/4 and § = 7/6 are more
similar than those between NOD experiments. These same trends exist in the path lengths observed for both
the NOD (Fig. and S-NOD 2 (Fig. experiment sets. These results, along with smaller error bars in

S-NOD 2’s experiments, indicate that there is less variability of robot behavior between S-NOD trials than

in the NOD trials.
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Figure 5.10: The average centerline deviations of a S-NOD 2 robot in each of the nine configurations of
trajectories illustrated and labeled in Fig. [5.7] Blue colors link results with the robot biased to the left
(b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased to the left
(b = —0.3). Darker colors distinguish trials with 5 = m/4, lighter colors distinguish trials with 8 = 7/6.
Dotted lines link results associated with the same ( value. Error bars show the standard deviation of each
average.

The only notable difference in centerline deviation observed between NOD (Fig. and S-NOD 2
(Fig. [5.10) is that the cases LL and LR with 8 = 7/4 do not align. That is, the centerline deviation for case
LL is higher for the NOD experiments than for the S-NOD experiments. In contrast, this metric for case
LR is lower for the NOD experiments than for the S-NOD experiments. Besides this discrepancy, as well
as smaller error bars observed for the NOD set of experiments, S-NOD 2 performs with similar centerline
deviations to NOD for the bulk of the experiment set.

Spatial intrusiveness results

There are more differences observed between the NOD and S-NOD spatial intrusiveness metrics than
those seen in the previously discussed efficiency metrics. These results, along with those of the NOD and
S-NOD 1 experimental sets, are described in Tables

We first discuss the differences in minimum distances observed between NOD (Fig. and S-NOD 2
(Fig. [5.11). The trend of the lowest minimum distances observed in unaware human cases (LU, UU, RU)
compared to their aware counterparts remains, as does the smaller § = 7/6 producing lower minimum
distances than the g = 7 /4 case. However, S-NOD 2 produces on average a 17.79% reduction in minimum
distance observed in cases LL, LR, UL, UR, and RR with 8 = 7/4 when compared to NOD. In the other
cases of LU, UU, RL, and RU, this decrease was only on average 6.67%. These differences were less stark
for the 8 = 7/6 set of experiments, with minimum distances by S-NOD 2 experiencing an average decrease
of 2.58% from its NOD counterparts. Even still, the average minimum distance reached in the 8 = 7 /6 case
is only slightly within the social proximity of the passing human and not egregious.

We observe the differences in invasion distances observed between NOD (Fig. and S-NOD 2 (Fig.[5.12).

We see that the ideal result of zero invasion distance is recovered in all human-aware cases (LL, LR, UL,
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Figure 5.11: The average minimum distances between a S-NOD 2 robot and a human in each of the nine
configurations of trajectories illustrated and labeled in Fig. Blue colors link results with the robot biased
to the left (b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased
to the left (b = —0.3). Darker colors distinguish trials with 8 = x/4, lighter colors distinguish trials with
B = /6. Dotted lines link results associated with the same /5 value. Error bars show the standard deviation
of each average.

UR, RL, and RR). Therefore, we compare the results of the unaware human cases (LU, UU, and RU) in
both NOD and S-NOD. We see that S-NOD 2 with § = /4 produces an average 37.98% increase in invasion
distance from NOD across trials LU and UR. This is much smaller for the same trial with 8 = 7/6, which
saw an increase of only 4.72%. The case with a right-biased robot, RU, experienced exceptionally high
increases in invasion distance between S-NOD 2 and NOD, with a 438.99% increase when 8 = /4 and an
87.12% increase when 8 = /6. However, we recall that these right-biased NOD trials had peculiar paths
with anomalous results due to potential shifts in goal location. We note that the S-NOD 2 (and S-NOD
1) did not produce the same abnormal behavior in the right-biased trials, which affects these comparative
results. Considering these results, it appears that S-NOD, even when designed to replicate NOD’s behavior,

remains slightly more spatially intrusive in its passing etiquette than NOD.
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Figure 5.12: The average invasion distances between a S-NOD 2 robot and a human in each of the nine
configurations of trajectories illustrated and labeled in Fig.[5.7 Blue colors link results with the robot biased
to the left (b = 0.3), pink colors with the unbiased robot (b = 0), and yellow colors with the robot biased
to the left (b = —0.3). Darker colors distinguish trials with § = x/4, lighter colors distinguish trials with
B = /6. Dotted lines link results associated with the same [ value. Error bars show the standard deviation
of each average.

Comparison tables of NOD, S-NOD 1, and S-NOD 2 metrics

The results of the average navigation times exhibited by the robot in each experimental case for NOD, S-
NOD 1, and S-NOD 2 across both values of 8 = 7/4 and § = 7/6 are compared in Table and Table
respectively. These tables summarize the results and observations discussed in the previous sections. The
NOD results were illustrated in Fig. the S-NOD 1 results were illustrated in Fig. [5.2] and the S-NOD 2

results were illustrated in Fig. [5.8

Experimental case with § = /4
LL LU LR UL UuU UR RL RU RR

NOD 10.06 10.26 9.99 9.96 10.37 10.11 9.81 10.56 10.31
+0.05 | £0.03 | £0.08 | £0.11 | £0.11 | £0.09 | £0.01 | £0.07 | £0.03

NT | S-NOD 9.74 9.95 9.75 9.66 9.98 9.90 9.66 10.22 9.99

Model

[s] 1 +002 | £005 | £0.13 | £0.05 | £0.16 | £0.08 | £0.01 | £0.01 | £ 0.03
S-NOD 9.97 10.34 9.99 9.82 10.25 10.09 9.83 10.54 10.18
2 +0.02 | £0.00 | £0.02 | £0.03 | £0.24 | £0.03 | £0.02 | £0.05 | £ 0.05

Table 5.2: Comparison of average navigation time (NT) across each experimental case in NOD and S-NOD
experiments where 8 = 7/4.
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Experimental case with 8 = 7/6
LL LU LR UL UvU UR RL RU RR

NOD 9.81 10.01 9.95 9.86 10.08 10.14 9.77 10.51 10.12
+£005 | £003 | £009 | £004 | £0.11 | £0.03 | £0.03 | £0.08 | £0.04

NT | S-NOD 9.76 9.90 9.75 9.73 9.96 9.82 9.70 10.10 9.87

Model

[s] 1 +004 | £006 | £003 | £0.03 | £0.16 | £0.07 | £0.04 | £0.03 | £0.04
S-NOD 9.84 10.18 9.98 9.78 10.15 10.07 9.85 10.52 10.21
2 +004 | £003 | £006 | £0.00 | £0.15 | £0.06 | £0.01 | £0.02 | £0.06

Table 5.3: Comparison of average navigation time (NT) across each experimental case in NOD and S-NOD
experiments where 5 = 7/6.

The results of the average path lengths of the robot exhibited in each experimental case for NOD, S-
NOD 1, and S-NOD 2 across both values of 8 = /4 and 8 = 7/6 are compared in Table and Table
respectively. These tables summarize the results and observations discussed in the previous sections. The
NOD results were illustrated in Fig. the S-NOD 1 results were illustrated in Fig. and the S-NOD 2

results were illustrated in Fig.

Experimental case with 8 = 7/4
LL LU LR UL UvU UR RL RU RR

NOD 6.34 6.48 6.30 6.30 6.56 6.40 6.18 6.66 6.48
+£003 | £002 | £0.06 | £0.07 | £0.07 | £0.07 | £0.01 | £0.04 | £0.02

PL | S-NOD 6.12 6.27 6.15 6.12 6.36 6.26 6.07 6.41 6.28

Model

[m] 1 +001 | £0.02 | £0.08 | £0.02 | £0.10 | £0.05 | £0.01 | £0.02 | £0.02
S-NOD 6.29 6.52 6.29 6.22 6.52 6.37 6.17 6.64 6.41
2 +£001 | £001 | £0.02 | £0.01 | £0.15 | £0.00 | £0.01 | £0.01 | £0.02

Table 5.4: Comparison of average path length (PL) across each experimental case in NOD and S-NOD
experiments where 8 = /4.

Experimental case with § = /6
LL LU LR UL Uuu UR RL RU RR

NOD 6.18 6.35 6.35 6.23 6.40 6.39 6.15 6.62 6.38
+0.04 | £0.02 | £0.06 | £0.04 | £0.06 | £0.02 | £0.01 | £0.05 | £0.02

PL | S-NOD 6.11 6.22 6.10 6.10 6.25 6.18 6.09 6.35 6.19

Model

[m] 1 +0.03 | £0.03 | £0.01 | £0.00 | £0.08 | £0.04 | £0.01 | £0.02 | £0.01
S-NOD 6.27 6.45 6.33 6.21 6.45 6.39 6.20 6.65 6.46
2 +0.01 | £0.02 | £0.06 | £0.01 | £0.10 | £0.04 | £0.01 | £0.01 | £0.03

Table 5.5: Comparison of average path length (PL) across each experimental case in NOD and S-NOD
experiments where 8 = /6.
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The results of the average centerline deviations exhibited by the robot in each experimental case for
NOD, S-NOD 1, and S-NOD 2 across both values of 8 = 7/4 and 8 = 7/6 are compared in Table
and Table respectively. These tables summarize the results and observations discussed in the previous
sections. The NOD results were illustrated in Fig. the S-NOD 1 results were illustrated in Fig. and
the S-NOD 2 results were illustrated in Fig.

Experimental case with § = /4
Model
LL LU LR UL Uuu UR RL RU RR
NOD 881 1156 721 644 1262 1122 317 1617 1311
+ 127 + 26 + 142 + 178 + 155 + 169 + 69 + 123 + 85
CD | S-NOD 303 553 572 348 942 933 156 1165 948
[m2] 1 + 38 + 79 + 253 + 40 + 408 + 124 + 2 + 20 + 29
S-NOD 608 1089 897 447 1190 1082 337 1482 1150
2 + 63 + 27 + 55 + 44 + 392 + 24 + 21 + 52 + 57

Table 5.6: Comparison of average centerline deviation (CD) across each experimental case in NOD and
S-NOD experiments where 5 = 7 /4.

Experimental case with § = /6
Model
LL LU LR UL UuU UR RL RU RR
NOD 627 950 950 554 831 1032 455 1555 1017
+ 83 + 94 + 59 + 171 + 69 + 77 + 32 + 100 + 89
CD | S-NOD 216 484 543 203 632 717 216 1108 804
[m?] 1 + 12 + 19 + 67 + 16 + 336 + 88 + 61 £+ 39 + 18
S-NOD 636 935 946 438 917 1101 416 1468 1222
2 + 35 + 22 + 98 + 36 + 346 + 79 + 53 + 18 + 72

Table 5.7: Comparison of average centerline deviation (CD) across each experimental case in NOD and
S-NOD experiments where 8 = 7/6.
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The results of the average minimum distance experienced between the robot and the human in each

experimental case for NOD, S-NOD 1, and S-NOD 2 across both values of 8 = 7/4 and 8 =

/6 are

compared in Table [5.8] and Table [5.9] respectively. These tables summarize the results and observations

discussed in the previous sections. The NOD results were illustrated in Fig. the S-NOD 1 results were

illustrated in Fig. and the S-NOD 2 results were illustrated in Fig.

Experimental case with § = /4

Model

LL LU LR UL UU UR RL RU RR

NOD 2.13 1.14 1.74 2.03 1.11 1.75 1.63 1.21 2.06
+026 | £002 | £019 | £0.33 | £0.03 | £0.04 | £0.08 | &£0.03 | &+ 0.17

MD | S-NOD 1.17 0.74 1.15 1.42 0.85 1.42 1.01 0.97 1.49
[m] 1 +012 | £004 | £0.17 | £0.10 | £0.13 | £0.08 | =£0.08 | =£0.02 | £+ 0.11

S-NOD 1.80 1.08 1.39 1.64 1.00 1.54 1.54 1.14 1.62
2 +011 | £002 | £0.05 | £0.18 | £0.07 | £0.10 | £0.04 | £0.02 | &+ 0.12

Table 5.8: Comparison of average minimum distance (MD) across each experimental case in NOD and S-

NOD experiments where § = /4.

Experimental case with § = /6

Model

LL LU LR UL UuU UR RL RU RR

NOD 1.73 1.04 1.69 1.57 0.90 1.52 1.53 1.16 1.45
+0.12 | £002 | £0.12 | £0.02 | £0.03 | £0.15 | £0.08 | &= 0.05 | &+ 0.07

MD | S-NOD 1.22 0.64 1.09 1.07 0.64 1.27 1.00 0.84 1.33
[m] 1 +0.11 | £0.02 | £0.04 | £0.16 | £0.11 | =20.04 | =£0.05 | &£0.00 | 4+ 0.06

S-NOD 1.51 1.00 1.41 1.62 0.90 1.58 1.53 1.08 1.58
2 +009 | £004 | £0.06 | £0.09 | £0.13 | £0.06 | =£0.09 | &0.03 | & 0.10

Table 5.9: Comparison of average minimum distance (MD) across each experimental case in NOD and S-

NOD experiments where 5 = /6.
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The results of the average invasion distance experienced between the robot and the human in each
experimental case for NOD, S-NOD 1, and S-NOD 2 across both values of 8 = 7/4 and 8 = 7/6 are
compared in Table [5.10f and Table respectively. These tables summarize the results and observations
discussed in the previous sections. The NOD results were illustrated in Fig. the S-NOD 1 results were

illustrated in Fig. and the S-NOD 2 results were illustrated in Fig.

Experimental case with § = /4
Model
LL LU LR UL Uuu UR RL RU RR

NOD 0 0.29 0 0 0.38 0 0 0.05 0

+ 0.06 + 0.03 + 0.09
ID S-NOD 0.26 0.75 0.26 0 0.67 0 0.51 0.56 0

[m] 1 + 023 | £0.02 | £0.25 + 0.09 + 0.07 | £ 0.02
S-NOD 0 0.40 0 0 0.52 0 0 0.29 0

2 + 0.03 + 0.10 + 0.04

Table 5.10: Comparison of average invasion distance (ID) across each experimental case in NOD and S-NOD
experiments where 8 = /4.

Experimental case with § = /6
Model
LL LU LR UL UuU UR RL RU RR

NOD 0 0.49 0 0 0.61 0 0 0.21 0

+ 0.04 + 0.02 £+ 0.19
ID | S-NOD 0.12 0.78 0.38 0.35 0.78 0 0.52 0.65 0

[m] 1 +0.20 | £0.03 | £0.07 | £031 | £0.06 £+ 0.06 | £ 0.02
S-NOD 0 0.50 0 0 0.64 0 0 0.39 0

2 + 0.04 + 0.13 + 0.04

Table 5.11: Comparison of average invasion distance (ID) across each experimental case in NOD and S-NOD
experiments where 8 = /6.
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Finally, we present a comparison of the total control used in each case across the NOD, S-NOD 1, and S-
NOD 2 sets of experiments. The robot’s control variable is its opinion z, which is used to control the robot’s
steering, as shown in equation (5.2d)). Therefore, the total control throughout a trial is the magnitude of the

opinion ||z|| for all navigation time.

Experimental case with § = 7/4
LL LU LR UL UuU UR RL RU RR

NOD 28.47 28.47 23.96 22.48 22.70 22.53 23.18 27.64 28.58
+£050 | £050 | £025 | £020 | £095 | £034 | £038 | £0.539 | £0.40

— | S-NOD 15.90 16.24 13.39 10.35 10.36 10.24 13.56 16.23 16.03

Model

al 1 +0.11 | £003 | £0.10 | £0.20 | £047 | £0.04 | £0.10 | £0.20 | £0.03
S-NOD 25.98 26.61 21.30 16.83 17.00 17.49 23.48 27.08 26.66
2 +085 | £041 | £0.70 | £0.22 | £0.29 | £0.26 | £0.86 | =£0.11 | £0.04

Table 5.12: Comparison of average control input magnitude ||z|| across each experimental case in NOD and
S-NOD experiments where 8 = /4.

Experimental case with 8 = 7/6
LL LU LR UL UvU UR RL RU RR

NOD 28.16 27.61 24.97 23.51 23.78 23.31 25.57 28.38 28.07
+027 | £082 | £028 | £087 | £1.33 | £050 | £1.28 | £044 | £0.26

—— | S-NOD 15.97 16.29 13.64 10.42 10.21 10.51 13.72 16.14 16.05

Model

#ll 1 +008 | £009 | £0.10 | £0.08 | £0.76 | £0.13 | £0.10 | £0.08 | £0.11
S-NOD | 24.00 26.59 21.43 17.19 17.20 17.22 20.54 27.06 26.46
2 +£165 | £033 | £096 | £0.13 | £0.57 | £0.14 | £041 | £0.32 | £048

Table 5.13: Comparison of average control input magnitude ||z|| across each experimental case in NOD and
S-NOD experiments where 8 = 7/6.

The results of the total control ||z|| in each experimental case for NOD, S-NOD 1, and S-NOD 2 across
both values of 8 = w/4 and § = 7/6 are compared in Table and Table respectively.

We observe that in the S-NOD 1 experimental set, where the same parameters from NOD were applied
in S-NOD, there is a drastic reduction in the total control used within the robot. For the experiments where
B = /4, we observe an average decrease in control of 46.75% in all cases. We see almost the same results in
the experiments where 8 = m/6, where there is an average control decrease of 47.73% in all cases. We also
note a massive reduction of 67.00% and 73.67% in the standard deviations for the § = /4 and § = 7/6
trials in S-NOD 1. This indicates that S-NOD 1 is far more efficient in control than NOD.

We now turn to the S-NOD 2 experimental set, in which the parameters of S-NOD were adjusted to
produce similar navigation behavior to that of NOD. Although the behavior is similar, we still observe a

reduction in total control used by the robot. For the experiments where 3 = 7/4, we observe an average
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decrease in control of 11.83% in all cases. For the experiments where 8 = /6, we observe an average
reduction in control of 15.93% in all cases. We observe that the standard deviations do not exhibit the same
drastic reduction as seen from S-NOD 1. However, the upper deviation still maintains the total control below
the lower deviation of the total control from NOD. This suggests that S-NOD 2 is more efficient in control

than NOD, while maintaining similar navigation behavior in practice.

5.2.2.3 Single-robot, two-human experiments

The setup of each experiment was as follows, following the protocol introduced in Chapter The robot
was placed at an initial location (3, -3)m in the space, facing its goal at (-3, ~2.1)m directly. Two human
participants would move around the room of their own accord. Five representative trials are reported
in this work to showcase the flexibility of the S-NOD control of the robot. Trials are each qualitatively
described, and their performance metrics are subsequently compared both to one another and to their NOD
counterparts. Videos of these experiments and other animated figures throughout this thesis can be viewed
at https://cathcart-dissertation.github.io.
Robot instructions

The robot was programmed to move at a constant speed V,. = 0.7m/s toward its goal location, modifying
its trajectory when encountering movers according to the navigation model with parameters The
parameters used in the S-NOD equation are as follows: 7, =0.008,d=1,a11 =a=05,v=4, K, =
2.667, U =4,n="1T, Doyt = 6m, 7,, = 0.08, K,,, = 12, kg = 2and S = w/4. The robot was kept unbiased
(b =0) for maximum flexibility in passing behavior.
Human participant instructions

As these trials were conducted to replicate the NOD experiments in [25] and Chapter the two
participants were directed by the researcher on their desired paths. Though their paths were instructed
rather than given complete independence to move throughout the space, they were still asked to move at
their own pace. Once the four comparative trials were conducted, the two participants were then informed
that they could walk freely in the room at any speed and without a requirement for consistency in direction
or pace, if desired. This was the instruction provided for the participants in the NOD experiments. We
present the mirrored trials here, as well as a selected trial of an unusual passing scenario that the S-NOD

programmed robot could navigate.
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Figure 5.13: S-NOD Trial 1. (Top) The trajectories of all participants at snapshots along the duration of the
trial. Human 1 walks across the robot’s path, and the robot turns left to avoid them. Meanwhile, Human 2
abruptly stops moving while in the robot’s path, so the robot turns right to avoid them. (Middle) Opinion
z over time ¢ of the robot. (Bottom) Sensitivity u over time ¢ of the robot. Dots along the z and u traces
correspond with the timestamps in the top trajectory snapshots.

Trial descriptions

Trial 1: Two humans walk independently within the laboratory space as shown in Fig. [3.10] Human 1
moves perpendicularly across the robot’s path from the robot’s left side towards its right. We observe the
sensitivity u rise in spikes as Human 1 approaches, immediately inducing high-frequency positive spiking
in the robot’s opinion z, which causes the robot to turn towards its left. The sensitivity drops as Human
1 is passed, thus decreasing the robot’s opinion spiking frequency. The sensitivity rises again as Human 2
remains stationary along the robot’s path on the robot’s left side. The opinion immediately begins to exhibit
high-frequency negative spiking, causing the robot to turn to the right and away from Human 2. As it turns
further out along the human’s path, we see the sensitivity value fall to zero, and the spikes in both opinion

and sensitivity decrease in frequency. The robot then reaches its goal.
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Figure 5.14: S-NOD Trial 2. (Top) Humans 1 and 2 walk across the robot’s path. The robot first turns left
to avoid Human 1, then right to avoid Human 2. (Middle) Opinion z over time ¢ of the robot. (Bottom)
Sensitivity u over time t of the robot. Dots along the z and u traces correspond with the timestamps in the
top trajectory snapshots.

Trial 2: Two humans walk independently but close together within the laboratory space as shown in
Fig. While this form of interaction once caused a more pronounced turn by the robot and extended
the trial in NOD, the robot with S-NOD gets to its goal even faster than in Trial 1. Human 1 moves at an
angle across the robot’s path from the robot’s left side towards its right side. The sensitivity rises in spikes
more slowly than that seen in Trial 1. Initially, the robot’s opinion spikes negatively, but quickly corrects to
spike positively and with high frequency. As Human 1 passes, Human 2 walks more slowly across the robot’s
path from right to left. The sensitivity begins spiking again as Human 2 appears very nearby in the robot’s
path on its right side, but moving towards the left. The robot’s opinion starts to spike negatively, causing it

to turn to the right. With no further humans to avoid, the robot moves towards its goal.
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Figure 5.15: S-NOD Trial 3. (Top) Humans 1 and 2 walk toward the robot’s initial position with no passing
space in between them. The robot avoids both humans by turning right. (Middle) Opinion z over time ¢ of
the robot. (Bottom) Sensitivity u over time ¢ of the robot. Dots along the z and u traces correspond with
the timestamps in the top trajectory snapshots.

Trial 3: Two humans walk closely together within the laboratory space as shown in Fig. As the
sensitivity begins to spike, the opinion begins to spike negatively, causing the robot to turn to its right. As
the humans come closer to the robot, the frequency of the spikes increases. Though its control is spiking,
the robot appears to make a smooth right turn that avoids both humans and then moves directly toward its
goal.

Trial 4: Two humans walk together within the laboratory space as shown in Fig. Though still
nearby one another, Humans 1 and 2 begin moving at different times. This allows the robot to interact
with each human independently rather than as a unit, as seen in Trial 3. We observe that at the beginning
of the trial, the robot’s sensitivity is nonzero but not spiking. This causes minimal turning behavior from
the robot, though its opinion is slightly nonzero as well. When Human 1 is seen sufficiently nearby and on
the robot’s right side, the robot’s sensitivity begins to spike and build, causing the robot’s opinion to spike
positively. The robot turns to the left, but then is immediately on a collision path with Human 2, who is
positioned on its left side. This further raises the sensitivity, causing an increase in spiking frequency as the
opinion spikes negatively. The robot turns right to avoid Human 2, then moves towards its goal.

Trial 5: Two humans face one another from across the room and begin walking directly across the robot’s
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Figure 5.16: S-NOD Trial 4. (Top) Humans 1 and 2 walk toward the robot’s initial position with passing
space in between them. The robot initially dodges Human 1 with a left turn, finds itself in the path of
Human 2, and dodges Human 2 with a right turn. (Middle) Opinion z over time t of the robot. (Bottom)
Sensitivity u over time t of the robot. Dots along the z and u traces correspond with the timestamps in the
top trajectory snapshots.

path. The robot’s sensitivity begins to spike and build, initially causing its opinion to spike positively,
prompting a left turn. As the humans meet in the center of the laboratory, they begin to turn around and
look at one another. This turning of the observed relative heading direction of each human 7, causes the
robot to move between spiking negatively and positively. This produces an almost straight-looking trajectory,
although the robot’s internal control is indicating oscillating decisions between left and right passing. Finally,
once the humans have completed a full loop around one another, they continue along a straight path away
from the robot. The robot then turns right to avoid Human 2 as it walks past the robot on its left. When

both humans are away from the robot, it navigates directly towards its goal.
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Figure 5.17: S-NOD Trial 5. (Top) Humans 1 and 2 cross the robot’s path, meeting in the middle and
moving in a full loop around one another, before continuing on their paths. The robot dodges both humans
on the left, although its opinion evolution shows multiple changes of opinion as the humans make their loops.
(Middle) Opinion z over time t of the robot. (Bottom) Sensitivity u over time ¢ of the robot. Dots along
the z and wu traces correspond with the timestamps in the top trajectory snapshots.

Comparisons of NOD and S-NOD performance

We illustrate the comparable navigation trials 1-4 for both NOD and S-NOD social robots in Fig. for
easy reference as we compare their results. We present the performance metrics across trials 1-4 for both
NOD and S-NOD robots, as well as those of trial 5 for the S-NOD robot, in Table[5.14, We then discuss the
differences observed between the performance of each algorithm.

We compare the performance metrics across trials.

We first examine both sets of NOD and S-NOD experiments for each trial number. We note that all
S-NOD robot path lengths are shorter than any path lengths recorded in the NOD robot experiments.
We note that for each trial, all S-NOD robot navigation times are shorter than those in the comparable
NOD experiment. Both of these results validate that S-NOD produces more efficient navigation when
completing the same task as a NOD robot. Examining the metrics of spatial intrusiveness, we observe that
both algorithms maintain comparable minimum distances and rarely invade the personal space of passing
humans. However, occasional intrusions into personal space were observed, most notably in Trial 4 for both

NOD and S-NOD robots, and in Trial 5 for the S-NOD robot. This indicates that spatial intrusiveness was
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Figure 5.18: The full trajectories of Trials 1-4 as reported for the NOD robot in Chapter |3.4.2.3| and the

S-NOD robot in this chapter.

Trial Model NT PL MD; MD, D, 1D, TE
# [s] [m] [m] [m] [m] [m]
: NOD 12.53 8.77 2.03 1.38 0 0 12.32
S-NOD 12.34 7.89 2.72 1.10 0 0 21.61
NOD 13.20 9.24 2.18 1.55 0 0 39.42
? S-NOD 11.84 7.57 2.25 1.50 0 0 18.87
NOD 12.93 9.05 0.54 1.29 0.28 0 36.22
’ S-NOD 11.64 7.49 0.73 1.34 0 0 14.04
) NOD 12.13 8.49 0.36 1.01 0.47 0.28 15.64
S-NOD 11.66 7.51 1.60 0.80 0 0.40 16.12
NOD - - - - - _ -
’ S-NOD 12.32 7.89 1.93 0.84 0 0.34 22.92

Table 5.14: Performance metrics of the single-robot, two-human trials 1-4 of NOD and S-NOD robots, and
additionally of trial 5 for the S-NOD robots. The NOD data is duplicated from Table [3:3] Shorthand: NT
= Navigation Time, PL. = Path Length, MD, = Minimum Distance with Human ¢, ID, = Invasion Distance

of Human /.
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not eliminated by either approach, which follows as there was no bound or constraint on the distance to
maintain in either algorithm. The ability of both algorithms to make decisions proactively, avoiding collisions
with sufficient space to frequently avoid invading personal space, is an unexpected yet welcome feature. We
believe that adding a constraint on the acceptable distance from a human could be imposed and addressed
elegantly with S-NOD, thereby resolving the trade-off between efficiency and spatial intrusiveness. Finally,
we consider the difference in total control ||z|| used throughout each trial. Importantly, we see that the total
control ||z|| was substantially lower in S-NOD robots than NOD robots for almost all trials. Only Trial 4
shows an increase in control used, but we recall that the NOD Trial 4 caused very close interactions between
the robot and the human, which moved quickly within the trial. This did not give the robot much time or
space to form opinions, and therefore, less control was input into the system.

Trial 5 of an S-NOD robot, which did not have a comparable experiment with a NOD robot, further
illustrates S-NOD’s robustness in complex navigation environments. A NOD robot may have been able
to steer away from the interaction to move towards its goal successfully, but its opinion would have likely
remained at a high value with only a single sign; that is, the robot would have formed a single opinion and
not deviated from it even as the environment changed. While this robustness may be helpful, it indicates
that a NOD robot is not as swiftly responsive to changing navigation interactions once it has already formed
an opinion.

Overall, we observe that S-NOD can facilitate more efficient and agile decision-making in a social robot
and can handle more complex navigation scenarios than its NOD counterpart. As S-NOD is more capable
of sequential decision-making than NOD, a robot using the S-NOD algorithm is better equipped to be
responsive to changes in the environment. As these experiments demonstrate, S-NOD enables the robot to
rapidly change its opinion about its preferred passing side, even when interacting with little room between
itself and humans who move across its path. The results of these experiments highlight S-NOD’s ability
to navigate responsively and efficiently in various passing scenarios, albeit with some trade-offs in spatial

intrusiveness under certain conditions.

5.3 Discussion of effect of K, and U on navigation

This section utilizes simulations of a social robot navigating around one or two humans to show the pro-
gression of behavior as the tuning parameters K, and U are increased past their theoretically set critical
points. Although deadlock can be guaranteed when these thresholds are minimally passed, we explore the
behavioral impacts on an embodied robot as it operates with higher values for these parameters. We recall

from Chapter [4 and in [26] that a critical value K} = d®/3a marks the point where the S-NOD system’s
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bifurcation diagram changes from a supercritical pitchfork to a subcritical pitchfork with hysteresis. We also
recall the bifurcation point at the basal sensitivity value uj = d/a. The analysis within Chapter 4| informs
us that a value of K,, > K will cause a subcritical pitchfork bifurcation in the system, leading to a section
of multistability near the ultrasensitive bifurcation point, which the S-NOD algorithm repeatedly returns
the system to. It also informs us that a system that experiences ug > u(; will form a non-neutral opinion z,
as the solution z = 0 is unstable in this region.

In this section, we aim to explore through simulation how NOD and S-NOD robots behave under condi-
tions where both parameters are set to force the system to exceed these critical values. We anticipate this
will lead to the NOD robot becoming “stuck” in an opinion state as detailed in Chapter 4| and [26], which
should appear as a robot that continues to turn in a single direction, whereas S-NOD will remain agile and
responsive and will turn cooperatively throughout an interaction with humans. These simulations highlight
the weakness of NOD decision-making compared to S-NOD decision-making in a social navigation scenario
with increasing complexity. We extend these results in the next section with a demonstration that showcases
how NOD and S-NOD robots perform in a navigation scenario involving frequent, varied human interactions.

Recall from Chapter [5.1] that in the social robot setting, we define ug as a function of proximity to an
oncoming human ¢ with distance x; = Dy = ||x —xy, || and direction, r; = Dyt - exp(1 — max(cosng, 0) 7).
The basal sensitivity function is defined as ug,, = U(kl, /(k},+x1,) ), with its upper bound set by parameter
U. We can therefore set U to be a multiple of uf, such that there are proximity values at which the robot
will be guaranteed to have a ug value that is past the system’s bifurcation point. We can also set K, to be a
multiple of K to build our intuition of the effect of large gain on the robot’s opinion, pushing the sensitivity
u past the system’s bifurcation.

For all subsequent simulations, the parameters within NOD equation and S-NOD equation
held constant are as follows: 7, = 0.02,d =1,a11 =a=1,vy=3,n=2, Depyy =3.5m, 7,, = 0.2, K, =
10, kg = 2and S = w/4. The robot was kept unbiased (b = 0) for maximum flexibility in passing behavior.

We consider a scenario where a robot begins at point (0,0)m in a space, directly facing its goal at (0,
6.67)Hﬂ. A stationary human facing the robot’s starting location directly sits at (0, 3.8) m. The robot
travels with velocity V' = 0.6m/s as it navigates the space. We compare the resultant trajectories and
opinion evolutions of NOD and S-NOD controlled social robots within this environment at two values of
K, € BK;, 10K] and four values of U € [1.25ug, 1.5uf, 1.75ug, 1.25uf]. The resultant trajectories are
illustrated in Fig. [5.19 and each trial’s performance metrics are summarized in Table [5.15

Several consistencies in behavior can be identified, either through visual inspection or by examining the

IThese initial and goal locations were set to be within the bounds of the experimental space used within the single-robot,
single-human setups.
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Navigation . Invasion Distance

v Model Ku Tini [s] win(D1) of Human 1 [m)] 2]
NoD L2Ka | 11.18 oe0 | 137 | 22.106

1958 10K 11.19 0.61 1.37 45.40

~2oto S NOD 5K | 1098 043 | 128 8.14

10K 10.98 0.43 1.28 9.21

NOD |-oBa o 11.34 0.78 | r2r oo 27.03

1 Bt 10KF 11.34 0.79 1.20 4744

o S NOD |.0K: 11.07 0.59 1.29 10.20

; 10K | 11.06 0.57 [ 128 11.26

NOD | oKu | 1143 0.90 | 089 30.34

1 et 10K 11.43 0.90 0.88 49.08

+9%0 R S .13 068 | 123 | 11.97

) 10K ; 11.11 0.67 1.24 13.07

NOD |2Ku | 11.49 097 | 066 32.70

oy 10K} 11.49 0.98 0.65 50.36

0 S-NOD COKG 11.16 N 6 13.55

10K 11.15 0.72 1.17 14.68

Table 5.15: Performance metrics of the simulated navigation paths illustrated in Fig. taken by NOD
and S-NOD controlled robots across various values of U and K, as the robot interacts with one human.

provided performance metrics.

We notice that all trajectories across both navigation models and all parameter options are very similar.
Each trajectory chooses to dodge the human towards the robot’s right. We observe that the trajectories
across each case also exhibit the same pattern, determined by the U value: the lower the U value, the closer
the robot approaches the human before making its turn away. This is reflected in the opinion evolutions as
well, with the opinions becoming nonzero earlier in order of the highest U values.

Trajectories in the NOD social robot appear to provide more passing space than the comparable trajec-
tories of the S-NOD social robot. This is confirmed by the consistently lower minimum distances seen in the
S-NOD cases within each group of experiments with the same U value.

To understand the go-to-goal behavior exhibited by the S-NOD and NOD robots in light of the saturated
opinion state of the NOD robot as in Fig. [5.I9B., we recall the definition of the robot’s heading update in
equations and (5.2d): 0 = kg sin (ug, - B - tanh(z) + (1 — @g,) ¢ ). The turn away from the direction of
the goal ¢ by some fraction of 8 only occurs when both z # 0 and ug, # 0. That means the opinion can
remain non-neutral (z # 0), but it will not affect the robot’s path towards its goal when no humans are
nearby the robot (ug, = 0).

It appears that the variation of K, has no meaningful effect on the trajectories within either the NOD
or S-NOD robot. Instead, its influence is evident in the evolution of opinions for each robot. The larger K,

value in the NOD social robot causes the opinion to saturate at a z = —1 value, resulting in a right turn.
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Figure 5.19: Trajectory and opinion comparisons between NOD and S-NOD social robots with various K,
and U values around a single stationary human. (Top) The trajectories of a social robot. (Bottom) The
opinion of the robot z over time ¢ within each trial. Identifiers A.-D. link each trajectory to its opinion.
Dots mark even temporal steps along each trajectory. White backgrounds correspond to K, = 5K, and
gray shaded backgrounds correspond to K, = 10K.
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However, this value (z # 0) remains after the robot has passed the human (ug, = 0). Whereas the larger
K, value in the S-NOD social robot causes broader and deeper spikes at the z = —1 value, increasing in
frequency as the human approaches, but ultimately returning to the sensitive z = 0 state after the robot has
exited its interaction with the human. This follows directly in line with the discussions in Chapter of
the limitations of tuning NOD and NOD’s ability to become too robust to change its opinion state.

We note the consistently shorter navigation times of the S-NOD robot compared to its comparable
NOD robot, but recognize that this comes at the expense of lower minimum distances maintained and
higher invasion distances for the human in all cases where U > 1.5u§. However, we assert that the S-NOD
algorithm is exhibiting all of the benefits that were hoped for in its formulation, in that the decision-making
is extremely agile while remaining robust. When considering the results of the robot’s spatial intrusiveness,
we recall that there is no explicit bound on maintaining a certain distance from approaching humans in this
social robot setting. The naturally occurring, mostly comfortable passing behavior exhibited by an S-NOD
(and NOD) robot is a bonus, not a feature. The NOD robot appears to be less socially intrusive because it
is less agile, forming and maintaining turning behavior past the point of necessity. We believe that adding
a constraint on the acceptable distance from a human could be imposed and addressed very elegantly with
S-NOD, thereby resolving the trade-off between efficiency and spatial intrusiveness.

Finally, we discuss the amount of control used within each experiment. There are apparent differences
in the scale of control shown between the NOD and S-NOD robots, with the latter proving to require much
less control signal to the robot. There are also inter-model differences in control: we see that a doubling of
the K, value from 5K to 10K results in an increase of total control within the range of 50% to 105% for
the NOD robot, whereas this range is only 8.34% to 13.14% for the S-NOD robot.

With these results, we now consider increasing the complexity of the environment by introducing another
human to observe how the robot responds. Let a second human begin from (0,8)m and move with a constant
direction towards its left at a slow constant speed V3, = 0.3m/s. This interaction is designed to prompt
the robot to interact with the second human after it has interacted with the first human. The resultant

trajectories are illustrated in Fig. and each trial’s performance metrics are summarized in Table
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Figure 5.20: Trajectory and opinion comparisons between NOD and S-NOD social robots with various K,
and U values around two humans. (Top) The trajectories of a social robot. (Bottom) The opinion of
the robot z over time ¢ within each trial. Identifiers A.-D. link each trajectory to its opinion. Dots mark
even temporal steps along each trajectory. White backgrounds correspond to K, = 5K and gray shaded
backgrounds correspond to K,, = 10K;.
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Navigation . . Invasion Distance | Invasion Distance
v Model |~ Ky Time [s] min(Dy) | min(D,) of Human 1 [m] of Human 2 [m] =]
NOD 5K 11.54 0.55 1.00 1.37 0.42 33.79
1950 10K 11.55 0.58 0.99 1.38 0.44 45.28
o S-NOD 5K 11.07 0.44 0.70 1.28 0.69 13.22
10K 11.06 0.43 0.70 1.28 0.69 15.05
NOD 5K 11.74 0.68 0.94 1.22 0.52 36.67
1 5ut 10K 12.52 0.88 0.71 1.22 0.75 47.41
o S-NOD 5K 11.19 0.60 0.71 1.29 0.71 15.07
10K 11.17 0.59 0.70 1.29 0.71 16.53
NOD 5K 11.86 0.80 0.88 0.89 0.62 38.79
1750 10K} 12.55 1.01 0.74 0.89 0.71 49.10
o0 S.NOD 5K 11.27 0.70 0.71 1.24 0.72 16.75
10K} 11.25 0.68 0.70 1.24 0.71 18.41
NOD 5K 12.56 1.09 0.76 0.66 0.69 41.49
2t 10K 12.57 1.09 0.76 0.66 0.69 50.39
0 $-NOD 5K 11.32 0.75 0.72 1.16 0.72 17.78
10K 11.30 0.75 0.73 1.17 0.73 19.65

Table 5.16: Performance metrics of the simulated navigation paths illustrated in Fig. taken by NOD
and S-NOD controlled robots across various values of U and K, as the robot interacts with two humans.

We can observe a drastic difference in performance between NOD social robots with varying K, and U
values, whereas the S-NOD robot exhibits consistent behavior across these parameter changes.

We have noticed that the trajectories across both navigation models and all parameter options are no
longer similar. After each trajectory chooses to dodge the first and stationary human towards the robot’s
right, the NOD robot may choose to continue to dodge the approaching second human further to the right or
move towards the left, the latter being the behavior of all S-NOD paths. We no longer see a consistent pattern
of behavior based on the U value when interacting with the second human. All S-NOD trajectories past
the second human appear to collapse to the same path towards the robot’s goal, whereas the NOD robot’s
path varies with both K, and U. The slight difference between the S-NOD cases tracks from the theory
presented in [26] and Chapter [4] i.e., K, does not require fine-tuning to drastically change the system’s
output behavior, so long as it is placed in the subcritical range with K, > K the system will act with
increased robustness and agility. However, for NOD with K, = 5K, the NOD robot dodges the second
human with a left turn for all U < 2u{ trajectories. Only when the NOD robot’s opinion reaches U = 2uj
does it remain negative, causing the NOD robot to turn right to pass the second human before the opinion
returns to zero. However, when K,, = 10K, the NOD robot dodges the second human with a left turn only
for the U = 1.25u trajectory. Now with U > 1.25uf the NOD robot’s opinion remains negative, turning the
robot right to pass the second human. In both of these instances, the opinion saturates and never returns
to a nonzero indecision state (z # 0).

It remains true that trajectories of the NOD social robot appear to provide more passing space, however
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inefficiently, than the comparable trajectories of the S-NOD social robot. This is confirmed by the consistently
lower minimum distances seen in the S-NOD cases within each group of experiments with the same U value.
We reiterate that these results follow because the NOD robot is less agile than the S-NOD robot, and
that neither algorithm explicitly constrains the robot to maintain distance from an approaching human.
An additional mechanism for collision avoidance could be implemented to promote this behavior, thereby
eliminating the only apparent advantage that a NOD robot has over an S-NOD robot.

As noted, the variation of K, has a significant effect on the trajectories of the NOD robot. Its influence
on the evolution of opinion for each robot can also be described. As the larger K, value in the NOD social
robot saturates to z = —1 and remains after the robot has passed the human, only when U is sufficiently low
can this opinion be reversed to induce a left turn. Even still, the opinion after the robot passes the second
human (ug, = 0) remains saturated in an opinionated state (z # 0). This leaves it susceptible once again
to further inefficient turning behavior if new humans were introduced to the scene (ug, # 0, reintroducing
the opinionated turning by 8 in the heading update). The larger K, value in the S-NOD social robot still
causes broader and deeper spikes to the z = —1 value, increasing in frequency as the human approaches.
Still, due to its return to the sensitive z = 0 state after each spike, the robot can quickly switch to a spiking
z = 1 value to turn the robot left around the second human.

We note the even more pronounced and consistently shorter navigation times of the S-NOD robot com-
pared to its comparable NOD robot. Still, this efficiency comes at the expense of lower minimum dis-
tances maintained between passing humans and higher invasion distances for both humans in all cases where
U > 1.5ug.

Finally, we discuss the amount of control used within each experiment. There are still noticeable differ-
ences in the scale of control shown between the NOD and S-NOD robots, with the latter proving to require
much less control signal to the robot. We see that a doubling of the K, value from 5K to 10K results in
an increase of total control within the range of 21% to 34% for the NOD robot, whereas this range is only
10.52% to 13.84% for the S-NOD robot.

We use the results of this section to provide insight into the consistent and agile performance of S-NOD
and its benefits for social navigation compared to the more parameter-sensitive NOD model. This analysis
provides an understanding of the parameter sensitivity and design trade-offs of each model when embodied
on a social robot. While NOD does not perform poorly for social navigation, its weaknesses begin to show
against S-NOD when the navigation scenario is more complex or cluttered. We further develop these results
in the next section with a proof-of-concept demonstration of NOD and S-NOD robots navigating through

five interactions.
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5.4 Simulated multi-human navigation: NOD vs. S-NOD perfor-
mance

We conclude the presentation of the advantages of the S-NOD algorithm over the NOD algorithm for social
robot navigation with a representative simulation that models a complex navigation scenario involving a
single robot and multiple humans. Based on the previous results in this chapter, we anticipate that a NOD
robot will navigate inefficiently in complex scenarios, as it can become “stuck” in a fixed opinion and fail to
remain responsive to the sequential decision-making demands along its path. A S-NOD robot, however, is
repeatedly driven to an ultra-sensitive opinion state and therefore highly adaptable to new input from the
environment. The only flaw observed in an S-NOD robot thus far has been its spatial intrusiveness, which
is a consequence of its increased efficiency. We conclude with a short discussion on how this issue can be
mitigated by integrating an additional collision avoidance algorithm to ensure safe navigation.

We present a simulated scenario with five moving humans placed along a robot’s path toward its goal. The
robot is initially placed at (0,0)m directly facing its goal at (0,20)m. Note that this creates a significantly
larger navigation area than previously seen in simulations and experiments in this thesis. The robot is
programmed to move at a constant speed of V' = 0.6m/s. For all subsequent simulations, the parameters
within NOD equation and S-NOD equation held constant are as follows: 7, = 0.02, d =1, a;; =
a=2,v=3,n=2 Dy =4m, 7,, = 0.2, K,,, = 10, kg = 2and 8 = 7/4. The robot was kept unbiased
(b =0) for maximum flexibility in passing behavior.

There are five humans placed sporadically throughout the navigation area, each exhibiting different
motions. Humans are tagged as Human ¢ with £ € Ny = 1,...,5 according to their initial proximity to the

robot. We detail these motions below:

e Human 1 begins at (—2,2)m with heading 0, = 45° and moves in that direction at a constant speed

of Vi, = 0.6m/s.

e Human 2 begins at (—0.5,8)m with heading 6, = —55° and moves in that direction at a constant

speed of V3, = 0.7m/s.

e Human 3 begins at (0,9)m with heading 6, = —120° and moves in that direction with a sinusoidal

shape at a constant speed of V,, = 0.7m/s.

e Human 4 begins at (—2,16)m with heading 05, = —25° and moves with a constant speed of V},, =

0.15m/s in that direction before making an abrupt 50° turn.
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Model | NT [s] | PL [m] | CD [m?] | min(D3) min(Dy) ID3 m] ID, [m] [|12]]
NOD 46.17 27.7 32,005.0 0.89 4.54 0.58 0 99.75
S-NOD | 33.76 20.26 4,181.5 0.72 0.66 0.52 0.48 20.92

Table 5.17: Performance metrics for the NOD and S-NOD robots along the trajectories illustrated in Fig.
The minimum distances min(Dy, ) and their related invasion distances are only shared if the invasion distance
is nonzero. Shorthand: NT = Navigation Time, PL = Path Length, CD = Centerline Deviation, I D, =
Invasion Distance of Human /.

e Human 5 begins at (3, 18)m with heading . = —140° and moves with a constant speed of Vj,, = 0.4m/s

in that direction before making an abrupt 45° turn.

We present this case where neither robot fails in their navigation, but moves with drastically different
behavior along the path towards the goal. Recall that if the robot were undisturbed in the environment,
it would move in a straight path to the goal along the x = Om axis. We observe that within this cluttered
environment with various moving behaviors, neither robot follows a straight path, but the S-NOD robot
remains nearby at least. This efficiency is reflected in its results, summarized in Table [5.17]

We first qualitatively compare the trajectories taken by the robots.

The NOD robot begins its navigation with a robust positive opinion to turn towards the left, away from
Human 1 as it crosses the robot’s path. Upon interacting with Humans 2 and 3, the NOD robot changes to
a negative opinion and turns towards the right. From this point on, the robot’s sensitivity and its opinion
do not fall to a nonzero value again. The robot maintains a large, arching right turn as it is captured by its
sensitivity responding to Human 1, who is now moving in front of the robot’s path. Only once the human
moves sufficiently out of the robot’s path (after nearly 25 seconds) does the robot begin to move towards
its goal. This long, arching path to the goal results in a high navigation time, path length, and significant
centerline deviation from the path to the goal. It does, however, reduce the opportunity to interact with
and navigate near the other humans in the scene. This results in high minimum distance values between all
humans (except for Human 1) and only one instance of personal space invasion, which is observed in Human
1. However, this behavior could only be helpful if there was no time sensitivity or control usage issue for
the robot, as this behavior comes at the cost of a large amount of total control ||z|| = 99.75. The fact that
the attention and opinion never relax to a zero value (z # 0) leaves the NOD robot vulnerable to further
inefficient, odd navigation behavior if another human comes into its view (making ug, # 0, reintroducing the
opinionated turning by 3 in the heading update of ([3.3d)). The HRI literature, such as in [14], also suggests
that this behavior would be uncomfortable for the interacting humans.

The S-NOD robot begins its navigation with a positive spiking opinion to turn towards the left, away

from Human 1 as it crosses the robot’s path. Upon interacting with Humans 2 and 3, the S-NOD robot
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Figure 5.21: Superimposed simulations of NOD and S-NOD social robots navigating around five humans.
(Top) Trajectory snapshots along the duration of each robot’s navigation. On the left, the humans are
numbered according to their initial proximity to the robot’s initial location. (Middle) Opinion z over time ¢
of both robots. (Bottom) Sensitivity u over time ¢ of both robots. Dots along the trajectories and z and u
traces mark even temporal steps.
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changes to a negative opinion (as seen in the evolution, this is done more swiftly than that by the NOD
robot) to turn towards the right. These turns are much smaller than those seen by the NOD robot, so the
S-NOD robot now remains on a straight path toward its goal near the initially direct path on the x = Om
axis. The robot then begins to interact with Humans 4 and 5, who appear on the robot’s left. Human 4’s
heading indicates that it is moving toward the right, while Human 5’s heading indicates that it is moving
toward the left. The robot forms a spiking positive opinion and turns left, away from the nearby Human 4.
As it completes this turn, it grows in proximity to both Humans 4 and 5, which is reflected in the frequency
increase of the opinion spikes. It experiences a single negative spike as Human 5 becomes the only interacting
partner in its path, but once through the interaction, the robot travels directly toward the goal. This more
direct path to the goal results in lower navigation time, path length, and centerline deviation from the path
to the goal compared to that of the NOD robot. This does, however, allow for more nearby interactions
with humans, as reflected in the lower minimum distance values between all humans, with two instances
of personal space invasion observed in Humans 1 and 4. The control signal input is significantly lower
than previously observed, at ||z|| = 20.95. The attention and opinion remain relaxed at zero value when
not interacting with a robot, making the S-NOD robot more flexible and capable of responsive navigation
behavior if another human comes into its view.

These behaviors were expected, given what we understand about S-NOD compared to NOD in theory,
and we can interpret this in its embodied behavior. While NOD may not fail, a NOD robot will move
with increasing inefficiency as sequential decision-making becomes necessary while navigating. Sequential
decision-making is a crucial capability of a navigation algorithm, particularly as more humans are introduced
into navigation scenarios. Further, the sloping, wide turns made by NOD to avoid humans may maintain
safety, but sacrifice natural movement. As discussed in [14], humans prefer when robots exhibit cooperative
behavior, so this kind of behavior by the NOD robot would be viewed as an uncomfortable navigation
partner. In contrast, the S-NOD robot exhibits more understandable, goal-driven behavior. This does,
however, increase the possibility of causing a collision when not making sloping turns. We believe that
S-NOD is a low-level, computationally efficient method for dictating cooperative, natural, and deadlock-
free navigation around humans. Its weaknesses can be addressed by incorporating a supplemental collision

avoidance algorithm into the robot to maintain and ensure safety during navigation.
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Chapter 6

Conclusions

6.1 Final remarks

In this dissertation, we presented the development, design, analysis, and validation of two forms of nonlinear
opinion dynamics models (NOD and S-NOD) that control the navigation behavior of robots interacting with
humans. Each model was defined with an emphasis on understanding the system’s output behavior when
tuning parameters. Both leverage the pitchfork bifurcation exhibited by the system dynamics to ensure the
instability of the decision when the system is sufficiently sensitive.

The application of a Nonlinear Opinion Dynamics (NOD) model to social robot navigation was motivated
by the biological inspiration behind the decision-making in the general Bizyaeva et al. model [1], an attribute
we sought to translate to inherently collaborative, natural navigation behavior by the robot. In collaboration
with Marfa Santos, Shinkyu Park, and Naomi Ehrich Leonard, we adapted the NOD model to the social
navigation setting and formally investigated the behavior of a physical robot navigating real spaces with
humans. While the application was successful, we highlighted key elements of the control that made it so
robust that it became resilient to the flexible opinion changes so crucial to its use.

To better serve the sequential nature of decision-making in a social robot navigating in real-time around
multiple human movers, and to address the concern that opinions can become “stuck,” we adapted the
NOD model to be spiking and event-based. In collaboration with Alessio Franci, Naomi Ehrich Leonard,
and Tan Xul Belaustegui, we modified the NOD model by incorporating an additional slow-negative feedback
mechanism inspired by the return to sensitivity exhibited in neuronal excitability. This led to the development
of the Spiking Nonlinear Opinion Dynamics (S-NOD) model. The S-NOD model retains the fast and flexible

decision-making of NOD and adds adaptability to the system by cycling solutions through the sensitive
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bifurcation point, creating a more agile model. The contributions within each chapter of the dissertation are
discussed in further detail below.

In Chapter 3] we presented a new and proactive approach to social robot navigation, leveraging an
adaptation of the general Nonlinear Opinion Dynamics (NOD) model by Bizyaeva et al. [1]. This setting
exploits the pitchfork bifurcation within the NOD system to guarantee deadlock-breaking passing behavior
when the robot faces a navigation scenario with no obvious best passing direction. The robot can rapidly
and reliably pass approaching human movers based on only their geometry, notably without requiring a
complex model of human behavior. We analytically guaranteed deadlock-free navigation for the robot,
leveraging linearization and bifurcation theory to find the system’s stable solutions. We found that the basal
sensitivity ug serves as a bifurcation parameter of the system, with its critical value u§ = d/a determined by
the design of other parameters within the model. Once the robot’s basal sensitivity surpasses this critical
value, indecision (in the form of a zero opinion state, z = 0) becomes unstable. Therefore, we find that the
robot’s parameters can be set to be sufficiently sensitive to its environment, allowing it to produce proactive
navigation. This deadlock-breaking behavior is illustrated in simulations and further verified with physical
experiments.

We defined the working environment for our specialized NOD model for social robot navigation and
carefully described the adaptations made to the general form of Bizyaeva et al. [1]. We highlighted the
relevant changes and improvements made from our initial publication of the NOD model [25] and then
presented entirely new experimental results in Chapter We systematically tested the NOD algorithm in
experiments to serve many purposes. A single-robot, single-human experiment verifies the deadlock-breaking
behavior of the NOD algorithm, navigating an unbiased robot out of the way of a human approaching it
directly. These experiments also demonstrate that when interacting with a passing human, a robot with a
biased passing preference can reliably overcome its predisposition and collaboratively pass the human mover.
These experiments and their results further illustrate how the design parameter 8 in the robot navigation
algorithm can tune the robot’s behavior and reveal the trade-off between navigation efficiency and spatial
intrusiveness in the passing problem. Experiments with a single robot and two passing humans verify the
flexibility of the NOD model, as the robot reliably modifies its trajectory according to both humans and
successfully navigates through complex passing scenarios. The robot’s movements were collaborative with
the humans it interacted with and appeared to have an inherent amount of safety in its navigation provided
by the NOD control.

Based on the previous findings, we identified the need for the social robot’s opinion to return to the vicinity
of its ultrasensitive bifurcation point, thereby adding agility without compromising the robustness of NOD.

In Chapter 4] we design and present the Spiking Nonlinear Opinion Dynamics (S-NOD) model to satisfy this
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need. We incorporated excitability into the NOD model by introducing an additional slow-negative variable
that returns the system to an ultrasensitive state. We then specialized the S-NOD model for the social robot
navigation setting. In this chapter, we demonstrated that S-NOD offers a first-of-its-kind two-dimensional
framework for excitable (spiking) dynamics, enabling agile decision-making over two options. We explained
how NOD can become too robust; however, the self-regulation of S-NOD recovers system flexibility and
enables adaptive, event-based decision-making. We showed and analyzed the existence of limit cycles for
certain parameter regimes in S-NOD. We presented a multi-agent S-NOD model and highlighted the potential
agent (anti)synchronization, which is dependent on communication network parameters. We concluded this
presentation of the formulation and analysis of S-NOD with an illustration of its agility in a simulated social
robot navigation application.

In Chapter [f] we expanded on the application of S-NOD for social robot navigation to physical exper-
iments with human movers, and simulations with a larger scale of both navigation space and number of
humans. We presented the specialized S-NOD model for social robot navigation. The physical experiments
of a robot controlled with S-NOD were constructed to mirror those within the NOD section. This allowed
us to 1) systematically validate the deadlock-breaking behavior of S-NOD just as we had done with NOD,
2) validate the flexibility of S-NOD just as we had done for NOD, 3) provide an opportunity to directly
compare the behaviors exhibited by the algorithms on a social robot, and 4) uncover the approximate tuning
required to reproduce NOD robot behavior with an S-NOD robot. Experimental results show that S-NOD
maintained the deadlock-free guarantee in navigation provided by NOD, and navigation performance was
improved with increased efficiency and flexibility through event-based decision-making. Through a compar-
ison of experiments, we explored the benefits and weaknesses of the S-NOD robot’s navigation behavior in
relation to that of its NOD counterpart. We noted that while efficiency improves with S-NOD, it could
sacrifice a comfortable level of passing distance, whereas a NOD robot would not. We noted, however, that
the comfortable passing distance could likely be easily controlled with the addition of a well-studied mech-
anism from the literature for local obstacle avoidance. Through the example of a larger-scale five-human
simulation, we demonstrated that while NOD provides a comfortable passing distance to humans, it does so

with unnatural and puzzling behavior compared to the efficient and legible path of an S-NOD robot.

6.2 Future work

We believe there are numerous exciting opportunities for the extension and further development of the NOD
and S-NOD theories, with various suggested improvements for social robot navigation.

There are promising developments in further theoretical analysis and understanding of S-NOD models
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already. In a recent work [62] by my collaborators Tan Xul Belaustegui, Alessio Franci, and Naomi Ehrich
Leonard, the S-NOD model is used as a controller and expands on the analysis of its behavior dependent
on parameters. They identify the necessary conditions that cause the onset of periodic opinion spiking,
analyzing the tunability of the spiking threshold of the opinion z as a function of the basal sensitivity ug and
the tunability of the spiking frequency with the magnitude of the input. As demonstrated in this dissertation,
these results can be extended to an S-NOD controller for multiple agents. Additionally, the S-NOD controller
can be further extended to accommodate more than two options. This presents the opportunity for spiking
decision-making that occurs in as many directions as there are options in a system. There is much exciting
future work to be done in studying S-NOD for multiple agents and multiple options.

There are various avenues for improvement to the NOD and S-NOD models applied to a social robot. We
believe these models are powerful and demonstrably effective tools for decision-making in navigation settings,
but may be best utilized as a low-computation controller to complement other navigation methods. These
algorithms can reduce or eliminate the need for predictive or reinforcement learning models to maintain a
long-term history of previous navigation interactions and/or train on complex models of human behavior.
We hold that NOD and S-NOD best serve as decision-making algorithms with the added benefit of creating
collaborative, natural movement when their control is used directly. However, these models are not them-
selves algorithms with collision avoidance. Robot motion can therefore be enhanced by allowing a different
control to maintain a safe distance from a human while NOD or S-NOD maintains deadlock-breaking in
further navigation.

We also believe that applying reinforcement learning to the NOD and S-NOD parameters may be a
valuable avenue to better tailor the robot’s behavior to its navigation environment. As observed in the
two sets of single-robot, single-human experiments of S-NOD in Chapter the parameters within the
model can significantly impact the robot’s turning behavior. Depending on the environment (e.g., a hallway,
an open lobby, or a bustling warehouse), the robot may navigate more effectively with different navigation
behaviors (e.g., maintaining a greater or lesser distance from nearby humans). Learning the parameter
regimes that best fit these navigation environments can enhance the performance of social robots, thereby
better equipping them for cooperative motion in each environment. Learning to adapt their parameters
in response to a changing environment can keep these robots agile and adaptable. Already, Hu et al. [2§]
demonstrated the successful use of NOD alongside other methodologies to achieve safety-critical performance
in autonomous racing. This offers a strong motivation to pursue similar directions of combining NOD to
complement other methods in future work.

We believe that these nonlinear opinion models can be applied to various other tasks within a social robot,

beyond navigation. The robot’s behavior can be improved by utilizing the NOD or S-NOD mechanism to
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control its speed, modulating it to move either faster or slower during a human interaction, thereby providing
space, overtaking a slowed human, or enhancing safe navigation in a cluttered environment.

Finally, we note that the NOD and S-NOD models, specialized to social robots within this dissertation,
concern scenes in which the number of potentially passing humans is known. In a non-laboratory envi-
ronment, the robot will need to have significantly improved perceptual capabilities to better identify and
observe humans within its space. There have been strides made in this setting by Amorim et al. in [63],
which presents a spatially invariant form of perceptual decision-making. Its application to a robot within a
crowd shows success in sensing and identifying through-paths between humans. In the reverse sense for our
social robot, this can be used to determine the existence of humans, allowing their location and orientation
to be assessed and used to form a collaborative opinion with NOD or S-NOD.

Opportunities abound for the formulations and applications of NOD and S-NOD. It has been an honor
to aid in their conceptualization, development, and implementation thus far. I look forward to witnessing

all future evolutions, refinements, improvements, and extensions to these powerful tools.
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Chapter 7

Proactive opinion-driven robot

navigation around human movers

CHARLOTTE CATHCART, MARfA SANTOS, SHINKYU PARK, AND NAOMI EHRICH LEONARD

Statement of contributions

The material presented in this chapter also appears in [25] and was presented at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) in Detroit, MI in 2023. I, Charlotte Cathcart, am
the lead author of the manuscript. Maria Santos and Shinkyu Park are co-authors of the manuscript and
acted in supervisory roles for the project. Naomi Ehrich Leonard is the principal investigator of this project.
Naomi Ehrich Leonard and Shinkyu Park initially conceived of the NOD model for application in a robotic
navigation system. All four authors participated in discussions on the work presented in this manuscript.
I, Charlotte Cathcart, developed the final application and embodiment of NOD in a robotic navigation
system, drawing from previous work by Shinkyu Park and Andrew Witmer. I, Charlotte Cathcart, led the
writing of the manuscript, with significant writing and editing contributions by Naomi Ehrich Leonard and
Shinkyu Park in Section All four authors contributed to the drafting of the initial manuscript and
assisted in the editing of the final manuscript. I, Charlotte Cathcart, ran all simulations, conducted all
experiments, and created all figures within the manuscript. Maria Santos provided guidance on setting up
hardware and experiments. All four authors, with significant guidance from Maria Santos and Shinkyu Park,
assisted in formalizing the experimental approach to showcase NOD in a robotic navigation system. Naomi

Leonard supervised the acquisition of funding for this project through ONR, grant N00014-19-1-2556 and the
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generosity of Lydia and William Addy ’82 at Princeton University. I, Charlotte Cathcart, led the acquisition
of approval of human-robot experiments from the Institutional Review Board (IRB) at Princeton University

with guidance and editing from Naomi Ehrich Leonard.

Abstract

We propose, analyze, and experimentally verify a new proactive approach for robot social navigation driven
by the robot’s “opinion” for which way and by how much to pass human movers crossing its path. The
robot forms an opinion over time according to nonlinear dynamics that depend on the robot’s observations
of human movers and its level of attention to these social cues. For these dynamics, it is guaranteed that
when the robot’s attention is greater than a critical value, deadlock in decision making is broken, and the
robot rapidly forms a strong opinion, passing each human mover even if the robot has no bias nor evidence
for which way to pass. We enable proactive rapid and reliable social navigation by having the robot grow
its attention across the critical value when a human mover approaches. With human-robot experiments we
demonstrate the flexibility of our approach and validate our analytical results on deadlock-breaking. We also
show that a single design parameter can tune the trade-off between efficiency and reliability in human-robot
passing. The new approach has the additional advantage that it does not rely on a predictive model of

human behavior.

7.1 Introduction

Autonomous mobile robots are increasingly being used for tasks in settings such as warehouses and open
public spaces where they will encounter human movers. In order to accomplish their tasks in these settings,
the robots need to reliably and gracefully navigate around human movers. In this paper, we propose,
analyze, and experimentally verify a new approach for the social navigation of a mobile robot. Fig. [7.1
shows experimental results of a mobile robot navigating around two human movers using the new approach.

We build on the nonlinear opinion dynamics model presented in [1] and propose an approach that allows
a robot to rapidly form an opinion that represents the strength of its preference for which direction—Ileft
or right—it will use to pass each human mover crossing its path. This opinion, in turn, drives the robot’s
motion, modifying its nominal path to reliably pass the human. A key to the opinion dynamics is that when
the robot’s attention to social cues grows above a critical value, the neutral opinion to stay the course is
destabilized and the robot rapidly forms a strong and stable opinion for moving in one of the two passing

directions. Our approach is therefore to design dynamics for the robot’s attention that drive it above this

116



*‘., —&—Robot
3 Sk % —&=-Human 1
e, ¢+ Human 2

E o
>
.1 F
2
. W
4 .
4 2 0 2 4

x [m]

(a) (b)

Figure 7.1: A robot using opinion-driven navigation to pass two humans. I@l Time-lapse of the experimental
trial. The full trajectories of the robot (red line) and two humans (blue and green lines) with temporal
markers.

critical value when the robot senses a human mover approaching its path. The active control of attention
yields a rapid and reliable passing motion in response to an approaching human mover; this renders our
approach “proactive” rather than merely “reactive.”

Once the robot passes a human, its opinion with respect to that human is no longer relevant; the opinion
quickly returns to its neutral value, allowing the robot to continue towards its destination. Likewise, the
robot’s attention also goes to zero, making the robot ready for new potential conflicts with other movers.
Figs. and provide experimental results of the robot navigating different encounters when traveling to
a goal destination that is diagonally across an open space with two humans moving and pausing in a variety
of scenarios.

Opinion dynamics are used to enable decision making in multi-agent systems in a range of tasks .
In the nonlinear opinion dynamics of , an agent’s opinion is influenced by the opinions of others when its
attention exceeds a critical level. At this point the agents are guaranteed to form strong opinions (e.g., to
agree on or coordinate among options), hence avoiding indecision, i.e., deadlock in their decision making. In
the robot social navigation problem, we leverage the deadlock breaking guarantees of the coupled attention-
opinion dynamics to ensure that, when necessary to avoid an approaching human mover, the robot will
rapidly select and move in one of the two passing directions even if there is no indication from the human
or the environment that one direction is better than the other, or if the robot’s bias for one direction or the
other, if it has one, conflicts with the human’s chosen passing direction.

Of relevance to our work is the literature on robot social navigation (see recent survey articles

and references therein), where a common theme is in investigating the design of navigation algorithms for
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autonomous robots to safely and comfortably interact with the humans they encounter. Earlier work [6]
in modeling human navigation behavior proposes a model based on the observation that the motion of
pedestrians is subject to social forces. More recent works [7,/66] incorporate social cues into the social
force model and the improved models are used to design robot navigation algorithms. The work of [67]
proposes a constrained optimization approach to design a navigation algorithm that penalizes the robot
when its behavior violates conventions observed in the human’s navigation. In [5], a reactive control policy
is used to follow and maintain the passing sides observed by passing humans through social momentum.
References such as [10,/68}/69] explain learning-based approaches that leverage the recent advancement in deep
reinforcement learning to train mobile robots through multiple trial-and-error processes to safely navigate
in human-populated areas.

Another important line of research in the social navigation literature is data-driven learning approaches
that infer human navigation models from their demonstration data, and use the models to predict human
motions and to design robot motion planners. The work of [70] leverages Bayesian learning to construct a
motion model and personality characteristics of pedestrians, and use predicted pedestrian trajectories from
the model for socially-aware robot navigation. Inverse Reinforcement Learning (IRL)-based approaches, for
instance [9;/11,/69], take human demonstration data to estimate a utility function used in human navigation
tasks, and use it to generate robot trajectories that imitate the demonstrated human motions. In particular,
a recent relevant work [71] studies the effect of human-robot communication in social navigation and pro-
poses an IRL-based robot planning framework to generate communication actions that maximize the robot’s
transparency and efficiency.

Our work is distinct in that 1) it is proactive rather than reactive, 2) it does not require constructing a
predictive model of human navigation as in IRL-based approaches, rather it only needs the robot to observe
the position and moving direction of the human, and 3) our robot navigation model is analytically tractable
so that we can establish a guarantee on deadlock-free decision making in the robot-human navigation. This
contrasts with the reinforcement learning approaches, which are in general difficult to analyze, and existing
reactive approaches, such as social force models, which do not provide the same deadlock-free guarantee.

In Section[7.2] we introduce the nonlinear opinion dynamics and propose a new model for robot navigation
in a human-robot navigation setting. In Section[7.3] using tools from nonlinear dynamical systems theory, we
discuss how the model ensures rapid deadlock-free robot navigation. To demonstrate and test the flexibility
of our approach, we carry out experiments with two human participants and a mobile robot in a range of
scenarios, which we report on in Section We examine and validate the effectiveness of rapid deadlock-

free navigation with further experiments in Section We conclude with a discussion in Section [7.5
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Figure 7.2: Multiple experimental trials with two humans and a robot using the new approach. The top row
shows the complete trajectories of the robot (red line) and humans (green and blue lines) over the course of
a trial as the robot moves toward its goal (red star). Each trajectory is marked with an arrow indicating the
mover’s direction. The bottom row shows the robot’s opinion z, (teal line) and attention u, (orange line)
over the course of the trial above it. Temporal markers (dots) are shown along spatial trajectories, opinion,
and attention. See Section [7.4.] for parameters used.

7.2 Nonlinear Opinion Dynamics in social navigation

We study a robot navigation problem where a robot approaches and passes human movers while traveling to
its destination (see examples in Figs. and. In this context, we want to enable the robot to repeatedly
overcome human movers in a rapid and reliable fashion. We are also interested in tackling challenging
scenarios such as the human-corridor passing problem that may result in deadlock if, for example,
both the robot and the human have conflicting passing biases. In these situations, a key objective is to
ensure that the robot moves reliably around the human regardless of the human’s awareness of the robot.
It is also desirable that the robot moves efficiently around the human. However, reliability and efficiency
are in tension: giving the human a lot of space may create reliably successful but inefficient passing whereas
giving the human only a little space is efficient but creates less reliably successful passing.

To address these competing objectives, we propose a new dynamic model for robot navigation based on
the nonlinear opinion dynamics of [I]. We review these dynamics in Section[7.2.1] We specialize the dynamics
to proactive opinion-driven robotic navigation in Section [7.:2.2] and show how a single design parameter can
be used to control the reliability-efficiency trade-off. In Section [7.3] we provide analysis that shows how

deadlock breaking is guaranteed.
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7.2.1 Nonlinear Opinion Dynamics model

Consider a system of N, agents forming opinions about two options. Let z; € R be the opinion of agent
i, which represents the strength of its preference for option 1 if z; > 0 and for option 2 if z; < 0. It is
indifferent, i.e., neutral, if z; = 0. Strength of preference is |z;|. The nonlinear opinion dynamics model,
described below, explains how each agent ¢ updates its opinion z; continuously over time in response to its

own opinion, the opinions of others zj, and any internal bias or external stimulus b;. Letting 2; = dz;/d¢,

k=1

The opinion z; can be interpreted as the discounted accumulation of social influence weighted by the
parameter u; > 0. The social influence is defined as the hyperbolic tangent function of the weighted sum of
the opinion z; of every agent k observed by agent ¢ and a bias/stimulus b;. The resistance parameter d; > 0
defines the rate of exponential discount in the accumulation of the social influence. The attention u; > 0
is a tuning variable, which can be adjusted to reflect the agent’s (changing) effort to pay attention to the
social influence. The parameter a;;, = 1 if agent ¢ can observe agent k; otherwise, a;; = 0. The parameters
a; > 0 and y; € R are weights defining how much influence z; and z, respectively, have on agent i’s opinion

update. If b; > 0 (resp. b; < 0), the bias is for option 1 (resp. for option 2). In case of no bias, we set b; = 0.

7.2.2 Dynamic model for opinion-driven robot navigation

Building on , we propose a robot navigation model that forms an opinion to drive the robot’s motor
control in an uncrowded and uncluttered environment with human movers. We assume that the robot moves
at a constant speed V., but can regulate its angular velocity. We represent the robot’s position and heading
angle as x, = (z,,y,) and 0,, respectively. For each human j that the robot can detect, we denote their
speed Vj,;, position xj, = (mhj , yhj)7 and heading angle 0. Let 7., be the heading of the robot relative to
the line between the robot and the human j. Let np,; be the heading of human j relative to the line between
the robot and the human. See Fig. for illustration of notation.

The robot focuses on the human mover j that minimizes x;/x; where x; = [|x, —xp, ||, k; = cosny,, and
nn; € (=%, %). This is the human who is most rapidly approaching the robot. We use x(t), na(t), x(t),
and k(t), i.e., without index j, to refer to whichever human is the one most rapidly approaching the robot
at time ¢.

We define 2z, > 0 (resp. z, < 0) as the robot’s strength of preference for moving left (resp. right).

When z,. = 0, the robot’s opinion is neutral, i.e., it is indifferent to these options. Our approach does not
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Figure 7.3: An illustration of notation for human-robot passing.

require any knowledge of a human model; however, we assume that the robot can measure 7, and use it as
a proxy for the robot’s perception of the human’s opinion on direction as Z, = tan nhﬂ This is unlike other
approaches that require a longer-term prediction of human trajectories, such as @

Our proactive opinion-driven robot navigation model specifies (a) how the robot’s opinion z, changes in
response to its attention wu,., its current opinion, its estimate Z; of the opinion of the focal human mover,
and possibly a bias b,; (b) how the robot’s attention u, changes in response to x and x; and (c) how the

robot’s heading 6, changes as a function of its opinion z, and the direction ¢, to its goal:

Zr = —dy zp + u, tanh (a2 + 720 + by) (7.2a)
Tuly = —Uyp + g(“) X5 R’r)a (72b)
0, = k, sin (B-tanh z,. + ¢,.) , (7.2¢)

where d,, ar, ¥, Tu, Ry, kr > 0 and B, € (0, %] are design parameters. Note that is similar to
except the human’s opinion z;, is replaced with the proxy 2z, = tanny,.

We design the attention dynamics so u, grows quickly when a human mover gets close. Unless
otherwise noted, we let 7, — 0 and define g using a Hill function to get

wr = glroxi Re) = u+ (i~ u) ((R(R)’ﬁx) , (7.3)

where 0 < u < @ and n > 0. The variable u, increases from u as the robot and human move closer towards

I1'We resort to \ \ for the basis for estimating the human’s navigation intent using their orientation.
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collision, based on a critical distance parameter R, > 0, and saturates at the value @. This drives u, above
a critical value that destabilizes the neutral opinion 2, = 0, allowing the robot to rapidly form a strong
opinion when a human mover approaches, and thus rapidly pass the human on one side or the other. In this
sense our approach is proactive. See Section for a rigorous analysis of the deadlock breaking.

To understand the role of design parameter §, € (0, 5], note that when z, is sufficiently large so that
tanh z,. ~ 1 (resp. —1), steers the robot’s heading angle an additional 8, radians in the counterclock-
wise (resp. clockwise) direction from the orientation to the goal location. Hence, we can tune f3, to prescribe
how much the robot’s heading angle should deviate from its direct path to its goal when it detects the human
and forms a strong opinion on its passing direction. In this way the parameter 3, can be used to tune the
reliability-efficiency trade-off as we show through the deadlock breaking human-robot experiments described
in Section

Our approach can be extended to incorporate path planning, e.g., to avoid driving the robot to a local
minimum in the case of a cluttered environment. For example, this would be possible using a path planning
approach such as the rapidly-exploring random tree (RRT) in place of , with opinion z, as an input.

This would regulate not only the robot’s angular velocity but also its moving speed.

7.3 Guarantee on deadlock-free navigation

A key contribution of our work is in guaranteeing deadlock-free navigation. We establish such a performance
guarantee by analyzing the robot navigation model . In particular, we discuss how the robot can rapidly
and reliably form a strong opinion to select one of the two options—move left (z,. > 0) or right (2, < 0)—
and avoid colliding with a human, even when the human maintains a path straight for the robot and the
robot has no bias (b, = 0) on which way to pass. To establish this, we use tools from nonlinear dynamical
systems theory [43] to show that there is a deadlock-breaking pitchfork bifurcation in (7.2)) when the robot’s
attention u, reaches a critical level v’ (as it nears the human), corresponding to the destabilizing of the
deadlock solution and the emergence of bi-stable solutions for moving left and for moving right.

We examine the challenging case in which the human does not react to the robot’s movement. We validate
our analysis through human-robot experiments in Section [7.4.2

Suppose the robot is unbiased (b, = 0) and approaches a human who is walking straight towards it

(nn, = 0). In this setting, ([7.2a]) simplifies to

2. = —dpzp + u, tanh(o,.2,.). (7.4)
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Figure 7.4: Analysis of deadlock breaking in the robot’s opinion dynamics when the human moves straight
towards the robot. @When the robot is unbiased (b, = 0), deadlock is broken as w, increases above critical
value u}, where two stable (blue solid) symmetric opinionated solutions emerge and deadlock becomes unsta-
ble (red dashed). [(b)] When the robot is biased (b, = 0.5), the bifurcation “unfolds” where deadlock breaks
but the likelihood of converging on one opinionated solution is greater than on the other. Simulations of
social navigation dynamics. Initial conditions for the robot and human indicated with red and blue boxes.
Parameters of (7.2): d, = o, = 0.1, 7 = 3, 7, = 1, g(k, x; R;) = exp(k(R, — x)) with R, = 16, k, = 1, and
Br =m/4.

The neutral (deadlock) opinion z, = 0 is always an equilibrium solution of . However, we show that
while for small values of attention u, deadlock is a stable solution, for larger values of u,. it becomes unstable
and two symmetric bi-stable solutions emerge corresponding to a strong opinion, one for going left and one
for going right. This transition, illustrated in Fig. as a plot of equilibrium values of z,. as a function of
Uy, is called a pitchfork bifurcation.

To analyze the deadlock-breaking bifurcation, we linearize the nonlinear opinion equation around
the equilibrium z, = 0 and examine the eigenvalue A = —d,. + «a,u, of the resulting linearization. The sign
of A governs the stability of the equilibrium 2z, = 0. When A < 0 (resp. A > 0), then z. = 0, and thus
deadlock, is stable (resp. unstable).

The value of u, corresponding to A = 0, computed as u: = d,./a,., is thus the critical attention value.
When the robot pays less attention (u, < w), then A < 0 and the robot remains in deadlock, attempting to
go straight to its goal location. However, when the robot pays more attention (u, > u}), A > 0 and deadlock

becomes unstable. For u, > u’ it can be shown that there are two additional symmetric equilibria 289 =
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—2z%42 > ( that are both stable. These solutions correspond to a preference for going left (z, = 224! > 0),
shown as the positive curve in blue in Fig. and a preference for going right (z, = 2892 < 0), shown
as the negative curve in blue in Fig. Note that the strength of preferences increases with increasing
u, > ur. Because deadlock is unstable, the robot’s opinion will necessarily converge on one or the other
opinionated solution. Which one it chooses will depend on initial conditions and noise.

When the robot is biased (b, # 0) or the human is approaching the robot obliquely (7, # 0), the pitchfork
bifurcation unfolds, as illustrated in Fig. [7.4b] This implies that the robot prefers one side over the other
when it passes the human mover. In particular, it can be shown that the robot prefers to move left if
- tanny, + b > 0, and right if ~, tann, + b, < 0. Also, as we can observe from the diagram in Fig. [7.4b
where the robot has a bias b, > 0 for moving left, when u, becomes sufficiently large, even though the robot
favors left, if the robot is already moving right, it continues to move to this side. The analogous holds if
b, < 0.

We further illustrate the deadlock-breaking behavior with simulations in Fig. The human (trajectory
in black) heads straight for the robot. In the unbiased case (b, = 0), the robot (trajectory in orange) moves
straight just briefly before arbitrarily choosing to go right to pass around the human. This corresponds to
behavior indicated by the negative blue curve in Fig. In the biased case (b, > 0), the robot (trajectory
in purple) follows its bias and moves left, departing even sooner than it did in the unbiased case. This

corresponds to the positive blue curve in Fig. [7.4D]

7.4 Experiments

We conducted two laboratory studies with human participants and one wheeled robot, a Clearpath Jackal
UGV, moving in the 8mx8m uncluttered space shown in Fig. We used a Vicon motion capture system
to track the position and orientation of the robot and human movers who wore hats with a set of Vicon
markers. The robot used the Vicon data to track the human movers. Our experimental goals are threefold:
1) to demonstrate the flexibility of the approach in that the robot can navigate a space while reliably
interacting with multiple human movers in its path over a range of scenarios; 2) to validate the analysis of
our algorithm, which shows that the robot is guaranteed to break deadlock, gracefully moving around an
oncoming human mover even if the human is unaware of (or ignores) the robot and even if the robot has a
bias that conflicts with the passing direction used by the human mover; and 3) to test our hypothesis that
the trade-off between more efficient but less reliable passing and less efficient but more reliable passing can

be controlled by the single parameter §, in the robot’s algorithm (7.2]).
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7.4.1 Validation of flexibility of the approach
7.4.1.1 Experimental setup

We ran a range of experimental trials each with a different scenario involving the robot and two human
participants. In each trial, the robot and each of the humans were assigned a starting and goal location,
which were selected to make the robot and human paths intersect. Human participants could walk along
any path at any speed between their starting and goal locations.

In each trial, the robot was programmed to move at a constant speed of V. = 0.75m/s towards its
goal location while adjusting to human movement according to the navigation model with attention
dynamics specified by . At any given time, the robot considers only the closest nearby human (according
to the measure x/x) seen within a distance of 20m and an angular range of (—%, %) with respect to the
robot’s heading. If no humans are detected, the robot’s attention and opinion are reset to their neutral
value, v, = z. = 0. Results from five representative trials are shown in Fig. The parameters for
were d, = a, = 0.1, 7. = 4, k. = 1.5, and (8, = w/4. The parameters for wereu =0and R, =n=71.
For trials in Fig. % = 1.5 and for the trial in Fig. u = 2.5.

7.4.1.2 Results

Fig. shows the resulting trajectories and the robot’s opinion z, and attention u, over the full length of
each trial. Temporal markers (dots) are included along the humans’ trajectories and the robot’s opinion and
attention profiles. The top row shows how the robot navigates towards its goal while gracefully modifying
its trajectory when encountering humans along its path. The bottom row shows how the robot’s attention
rises and falls in response to its proximity to a human. When the robot sees a human moving towards its
left (resp. right), the opinion becomes negative (resp. positive) and the robot can be observed turning to its
right (resp. left). When the robot sees no human to navigate around, its opinion is neutral and its go-to-goal
behavior moves the robot towards its goal.

We observe in Fig. that the robot’s opinion switches sign throughout each trial and that this
is reflected in the robot’s trajectory, which switches between turns to the left and turns to the right when
it passes the human movers. The robot’s attention rises and falls as the different participants are seen,
maneuvered around, and passed by the robot. In Fig. [7.2d] and the two human participants approach
the robot side-by-side. However, the response of the robot is different in the two cases because the distance
between the two participants is different. In Fig. [7.2d] the participants are close together and the robot
passes to the right of both, whereas in Fig. the participants are further apart, and the robot navigates

between them. This is a consequence of the proxy tanny, that has the same sign for each human mover in
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the first case but different signs in the second case.

7.4.2 Validation of the deadlock breaking
7.4.2.1 Experimental setup

Fixed pairs of starting and goal locations were assigned to the robot and a human participant. The human
participant was asked to walk from (Om, 6.1m) to (Om, -1m), and the robot was programmed to navigate
from (Om, Om) to (Om, 6.1m). These locations were selected to make the robot and human move head-on
toward one another.

The robot was programmed to move at a constant speed V;. = 0.7m/s toward its goal location, modifying
its trajectory when encountering movers according to the navigation model with parameters d,, = 0.5,
ar =01, v =3, 7, =k, = 1, and g(k, x; Rr) = exp(k(R, — x)) with R, = 11. We designed three cases
corresponding to three different values of the robot’s bias b,: 1) unbiased (b, = 0), 2) biased to its left
(b, = 0.5), and 3) biased to its right (b, = —0.5).

The participant was instructed to walk at their normal pace (their speed was recorded to be V}, =
1.09 + 0.03m/s) towards their goal location according to one of three prompts: 1) go straight, 2) bear to the
left, and 3) bear to the right.

We crossed the three cases for the robot and the three prompts for the human participant for a total of
nine different trial configurations. We ran each of these nine different trial configurations five times for a

total of 45 trials. Each of the 45 trials was run with 8, = /4 and 8, = 7/6 in (7.2) for a total of 90 trials.

7.4.2.2 Results

Fig. [7.5 shows the resultant trajectories of the 90 trials organized by configuration on a 3 x 3 grid. For a
given configuration and value of §, all five trials are plotted on the same graph. Trials where 3, = w/4 are
shaded in yellow and trials where 3, = w/6 are unshaded. It can be observed that the robot navigated each
trial configuration with similar path structure, regardless of the value of ;.

In all the scenarios where the robot was unbiased (second row of Fig. , it successfully broke deadlock,
verifying the guarantee of deadlock-free navigation provided by the model and justified in the analysis
of Section[7.3] In the trials when the human started directly facing the robot and continued walking straight
ahead (UU), as in the simulation Fig. the robot quickly formed a strong opinion for one or the other
direction. The robot chose to go left with about the same frequency that it chose to go right.

Having a bias allows the robot to rapidly form an initial opinion and break deadlock (turn left if b, > 0

or right if b, < 0). In the scenarios where the robot’s bias was in conflict with the action taken by the human
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Figure 7.5: The trajectory data for five runs each of the nine trial configurations for the case 5, = /4
(shaded yellow) and for the case 8, = 7/6 (unshaded). Axes correspond to the zy-plane in meters. The
robot paths are shown in red with a red box at the robot’s starting position at about (Om, Om). The human
paths are shown in blue with a blue box at the human’s starting position at about (Om, 6.1m). In trial
configuration labels, L=left, U=unaware/unbiased, and R=right. Shorthand labels (eg. LL, LU) can be
read as (robot bias, human action).

((LR) and (RL) in Fig. [7.5)), the robot initially moved according to its bias but quickly adapted to the social
cues given by the human and passed them in a cooperative fashion, i.e., matching the human movement
and in opposition to its bias. This demonstration of flexibility provides evidence that the robot can reliably
adjust its opinion to fit the social context in which it interacts with the human.

The results of Fig. also provide evidence that a smaller 3, (unshaded plots) leads to more efficient
(less time to goal) passing around the human as compared to a larger 3, (shaded plots). Fig. provides
further evidence of the role of 3, in tuning efficiency as the percent increase in length of the robot’s path for
the trials when 3, = /4 as compared to the case in which 8, = 7/6 was uniformly positive, at least 4% on
average. Additionally, for each configuration, in trials with larger 3, the robot exhibited consistently higher
maximum curvature along its path. Trials conducted with 5, = 7/4 showed an increase of approximately
22.37% £ 6.71% of the maximum curvature of the robot’s trajectory as compared to the case 3, = w/6. This
confirms that a robot with a larger 3, is less efficient.

Notably, Fig. [7.6]shows that the smallest percent increase in robot path length for the increase in 3, is in
the UU case, when the robot was unbiased and the human unaware of the robot. This is consistent with the
result that in this trial configuration, the robot took the most time to form a non-neutral opinion and turn
to pass the human, which kept its paths in both [, cases closer to the trial space’s centerline than observed
in other trial configurations.

Fig. [7.7] provides evidence that j3, tunes reliability and, together with the results of Fig. [7.6] that S,

tunes the efficiency-reliability trade-off, as hypothesized. The difference in the minimum distance recorded
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Figure 7.6: Percent increase of the robot’s path length for 8, = /4 compared to 8, = 7/6 for each of the
nine configurations. Dotted lines link results associated with the same robot bias. L/U/R labels as in Fig.

5

between the robot and human as they passed one another in each trial configuration for the different g,
values is shown in Fig. ﬁ The robot consistently came closer to the human along their paths for 8, = 7/6
as compared to 8, = w/4.

For each set of three configurations grouped by the robot’s bias, the robot came closest to the human
whenever the human was unaware of the robot (i.e. LU, UU, RU). In the other configurations, the robot was
able to cooperate with the human to form its opinion and pass the human like the human passed the robot.
Without this cooperation, when the robot was the only participant in the passing, the passing distance
was consistenly smaller. The minimum distance in the case of the unbiased robot and unaware human was
similar for the 5, = n/4 and 8, = 7/6 trials. This suggests that this case is the most challenging for
the robot independent of .. Still, the general decrease of the minimum distance between the robot and
human that comes from a decrease in parameter 3, across all other configurations suggests that there is some
design threshold where, once passed, the robot could not reliably navigate its way out of collision. Even if
the robot’s algorithm is such that it can reliably form non-neutral opinions to break deadlock, the design

parameters within the model must be sufficiently tuned for use in a real world dynamic context.

7.5 Discussion and final remarks

We present a new proactive approach to social robot navigation that leverages a nonlinear opinion dynamics
model to enable a robot to rapidly and reliably pass approaching human movers, without requiring a model
of human behavior. We show analytically and verify with human-robot experiments that this new navigation

algorithm is guaranteed to break deadlock, even when the robot has no bias or evidence from the humans or
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Figure 7.7: Average minimum distance between the robot and human for each of the nine configurations.
Dotted lines link results associated with the same g, value (orange line for 8, = 7/4, purple line for 8, = 7/6)
and robot bias. L/U/R labels as in Fig.

the environment that one passing direction is better than the other. The experiments verify the flexibility
of the approach with the robot reliably modifying its trajectory when encountering two human movers in its
path. The experiments also verify that a robot with a bias for passing in one direction can still reliably pass
the human mover even if the human chooses to pass in the direction that conflicts with the robot’s bias. We
show further how design parameters in the robot navigation algorithm can tune the robot’s behavior, and
verify in the experiments that parameter [, tunes the efficiency-reliability trade-off in the passing problem.
Future directions include extending the new approach to multi-robot social navigation in more complex
scenarios, e.g., with more human movers and more cluttered environments. We also plan to investigate
an extension that allows for increased attention to changes in context and tuning important trade-offs like

efficiency versus reliability.
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